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Abstract
Mirror symmetry for a semistable degeneration of a Calabi–Yau manifold was first investigated by Doran–Harder–
Thompson when the degenerate fiber is a union of two quasi-Fano manifolds. They proposed a topological construc-
tion of a mirror Calabi–Yau by gluing of two Landau–Ginzburg models that are mirror to those Fano manifolds.
We extend this construction to a general type semistable degeneration where the dual boundary complex of the
degenerate fiber is the standard N-simplex. Since each component in the degenerate fiber comes with the simple
normal crossing anticanonical divisor, one needs the notion of a hybrid Landau–Ginzburg model – a multipotential
analogue of classical Landau–Ginzburg models. We show that these hybrid Landau–Ginzburg models can be glued
to be a topological mirror candidate for the nearby Calabi–Yau, which also exhibits the structure of a Calabi–Yau
fibration over P𝑁 . Furthermore, it is predicted that the perverse Leray filtration associated to this fibration is mirror
to the monodromy weight filtration on the degeneration side [12]. We explain how this can be deduced from the
original mirror P=W conjecture [18].
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1. Introduction

Traditionally, mirror symmetry is a conjectural relationship between two compact Kähler n-dimensional
Calabi–Yau manifolds X and 𝑋∨: The complex (algebraic) geometry of X (B-side) is equivalent to the
symplectic geometry of 𝑋∨ (A-side) and vice versa [1][19]. In [26], Strominger–Yau–Zaslow proposed a
geometric construction of such mirror pair as dual special Lagrangian torus fibrations. This idea extends
mirror symmetry beyond the Calabi–Yau case, particularly to the case of quasi-Fano manifolds [2]. We
say X is quasi-Fano if the anticanonical divisor is effective, base-point free and 𝐻𝑖 (𝑋,O𝑋 ) = 0 for
𝑖 > 0. In this case, a mirror object is given by a Landau–Ginzburg (LG) model (𝑌, 𝜔, w : 𝑌 → C) where
(𝑌, 𝜔) is an n-dimensional Kähler Calabi–Yau manifold and w : 𝑌 → C is a locally trivial symplectic
fibration near infinity. We refer readers to [2] for more details.

1.1. Generalization of Doran–Harder–Thompson construction

A relationship between two different kinds of mirror symmetries for Calabi–Yau manifolds and quasi-
Fano manifolds was first addressed by Doran–Harder–Thompson in the case of Tyurin degenerations
[11]. Recall that Tyurin degeneration is a semistable degeneration of a Calabi–Yau manifold X into a
union of two quasi-Fano varieties 𝑋1 ∪ 𝑋2 over the smooth anticanonical hypersurface 𝑋12 := 𝑋1 ∩ 𝑋2.
This degeneration restricts the behavior of the normal bundles of 𝑋12 in 𝑋1 and 𝑋2 to be inverse to
each other. For 𝑖 = 1, 2, suppose one has a mirror LG model (𝑌𝑖 , w𝑖) for each pair (𝑋𝑖 , 𝑋12) and generic
fibers of each w𝑖 are topologically the same. Note that the anticanonical divisor −𝐾𝑋𝑖 is mirror to the
monodromy of a generic fiber w−1

𝑖 (𝑡) near the infinity. Then by the adjunction formula, the relation on
the normal bundles of 𝑋12 corresponds to the condition that the monodomies of w−1

𝑖 (𝑡) are inverse to
each other. This allows one to topologically glue two LG models to obtain a mirror candidate of X which
is also equipped with the map to P1.1 One natural question is how to generalize this construction when
X degenerates into a more general simple normal crossing variety.
Question 1.1. How do we extend the construction of Doran–Harder–Thompson for a semistable degen-
eration of more general types?

The aim of this article is to answer this question for a certain case and study related topics. We use a
recently developed language of hybrid LG models [24]. This is a multipotential analogue of classical LG
model, whose idea goes back to [3, Section 5.3]. A triple (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ), called a hybrid LG model
of rank N if (𝑌, 𝜔) is a Kähler Calabi–Yau manifold of dimension n and ℎ = (ℎ1, . . . , ℎ𝑁 ) : 𝑌 → C𝑁
is a Calabi–Yau fibration which is locally trivial around the infinity boundaries of the base (See
Definition 3.1). In fact, this turns out to be a suitable model to capture mirror symmetry of the
quasi-Fano pair (𝑋, 𝐷 = ∪𝑁

𝑖=1𝐷𝑖) in the following way: For any 𝐼 ⊂ {1, . . . , 𝑁}, the induced quasi-
Fano pair (𝐷 𝐼 := ∩𝑖∈𝐼𝐷𝑖 ,∪ 𝑗∉𝐼𝐷 𝑗 ∩ 𝐷 𝐼 ) is expected to be mirror to the induced hybrid LG model
(𝑌𝐼 := ∩𝑖∈𝐼w−1

𝑖 (𝑡𝑖), 𝜔|𝑌𝐼 , ℎ|𝑌𝐼 : 𝑌𝐼 → C𝑁−|𝐼 | ), where w−1
𝑖 (𝑡𝑖) is a generic fiber of w𝑖 . We will review

the precise notion of the hybrid LG model and the associated mirror symmetry relations in Section 3.
Let’s consider a semistable degeneration of a Calabi–Yau manifold X into a simple normal crossing

variety 𝑋𝑐 = ∪𝑁
𝑖=0𝑋𝑖 whose dual boundary complex is the standard N-simplex. Suppose we have a

hybrid LG model (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → C𝑁 ) mirror to each pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) with additional topological
conditions (Hypothesis 4.6). Similar to the Tyurin degeneration case, the semistability corresponds to

1Here, we view P1 as the topological gluing of the base disks of LG models.
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the condition on the monodromies associated to the hybrid LG models (See Ansatz 3.9). By shrinking
the base of ℎ𝑖 to a polydisk Δℎ𝑖 , this condition allows to topologically glue the hybrid LG models and
produces a symplectic fibration 𝜋 : 𝑌 → P𝑁 (Proposition 4.7) where the base Δℎ𝑖 is identified with the
locus {|𝑧 𝑗 | ≤ |𝑧𝑖 | | 𝑗 = 0, . . . , 𝑁} ⊂ P𝑁 . We also take a general hyperplane 𝐻 ⊂ P𝑁 and its complement
P𝑁 \ 𝐻 � C𝑁 . We write the induced fibration �̃� : 𝑌 → C𝑁 for 𝑌 := 𝜋−1(P𝑁 \ 𝐻).

Theorem 1.2 (Theorem 4.9). Suppose that (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) is topological mirror to (𝑌𝑖 , ℎ𝑖 : 𝑌𝑖 → C𝑁 )
for all i. Then

1. Y is topological mirror to X. In other words, 𝑒(𝑌 ) = (−1)𝑛𝑒(𝑋),
2. 𝑌 is topological mirror to 𝑋𝑐 . In other words, 𝑒(𝑌 ) = (−1)𝑛𝑒(𝑋),

where 𝑒(−) is the Euler characteristic.

1.2. Mirror P=W conjecture

The topological mirror relation in Theorem 1.2 is the weakest form of the mirror symmetry one would
expect. We could ask further about other kinds of mirror symmetry relations for this construction. In
the semistable degeneration, there is a geometric autoequivalence on the cohomology of X induced by
the monodromy of X around the degenerate fiber 𝑋𝑐 . It gives rise to the monodromy weight filtration on
𝐻∗(𝑋) that constitutes the limiting mixed Hodge structure. On the other hand, on the cohomology of
the degenerate fiber 𝑋𝑐 , there is Deligne’s canonical weight filtration that constitutes the mixed Hodge
structure. The natural question is what the corresponding filtrations on the mirror Y and 𝑌 are.

Question 1.3. What is the filtration on the cohomology of Y (resp. 𝑌 ) that is mirror to the monodromy
weight filtration (resp. Deligne’s canonical weight filtration)?

The answer is expected to be the perverse Leray filtration associated to 𝜋 : 𝑌 → P𝑁 (resp. �̃� : 𝑌 →
C𝑁 ), as proposed by Doran–Thompson [12, Conjecture 4.3]. The following is a simplified version that
we discuss in this article.

Conjecture 1.4.

1. For X and Y, we have

dimC Gr𝑝𝐹Gr𝑊lim
𝑝+𝑞𝐻

𝑝+𝑞+𝑙 (𝑋,C) = dimC Gr𝑛−𝑞𝐹 Gr𝑃𝑛+𝑝−𝑞𝐻𝑛+𝑝−𝑞+𝑙 (𝑌,C),

where 𝑃• is the perverse Leray filtration associated to 𝜋.
2. For 𝑋𝑐 and 𝑌 , we have

dimC Gr𝑝𝐹Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑙 (𝑋𝑐 ,C) = dimC Gr𝑛−𝑞𝐹 Gr𝑃𝑛+𝑝−𝑞𝐻
𝑛+𝑝−𝑞+𝑙
𝑐 (𝑌,C),

where 𝑃• is the perverse Leray filtration associated to �̃�.

Remark 1.5. We should emphasize that we could not discuss complex geometric properties of the both
topological mirror candidates (𝑌, 𝜋 : 𝑌 → P𝑁 ) and (𝑌, �̃� : 𝑌 → C𝑁 ) as we do not know how to glue
complex structures. This means that the perverse Leray filtrations associated to 𝜋 and �̃� are not the usual
ones discussed in the literature [7]. Instead, we consider the potentially equivalent filtrations, called
general flag filtrations, whose description is purely topological. See Section 2.3 for more details.

The motivational work for the appearance of the weight and perverse filtration in mirror symmetry,
which we shall call mirror P=W conjecture, is the proposal of Harder–Katzarkov–Przyjalkowski [18]
in the context of mirror symmetry of log Calabi–Yau varieties. For a given log-Calabi–Yau variety U
of dimension n, one can consider the mixed Hodge structure on the cohomology 𝐻∗(𝑈) that consists of
Deligne’s canonical weight filtration𝑊• and Hodge filtration 𝐹•. On the other hand, we have a canonical
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affinization map Aff : 𝑈 → Spec 𝐻0(𝑈,O𝑈 ) and it provides the perverse Leray filtration 𝑃•. Since those
filtrations are compatible with each other, we can define the perverse-mixed Hodge polynomial of U by

𝑃𝑊𝑈 (𝑢, 𝑡, 𝑤, 𝑝) :=
∑

𝑎,𝑏,𝑟 ,𝑠

(dimC Gr𝑎𝐹Gr𝑊𝑠+𝑏Gr𝑃𝑠+𝑟 (𝐻𝑠 (𝑈,C)))𝑢𝑎𝑡𝑠𝑤𝑏𝑝𝑟 .

