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Abstract

Studies on benthic foraminifera were conducted in the mangrove forests of Teluk Tempoyak,
Pulau Betong and Kuala Sungai Pinang, Penang Island, Peninsular Malaysia to examine
species composition and distribution patterns in different intertidal zones. Twenty-eight
live benthic foraminiferal species were successfully identified at the study locations, predom-
inantly species with agglutinated tests. Assemblages in Pulau Betong and Teluk Tempoyak
were dominated by similar species such as Ammonia aoteana, Elphidium hispidulum,
Elphidium neosimplex and Trochammina inflata, while Kuala Sungai Pinang comprises a
high number of Trochammina inflata and Arenoparrella mexicana. Three species,
Aubignyna perlucida, Elphidium neosimplex and Elphidium sandiegoense, were recorded for
the first time in Malaysian mangrove forests. Principal component analysis showed that
sediment type and organic matter content were the dominant parameters that explained
the variation of environmental gradient. Canonical correspondence analysis of these para-
meters with benthic foraminiferal species indicated that sand particles influenced distribution
of the hyaline tests. Species with agglutinated tests were abundant in sediment with rich
organic matter in combination with high silt and clay content. Species with hyaline tests
dominated lower intertidal zones, while those with agglutinated tests inhabited the area
from the middle to upper intertidal zones. This distribution pattern of benthic foraminiferal
species mirrored patterns found at other local and global mangrove locations.

Introduction

Foraminifera are single-celled microorganisms that are one of the most important and widely
distributed groups of organisms in marine environments (Gooday, 2003; Sen Gupta, 2003).
They occupy all marine habitats, including marginal (i.e. lagoons, estuaries, mangroves and
salt marshes), coastal and deep-sea environments (Murray, 2006). Benthic foraminifera are
usually classified based on the structure of their test (shell). The calcareous type secretes
calcium carbonate to form its tests, which can be divided into two groups: hyaline tests
(perforated wall) and porcelaneous tests (imperforate wall) (Armstrong & Brasier, 2005).
Meanwhile, agglutinated test species build their test by cementing foreign particles; usually
sand grains or other small, fragmented shells (Tuckwell et al., 1999). The preservation of
the test depends on their surroundings, whether conductive to carbonate preservation or
dissolution (Scott et al., 2004). Distinct species assemblages preserved in large numbers/unit
volume makes foraminifera a potential bioindicator of pollution, and several studies have
shown the suitability of this benthic organism as a bioindicator (Hallock et al., 2003;
Le Cadre & Debenay, 2006; Frontalini & Coccioni, 2011; Debenay, 2015; Alve et al., 2016).
Some studies have also addressed the relationship of species assemblages to floral zone at
salt marshes and used to reconstruct sea level changes (Callard et al., 2011; Wright et al.,
2011; Horton et al., 2012; Kemp et al., 2013; Strachan et al., 2015; Barnett et al., 2016;
Shaw et al., 2016).

Benthic foraminifera represent a significant part of the total biomass of the meiofaunal
community and play an essential role in the consumption of organic carbon in surface sedi-
ments (Mojtahid et al., 2011). Some species of benthic foraminifera convert organic matter by
means of kleptoplastidy where the species retain chloroplast from food sources and integrate
them into their own pathway (e.g. genus Haynesina), while other species such as Ammonia
rapidly ingest organic matter into cellular biomass (Pillet et al., 2011; Jauffrais et al., 2016;
Wukovits et al., 2017; Lintner et al., 2020; Jesus et al., 2022). The process of food uptake in
foraminifera was induced by salinity in the surrounding environment. A recent laboratory
experiment carried out has found that Ammonia tepida consumed green algae (Dunaliella ter-
tiolecta) with average C of 0.8 and 1 μg mg−1 and N of about 0.3 1 μg mg−1 at salinity between
24 and 37 PSU, while Haynesina germanica recorded a lower average C of 0.3 μg mg−1 and N
of about 0.05–1 μg mg−1(Lintner et al., 2020).
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Under natural conditions in nearshore marine environments,
common factors contributing to the distribution and abundance
of benthic foraminifera include salinity, temperature, dissolved
oxygen, pH, substrate type, tidal regime and biotic influences
such as competition, food supply and local disturbance (Scott
et al., 2004; Woodroffe et al., 2005; Murray, 2006; Horton &
Culver, 2008; Kemp et al., 2011). Species of benthic foraminifera
in marshes/mangroves environments have been identified by
some authors worldwide (e.g. Scott et al., 2004; Woodroffe
et al., 2005; Murray, 2006; Berkeley et al., 2009a, 2009b; Culver
et al., 2012, 2013; Debenay, 2012; Gómez & Bernal, 2013;
Satyanarayana et al., 2014; Camacho et al., 2015; Langer et al.,
2016). Common benthic foraminifera species that were found in
mangrove ecosystems mostly consist of agglutinated taxa such as
Ammotium morenoi, Arenoparrella mexicana, Haplophragmoides
wilberti, Miliammina fusca, Entzia macrescens and Trochammina
inflata, with some calcareous hyaline taxa (e.g. Ammonia tepida,
Bolivina striatula, Elphidium fijiense, Elphidium hispidulum,
Elphidium advenum) (Scott et al., 2004; Woodroffe et al., 2005;
Murray, 2006; Berkeley et al., 2009a, 2009b; Debenay, 2012;
Culver et al., 2013; Camacho et al., 2015; Langer et al., 2016;
Abd Malek et al., 2021).