Conjecture 1.6 (Mirror P=W conjecture)[18]. Assume that two n-dimensional log-Calabi–Yau varieties
U and 𝑈∨ are mirror to each other. Then we have the following polynomial identity:

𝑃𝑊𝑈 (𝑢−1𝑡−2, 𝑡, 𝑝, 𝑤)𝑢𝑛𝑡𝑛 = 𝑃𝑊𝑈∨ (𝑢, 𝑡, 𝑤, 𝑝). (1.1)

In case that U has compactification (𝑋, 𝐷) where X is a smooth (quasi-)Fano and D is simple normal
crossing anticanonical divisor, the mirror P=W conjecture can be deduced from mirror symmetry for
the pair (𝑋, 𝐷). Note that the choice of a pair (𝑋, 𝐷) corresponds to the choice of a hybrid LG potential
ℎ : 𝑌 → C𝑁 which plays a role of a proper affinization map. Then mirror symmetry expects that one
could match the (part of) 𝐸1-page of the spectral sequence for the weight filtration on 𝐻∗(𝑈) with the
𝐸1-page of the spectral sequence for G-flag filtration (=perverse Leray filtration) associated to h on
𝐻∗(𝑌 ). Explicitly, this is an isomorphism of the 𝐸1-pages

(
⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹
𝑊 𝐸−𝑙, 𝑝+𝑞+𝑙 , 𝑑1) � (𝐺𝐸−𝑙,𝑛+𝑎+𝑙 , 𝑑𝐺1 ) (1.2)

where both are known to degenerate at the 𝐸2-page (see Section 2.1,2.3 for the notations). We say the
mirror pair (𝑋, 𝐷) |(𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) satisfies the mirror P=W conjecture in a strong sense if the
relation (1.2) holds.

Theorem 1.7. Suppose that each mirror pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) |(𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → C𝑁 ) satisfies the mirror
P=W conjecture in a strong sense. Then

1. for X and Y as above, we have⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹Gr𝑊lim
𝑝+𝑞 𝐻 𝑝+𝑞+𝑙 (𝑋) � Gr𝑃

𝜋

𝑛+𝑎𝐻
𝑛+𝑎+𝑙 (𝑌 ),

2. for 𝑋𝑐 and 𝑌 as above, we have⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑙 (𝑋𝑐) � Gr𝑃
�̃�

𝑛+𝑎𝐻
𝑛+𝑎+𝑙
𝑐 (𝑌 ).

The main idea is to apply the gluing property (Proposition 3.2) of each hybrid LG potential ℎ𝑖 :
𝑌𝑖 → C𝑁 to describe the 𝐸1-pages of the spectral sequences for 𝑃𝜋

• and 𝑃 �̃�
• in a way that they become

isomorphic to those for 𝑊lim • and 𝑊•, respectively. One of the key lemmas is the Poincaré duality
statement for hybrid LG models, which we will prove in Section 7.

Theorem 1.8 (Theorem 7.4)(Poincaré duality). Let (𝑌, ℎ : 𝑌 → C𝑁 ) be a rank N hybrid LG model.
Then for 𝑎 ≥ 0, there is an isomorphism of cohomology groups

𝐻𝑎 (𝑌,𝑌𝑠𝑚,C) � 𝐻2𝑛−𝑎 (𝑌,𝑌𝑠𝑚,C)∗,

where 𝑛 = dimC𝑌 .

1.3. The degeneration-fibration correspondence for Batyrev mirror pairs

One can see that the mirror construction discussed above proposes the conjectural mirror correspondence
between semistable degenerations and Calabi–Yau fibrations, which we shall call the degeneration-
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fibration correspondence. In Section 6, we provide further evidence for such mirror correspondence for
Batyrev mirror pairs [4].

We first consider a semistable degeneration of a smooth toric Fano variety 𝑋Δ which is induced by
a semistable partition Γ of the polytope Δ (Definition 6.3). The degenerate fiber is the union of toric
varieties associated to the maximal subpolytopes {Δ (𝑖) |𝑖 = 0, . . . , 𝑁} in Δ for some N. This induces a
type (𝑁+1) semistable degeneration of a general Calabi–Yau hypersuface X of 𝑋Δ whose degenerate fiber
𝑋𝑐 = ∪𝑁

𝑖=0𝑋𝑖 is the simple normal crossing union of general hypersurfaces 𝑋𝑖 of 𝑋Δ (𝑖) , determined by
Δ (𝑖) . We will show that on the mirror side, the partition Γ canonically induces a morphism 𝜋 : 𝑌 → P𝑁
from a mirror dual Calabi–Yau Y. It follows from the construction that the deepest intersection of the
components of the degenerate fiber is mirror to a generic fiber of 𝜋. Moreover, as the base of 𝜋 : 𝑌 → P𝑁
comes with the toric chart, we obtain a natural candidate of a mirror hybrid LG model to (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ).
In other words, for each i, we take Δ 𝑖 := {|𝑧 𝑗 | ≤ |𝑧𝑖 | | 𝑗 ≠ 𝑖} ⊂ P𝑁 and set 𝑌𝑖 := 𝜋−1 (Δ 𝑖) and ℎ𝑖 := 𝜋 |𝑌𝑖 .

Conjecture 1.9. (Conjecture 6.10) For each i, the hybrid LG model (𝑌𝑖 , ℎ𝑖 : 𝑌𝑖 → Δ 𝑖) is mirror to the
pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ).

Conjecture 1.9 can be considered as the reverse construction of the topological gluing of hybrid LG
models. We leave verifying this conjecture for future work.

2. Backgrounds

In this section, we set up the notations and review basic concepts about mixed Hodge structures and
perverse filtrations.

2.1. The weight filtration

We recall basic concepts about the mixed Hodge structures [10][9] following the exposition in [25]. Let
U be a smooth quasi-projective variety over C and (𝑋, 𝐷) be a good compactification of U. Recall that
a pair (𝑋, 𝐷) is called a good compactification of U if X is a smooth and compact variety and D is
a simple normal crossing divisor. Let 𝑗 : 𝑈 → 𝑋 be a natural inclusion. Consider the logarithmic de
Rham complex

Ω•
𝑋 (log 𝐷) ⊂ 𝑗∗Ω

•
𝑈 .

Locally at 𝑝 ∈ 𝐷 with an open neighborhood 𝑉 ⊂ 𝑋 with coordinates (𝑧1, · · · , 𝑧𝑛) in which D is given
by 𝑧1 · · · 𝑧𝑘 = 0, one can see

Ω1
𝑋 (log 𝐷)𝑝 = O𝑋,𝑝

𝑑𝑧1
𝑧1

⊕ · · · ⊕ O𝑋,𝑝
𝑑𝑧𝑘
𝑧𝑘

⊕ O𝑋,𝑝𝑑𝑧𝑘+1 ⊕ · · · ⊕ O𝑋,𝑝𝑑𝑧𝑛

Ω𝑟
𝑋 (log 𝐷)𝑝 =

𝑟∧
Ω1
𝑋 (log 𝐷)𝑝 .

There are two filtrations on the logarithmic de Rham complex (Ω•
𝑋 (log 𝐷), 𝑑):

1. (Hodge filtration) A decreasing filtration 𝐹• on Ω•
𝑋 (log 𝐷) defined by

𝐹 𝑝Ω•
𝑋 (log 𝐷) := Ω≥𝑝

𝑋 (log 𝐷).

2. (Weight filtration) An increasing filtration 𝑊• on Ω•
𝑋 (log 𝐷) defined by

𝑊𝑚Ω
𝑟
𝑋 (log 𝐷) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑚 < 0
Ω𝑟
𝑋 (log 𝐷) 𝑚 ≥ 𝑟

Ω𝑟−𝑚
𝑋 ∧Ω𝑚

𝑋 (log 𝐷) 0 ≤ 𝑚 ≤ 𝑟.
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Theorem 2.1 [25, Theorem 4.2].

1. The logarithmic de Rham complex Ω•
𝑋 (log 𝐷) is quasi-isomorphic to 𝑗∗Ω•

𝑈 :

𝐻𝑘 (𝑈;C) = H𝑘 (𝑋,Ω•
𝑋 (log 𝐷)).

2. The decreasing filtration 𝐹• on Ω•
𝑋 (log 𝐷) induces the filtration in cohomology

𝐹 𝑝𝐻𝑘 (𝑈;C) = Im(H𝑘 (𝑋, 𝐹 𝑝Ω•
𝑋 (log 𝐷)) → 𝐻𝑘 (𝑈;C))

which is called the Hodge filtration on 𝐻•(𝑈). Similarly, the increasing filtration 𝑊• on Ω•
𝑋 (log 𝐷)

induces the filtration in cohomology

𝑊𝑚𝐻𝑘 (𝑈;C) = Im(H𝑘 (𝑋,𝑊𝑚−𝑘Ω
•
𝑋 (log 𝐷)) → 𝐻𝑘 (𝑈;C))

which is called the weight filtration on 𝐻•(𝑈).
3. The package (Ω•

𝑋 (log 𝐷),𝑊•, 𝐹
•) gives a C-mixed Hodge structure on 𝐻𝑘 (𝑈;C).

Remark 2.2. In general, the weight filtration can be defined over the field of rational numbers Q so that
the Q-mixed Hodge structures are considered. However, as we will mainly focus on filtrations on the
cohomology group with complex coefficients, we will not explicitly denote the rational structures in the
notation.

The key properties of these two filtrations are the degenerations of the associated spectral sequences.
More precisely, we have

Proposition 2.3 [25, Theorem 4.2, Proposition 4.3].

1. The spectral sequence for (H(𝑋,Ω•
𝑋 (log 𝐷)), 𝐹•) whose 𝐸1-page is given by

𝐸 𝑝,𝑞
1 = H𝑝+𝑞 (𝑋, Gr𝑝𝐹Ω

•
𝑋 (log 𝐷))

degenerates at the 𝐸1-page. Thus, we have

Gr𝑝𝐹H
𝑝+𝑞 (𝑋,Ω•

𝑋 (log 𝐷)) = H𝑝+𝑞 (𝑋, Gr𝑝𝐹Ω
•
𝑋 (log 𝐷)).

2. The spectral sequence for (H(𝑋,Ω•
𝑋 (log 𝐷)),𝑊•) whose 𝐸1-page is given by

𝐸−𝑚,𝑘+𝑚
1 = H𝑘 (𝑋, Gr𝑊𝑚 Ω•

𝑋 (log 𝐷))

degenerates at the 𝐸2-page and the differential 𝑑1 : 𝐸−𝑚,𝑘+𝑚
1 → 𝐸−𝑚+1,𝑘+𝑚

1 is strictly compatible
with the filtration 𝐹•. In other words,

𝐸−𝑚,𝑘+𝑚
2 = 𝐸−𝑚,𝑘+𝑚

∞ = Gr𝑊𝑚+𝑘H
𝑘 (𝑋,Ω•

𝑋 (log 𝐷)).