Ecological baseline studies are essential to monitoring environ-
mental changes, especially in fragile ecosystems such as man-
groves. Mangrove refers to assemblages of tropical trees and
shrubs that grow in the intertidal zone with adaptation to a wet,
saline habitat. Mangrove is a highly productive habitat on earth
and provides numerous ecosystems services for human liveli-
hoods (Carugati et al., 2018). Despite that, mangroves have
been constantly cleared for aquaculture shrimp farms, industrial
developments and enlargement of housing settlements (Chee
et al., 2017). The mangrove destruction has a profound effect
on biodiversity and causes serious threats on human sustainability
(Rawat & Agarwal, 2015; Carugati et al., 2018). Despite that, little
attention has been paid to this fragile ecosystem. Thus, recording
biodiversity and monitoring ecological changes in this habitat are
essential.

Environmental settings

Malaysia is divided into two parts by the South China Sea, which
shares maritime borders with Singapore, Thailand, Indonesia,
Brunei, Vietnam and the Philippines (Figure 1A). Located in
the equatorial region, the country experiences a tropical climate
with three monsoon seasons. These monsoon seasons are divided
into South-west Monsoon (SWM) from early May to early
October and North-east Monsoon (NEM) from early November
to March. In between changing of these monsoons, the
Monsoon Transitional Period (MTP) occurs from April to early
May and early October to early November. Usually, a long
dry period and low precipitation occurs during SWM, while
NEM generates higher rainfall and tidal events (Malaysian
Meteorological Department, 2017). During the sampling
period, the lowest monthly precipitation occurred in June
(63.8 mm) while the highest volume was recorded in September
(487.8 mm).

Penang Island is situated in the Strait of Malacca, off the
north-western coast of Peninsular Malaysia located between 5°
15´N–5°30´N and 100°10´–100°21´E with altitude ranging from
0–817 m above sea level, and slope degree of 0–61.598°
(Khodadad & Dong-Ho, 2015) (Figure 1B). The island is a highly
developed and populated area in Malaysia with a population of
752,800 and a density of 1663/km2 on the total area of 299 km2

(Chee et al., 2017). The mangrove forests on the island cover
∼6.8 km2 and are mostly found along the west coast of Balik
Pulau (Chee et al., 2017) (Figure 1C). The island experiences a

tropical climate with relative humidity varying from 60.9–96.8%
and the annual rainfall ranges from 2670–3250 mm (Gao et al.,
2021). Over the past three decades, the island experienced an
average sea level rise rate of 3.2 mm year−1 and this is expected
to rise from 320–7320 mm above 2000 levels by 2100 (Gao
et al., 2021).

Previous foraminiferal studies in Penang Island were con-
ducted in coastal waters and most species identified were com-
mon species found worldwide (Minhat et al., 2014; Yahya et al.,
2014). No studies of foraminifera in the mangrove area in
Penang Island have been done. The present study was conducted
to determine the community structure of benthic foraminifera by
analysing their assemblages and the ecological factors that con-
tribute to their distribution at the mangrove forest. The results
of this study will provide a database for monitoring ecological
changes in the Penang Island mangrove forest.

Materials and methods

Sampling

For this study, three locations of mangrove forests were
selected (Figure 2): Pulau Betong (PB, Figure 2.1), Kuala Sungai
Pinang (KSP, Figure 2.2) and Teluk Tempoyak (TT, Figure 2.3).
At each location, the mangrove areas were divided into three
intertidal zones, lower: 0–0.5 m, middle: 0.5–1.0 m and upper:
1.0–1.5 m, according to the watermark label classification from
Hogarth (2015). In each zone, six sampling points were laid
out, with ∼3–5 m between points. Sampling was performed
monthly for a one-year period (from March 2017 until
February 2018) during the lowest spring tide. The details of the
sampling points are provided in Supplementary Table S1.
Mangrove flora were identified to genus level based on Lee
et al. (2015).

At each station, ∼50 cm3 volume (50 cm2 surface sample by
1 cm thick) of surface sediment was collected at each point
using a scoop and stored in labelled plastic bags. The samples
were separated into two parts, one part was used for foraminiferal
analysis and another part for organic matter (OM) and particle
size analysis. In situ parameters were measured at each point
(Table 1). A refractometer (Milwaukee model MA887) was used
to measure pore-water salinity, and a pH meter (Thermo
Scientific Eutech Expert) was employed to measure pore-water
temperature and pH.