For a given mixed Hodge structure 𝑉 = (𝑉C,𝑊•, 𝐹
•) and 𝑚 ∈ Z, we define the m-th Tate twist of V

by setting 𝑉 (𝑚) := (𝑉C(𝑚),𝑊 (𝑚)•, 𝐹 (𝑚)•), where 𝑉C(𝑚) := (2𝜋𝑖)𝑚𝑉C and

𝑊 (𝑚)𝑘 := 𝑊𝑘+2𝑚 𝐹 (𝑚) 𝑝 := 𝐹𝑚+𝑝

for all k and p.
In order to compute the mixed Hodge structures, we introduce the geometric description of the

𝐸1-page of the spectral sequence. Let D be a simple normal crossing divisor with N irreducible
components 𝐷1, . . . , 𝐷𝑁 . For any index set 𝐼 ⊂ {1, . . . , 𝑁}, we write 𝐷 𝐼 = ∩𝑖∈𝐼𝐷𝑖 for the intersection.
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We set 𝐷 (𝑘) to be the disjoint union of k-tuple intersections of the components of D and 𝐷 (0) to be X.
Also, for 𝐼 = (𝑖1, · · · , 𝑖𝑚) and 𝐽 = (𝑖1, · · · , 𝑖 𝑗 , · · · , 𝑖𝑚), there are inclusion maps

𝜄𝐼𝐽 : 𝐷 𝐼 ↩→ 𝐷𝐽

𝜄𝑚𝑗 =
⊕
|𝐼 |=𝑚

𝜄𝐼𝐽 : 𝐷 (𝑚) ↩→ 𝐷 (𝑚 − 1)

which induce canonical Gysin morphisms on the level of cohomology. Therefore, we have

𝛾𝑚 =
𝑚⊕
𝑗=1

(−1) 𝑗−1(𝜄𝑚𝑗 )! : 𝐻𝑘−𝑚(𝐷 (𝑚)) (−𝑚) → 𝐻𝑘−𝑚+2(𝐷 (𝑚 − 1)) (−𝑚 + 1), (2.1)

where (−)! is the Gysin morphism. We call this sign convention the Mayer-Vietoris sign rule which
is unique up to ±1. Under the residue map, this gives a geometric description of the differential
𝑑1 : 𝐸−𝑚,𝑘+𝑚

1 → 𝐸−𝑚+1,𝑘+𝑚
1 of the 𝐸1-page of the spectral sequence for the weight filtration as follows:

Proposition 2.4 [25, Proposition 4.7]. The following diagram is commutative

𝐸−𝑚,𝑘+𝑚
1 𝐻𝑘−𝑚(𝐷 (𝑚);C) (−𝑚)

𝐸−𝑚+1,𝑘+𝑚
1 𝐻𝑘−𝑚+2(𝐷 (𝑚 − 1);C) (−𝑚 − 1),

𝑟𝑒𝑠𝑚

𝑑1 −𝑟𝑚

𝑟𝑒𝑠𝑚−1

(2.2)

where 𝑟𝑒𝑠𝑚 is the residue map for all 𝑚 ≥ 0.

Note that all the morphisms in the diagram (2.2) are compatible with Hodge filtration 𝐹•. This
description provides several computational tools as well as functorial properties of the mixed Hodge
structures under geometric morphisms. For more details, we refer the reader to [25].

One can extend the above construction to the case when U is singular. This can be done by taking
a simplicial or cubical resolution of the singular variety U and associated good compactifications. We
will not review this construction but describe one particular case which we will deal with.

Example 2.5. Let D be a simple normal crossing variety. Consider the long exact sequences

0 →
⊕
|𝐼 |=1

𝐻 𝑗 (𝐷 𝐼 )
𝑑0−−→

⊕
|𝐼 |=2

𝐻 𝑗 (𝐷 𝐼 )
𝑑1−−→

⊕
|𝐼 |=3

𝐻 𝑗 (𝐷 𝐼 )
𝑑2−−→ · · · , (2.3)

where 𝑑𝑖 is the alternating sum of the restriction map. Then we have

Gr𝑊𝑗 𝐻𝑖+ 𝑗 (𝐷) = ker 𝑑𝑖
Im 𝑑𝑖+1

.

In fact, the sequence (2.3) is the 𝐸1-page of the spectral sequence for the weight filtration 𝑊•. It is also
compatible with the Hodge filtrations on each term to yield the Hodge filtration on 𝐻∗(𝐷).

2.2. The monodromy weight filtration

Let X be a smooth complex manifold andΔ be the unit disk. We consider a holomorphic map 𝑓 : 𝑋 → Δ
that is smooth over the punctured disk Δ∗ := Δ \ {0}. We also assume that 𝐸 := 𝑓 −1(0) is a simple
normal crossing divisor. Let 𝐸𝑖 be the components of E and write

𝐸𝐼 =
⋂
𝑖∈𝐼

𝐸𝑖 , 𝐸 (𝑚) =
∐
|𝐼 |=𝑚

𝐸𝐼
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as before. We present the de Rham theoretic description of the monodromy weight filtration on a generic
fiber 𝑋𝑡 := 𝑓 −1(𝑡).

Define the relative de Rham complex on X with logarithmic poles along E:

Ω•
𝑋/Δ (log 𝐸) := Ω•

𝑋 (log 𝐸)/ 𝑓 ∗(Ω1
Δ (log 0)) ∧Ω•−1

𝑋 (log 𝐸).

By definition, this fits into the short exact sequence

0 → 𝑓 ∗(Ω1
Δ (log 0)) ∧Ω•−1

𝑋 (log 𝐸) → Ω•
𝑋 (log 𝐸) → Ω•

𝑋/Δ (log 𝐸) → 0.

By taking − ⊗ O𝐸 on the above sequence, we will have

0 → Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 [−1]

∧𝑑𝑡/𝑡
−−−−→ Ω•

𝑋 (log 𝐸) ⊗ O𝐸 → Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 → 0.

The connecting homomorphism induces the residue at 0 of the logarithmic extension of the Gauss–
Manin connection:

𝑟𝑒𝑠0(∇) : H𝑞 (𝐸,Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 ) → H𝑞 (𝐸,Ω•

𝑋/Δ (log 𝐸) ⊗ O𝐸 ).

Note that the cohomology of the induced complex on E, Ω•
𝑋/Δ (log 𝐸) ⊗O𝐸 becomes isomorphic to the

cohomology group 𝐻∗(𝑋𝑡 ). Also, the morphism 𝑟𝑒𝑠0(∇) recovers the monodromy action on 𝐻𝑘 (𝑋𝑡 ).
Define the increasing filtration 𝑊• on Ω𝑋/Δ (log 𝐸) ⊗ O𝐸 by

𝑊𝑘Ω
•
𝑋/Δ (log 𝐸) ⊗ O𝐸 := Im

(
𝑊𝑘Ω

•
𝑋 (log 𝐸) → Ω•

𝑋/Δ (log 𝐸) ⊗ O𝐸

)
and the decreasing filtration 𝐹• by the simple truncation. To describe the monodromy weight filtration,
we consider the resolution of Ω•

𝑋/Δ (log 𝐸) ⊗ O𝐸 as follows. Define a tri-filtered double complex

(𝐴•,•, 𝑑 ′, 𝑑 ′′,𝑊•,𝑊 (𝑀)•, 𝐹•)

on E by

𝐴𝑝,𝑞 =
Ω𝑝+𝑞+1
𝑋 (log 𝐸)

𝑊𝑝Ω
𝑝+𝑞+1
𝑋 (log 𝐸)

, 𝑑 ′ = (−) ∧ 𝑑𝑡/𝑡 : 𝐴𝑝,𝑞 → 𝐴𝑝+1,𝑞 , 𝑑 ′′ = 𝑑𝑑𝑅 : 𝐴𝑝,𝑞 → 𝐴𝑝,𝑞+1

𝑊𝑟 𝐴
𝑝,𝑞 =

𝑊𝑟+𝑝+1Ω
𝑝+𝑞+1
𝑋 (log 𝐸)

𝑊𝑝Ω
𝑝+𝑞+1
𝑋 (log 𝐸)

, 𝑊 (𝑀)𝑟 𝐴𝑝,𝑞 =
𝑊𝑟+2𝑝+1Ω

𝑝+𝑞+1
𝑋 (log 𝐸)

𝑊𝑝Ω
𝑝+𝑞+1
𝑋 (log 𝐸)

𝐹𝑟 𝐴𝑝,𝑞 =
𝐹𝑟Ω𝑝+𝑞+1(log 𝐸)
𝑊𝑝Ω

𝑝+𝑞+1
𝑋 (log 𝐸)

.

We have the map

𝜇 : Ω𝑞
𝑋/Δ (log 𝐸) ⊗ O𝐸 → 𝐴0,𝑞

𝜔 ↦→ (−1)𝑞 (𝑑𝑡/𝑡) ∧ 𝜔 mod 𝑊0

which defines a quasi-isomorphism of bifiltered complexes

𝜇 : (Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 ,𝑊•, 𝐹

•) → (𝑠(𝐴•,•),𝑊•, 𝐹
•),

where 𝑠(𝐴•,•) is the associated single complex. Consider the natural morphism 𝜈 : 𝐴𝑝,𝑞 → 𝐴𝑝+1,𝑞−1

given by 𝜔 ↦→ 𝜔 (mod𝑊𝑝+1). As it commutes with both differentials 𝑑 ′ and 𝑑 ′′, it induces the
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endomorphism of the associated simple complex 𝑠(𝐴•,•). Note that this sends 𝑊 (𝑀)𝑟 to 𝑊 (𝑀)𝑟−2
and 𝐹 𝑝 to 𝐹 𝑝−1.

Theorem 2.6 [25, Theorem 11.21]. The following diagram is commutative:

H𝑞 (𝐸,Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 ) H𝑞 (𝐸, 𝑠(𝐴•,•))

H𝑞 (𝐸,Ω•
𝑋/Δ (log 𝐸) ⊗ O𝐸 ) H𝑞 (𝐸, 𝑠(𝐴•,•)).

𝜇

𝑟𝑒𝑠0∇ −𝜈

𝜇

By taking the residue map, we have

Gr𝑊 (𝑀 )
𝑟 𝑠(𝐴•,•) �

⊕
𝑘≥0,−𝑟

Gr𝑊𝑟+2𝑘+1Ω
•
𝑋 (log 𝐸) [1]

�
⊕
𝑘≥0,−𝑟

Ω•
𝐸 (𝑟+2𝑘+1) [−𝑟 − 2𝑘] .

Therefore, the 𝐸1 page of the spectral sequence for the monodromy weight filtration 𝑊 (𝑀)• is given by

𝐸 𝑝,𝑞
1 =

⊕
𝑘≥0, 𝑝

𝐻𝑞+2𝑝−2𝑘 (𝐸 (2𝑘 − 𝑝 + 1),C) (𝑝 − 𝑘).

More explicitly, the 𝐸1-page is given by the following diagram:

𝐸−2,𝑞
1 𝐸−1,𝑞

1 𝐸0,𝑞
1 𝐸2,𝑞

1

⊕
𝑘≥0

𝐻𝑞−2𝑘−4(𝐸 (2𝑘 + 3))
⊕
𝑘≥0

𝐻𝑞−2𝑘−2(𝐸 (2𝑘 + 2))
⊕
𝑘≥0

𝐻𝑞−2𝑘 (𝐸 (2𝑘 + 1))
⊕
𝑘≥1

𝐻𝑞−2𝑘+2(𝐸 (2𝑘))

𝐻𝑞−4 (𝐸 (3)) 𝐻𝑞−2 (𝐸 (2)) 𝐻𝑞 (𝐸 (1))

𝐻𝑞 (𝐸 (5)) 𝐻𝑞−4 (𝐸 (4)) 𝐻𝑞−2(𝐸 (3)) 𝐻𝑞 (𝐸 (2))

...
... 𝐻𝑞−4(𝐸 (5)) 𝐻𝑞−2 (𝐸 (4)),

𝑑1 𝑑1 𝑑1

⊕ ⊕ ⊕
⊕ ⊕ ⊕

where the horizontal arrows are (the alternating sum of) the Gysin morphisms while the antidiagonal
arrows are (the alternating sum of) the pullback morphisms. If we write down two morpshisms by G
and d, respectively, the differential 𝑑1 : 𝐸 𝑝,𝑞

1 → 𝐸 𝑝+1,𝑞
1 is given by 𝑑1 = 𝐺 + (−1) 𝑝𝑑.

Theorem 2.7 [25, Theorem 11.22]. The spectral sequence for the filtration 𝑊 (𝑀)• degenerates at the
𝐸2-page so that we have

𝐸 𝑝,𝑞
2 = 𝐸 𝑝,𝑞

∞ = Gr𝑊 (𝑀 )
𝑞 𝐻 𝑝+𝑞 (𝑋).