Samples taken for foraminiferal analysis were preserved in 80%
ethanol and stained with Rose Bengal (2 g l−1), following methods
described by Schönfeld et al. (2012). About 10 cm3 of the stained
samples was washed through a 500 μm sieve and then a 63 μm
sieve (Buzas-Stephens et al., 2018). Only the 63 μm sieve fractions
were used for the collection of benthic foraminifera (Edwards
et al., 2004; Hayward et al., 2011; Schönfeld et al., 2012;
Camacho et al., 2015; Debenay et al., 2015). Samples smaller
than this size fraction are known to contain juvenile species
which are harder to identify and may cause species misidentifica-
tion (Murray & Alve, 2000; Bouchet et al., 2012). When possible,
at least 300 specimens of benthic foraminifera were counted from
each sample under a dissecting microscope (Olympus SZ51,
Japan). Specimen that stained bright red colour was considered
as living during the time of sampling (Schönfeld et al., 2012).
In ecological studies of foraminifera, it is presumed that staining
with Rose Bengal is the most practical method for distinguishing
living specimens because the solution will stain the organisms’
protoplasm, indicating that the specimens were alive during the
sample collection (Murray & Alve, 2000). The benthic foramin-
ifera were wet picked to ensure that the stained tests would be rec-
ognizable (Edwards & Horton, 2006; Berkeley et al., 2009a;
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Semensatto-Jr et al., 2009; Shennan et al., 2015; Strachan et al.,
2015; Alve et al., 2019). All foraminiferal specimens were stored
on micropalaeontological slides and labelled accordingly. Since
ecological studies are dealing with living organisms at a particular
time and space, only live count data were used for statistical ana-
lysis as they provide more ecological insights (Murray, 2006).
Census data for live and dead assemblages at each location
were expressed as individuals/10 cm3 and are provided in
Supplementary file Tables S2 and S3.

Selected specimens of benthic foraminifera were observed
using a scanning electron microscope (Carl Zeiss Leo Supra 50
VP Field Emission) at the School of Biological Sciences,
Universiti Sains Malaysia (USM), Penang. A complete taxonomy
list of species from this study and other mangrove locations
around Malaysia was recently published (Abd Malek et al.,
2021).

The OM content in the sediments was analysed using the
loss on ignition method based on the procedures described by
Dean (1974), Heiri et al. (2001) and Minhat et al. (2021).
Approximately 100 g of sediments was weighed and dried over-
night in an oven at 105°C. Later, 5 g of dry subsample was placed
in a labelled crucible and heated in a furnace at 550°C for 4 h. The
percentage of OM content was determined based on the

differences between the initial and final weight. Another part of
the sediment samples was analysed for particle size (sand, silt
and clay) using the initial (dry) sieving method, followed by pip-
ette analysis (Krumbein & Pettijohn, 1938).

Data analysis

At each mangrove location, the species abundance of benthic for-
aminifera was expressed as a percentage of relative abundance.
Additionally, two-way PERMANOVA test was conducted on tem-
poral and spatial benthic foraminifera data to test for homogen-
eity between the assemblages. This non-parametric test was
calculated using Euclidean distance measure that was performed
using Paleontological Statistics data analysis package (PAST)
(Hammer et al., 2001).

The environmental parameters measured were analysed using
principal component analysis (PCA) to reduce the dimensions of
the data and to determine the parameters that best explained the
environmental gradient (Hotelling, 1933; Paliy & Shankar, 2016).
PCA was performed using PRIMER software version 7 (Clark
et al., 2014). The results of the PCA were then used to investigate
the relationship with the most abundant benthic foraminiferal
species.

Fig. 1. (A) Location of Malaysia and bordering countries; (B) Location of Penang Island in Peninsular Malaysia; (C) Location of three mangrove forest; (1) Pulau
Betong; (2) Kuala Sungai Pinang; (3) Teluk Tempoyak.
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For this purpose, canonical correspondence analysis (CCA)
was applied to the species-environmental parameters data, and
was conducted in PAST software (Hammer et al., 2001). The

data were initially screened to reduce background ‘noise’ that
could complicate the visualization of the data pattern. Thus, for
this analysis, only samples containing more than 50 specimens

Fig. 2. Sampling points and zonation depicted at each mangrove forests: (1) Pulau Betong; (2) Kuala Sungai Pinang; (3) Teluk Tempoyak.
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of benthic foraminifera and species with a relative abundance
greater than 5% in at least one sample were used. The species
abundance was logarithmically transformed into log (1 + x) to
reduce the influence of highly dominant species and allow a pattern
of subsidiary species to appear (Frontalini et al., 2009; Strachan
et al., 2015). For the environmental parameters, the data with dif-
ferent scale units were transformed and standardized so that those
combined parameters could be analysed together (Hammer et al.,
2001). Monte Carlo permutation tests were applied to the data to
test the statistical significance of the measured environmental vari-
ables on assemblage variations based on Legendre & Birks (2012).

Results

Benthic foraminiferal abundance and environmental parameters

Based on two-way PERMANOVA results, there was a significant
difference between temporal and spatial foraminifera distribution
from the mangrove (P < 0.05) throughout the sampling period
(Table 2).