We will also denote the monodromy weight filtration 𝑊 (𝑀)• by 𝑊lim •.
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2.3. The perverse filtration

We briefly review the notion of perverse filtration [6] and its geometric description [7].

Definition 2.8. Let Y be an algebraic variety or complex analytic space and 𝐷𝑏
𝑐 (𝑌 ) be a derived category

of constructible sheaves on Y. An object 𝐾• ∈ 𝐷𝑏
𝑐 (𝑌 ) is called a perverse sheaf if it satisfies following

two dual conditions:

1. (Support Condition) dim supp(H𝑖 (𝐾•)) ≤ −𝑖
2. (Cosupport Condition) dim supp(H𝑖 (D𝐾•)) ≤ 𝑖, where D : 𝐷𝑏

𝑐 (𝑌 ) → 𝐷𝑏
𝑐 (𝑌 ) is a dualizing functor.

Verdier’s dualizing functor on 𝐷𝑏
𝑐 (𝑌 ) is defined as D = HomO𝑌 (−, 𝑝! (C𝑝𝑡 )), where 𝑝 : 𝑌 → 𝑝𝑡

is a trivial map. We call 𝑝! (C𝑝𝑡 ) a dualizing complex of Y, and denote it by 𝜔𝑌 . In particular, if Y
is nonsingular of complex dimension n, 𝜔𝑌 = C𝑌 [2𝑛]. Note that the subcategory P (𝑌 ) of perverse
sheaves on Y is an abelian category. Also, the support and cosupport condition induces the so-called
perverse t-structure (𝔭𝐷𝑏,≥0

𝑐 (𝑌 ), 𝔭𝐷𝑏,≤0
𝑐 (𝑌 )) on 𝐷𝑏

𝑐 (𝑌 ) whose heart is P (𝑌 ). Explicitly, it is given by

1. 𝐾• ∈ 𝔭𝐷𝑏,≤0
𝑐 (𝑌 ) if and only if K satisfies the support condition. Also, 𝔭𝐷𝑏,≤𝑛

𝑐 (𝑌 ) := 𝔭𝐷𝑏,≤0
𝑐 (𝑌 ) [−𝑛]

2. 𝐾• ∈ 𝔭𝐷𝑏,≥0
𝑐 (𝑌 ) if and only if K satisfies the cosupport condition. Also, 𝔭𝐷𝑏,≥𝑛

𝑐 (𝑌 ) :=
𝔭𝐷𝑏,≥0

𝑐 (𝑌 ) [−𝑛].

We denote 𝔭𝜏≤𝑛 : 𝐷𝑏
𝑐 (𝑌 ) → 𝔭𝐷𝑏,≤𝑛

𝑐 (𝑌 ) (resp. 𝔭𝜏≥𝑛 : 𝐷𝑏
𝑐 (𝑌 ) → 𝔭𝐷𝑏,≥𝑛

𝑐 (𝑌 )) the natural trun-
cation functor. This induces perverse cohomology functors 𝔭H : 𝐷𝑏

𝑐 (𝑌 ) → P (𝑌 ) defined by
𝔭H𝑘 := 𝔭𝜏≤0 ◦ 𝔭𝜏≥0 ◦ [𝑘]. Applying the perverse truncation, one can define the perverse filtration
on the hypercohomology of a constructible sheaf K• on Y as follows;

Definition 2.9. For K• ∈ 𝐷𝑏
𝑐 (𝑌 ), the perverse filtration 𝑃• on H𝑘 (𝑌,K•) is defined to be

𝑃𝑏H
𝑘 (𝑌,K•) := Im

(
H𝑘 (𝑌, 𝔭𝜏≤𝑏K•) → H𝑘 (𝑌,K•)

)
.

Let 𝑓 : 𝑋 → 𝑌 be a morphism of smooth varieties. Then we can define the perverse (f -)Leray
filtration on the cohomology 𝐻•(𝑋,C) by setting

𝑃
𝑓
𝑙 𝐻𝑘 (𝑋,C) := 𝑃

𝑓
𝑙 H

𝑘 (𝑌, 𝑅 𝑓∗C)

Theorem 2.10 [25, Corollary 14.41]. If f is proper, then the spectral sequence for the perverse Leray
filtration degenerates at the 𝐸2 page. In other words, we have

Gr𝑃
𝑓

𝑙 H
𝑘 (𝑋,C) = 𝐸 𝑘−𝑙,𝑙

2 = H𝑘−𝑙 (𝑌, 𝔭H𝑙 (𝑅 𝑓∗C)).

We will provide a geometric description of the perverse Leray filtration in case that the base space
is either affine or quasi-projective. For this, we introduce some notations used in the next subsection.
Let 𝑓 : 𝑋 → 𝑌 be a locally closed embedding. Then the restriction functor is given by (−)|𝑋 = 𝑅 𝑓! 𝑓

∗

on 𝐷𝑏
𝑐 (𝑌 ), which is exact. If f is closed, then we also have the right derived functor of sections with

support in X, denoted by 𝑅Γ𝑋 (−) = 𝑅 𝑓∗ 𝑓
!.

Next, we provide provide a geometric description of perverse filtrations. We follow the same con-
vention for the indices of filtrations used in [12]. Let’s consider the following commutative diagram of
varieties

𝑈 𝑌

𝐵𝑈 𝐵,

𝜋𝑈 𝜋
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where

◦ Y is a smooth complex projective variety of complex dimension n.
◦ B is a complex projective variety of complex dimension m. We fix an embedding 𝐵 ↩→ P𝑁 .
◦ 𝜋 : 𝑌 → 𝐵 is a proper morphism.
◦ 𝐵𝑈 is the affine subvariety of B and 𝑈 := 𝜋−1(𝐵𝑈 ). We write 𝜋𝑈 for the restriction of 𝜋 onto U.

Recall that there is a smooth projective variety 𝐹 (𝑁, 𝑚) parametrizing m-flags 𝔉 = {𝐹−𝑚 ⊂ · · · ⊂
𝐹−1} on P𝑁 , where 𝐹−𝑝 is a codimension p linear subspace. A linear m-flag 𝔉 on P𝑁 is general if it
belongs to a suitable Zariski open subset of 𝐹 (𝑁, 𝑚). Similarly, we say a pair of linear m-flags (𝔉1,𝔉2)
is general if it belongs to a suitable Zariski open subset of 𝐹 (𝑁, 𝑚) × 𝐹 (𝑁, 𝑚).

Fix a general pair of m-flags (𝐻•, 𝐿•) on P𝑁 . Intersecting with B, it gives a pair of flags of subvarieties
(𝐵•, 𝐶•) of B,

∅ = 𝐵−𝑚−1 ⊂ 𝐵−𝑚 ⊂ · · · ⊂ 𝐵−1 ⊂ 𝐵0 = 𝐵,

∅ = 𝐶−𝑚−1 ⊂ 𝐶−𝑚 ⊂ · · · ⊂ 𝐶−1 ⊂ 𝐶0 = 𝐵,

where 𝐵• := 𝐻• ∩ 𝐵 and 𝐶• := 𝐿• ∩ 𝐵. We set 𝑌• = 𝜋−1 (𝐵•) and 𝑍• = 𝜋−1 (𝐶•). By following [7, 12],
we define the following flag filtrations.

Definition 2.11.

1. The flag filtration 𝐺• (of the first kind) on the cohomology of U is a decreasing filtration defined by

𝐺𝑖𝐻𝑘 (𝑈,C) := ker{𝐻𝑘 (𝑈,C) → 𝐻𝑘 (𝑈,C|𝑈∩𝑌𝑖−1)}.

2. The flag filtration 𝐺• (of the second kind) on the compactly supported cohomology of U is a
decreasing filtration defined by

𝐺 𝑗𝐻𝑘
𝑐 (𝑈,C) := Im{𝐻𝑘

𝑍− 𝑗∩𝑈,𝑐 (𝑈,C) → 𝐻𝑘
𝑐 (𝑈,C)}.

3. The 𝛿-flag filtration 𝛿• on the cohomology of Y is a decreasing filtration defined by

𝛿𝑝𝐻𝑘 (𝑈,C) := Im{
⊕
𝑖+ 𝑗=𝑝

𝐻𝑘
𝑍− 𝑗

(𝑌,C|𝑌−𝑌𝑖−1) → 𝐻𝑘 (𝑌,C)}.

Note that both two G-filtraions can be defined on other cohomology theories as well. We describe
the 𝐸1-page of the spectral sequence for each filtration.

1. The 𝐸1-page of the spectral sequence for the flag filtration 𝐺• (of the first kind) on 𝐻∗(𝑈) is given by

𝐺𝐸 𝑝,𝑞
1 = 𝐻 𝑝+𝑞 (𝑈 ∩ 𝑌𝑝 ,𝑈 ∩ 𝑌𝑝−1,C) =⇒ 𝐻∗(𝑈,C),

and the differential 𝑑1 : 𝐺𝐸 𝑝,𝑞
1 → 𝐺𝐸 𝑝+1,𝑞

1 is the connecting homomorphism of the long exact
sequence of cohomology groups of the triple (𝑌𝑝+1, 𝑌𝑝 , 𝑌𝑝−1). Furthermore, we have

𝐺𝐸 𝑝,𝑞
∞ = Gr𝑝𝐺𝐻 𝑝+𝑞 (𝑈,C).

2. The 𝐸1-page of the spectral sequence for the flag filtration 𝐺• (of the second kind) on 𝐻∗
𝑐 (𝑈,C) is

given by

𝐺𝐸 𝑝,𝑞
1 = 𝐻 𝑝+𝑞

𝑍−𝑝∩𝑈−𝑍−𝑝−1∩𝑈,𝑐 (𝑈,C) =⇒ 𝐻∗
𝑐 (𝑈,C),

and the differential 𝑑1 : 𝐺𝐸 𝑝,𝑞
1 → 𝐺𝐸 𝑝+1,𝑞

1 is the connecting homomorphism of the long exact
sequence of cohomology groups with supports (𝑍−𝑝 , 𝑍−𝑝−1, 𝑍−𝑝−2). Furthermore, we have
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𝐺𝐸 𝑝,𝑞
∞ = Gr𝑝𝐺𝐻 𝑝+𝑞

𝑐 (𝑈,C).

3. The 𝐸1-page of the spectral sequence for the 𝛿-flag filtration 𝛿• on 𝐻∗(𝑌 ) is given by

𝛿𝐸 𝑝,𝑞
1 =

⊕
𝑖+ 𝑗=𝑝

𝐻 𝑝+𝑞
𝑍− 𝑗−𝑍− 𝑗−1

(𝑌,C|𝑌𝑖−𝑌𝑖−1 ) =⇒ 𝐻∗(𝑌,C).

More explicitly, the 𝐸1-page is given by the following diagram.

𝐸−2,𝑞
1 𝐸−1,𝑞

1 𝐸0,𝑞
1 𝐸1,𝑞

1

𝐻𝑞−2
𝑍0−𝑍−1

(C|𝑌−2−𝑌−3) 𝐻𝑞−1
𝑍0−𝑍−1

(C|𝑌−1−𝑌−2) 𝐻𝑞
𝑍0−𝑍−1

(C|𝑌0−𝑌−1)

𝐻𝑞−2
𝑍−1−𝑍−2

(C|𝑌−3−𝑌−4) 𝐻𝑞−1
𝑍−1−𝑍−2

(C|𝑌−2−𝑌−3) 𝐻𝑞
𝑍−1−𝑍−2

(C|𝑌−1−𝑌−2) 𝐻𝑞+1
𝑍−1−𝑍−2

(C|𝑌0−𝑌−1 )

...
... 𝐻𝑞

𝑍−2−𝑍−3
(C|𝑌−2−𝑌−3) 𝐻𝑞+1

𝑍−2−𝑍−3
(C|𝑌−1−𝑌−2).