Foraminiferal abundances and measured environmental
parameters are shown in Figure 3 (Supplementary file Table S4).
In comparison between three mangrove forests, PB mangrove
recorded the highest test abundance (3814 individuals/10 cm3)

Table 1. Summary of in situ parameters recorded at each sampling locations

Location Month
Pore-water

pH
Pore-water temperature

(°C)
Pore-water salinity

(PSU)
Organic matter

(%)

Pulau Betong mangrove March 2017 7.6 30.0 28.0 6.0

April 2017 7.5 31.0 27.0 12.0

May 2017 7.2 29.0 31.0 6.6

June 2017 7.4 31.0 34.0 5.5

July 2017 7.0 30.0 29.0 7.7

August 2017 7.1 29.0 30.0 5.6

September 2017 7.2 29.0 29.0 7.6

October 2017 7.4 30.0 30.0 6.2

November 2017 7.3 28.0 24.0 8.4

December 2017 7.0 28.0 25.0 5.8

January 2018 7.4 28.0 28.0 7.8

February 2018 7.0 29.0 NA 13.0

Kuala Sungai Pinang
mangrove

March 2017 7.1 32.0 28.0 13.0

April 2017 6.6 31.0 28.0 15.0

May 2017 7.8 29.0 28.0 10.0

June 2017 6.7 28.0 31.0 14.0

July 2017 7.0 31.0 30.0 15.0

August 2017 6.7 30.0 27.0 15.0

September 2017 6.9 29.0 29.0 17.0

October 2017 7.3 30.0 29.0 5.2

November 2017 6.8 29.0 30.0 13.0

December 2017 6.7 29.0 28.0 12.0

January 2018 6.9 27.0 30.0 15.0

February 2018 6.8 28.0 NA 14.0

Teluk Tempoyak mangrove March 2017 7.3 28.0 28.0 14.0

April 2017 6.4 30.0 29.0 12.0

May 2017 7.7 30.0 29.0 9.5

June 2017 6.8 28.0 31.0 13.0

July 2017 7.4 30.0 29.0 11.0

August 2017 7.1 30.0 27.0 10.0

September 2017 7.1 30.0 27.0 7.7

October 2017 7.3 29.0 30.0 11.0

November 2017 6.8 29.0 29.0 9.3

December 2017 6.5 28.0 27.0 7.4

January 2018 7.3 27.0 30.0 11.0

February 2018 6.7 28.0 NA 9.6
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followed by TT (3027 individuals/10 cm3 and KSP mangroves
(780 individuals/10 cm3). Highest assemblages at each mangrove
were recorded during February (PB: 872 individuals/10 cm3; TT:
494 individuals/10 cm3; KSP: 209 individuals/10 cm3).

The measured environmental parameters revealed variation
throughout the year. The pore-water pH recorded was in a
range of pH 6–8 at each mangrove location. The maximum pH
value was recorded at TT in May (pH 7.7 ± 0.3), at PB in
March (pH 7.6 ± 0.3) and at KSP in May (pH 7.8 ± 0.2). In TT
mangrove, pH value >6.8 occurred during May, June, July and
September with a low total number of foraminifera (<200 indivi-
duals/10 cm3). In PB mangrove, low foraminiferal abundance
occurred during May–July while KSP mangrove occurred through-
out sampling period except in February. The pore-water temperature
generally ranged from 27–32°C. The highest temperature was at TT
in August and September (30°C ± 1.1), at PB in April (31°C ± 1.9)
and at KSP in March (32°C ± 1.0). Pore-water salinity also fluctuated
during certain months, with a range of 24–34 PSU. The highest PSU
was recorded in June at every location: TT (31 PSU ± 3.5), PB (34
PSU ± 2.6) and KSP (31 PSU ± 1.7). Organic matter content in the
mangrove sediments varied between 5–15%. The highest OM was
recorded at different months at the three sites: TT: September =
17% ± 4.3; PB: February = 13% ± 8.9; KSP: June = 14% ± 12).

Sediment particle size

The sediments in the mangrove areas in all three locations were
predominantly sand. The sediment particle size ranges were simi-
lar between zones in each mangrove area. The mean percentage
ranged from 56–63% for sand, 11–16% for silt and 5–6% for
clay (Table 3).

Benthic foraminifera species composition and zonation

Overall, 28 species of live benthic foraminifera were successfully
identified from the three mangrove forests, belonging to five
orders, 15 families and 22 genera (Plate A and B). The test type
was predominantly agglutinated (17 species), followed by 10 hyaline
and one porcelaneous. The highest number of species was found in
PB mangrove (27 species), followed by TT mangrove (22 species),
and the lowest was recorded in KSP mangrove (12 species).

Pulau Betong assemblages

In the lower zone, hyaline tests dominated the assemblages with
species such as A. aoteana (max = 276 individuals/10 cm3),
E. hispidulum (max = 122 individuals/10 cm3), A. perlucida (max
= 71 individuals/10 cm3) and E. neosimplex (max = 54 indivi-
duals/10 cm3). In the middle zone, agglutinated tests recorded
higher abundance with T. inflata (max = 60 individuals/10 cm3)
and M. obliqua (max = 22 individuals/10 cm3). Towards the
upper zone, T. inflata remained abundant in the assemblages

(max = 86 individuals/10 cm3) together with other agglutinated
tests such as M. fusca (max = 57 individuals/10 cm3) and S. lobata
(max = 50 individuals/10 cm3) (Figure 4A).

Kuala Sungai Pinang assemblages

Species abundance in KSP was very low and mostly found
between lower to middle zones. The lower zone recorded low spe-
cies numbers which comprised mainly A. aoteana (max = 15 indi-
viduals/10 cm3). Middle zone recorded higher abundance of
agglutinated tests such as A. mexicana (max = 96 individuals/
10 cm3), T. inflata (max = 69 individuals/10 cm3) and S. lobata
(max = 27 individuals/10 cm3) (Figure 4B).