𝑑1 𝑑1 𝑑1

⊕⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

(2.4)

◦ For fixed j, the antidiagonal sequence is the same with the 𝐸1-page of the spectral sequence for
the G-filtration of the first kind on 𝐻∗

𝑍− 𝑗
(𝑌 ) with respects to the induced flag 𝑍− 𝑗 ∩𝑌•. Let’s write

𝑑𝐼 for the differential.
◦ For fixed i, the horizontal sequence is the same with the 𝐸1-page of the spectral sequence for the

G-filtration of the second kind on 𝐻∗(𝑌𝑖) with respects to the induced flag 𝑍• ∩𝑌𝑖 . Let’s write 𝑑𝐼 𝐼
for the differential.

◦ The differential 𝑑1 : 𝛿𝐸 𝑝,𝑞
1 → 𝛿𝐸 𝑝+1,𝑞

1 is given by 𝑑1 = 𝑑𝐼 + (−1) 𝑝𝑑𝐼 𝐼 .
Moreover, we have

𝛿𝐸 𝑝,𝑞
∞ = Gr𝑝𝛿𝐻

𝑝+𝑞 (𝑌,C).

Theorem 2.12 [7, Theorem 4.1.3 and 4.2.1]. There are identification of the perverse and flag filtrations:

1. 𝑃𝜋𝑈
𝑙 𝐻𝑘 (𝑈) = 𝐺𝑘−𝑙𝐻𝑘 (𝑈), where l starts from k up to 𝑘 + 𝑚.

2. 𝑃𝜋𝑈
𝑙 𝐻𝑘

𝑐 (𝑈) = 𝐺𝑘−𝑙𝐻𝑘
𝑐 (𝑈), where l starts from 𝑘 − 𝑚 to k.

3. 𝑃𝜋
𝑙 𝐻

𝑘 (𝑌 ) = 𝛿𝑘−𝑙𝐻𝑘 (𝑈), where where l starts from 𝑘 − 𝑚 up to 𝑘 + 𝑚.

Corollary 2.13. The spectral sequences for all the flag filtrations in Definition 2.11 degenerate at the
𝐸2-page.

Proof. Theorem 2.12 implies that there are natural isomorphisms between two spectral sequences that
induces the identity on the abutment. Since the morphisms 𝜋 and 𝜋𝑈 are proper, Theorem 2.10 implies
that the spectral sequence for the associated perverse filtration degenerates at the 𝐸1-page. Note that
the 𝐸2-term of the Grothendieck spectral sequence used in Theorem 2.10 is the same with 𝐸1-term
of the perverse filtration. Also, the spectral sequence for the shifted flag filtrations 𝐺𝑘−• and 𝛿𝑘−• is
the shifted spectral sequence for 𝐺• and 𝛿•, respectively. In other words, 𝐸 𝑝,𝑞

1 for the shifted filtration
is the same with 𝐸2𝑝+𝑞,−𝑝

2 for the original filtration (see [9] [7, Section 3.7].) Therefore, we have the
𝐸2-degeneration results for the flag filtrations 𝐺• and 𝛿•. �

https://doi.org/10.1017/fms.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.79


Forum of Mathematics, Sigma 13

3. Extended Fano/LG correspondence

3.1. Hybrid LG models

We start to recall the notion of hybrid LG models introduced in [24]. Let’s first introduce some
notations. Let ℎ = (ℎ1, . . . , ℎ𝑁 ) : 𝑌 → C𝑁 be a N-tuple of (holomorphic) functions and (𝑧1, . . . , 𝑧𝑁 )
be the coordinates of the base C𝑁 . For each nonempty subset 𝐼 = {𝑖1, . . . , 𝑖𝑙} ⊂ {1, . . . , 𝑁}, we write
ℎ𝐼 = (ℎ𝑖1 , . . . , ℎ𝑖𝑙 ) : 𝑌 → C |𝐼 | and the coordinate (𝑧𝑖1 , . . . , 𝑧𝑖𝑙 ) for the base C |𝐼 | , which implicitly
determines the natural inclusion C |𝐼 | ⊂ C𝑁 .

Definition 3.1 [24, Definition 3.1, 5.9]. A hybrid LG model of rank N is a triple (𝑌, 𝜔, ℎ =
(ℎ1, ℎ2, . . . , ℎ𝑁 ) : 𝑌 → C𝑁 ) where

1. (𝑌, 𝜔) is n-dimensional complex Kähler Calabi–Yau manifold with a Kähler form 𝜔 ∈ Ω2(𝑌 );
2. ℎ : 𝑌 → C𝑁 is a proper (surjective) holomorphic map such that

(a) (Local trivialization) There exists a constant 𝑅 > 0 such that for any nonempty subset 𝐼 ⊂
{1, . . . , 𝑁}, the induced map ℎ𝐼 : 𝑌 → C |𝐼 | is a locally trivial symplectic fibration over the
region 𝐵𝐼 := {|𝑧𝑖 | > 𝑅 |𝑖 ∈ 𝐼} with smooth fibers. Furthermore, over 𝐵𝐼 we have 𝑣(ℎ 𝑗 ) = 0 for
any horizontal vector field 𝑣 ∈ 𝑇ℎ𝐼𝑌 associated to ℎ𝐼 and 𝑗 ∉ 𝐼;

(a) (Compatibility) For 𝐼 ⊂ 𝐽, such local trivializations are compatible under the natural inclusions
𝐵𝐽 × C𝑁−|𝐽 | ⊂ 𝐵𝐼 × C𝑁−|𝐼 | ⊂ C𝑁 .

We call ℎ : 𝑌 → C𝑁 a hybrid LG potential.

When 𝑁 = 1, this definition recovers the usual notion of LG models (𝑌, 𝜔, ℎ : 𝑌 → C), where h
becomes a locally trivial symplectic fibration with smooth fibers near infinity. One can see that the second
condition in Definition 3.1 controls the geometry of the local fibration h near the infinity boundary of
the base. For each nonempty subset 𝐼 ⊂ {1, . . . , 𝑁}, let’s write 𝑌𝐼 for a generic fiber of ℎ𝐼 : 𝑌 → C |𝐼 |

and ℎ𝑌𝐼 : 𝑌𝐼 → C𝑁−|𝐼 | for the restriction of h into 𝑌𝐼 . Then the induced triple (𝑌𝐼 , 𝜔|𝑌𝐼 , ℎ𝑌𝐼 ) can be
regraded as a hybrid LG model of rank 𝑁 − |𝐼 |. From this point of view, the condition (2) − (𝑎) in
Definition 3.1 is rephrased as the condition that ℎ𝐼 : 𝑌 → C |𝐼 | is a local trivialization of the induced
hybrid LG models of rank 𝑁 − |𝐼 |.

Associated to the hybrid LG model (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ), we define the ordinary LG model to be a
triple (𝑌, 𝜔, w := Σ◦ ℎ : 𝑌 → C), where Σ : C𝑁 → C is the summation map. The following proposition
justifies this terminology.

Proposition 3.2 [24, Proposition 3.2](Gluing property). Let (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) be a hybrid LG
model and H be a generic hyperplane in the base C𝑁 , which is not parallel to any coordinate lines.
There exists an open cover {𝑈𝑖}𝑁𝑖=1 of H such that for any nonempty subset 𝐼 ⊂ {1, . . . , 𝑁}, the induced
map ℎ−1(𝑈𝐼 ) → 𝑈𝐼 is isotopic to the induced hybrid LG potential ℎ𝑌𝐼 : 𝑌𝐼 → C𝑁−|𝐼 | which is linear
along the base.

Proof. We present the proof for the reader’s convenience. Take a hyperplane 𝐻 = {𝑎1𝑧1 + · · · + 𝑎𝑁 𝑧𝑁 =
𝑀}, where 𝑎𝑖 ≠ 0 for all i. By changing the coordinate 𝑧𝑖 ↦→ 𝑧𝑖/𝑎𝑖 , we reduce to the case where 𝑎𝑖 = 1
for all i. We also further reduce to the case when M is real due to the rotational symmetry. By generality,
we take 𝑀 > 𝑁𝑅. First, note that 𝐻 ∩ (∩𝑁

𝑖=1{|𝑧𝑖 | ≤ 𝑅}) = ∅. Let 𝑅𝑖 = {𝑅𝑒(𝑧𝑖) > 𝑅} and the simply
connected region

𝑈𝑖 := {𝑅𝑒(𝑧𝑖) > 𝑅} ∩ 𝐻 = {𝑅𝑒(𝑧1 + · · · + 𝑧𝑖 + · · · + 𝑧𝑛) < 𝑀 − 𝑅} ∩ 𝐻

for each i. Since𝑈𝑖 ⊂ {|𝑧𝑖 | > 𝑅}, one can project𝑈𝑖 to the locus {𝑧𝑖 = 2𝑅} inside the region {|𝑧𝑖 | < 𝑅}.
The image of the projection is 𝑉𝑖 := {𝑧𝑖 = 2𝑅, 𝑅𝑒(𝑧1 + · · · + 𝑧𝑖 + · · · + 𝑧𝑁 ) < 𝑀 − 𝑅} which contains⋂

𝑗≠𝑖{|𝑧 𝑗 | ≤ 𝑅}. Therefore, this projection identifies ℎ : ℎ−1 (𝑈𝑖) → 𝑈𝑖 with ℎ : ℎ−1 (𝑉𝑖) → 𝑉𝑖 due to
the local triviality of the hybrid LG model. Moreover, the latter map is completed to ℎ𝑌𝑖 : 𝑌𝑖 → C𝑁−1

by the inductive argument. In general, for each I,𝑈𝐼 = ∩𝑖∈𝐼𝑈𝑖 is nonempty and simply connected. Since
𝑈𝐼 ⊂ {|𝑧𝑖 | > 𝑅, 𝑖 ∈ 𝐼}, one can apply the same argument to get the conclusion. �
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Definition 3.3. Let (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) be a hybrid LG model. We define the induced triple (𝑌, 𝜔, w :
𝑌 → C) to be the ordinary LG model associated to the hybrid LG model (𝑌, 𝜔, ℎ) and denote a generic
fiber of w by 𝑌𝑠𝑚.
Remark 3.4. In general, Proposition 3.2 is expected to hold in the symplectic category (see [24, Section
5] for more details). In this article, we mainly focus on the topological properties of hybrid LG models.

On the cohomology level, Proposition 3.2 implies that the cohomology group of 𝜋−1 (𝐻) is (non-
canonically) isomorphic to that of the normal crossing union of 𝑌𝑖’s. We will use this fact to study the
perverse Leray filtration associated to ℎ : 𝑌 → C𝑁 on 𝐻∗(𝑌 ).

Consider a general flag of hyperplanes in C𝑁 ,

ℌ : 0 = 𝐻−𝑁−1 ⊂ 𝐻−𝑁 ⊂ · · · ⊂ 𝐻−1 ⊂ 𝐻0 = C𝑁

which is transversal to the discriminant locus of h in the sense of [7, Definition 5.2.4] and each 𝐻−𝑙
is not parallel to any coordinate lines. We write 𝑌𝑠𝑚(𝑙) for ℎ−1 (𝐻−𝑙) so that we have a general flag of
subvarieties

0 ⊂ 𝑌𝑠𝑚(𝑁 ) ⊂ · · · ⊂ 𝑌𝑠𝑚(1) ⊂ 𝑌

which will be used to compute the flag filtration 𝐺• (equivalently, the perverse Leray filtration 𝑃ℎ
• ) on

𝐻∗(𝑌 ) (see Section 2.3). In other words, the 𝐸1-page of the spectral sequence is given by the sequence

𝐻𝑎−𝑁 (𝑌𝑠𝑚(𝑁 ) )
𝑑1−−→ 𝐻𝑎−𝑁+1(𝑌𝑠𝑚(𝑁−1) , 𝑌𝑠𝑚(𝑁 ) )

𝑑1−−→ · · · 𝑑1−−→ 𝐻𝑎−1 (𝑌𝑠𝑚(1) , 𝑌𝑠𝑚(2) )
𝑑1−−→ 𝐻𝑎 (𝑌,𝑌𝑠𝑚(1) ).

(3.1)

We use the same notation in the proof of Proposition 3.2. Take open (simply connected) regions
{𝑅𝑖 ⊂ C𝑁 |𝑖 = 1, . . . , 𝑁} which induce an open covering of 𝐻−1, {𝑈𝑖 := 𝑅𝑖 ∩ 𝐻−1 |𝑖 = 1, . . . , 𝑁} that
yields the gluing property. Let 𝑉𝑖 = {𝑧𝑖 = 𝑐𝑜𝑛𝑠𝑡} be the region that 𝑈𝑖 projects to. Due to the genericity
of the flag, we may assume that 𝐻−2 ∩𝑈𝑖 ⊂ 𝑈𝑖 projects to a hyperplane that is contained in ∪ 𝑗≠𝑖𝑅 𝑗 ∩𝑉𝑖
for all i. As both 𝐻−1 and 𝐻−2 are not parallel to any coordinate lines, this can be done by scaling
M sufficiently large to place 𝐻−2 far enough from each coordinate line. It ensures that 𝑌𝑠𝑚 ∩ ℎ−1(𝑈𝑖)
is isotopic to 𝑌𝑖,𝑠𝑚 for each i. Inductively, for each k, we could assume that the collection of regions
{𝑅𝑖 ⊂ C𝑁 |𝑖 = 1, . . . , 𝑁} yields the gluing property for 𝐻−𝑘 in 𝑉𝐼 := ∩𝑖∈𝐼𝑉𝑖 for any |𝐼 | = 𝑘 − 1. Then
the gluing property implies the following:

𝑌𝑠𝑚(𝑘) ∩ ℎ−1(𝑈𝐼 ) �
{
𝑌𝐼 ,𝑠𝑚(𝑘−|𝐼 |) |𝐼 | < 𝑘

𝑌𝐼 |𝐼 | ≥ 𝑘.

Lemma 3.5. For any 𝑎 ≥ 0, 𝑘 ≥ 1, the relative cohomology 𝐻𝑎 (𝑌𝑠𝑚(𝑘) , 𝑌𝑠𝑚(𝑘+1) ) is isomorphic to⊕
|𝐼 |=𝑘 𝐻

𝑎 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚).

Proof. Take the (simply connected) open region {𝑅𝑖 ⊂ C𝑁 |𝑖 = 1, . . . , 𝑁} and the induced cover
{𝑈𝑖 = 𝑅𝑖 ∩ 𝐻−1} as above. When 𝑘 = 1, the Mayer–Vietoris argument with respect to the open
cover {ℎ−1(𝑈𝑖)} and the gluing property implies that 𝐻𝑎 (𝑌𝑠𝑚(1) , 𝑌𝑠𝑚(2) ) �

⊕𝑁
𝑖=1 𝐻𝑎 (𝑌𝑖 , 𝑌𝑖,𝑠𝑚(1) ) where

𝐻𝑎 (𝑌𝑖 , 𝑌𝑖,𝑠𝑚(1) )) � 𝐻𝑎 (𝑌𝑖 , 𝑌𝑖,𝑠𝑚). In general, we apply the Mayer–Vietoris sequence to the cohomology
group 𝐻𝑎 (𝑌𝑠𝑚(𝑘) , 𝑌𝑠𝑚(𝑘+1) ) with the induced open cover by 𝑅𝑖’s. The 𝐸1-page of the spectral sequence
is given by⊕
|𝐼 |=1

𝐻𝑎 (𝑌𝐼 ,𝑠𝑚(𝑘−1) , 𝑌𝐼 ,𝑠𝑚(𝑘) )
𝑑1−−→ . . .

𝑑1−−→
⊕

|𝐼 |=𝑘−1
𝐻𝑎 (𝑌𝐼 ,𝑠𝑚(1) , 𝑌𝐼 ,𝑠𝑚(2) )

𝑑1−−→
⊕
|𝐼 |=𝑘

𝐻𝑎 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚(1) ) → 0.

By induction, each direct summand is the direct sum of 𝐻𝑎 (𝑌𝐽 , 𝑌𝐽 ,𝑠𝑚) for some J with |𝐽 | = 𝑘 . Then the
differential 𝑑1 becomes the alternating sum of the identity morphisms, where the signs are determined
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by the Mayer–Vietoris sign rule (2.1). Then it follows from a simple combinatorial fact that this sequence
is exact except at the first term, and 𝐻𝑎 (𝑌𝑠𝑚(𝑘) , 𝑌𝑠𝑚(𝑘+1) ) = ker(𝑑1) �

⊕
|𝐼 |=𝑘 𝐻

𝑎 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚). �

For any 𝐼 ⊂ 𝐽 with |𝐽 | = |𝐼 | + 1, we write 𝜌𝐽𝐼 for the composition of morphisms

𝜌𝐽𝐼 : 𝐻•(𝑌𝐽 , 𝑌𝐽 ,𝑠𝑚) ↩→ 𝐻•(𝑌𝐼 ,𝑠𝑚, 𝑌𝐼 ,𝑠𝑚(2) ) → 𝐻•+1(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚),

where the first one is given by Lemma 3.5 and the second one is the connecting homomorphism of the
long exact sequence of cohomology groups of the triple (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚, 𝑌𝐼 ,𝑠𝑚(2) ). Since we choose an open
cover globally, Lemma 3.5 allows one to rewrite the 𝐸1-page of the spectral sequence (3.1) as follows:

𝐻𝑎−𝑁 (𝑌𝑠𝑚(𝑁 ) )
𝑑1−−→

⊕
|𝐼 |=𝑁−1

𝐻𝑎−𝑁+1(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)
𝑑1−−→ · · · 𝑑1−−→

⊕
|𝐼 |=1

𝐻𝑎−1 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)
𝑑1−−→ 𝐻𝑎 (𝑌,𝑌𝑠𝑚),

where the differential 𝑑1 is the signed sum of the induced morphisms 𝜌𝐽𝐼 ’s that follows the Mayer–
Vietoris sign rule (2.1).

For later use, we introduce the Poincaré dual of 𝜌𝐽𝐼 . For a given hybrid LG model (𝑌, ℎ : 𝑌 → C𝑁 )
of rank N, we will show that there is a canonical isomorphism

𝑃𝐷 : 𝐻𝑎 (𝑌,𝑌𝑠𝑚,C)
�−→ 𝐻2𝑛−𝑎 (𝑌,𝑌𝑠𝑚,C)∗ (3.2)

for all 𝑎 ≥ 0 (Theorem 7.4). We define the morphism (𝜌𝐽𝐼 )
∨ : 𝐻•(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) → 𝐻•−1(𝑌𝐽 , 𝑌𝐽 ,𝑠𝑚) to be

the composition (𝜌𝐽𝐼 )
∨ = 𝑃𝐷𝐽 ◦ (𝜌𝐽𝐼 )

∗ ◦ 𝑃𝐷−1
𝐼 , where 𝑃𝐷 𝐼 (resp. 𝑃𝐷𝐽 ) is the same one in (3.2) for

the induced hybrid LG model (𝑌𝐼 , ℎ𝑌𝐼 ) (resp. (𝑌𝐽 , ℎ𝑌𝐽 )).

3.2. Extended Fano/LG correspondence

Let X be a smooth (quasi-)Fano manifold and D be an effective simple normal crossing anticanonical
divisor with N components 𝐷1, 𝐷2, . . . , 𝐷𝑁 . For any index set 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑚} ⊂ {1, 2, · · · , 𝑁},
we define

𝐷 𝐼 := 𝐷𝑖1 ∩ · · · ∩ 𝐷𝑖𝑚 , 𝐷 (𝐼) := Σ 𝑗∉𝐼𝐷 𝐼 ∩ 𝐷 𝑗 .

For example, if 𝐼 = {1}, then 𝐷 {1} = 𝐷1 and 𝐷 ({1}) = (𝐷2 ∪ · · · ∪ 𝐷𝑘 ) ∩ 𝐷1. We also assume that
all pairs (𝐷 𝐼 , 𝐷 (𝐼)) are (quasi-)Fano. We also write the normal crossing union of l-th intersections by
𝐷{𝑙} =

∑
|𝐼 |=𝑙 𝐷 𝐼 for all 𝑙 ≥ 0.

Definition 3.6. A hybrid LG model (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) is mirror to (𝑋, 𝐷) if it satisfies the following
mirror relations:

1. the associated ordinary LG model (𝑌, 𝜔, w : 𝑌 → C) is mirror to (𝑋, 𝐷);
2. for 𝑖 = 1, 2, . . . , 𝑁 , a hybrid LG model (𝑌𝑖 , 𝜔|𝑌𝑖 , ℎ𝑌𝑖 : 𝑌𝑖 → C𝑁−1) is mirror to (𝐷𝑖 , 𝐷 ({𝑖})).

Such a mirror pair is called a (quasi-)Fano mirror pair, and we write it by (𝑋, 𝐷) |(𝑌, 𝜔, ℎ).

To elaborate the precise sense of the mirror relations, we introduce some notations. Let � be a cubical
category whose objects are finite subsets of N and morphisms 𝐻𝑜𝑚(𝐼, 𝐽) consists of a single element
if 𝐼 ⊂ 𝐽 and else is empty. Given a category C, we define a cubical object to be a contravariant functor
𝐹 : �→ C, which is also called a cubical diagram of categories. For a cubical object F and 𝐼 ⊂ N, we
write

𝐹𝐼 := 𝐹 (𝐼)
𝑑𝐼 𝐽 := 𝐹 (𝐼 → 𝐽) : 𝑋𝐽 → 𝑋𝐼 , 𝐼 ⊂ 𝐽.
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We also define a morphism of cubical objects in an obvious way and mainly consider the category of
finite-dimensional vector spaces over C, denoted by VectC.