Teluk Tempoyak assemblages

Foraminiferal assemblages in TT were mostly similar to those at
PB and KSP mangroves. The lower zone contained a high number
of A. aoteana (max = 229 individuals/10 cm3), E. hispidulum
(max = 85 individuals/10 cm3) and A. perlucida (max = 74 indivi-
duals/10 cm3). In the middle zone, abundance of A. aoteana
remained high (max = 82 individuals/10 cm3). Other species
found in the middle zone were T. inflata (max = 26 individuals/
10 cm3) and A. mexicana (max = 20 individuals/10 cm3). In the
upper zone, only T. inflata was recorded with high abundance
(max = 67 individuals/10 cm3) (Figure 4C).

Relationship between environmental parameters and species
abundance

Environmental parameters analysed with PCA revealed that the
sum of PC1 (eigenvalue = 2.3; variance = 33%) and PC2 (eigen-
value = 1.3; variance = 18%) explained half of the total environ-
mental variation. In PC1, a higher correlation coefficient (>0.5)
was contributed by OM and particle size, and in PC2, by pore-
water temperature and pore-water salinity (Table 4). Based on
the PCA loading scores, higher correlations were contributed by
OM percentage and particle size sediments. These parameters
were further analysed using CCA.

The results of CCA showing the relationship between the
environmental parameters and the dominant species assemblages
are presented in Figure 5. The first two axes explained 89% (axis
1 = 71.3%; axis 2 = 17.3%) of the total variation within species and
the environmental parameters. The hyaline tests were significantly
correlated with sand particles. Meanwhile, agglutinated tests were
associated with OM content, together with silt and clay.

Discussion

Species numbers in mangrove areas

In general, foraminiferal diversity in mangrove forests is usually
lower (<60 species) than that in normal marine lagoons and the
deep-sea environment (>200 species) (Murray, 2006; Ortiz
et al., 2011; Contreras-Rosales et al., 2012; Debenay, 2012;
Milker & Schmiedl, 2012). The mangrove environment is often
regarded as an extreme condition for benthic foraminifera
owing to its high fluctuations in salinity, temperature and OM
availability (Murray, 2006; Debenay, 2012). Conversely, stable
environmental conditions from nearshore to deep sea have
reported higher ranges of species diversity (after Murray, 2006;
Debenay, 2012; Milker & Schmiedl, 2012).

Species distribution pattern according to intertidal zonation

The zonation of the benthic foraminiferal test types showed a dis-
tinct microhabitat between lower and upper zones (Figure 5). The

Table 2. Results of PERMANOVA between foraminifera counts data for monthly
and zones between sampling sites

Factor SS df MS F P

Month 6937.4 11 630.7 3.7 0.0001

Zone 7764.6 2 3882.3 22.8 0.0001

Interaction 8436.6 22 383.5 2.2 0.0001

Residual 1.04 × 105 612 170.1

Total 1.3 × 105 647

df, degrees of freedom; SS, sum of squares; MS, mean squares; F, Fisher’s statistic.
Significant factors (P < 0.05) are shown in bold.
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Fig. 3. Monthly foraminiferal abundance and mean environmental parameters.
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Table 3. Mean and standard deviation (SD) of particle size percentage in the mangrove sediments

Location Zone

Sand (%) Silt (%) Clay (%)

Mean SD Mean SD Mean SD

PB Lower 56.3 14.0 16.0 13.5 6.3 3.7

Middle 63.4 14.1 12.2 13.5 4.9 3.7

Upper 56.3 14.5 16.0 13.2 6.3 3.7

KSP Lower 56.3 13.0 16.0 14.8 6.3 6.5

Middle 56.6 13.1 15.8 15.0 6.3 6.4

Upper 56.3 13.7 16.0 16.0 6.3 5.8

TT Lower 56.3 20.3 16.0 12.9 6.3 6.8

Middle 59.3 20.8 12.0 12.7 5.8 6.8

Upper 58.8 20.8 11.9 12.6 5.9 6.8

Plate A. 1. Ammonia aoteana spiral view, 100×, 100 μm,
2. A. aoteana umbilical view, 150×, 100 μm, 3. Aubignyna
perlucida spiral view, 230×, 30 μm, 4. A. perlucida umbil-
ical view, 150×, 30 μm, 5. Elphidium fijiense spiral view,
200×, 100 μm, 6. Elphidium neosimplex spiral view,
250×, 30 μm, 7. Elphidium hispidulum spiral view, 150×,
20 μm, 8. Elphidium sandiegoense spiral view, 350 × ,
30 μm, 9. Haynesina depressula spiral view, 150×, 30
μm, 10. Rosalina globularis spiral view, 280× 30 μm, 11.
R. globularis umbilical view, 280×, 30 μm, 12. Bolivina
striatula lateral view, 350×, 20 μm, 13. Asterorotalia pul-
chella spiral view, 448 200×, 30 μm, 14. Quinqueloculina
seminula lateral view, 350×, 30 μm. Scale bar = 100 μm.
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assemblages that contained only agglutinated tests were found
mostly in PB and TT middle to upper zones, while hyaline tests
dominated the lower zone. Agglutinated test species are commonly
recorded in marshes, mangroves and brackish environments
because this test type is able to endure low salinity and high pH
conditions (Debenay & Guillou, 2002; Hayward et al., 2011;
Shennan et al., 2015). At all studied locations, the upper zone was
the driest area as it is periodically inundated during spring high
tides. These severe conditions may not favour the establishment
of benthic foraminiferal assemblages, especially the hyaline tests.

The mangrove forests in the studied locations were mostly in
small patches with low floral species diversity. In this study,
there was no clear relationship between benthic foraminiferal
assemblages and mangrove floral zones because the mangrove for-
ests in Penang Island are overwash type mangrove. Due to the
strong impact of tidal activity, overwash mangroves often cover
small areas with fewer mangrove species and no plant zonation
(Sukardjo, 2006; Rodriguez et al., 2009). Similarly, Hadiyanto
et al. (2018) found that in an overwash mangrove macrobenthos
study, sediment type more significantly influenced the total

Plate B. 1. Acupeina triperforata dorsal view, 200×, 20 μm, 2. Ammoastuta salsa lateral view, 200×, 100 μm, 3. Haplophragmoides wilberti lateral view, 150×, 100 μm,
4. Ammobaculites exiguus lateral view, 300×, 300 μm, 5. Ammotium directum lateral view, 200×, 20 μm, 6. Ammotium fragile lateral view, 180×, 100 μm, 7. Ammotium
pseudocassis lateral view, 100×, 100 μm, 8. Caronia exilis lateral view, 201×, 30 μm, 9. Monotalea salsa lateral view, 180×, 100 μm, 10. Glomospira fijiensis lateral view,
300×, 30 μm, 11. Entzia macrescens umbilical view, 200×, 20 μm, 12. Arenoparrella mexicana umbilical view, 150×, 20 μm, 13. Tiphotrocha comprimata umbilical view,
150×, 20 μm, 14. Trochammina inflata spiral view, 180×, 100 μm, 15. Siphotrochammina lobata spiral view, 180×, 100 μm, 16. Miliammina fusca lateral view, 250×, 30
μm, 17. Miliammina obliqua lateral view, 360×, 20 μm. Scale bar = 100 μm.
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abundance and species composition than mangrove vegetation.
Also, the lower productivity in this mangrove type may differ
from those in fringing and riverine mangroves which have clear
mangrove plant zonations. Zonation based on mangrove plants
is generally the result of local factors such as sediment transport,
tidal inundation and nutrient availability (Bunt & Bunt, 1999;
Woodroffe et al., 2005; Murray, 2006). The dominant mangrove
trees in the studied location were from the genus Avicennia
which was mostly found at the lower to the upper elevations.
In TT and PB mangrove, the lower zone consists of higher abun-
dance of A. aoteana. This pattern was also reported by Woodroffe
et al. (2005) and Berkeley et al. (2009b) in fringing mangrove of
Cocoa Creek, Australia, where the upper mangrove forest of

A. marina has high abundance of A. aoteana. Woodroffe et al.
(2005) suggested that A. aoteana is a useful species for sea-level
indicators.

A lower number of agglutinated test species M. fusca (PB: 185
individuals/10 cm3; TT: 130 individuals/10 cm3; KSP: absent) and
M. obliqua (PB: 187 individuals/10 cm3; TT: 132 individuals/
10 cm3; KSP: 34 individuals/10 cm3) was found in the sediment
from all sampling locations. Previous studies have also reported
low amounts of M. obliqua (64–249 individuals/10 cm3) in man-
grove sediments (Berkeley et al., 2009b; Culver et al., 2015). The
structure of the thin-shelled test of M. obliqua is known to be
quickly degraded after death (Hayward et al., 2004). Meanwhile,
M. fusca is found in most intertidal areas, typically at the higher

Fig. 4. Abundance of six main foraminiferal species: (A) PB mangrove; (B) KSP mangrove; and (C) TT mangrove. Water level, approximate tidal heights and sampling
points are indicated.
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tidal elevations (Barbosa & Suguio, 1999; Horton et al., 2003;
Murray, 2006; Gómez & Bernal, 2013; Camacho et al., 2015;
Sen et al., 2015).

Only one porcelaneous test (Quinqueloculina seminula) was
found in this study. The species was found only in live assem-
blages of PB mangroves (13 individuals/10 cm3), which indicated
that the species was rare and might be transported from coastal
waters by tidal propagation. Previously, Eichler (2019) found
that porcelaneous alien species (Quinqueloculina lamarckiana)
was transported from continental shelf to mangroves of
Bertioga Channel, Brazil. The species was also rarely found in liv-
ing assemblages because it might have been transported from its
natural habitat (Eichler, 2019).

Our results have shown that the agglutinated tests were mainly
found in the middle to upper zones. Similarly, in temperate regions

where mangrove plants have been replaced with marshes, the
assemblages contain dominant agglutinated with porcelaneous
test (Edwards et al., 2004; Scott et al., 2004; Strachan et al.,
2015). The agglutinated tests mainly from the genera Entzia,
Trochammina, Tiphotrocha and Miliammina were confined to a
higher elevation area of the mean tide level (Shennan et al., 2015).