First, on the B-side, consider the natural inclusions 𝜄𝐽𝐼 : 𝐷𝐽 ↩→ 𝐷 𝐼 for 𝐼 ⊂ 𝐽. We consider a cubical
object ℌℌ𝑎 (𝑋, 𝐷) in VectC defined as

ℌℌ𝑎 (𝑋, 𝐷)𝐼 =
⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷 𝐼 )

ℌℌ𝑎 (𝑋, 𝐷)𝐼 𝐽 = 𝜄𝐽𝐼 ! :
⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷𝐽 ) →
⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷 𝐼 ),

where 𝜄!’s are the Gysin morphisms. We also take the Poincaré dual of ℌℌ𝑎 (𝑋, 𝐷), denoted by
ℌℌ𝑐

𝑎 (𝑋, 𝐷) where

ℌℌ𝑐
𝑎 (𝑋, 𝐷)𝐼 =

⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷 𝐼 )

ℌℌ𝑐
𝑎 (𝑋, 𝐷)𝐼 𝐽 = (𝜄𝐽𝐼 )

∗ :
⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷 𝐼 ) →
⊕
𝑝−𝑞=𝑎

𝐻 𝑝,𝑞 (𝐷𝐽 ).

On the A-side, let (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) be a hybrid LG model of rank N and 𝑛 = dimC𝑌 . We consider
a cubical object ℌℌ𝑎 (𝑌, ℎ) ∈ VectC

ℌℌ𝑎 (𝑌, ℎ)𝐼 = 𝐻𝑛+𝑎−|𝐼 | (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)
ℌℌ𝑎 (𝑌, ℎ)𝐼 𝐽 = 𝜌𝐽𝐼 : 𝐻𝑛+𝑎−|𝐽 | (𝑌𝐽 , 𝑌𝐽 ,𝑠𝑚) → 𝐻𝑛+𝑎−|𝐼 | (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

for 𝑛 ≤ 𝑎 ≤ 𝑛. We also take the Poincaré dual ℌℌ𝑐
𝑎 (𝑌, ℎ), where

ℌℌ𝑐
𝑎 (𝑌, ℎ)𝐼 = 𝐻𝑛+𝑎−|𝐼 | (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

ℌℌ𝑐
𝑎 (𝑌, ℎ)𝐼 𝐽 = (𝜌𝐽𝐼 )

∨ : 𝐻𝑛+𝑎−|𝐼 | (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) → 𝐻𝑛+𝑎−|𝐽 | (𝑌𝐼 , 𝑌𝐽 ,𝑠𝑚).

Conjecture 3.7. Let (𝑋, 𝐷) |(𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ) be a (quasi-)Fano mirror pair. For −𝑛 ≤ 𝑎 ≤ 𝑛, there
exists isomorphisms of the cubical objects in VectC:

ℌℌ𝑎 (𝑋, 𝐷) � ℌℌ𝑎 (𝑌, ℎ), ℌℌ𝑐
𝑎 (𝑋, 𝐷) � ℌℌ𝑐

𝑎 (𝑌, ℎ).

Remark 3.8. Conjecture 3.7 is motivated from the relative version of homological mirror symmetry
conjecture for (quasi-)Fano mirror pairs [24, Section 4.3]. In particular, this is expected to follow from
applying Hochschild homology to the categorical statement. Additionally, it is expected that one of the
above isomorphisms follows from the other via Poincaré duality.

3.3. Line bundles/Monodromy correspondence

Let (𝑋, 𝐷) be a (quasi-)Fano pair, where D is smooth and (𝑌, 𝜔, w : 𝑌 → C) be its mirror LG model.
In this case, there is a mirror correspondence between the anticanonical line bundle −𝐾𝑋 and the
monodromy T of a generic fiber w−1(𝑡) around infinity. Such correspondence can be made precise on
the categorical level via the homological mirror symmetry conjecture. On the B-side, tensoring with
−𝐾𝑋 provides autoequivalences on the derived category of coherent sheaves on X, 𝐷𝑏Coh(𝑋), as well
as on 𝐷𝑏Coh(𝐷) by restriction. On the A-side, the monodromy operator T induces autoequivalences
on the relevant Fukaya categories associated with 𝑌𝑠𝑚 and w : 𝑌 → C.

On the other hand, when D has more than one component, one can ask a more refined version of the
above correspondence. On the B-side, we have N line bundles O𝑋 (𝐷𝑖) for 𝑖 = 1, . . . , 𝑁 , whose sum
is the anticanonical line bundle −𝐾𝑋 . Each line bundle induces an autoequivalence on 𝐷𝑏Coh(𝑋) by
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taking the tensor product with itself. On the A-side, there are N monodromy operators, each of which
is induced by taking a loop 𝑇𝑖 near infinity on the base of ℎ : 𝑌 → C𝑁 ,

𝑇𝑖 := (𝑡1, . . . , 𝑡𝑖−1, 𝑒
√
−1𝜃 𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑁 ) (0 ≤ 𝜃 ≤ 2𝜋) (3.3)

for a generic (𝑡1, . . . , 𝑡𝑁 ) ∈ C𝑁 and 𝑖 = 1, . . . , 𝑁 . We denote such operators by 𝜙𝑇𝑖 . Note that the
monodromy operator𝜙𝑇𝑖 induces not only the automorphism of a generic fiber 𝑌𝑖 = ℎ−1

𝑖 (𝑡) but also
the automorphism of the induced fibration ℎ|𝑌𝑗 : 𝑌 𝑗 → C𝑁−1 for any 𝑖, 𝑗 . This will play a key role
in Section 4. Moreover, note that the composition of 𝑇𝑖’s is the loop T near infinity on the base of
w : 𝑌 → C. Each monodromy operator is expected to induce an autoequivalence, denoted by 𝜙𝑇𝑖 as
well, on the relevant Fukaya category of (𝑌, 𝜔, ℎ : 𝑌 → C𝑁 ).

Ansatz 3.9. There are correspondences between the line bundle O𝑋 (𝐷𝑖) and the monodromy 𝜙𝑇𝑖 for
all 𝑖 = 1, . . . , 𝑁 .

The main source of Ansatz 3.9 can be found in [15][16] where the mirror symmetry of smooth toric
Fanos has been discussed. See also [24, Section 4.3] for more details.

4. Mirror construction for a smoothing of a semistable degeneration

4.1. Semistable degeneration

Let 𝔛 be a complex connected analytic space and Δ be the unit disk. A degeneration is a proper flat
surjective map 𝜋 : 𝔛 → Δ such that 𝔛− 𝜋−1 (0) is smooth and the fiber 𝔛𝑡 is a compact Kähler manifold
for every 𝑡 ≠ 0. The fiber at the zero 𝔛0 := 𝜋−1 (0) is called the degenerate fiber. Given the degeneration
𝜋 : 𝔛 → Δ and for 𝑡 ≠ 0, we say that 𝔛𝑡 degenerates to 𝔛0 or equivalently 𝔛0 is smoothable to 𝔛𝑡 .
In particular, if the total space 𝔛 is smooth and the degenerate fiber 𝔛0 is a simple normal crossing
divisor of 𝔛, then the degeneration 𝜋 : 𝔛 → Δ is called semistable. We define a type of the semistable
degeneration to be the dimension of the dual complex of the degenerate fiber.

Due to Friedman [13], the semistability condition on the degeneration 𝜋 : 𝔛 → Δ controls the
behavior of the degenerate fiber in a way that the normal bundle of singular locus of 𝔛0 in 𝔛 is trivial.
This property is called d-semistabilty.

Definition 4.1 [13, Definition 1.13]. Let 𝑋 =
⋃𝑁
𝑖=0 𝑋𝑖 be a normal crossing variety of pure dimension

n whose irreducible component is smooth. We define X to be d-semistable if

𝑁⊗
𝑖=0

𝐼𝑋𝑖/𝐼𝑋𝑖 𝐼𝐷 � O𝐷 , (4.1)

where D is the singular locus of X and 𝐼𝐷 (resp. 𝐼𝑋𝑖 ) is the ideal sheaf of 𝐼𝐷 (resp. 𝐼𝑋𝑖 ).

From now on, we specialize to the case where the degenerate fiber of the semistable degeneration of
type (𝑁 + 1) consists of 𝑁 + 1 irreducible components. In this case, we have an equivalent description
of d-semistability, which will be used in the mirror construction. Let’s write 𝑋𝑐 =

⋃𝑁
𝑖=0 𝑋𝑖 for the

degenerate fiber 𝔛0. For any 𝑖, 𝑗 ∈ {0, . . . , 𝑁}, we write 𝑋𝑖 𝑗 for the intersection of 𝑋𝑖 and 𝑋 𝑗 as a divisor
of 𝑋𝑖 . Since the degeneration 𝜋 : 𝔛 → Δ is semistable, we have 𝑋𝑐 |𝑋𝑖 = 𝔛0 |𝑋𝑖 � 𝔛𝑡 |𝑋𝑖 = 0 for 𝑡 ≠ 0. It
implies that in Pic(𝑋𝑖 𝑗 ) � Pic(𝑋 𝑗𝑖), we have the following relation

0 = O(𝑋0 + · · · + 𝑋𝑁 ) |𝑋𝑖 |𝑋𝑖 𝑗

= O(𝑋𝑖) |𝑋𝑖 𝑗 ⊗ O(
∑
𝑗≠𝑖

O(𝑋 𝑗 )) |𝑋 𝑗𝑖 .
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The right-hand side, denoted by 𝑁 (𝑋𝑖 𝑗 ), is called the normal class of 𝑋𝑖 𝑗 . A collection of all the normal
classes is a

(𝑁
2
)
-tuple

𝑁𝑋𝑐 := (𝑁 (𝑋𝑖 𝑗 )) ∈
⊕
𝑖< 𝑗

Pic(𝑋𝑖 𝑗 ).

The triviality of the collection of normal classes of 𝑋𝑐 implies (4.1). In our case, this is indeed equivalent.

Proposition 4.2. Suppose that the normal crossing variety 𝑋𝑐 =
⋃𝑁
𝑖=0 𝑋𝑖 introduced above is smoothable

with a semistable degeneration of type (𝑁 + 1). Then the d-semistablity is equivalent to the triviality of
the collection of normal classes of 𝑋𝑐 .

Proof. The same argument for the type III case [23, Proposition 4.1] applies to this case. �

In general, the d-semistability condition is not sufficient to imply the smoothability with a smooth
total space. In case that 𝑋𝑐 is Calabi–Yau, which is of our main interest, this direction has been studied
by Kawamata–Namikawa [22].

Theorem 4.3 [22, Theorem 4.2]. Let 𝑋𝑐 =
⋃

𝑋𝑖 be a compact Kähler normal crossing variety of
dimension n such that

1. 𝑋𝑐 is d-semistable;
2. its dualizing sheaf 𝜔𝑋𝑐 is trivial;
3. 𝐻𝑛−2 (𝑋𝑐 ,O𝑋𝑐 ) = 0 and 𝐻𝑛−1(𝑋𝑖 ,O𝑋𝑖 ) = 0 for all i.

Then 𝑋𝑐 is smoothable to a Calabi–Yau n-fold X with a smooth total space.

The following definition is motivated by the type III case [23, Definition 2.1].

Definition 4.4. Let X be a Calabi–Yau projective normal crossing variety. X is called d-semistable of
type (𝑁 + 1) if there exists a type (𝑁 + 1) semistable degeneration 𝜙 : 𝔛 → Δ whose degenerate fiber
𝔛0 is X.