The role of environmental parameters on species distribution

The factors that are commonly known to contribute to benthic
foraminiferal abundance are salinity, temperature, nutrition, dis-
solved oxygen conditions, pH and type of substrate (Scott et al.,
2004; Culver & Horton, 2005; Woodroffe et al., 2005; Murray,
2006; Kemp et al., 2011). However, the abundance of benthic for-
aminifera in mangrove environments is usually controlled by the

Fig. 4. Continued.
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elevation of the tidal frame (Scott et al., 2004; Culver et al., 2013).
The environments of mangrove areas, which usually have high
ground temperature, high vegetation cover and high organic con-
tent, might affect the benthic foraminiferal distribution in tropical
regions (Scott et al., 2004; Culver & Horton, 2005; Berkeley et al.,
2009a; Culver et al., 2013).

In this study, abundant hyaline test species were recovered in
sediments with high sand content at the lower intertidal
zone, which had higher pore-water temperature (26–32°C, mean:
29.2 ± 1.2) owing to its lower level of mangrove tree cover.
However, the pore-water temperature was not at an extreme
level (>32°C), therefore taphonomic loss of hyaline tests was
unlikely to have occurred (Culver et al., 2013). Thus, pore water

Fig. 4. Continued.

Table 4. Values of correlation coefficient from PCA

Parameters PC 1 PC 2

Pore-water pH 0.29 0.03

Pore-water temperature 0.09 0.77

Pore-water salinity 0.17 0.77

%OM 0.76 0.01

%Sand 0.86 0.00

%Silt 0.68 0.13

%Clay 0.65 0.22
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temperature was not regarded as a main controlling factor. Several
studies have reported that increasing pore water temperatures can
cause adverse effects to intertidal foraminifera (i.e. reduce loco-
motion, metabolism and reproduction (Buzas & Severin, 1993;
Gross, 2000; Wukovits et al., 2017; Li et al., 2019; Deldicq et al.,
2021). On a regional scale, cooler water temperatures are known
to favour the preservation of agglutinated tests compared with
warmer regions and tropical environments such as mangroves
(Goldstein & Watkins, 1999; Debenay et al., 2002; Berkeley
et al., 2009a).

Organic matter is also documented as a key parameter that influ-
ences the distribution of benthic foraminifera in mangrove sedi-
ments. In this study, dominant agglutinated species (A. mexicana,
T. inflata, M. obliqua, M. fusca) were widely distributed in the
middle to upper mangrove reaches. These species showed prefer-
ences for sediments with high OM content and silty-muddy sub-
strate, as shown in the CCA graph. The dense aquaculture

activities (i.e. shrimp ponds and fish cages) in the mangrove for-
ests might also result in high OM in the sediments, which has
been reported by some authors (Chee et al., 2015; Zolkhiflee
et al., 2021). In Matang mangroves, the high presence of A. mex-
icana, together with Haplophragmoides wilberti, was due to the
enrichment of OM by leaf litter and other bioorganic substances
(Satyanarayana et al., 2014). These species were dominant in
organic-rich sediments of shrimp ponds as reported by
Debenay et al. (2015). Miliammina fusca has previously been
reported as a dominant species in the lower mangrove zone
(Scott et al., 2004; Edwards & Horton, 2006) and at the seaward
edges of marsh environments with an absence of vegetation
cover (Murray & Alve, 1999). Some studies have reported that for-
aminiferal species were sensitive to the variability and quality of
organic matter on surface and in the deeper layer of sediments
(e.g. Mojtahid et al., 2010; Papaspyrou et al., 2013; Barras et al.,
2014; Cesbron et al., 2016). Experimental studies on organic

Fig. 5. CCA of the dominant species (>5% relative abundance) and the gradient of primary environmental parameters. (A) Test type as categorical factor; (B) tidal
zone as categorical factor.
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matter degradation have shown that the process is related to the
bacterial activities present in the sediment layers causing lowering
of dissolved oxygen level, consequently decreasing the number of
certain foraminiferal species (usually calcareous species) by mak-
ing them unable to proliferate (Duffield et al., 2015). Thus, further
studies are required to address the variability response of species
in mangrove sediments.

Other agglutinated species such as E. macrescens and T. inflata
are known to have better preservation potential and ability to with-
stand taphonomic signatures compared with other benthic foram-
iniferal species (Ozarko et al., 1997; Berkeley et al., 2007). However,
the occurrence of E. macrescens in this study was rare because the
foraminiferal assemblages were only taken on the surface sedi-
ments. The species was thought to be an infaunal type, suggesting
that it may have moved downcore (Scott et al., 2004; Culver et al.,
2013; Strachan et al., 2015). Meanwhile, T. inflata and A. mexicana
thrived in areas with higher OM, especially in the dense mangroves
of KSP. Similar conditions have also been reported in marshes of
the USA and North Island, New Zealand (Murray, 2006).

Foraminiferal test dissolution occurs when the pH range is
below optimal conditions, which range from pH 6.5–7.2
(Murray, 2006). Previous study reported that decalcification of
hyaline species Ammonia beccarii in normal marine salinity
occurred when pH decreased below pH 7.5 (Le Cadre et al.,
2003). In mangrove forests, pH decreases owing to the decompos-
ition of leaf litter by bacteria in the sediments, might also explain
the decrease of calcareous tests (Debenay & Guillou, 2002).

The pH recorded at the sampling sites was between 6.4–7.8
(7.1 ± 0.3). In general, pH variations within the intertidal region
are higher than those in other marine environments due to fresh-
water input either from rainwater or river runoff (Erskian &
Lipps, 1977; Debenay et al., 2002, 2006; Scott et al., 2004) and cal-
careous tests are known to be sensitive to pH fluctuations (Phleger
& Bradshaw, 1966; Saraswat et al., 2011; Weinmann et al., 2021).
Owing to pH fluctuations, several studies have applied benthic
foraminifera as an indicator for ocean acidification (Haynert
et al., 2013; Schmidt et al., 2014; Kawahata et al., 2019). At
lower pH values, benthic foraminifera require substantial energy
to re-calcify their tests in order to survive (Woodroffe et al.,
2005). Similarly, abundance of agglutinated foraminifera has
been reported at pH levels ranging from pH 6.2–6.6 with absence
of calcareous foraminifera in vegetated mangroves at Sandy Creek,
Queensland (Woodroffe et al., 2005).

Comparison with other mangrove forest

Penang Island assemblages contain high numbers of agglutinated
test species with 17 species. The agglutinated species in the pre-
sent study were similar to those found in mangrove forests such
as in Kapar, Selangor and Matang, Perak (Satyanarayana et al.,
2014). Meanwhile in Setiu, Terengganu, Culver et al. (2012,
2013) identified a high number of hyaline test species (46 species).
Particularly, Setiu wetland is a fringing mangrove swamp where
saltwater intrusion is higher compared with Penang Island man-
groves. A higher range of salinity (>30 PSU) was known to
increase the number of calcareous tests species (Hayward et al.,
2004; Horton & Murray, 2007; Culver et al., 2012, 2015, 2019).
Despite that, laboratory experiments on two calcareous species
(Ammonia tepida and Haynesina germanica) have found that
fluctuation in salinity had smaller impact on food uptake
(Lintner et al., 2020). Since the range of salinity recorded in
this study was not as high as that in other studies, the number
of calcareous tests recovered was low (<10 species).

Although the foraminiferal species found were mostly similar
to those reported in other studies in Malaysian mangrove
forests, three newly recorded species were recovered in the present

study. These species were identified as A. perlucida, E. neosimplex
and E. sandiegoense. These hyaline test species have been
reported in coastal environments worldwide (Murray et al., 2000;
Murray, 2006; Sugawara et al., 2009; Debenay, 2012). In this
study, A. perlucida was found in all three mangrove locations,
while E. neosimplex was only found in TT and PB mangroves.
The hyaline test species, E. sandiegoense was only recovered in
PB sediments. The rare occurrences of A. perlucida, E. neosimplex
and E. sandiegoense in living assemblages from sampling locations
were possibly due to tests being transported from their natural
habitation by tidal movement and flood events (Mendes et al.,
2004; Debenay & Luan, 2006; Raposo et al., 2018).

In general, spatial and seasonal variabilities are due to the
interaction between fauna, reproduction strategy, predation and
food sources (Hayward et al., 2011; Scott et al., 2011; Buzas
et al., 2015). In this study, numerous burrows found in the sedi-
ments (especially in lower to middle zones) indicated that there
was intense bioturbation by macrofauna such as fiddler crabs.
As a result, the fragile tests of smaller benthic foraminifera, par-
ticularly agglutinated tests were mostly destroyed (Debenay
et al., 2002; Debenay & Parra, 2004; Perry et al., 2008). On the
other hand, the rare occurrence of a calcareous hyaline test
genus such as Elphidium indicated weak eutrophic conditions
and stratification of water column (Alve, 2003).

Overall, the distribution of benthic foraminiferal tests in this
study was influenced by the environmental parameters of
Penang Island mangrove forests, particularly the OM content
and sediment type. The distribution pattern of benthic foramin-
iferal tests showed microhabitat preferences at different inter-
tidal zones, with hyaline tests dominating the lower zone
assemblages and agglutinated tests in the middle to the upper
zones. This zonation pattern is valuable in determining the
potential consequences of habitat degradation, which is particu-
larly prevalent in mangrove environments.

Conclusions

The distribution pattern of benthic foraminifera tests showed
microhabitat preferences in which hyaline tests (A. aoteana,
Elphidium neosimplex and E. hispidulum) were highly abundant
in the lower mangrove zone, while agglutinated tests (A. mexicana
and Trochammina inflata) were abundant in the middle to upper
mangrove zones. The distribution pattern observed was mainly
due to the influence of OM content and particle size in the
sediments. The tests distribution pattern of benthic foraminifera
in Penang Island showed that the number of agglutinated tests
species was higher than the hyaline and porcelaneous tests,
which commonly occurred in mangrove environments. The
data from this study will provide a baseline for future monitoring
of environmental changes in the mangrove area on Penang Island.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315422001072
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