Example 4.5. Let 𝑄5 ⊂ P4 be a smooth quintic 3-fold. In the anticanonical linear system, it degenerates
to a normal crossing union of two smooth hyperplanes 𝐻1 and 𝐻2 and a smooth cubic 3-fold 𝑄3. For
simplicity, we denote it by 𝑍𝑐 := 𝑍1 ∪ 𝑍2 ∪ 𝑍3, where 𝑍1 = 𝐻1, 𝑍2 = 𝐻2 and 𝑍3 = 𝑄3. Note that
the total space of such degeneration is singular so that one needs to modify 𝑋𝑐 to obtain a semistable
degeneration. First, consider the intersection between a generic quintic 3-fold and 𝑍𝑐 . It becomes a union
of three curves 𝐶1, 𝐶2 and 𝐶3, where 𝐶𝑖 lies in 𝑍 𝑗𝑘 and 𝐶𝑖∩𝑍123 are all the same for {𝑖, 𝑗 , 𝑘} = {1, 2, 3}.
For {𝑖, 𝑗} = {1, 2}, we take a blow up of 𝑍𝑖 along 𝐶3, denoted by 𝜋𝑖 : Bl𝐶 𝑗 𝑍𝑖 → 𝑍𝑖 . Let 𝐸𝑖 be an
exceptional divisor and write (−)′ for the proper transformation of the subvariety (−). While the proper
transform 𝑍 ′

𝑖3 is isomorphic to 𝑍𝑖3, 𝑍 ′
𝑖 𝑗 is the blow up of 𝑍𝑖 𝑗 along 𝐶3 ∩ 𝑍𝑖 𝑗 . By construction 𝐶 ′

3 is
disjoint from 𝑍 ′

123. The last step is to blow up Bl𝐶3 𝑍1 along 𝐶 ′
3. If we write the resulting normal crossing

variety as 𝑋𝑐 = 𝑋1 ∪ 𝑋2 ∪ 𝑋3, we have

(𝑋1, 𝑋12 ∪ 𝑋13) � (Bl𝐶′
3

Bl𝐶2 𝑍1, 𝑍
′
12 ∪ 𝑍13),

(𝑋2, 𝑋21 ∪ 𝑋23) � (Bl𝐶1 𝑍2, 𝑍
′
12 ∪ 𝑍13),

(𝑋3, 𝑋31 ∪ 𝑋32) � (𝑍3, 𝑍12 ∪ 𝑍13).
(4.2)

In [12], the authors present a mirror construction for this example by considering this degeneration as
an iterative Tyurin degeneration.

4.2. Mirror construction

Let 𝑋𝑐 =
⋃𝑁
𝑖=0 𝑋𝑖 be a d-semistable Calabi–Yau n-fold of type (𝑁 + 1) and X be a smoothing of

𝑋𝑐 . For each i, the irreducible component 𝑋𝑖 is quasi-Fano with the canonically chosen anticanonical
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divisor
⋃

𝑗≠𝑖 𝑋𝑖 𝑗 . Suppose that the mirror hybrid LG model of the pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) is given by
(𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 = (ℎ𝑖0, . . . , ℎ𝑖𝑖 , . . . , ℎ𝑖𝑁 ) : 𝑌𝑖 → Δ𝑁 ). Here, we shrink the base of the hybrid LG potential
to a sufficiently large polydisks Δ𝑁 . We propose a topological construction of a mirror Calabi–Yau
manifold of X as a gluing of the hybrid LG models (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖).

To perform the gluing, we require more topological conditions on the hybrid LG models. In 𝑋𝑐 , two
divisors 𝑋𝑖 𝑗 ⊂ 𝑋𝑖 and 𝑋 𝑗𝑖 ⊂ 𝑋 𝑗 are topologically identified for 𝑖 ≠ 𝑗 . This should be reflected on the
mirror side by requiring that two induced hybrid LG models (𝑌𝑖 𝑗 := ℎ−1

𝑖 𝑗 (𝑡 𝑗 ), ℎ𝑖 |𝑌𝑖 𝑗 : 𝑌𝑖 𝑗 → Δ𝑁−1)
and (𝑌 𝑗𝑖 := ℎ−1

𝑗𝑖 (𝑡𝑖), ℎ 𝑗 |𝑌𝑗𝑖 : 𝑌 𝑗𝑖 → Δ𝑁−1) are topologically the same for 𝑡𝑖 , 𝑡 𝑗 ∈ 𝜕Δ . Furthermore, one
can enhance the topological identification by taking into account complex structures and symplectic
structures. For instance, once the preferred choice of the topological identification 𝑋𝑖 𝑗 = 𝑋 𝑗𝑖 has been
made, the complex isomorphism between 𝑋𝑖 𝑗 and 𝑋 𝑗𝑖 is given by an element 𝑓𝑖 𝑗 ∈ Aut(𝑋𝑖 𝑗 ) which is
homotopic to the identity. Also, these identifications should be compatible to endow 𝑋𝑐 with a well-
defined complex structure: For 𝑖 ≠ 𝑗 ≠ 𝑘 , the composition of the restrictions 𝑓𝑘𝑖 |𝑋𝑘𝑖 𝑗 ◦ 𝑓 𝑗𝑘 |𝑋 𝑗𝑘𝑖 ◦ 𝑓𝑖 𝑗 |𝑋𝑖 𝑗𝑘 ∈
Aut(𝑋𝑖 𝑗𝑘 ) is homotopic to the identity. A mirror counterpart should be the identification given by
an element of symplectomorphisms 𝑔𝑖 𝑗 ∈ Symp(𝑌𝑖 𝑗 , 𝜔𝑖 |𝑌𝑖 𝑗 , ℎ𝑖 |𝑌𝑖 𝑗 ) which preserves the hybrid LG
potentials. For 𝑖 ≠ 𝑗 ≠ 𝑘 , the composition of the restrictions 𝑔𝑘𝑖 |(𝑌𝑘𝑖 𝑗 ,ℎ𝑘 ) ◦ 𝑔 𝑗𝑘 |(𝑌𝑗𝑘𝑖 ,ℎ 𝑗 ) ◦ 𝑔𝑖 𝑗 |(𝑌𝑖 𝑗𝑘 ,ℎ𝑖) ∈
Symp(𝑌𝑖 𝑗𝑘 , 𝜔𝑖 |𝑌𝑖 𝑗𝑘 , ℎ𝑖 |𝑌𝑖 𝑗𝑘 ) is required to be homotopic to the identity.
Hypothesis 4.6.
1. For 𝑖 ≠ 𝑗 , two induced hybrid LG models (𝑌𝑖 𝑗 := ℎ−1

𝑖 𝑗 (𝑡 𝑗 ), ℎ𝑖 |𝑌𝑖 𝑗 : 𝑌𝑖 𝑗 → Δ𝑁−1) and (𝑌 𝑗𝑖 :=
ℎ−1
𝑗𝑖 (𝑡𝑖), ℎ 𝑗 |𝑌𝑗𝑖 : 𝑌 𝑗𝑖 → Δ𝑁−1) are topologically the same for any 𝑡𝑖 , 𝑡 𝑗 ∈ 𝜕Δ . In particular, if

symplectic structures are taken into account, this identification is given by a symplectomorphism
𝑔𝑖 𝑗 ∈ Symp(𝑌𝑖 𝑗 , 𝜔𝑖 |𝑌𝑖 𝑗 , ℎ𝑖 |𝑌𝑖 𝑗 ), which is homotopic to the identity.

2. For 𝑖 ≠ 𝑗 ≠ 𝑘 , the composition of the induced symplectomorphism 𝑔𝑘𝑖 |(𝑌𝑘𝑖 𝑗 ,ℎ𝑘 ) ◦ 𝑔 𝑗𝑘 |(𝑌𝑗𝑘𝑖 ,ℎ 𝑗 ) ◦
𝑔𝑖 𝑗 |(𝑌𝑖 𝑗𝑘 ,ℎ𝑖 ) ∈ Symp(𝑌𝑖 𝑗𝑘 , 𝜔𝑖 |𝑌𝑖 𝑗𝑘 , ℎ𝑖 |𝑌𝑖 𝑗𝑘 ) is homotopic to the identity.
Since there is already a global complex structure on 𝑋𝑐 , without loss of generality, we may assume

that all such gluing automorphisms are indeed the identity. This follows from perturbing the complex
and symplectic structures in the beginning.

In fact, the identification on the bases Δ𝑁 along the boundary components is modelled on the normal
crossing union. For example, we can consider the base of the i-th hybrid LG model, denoted by Δ𝑁

ℎ𝑖
,

sits in C𝑁+1 as

Δ𝑁
ℎ𝑖
� {|𝑧 𝑗 | ≤ 1, 𝑧𝑖 = 𝑡𝑖 | 𝑗 ≠ 𝑖}

for some 𝑡𝑖 with |𝑡𝑖 | = 1. Thus, we get a normal crossing union of (𝑌𝑖 , 𝜔𝑖) equipped with the induced
map to a normal crossing union of the base Δ𝑁

ℎ𝑖
of each potential ℎ𝑖 . Moreover, topologically, we can

further glue these bases Δ𝑁
ℎ𝑖

along the boundary components until the monodromies associated to ℎ𝑖

come into this procedure. Then the resulting base space becomes topologically the same withC𝑁 , hence
we obtain a topological fibration �̃� : 𝑌 → C𝑁 . We will give more precise description of �̃� : 𝑌 → C𝑁
after Proposition 4.7.

From now on, we assume that the collection of the hybrid LG models (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → Δ𝑁 ) satisfies
Hypothesis 4.6. Then we can interpret the vanishing of the normal classes of 𝑋𝑐 as the relation of the
monodromies associated to the hybrid LG models based on Ansatz 3.9. Recall that d-semistability is
equivalent to the triviality of normal class in Pic(𝑋𝑖 𝑗 )

0 = O(𝑋0 + · · · + 𝑋𝑁 ) |𝑋𝑖 |𝑋𝑖 𝑗

= O(𝑋𝑖) |𝑋𝑖 𝑗 ⊗ O(
∑
𝑗≠𝑖

O(𝑋 𝑗 )) |𝑋 𝑗𝑖
(4.3)

for any 𝑖 ≠ 𝑗 . For each hybrid LG model (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌 → Δ𝑁 ), we write monodromies induced by the
loop along the j-th coordinate and the diagonal by 𝜙𝑇𝑖 𝑗 and 𝜙𝑇𝑖 , respectively. Then the mirror counterpart
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of the relation (4.3) corresponds to

𝜙𝑇𝑖 𝑗 ◦ 𝜙𝑇𝑗 = Id ∈ Symp(𝑌𝑖 𝑗 , 𝜔𝑖 |𝑌𝑖 𝑗 , ℎ𝑖 |𝑌𝑖 𝑗 ). (4.4)

In other words, we have the following correspondence of monodromies

𝑌𝑖 𝑌 𝑗

Δ𝑁 Δ𝑁

(𝑡𝑖0, . . . , 𝑡𝑖𝑖 , . . . , 𝑒
√
−1𝜃 𝑡𝑖 𝑗 , . . . 𝑡𝑖𝑁 ) 𝑒−

√
−1𝜃 (𝑡 𝑗0, . . . , 𝑡 𝑗 𝑗 , . . . , 𝑡 𝑗𝑁 ).

ℎ𝑖 ℎ 𝑗

Proposition 4.7. Suppose that the hybrid LG models {(𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → Δ𝑁 ) |𝑖 = 0, . . . , 𝑁} introduced
above satisfy Hypothesis 4.6 and the relation (4.4). Then they can be glued to yield a symplectic fibration
𝜋 : 𝑌 → P𝑁 .

Proof. Let [𝑧0 : · · · : 𝑧𝑁 ] be homogeneous coordinates on P𝑁 . Consider the closed subsets Δ 𝑖 ⊂ P𝑁

Δ 𝑖 =
{
|𝑧 𝑗 | ≤ |𝑧𝑖 | for 𝑗 ≠ 𝑖

}
for 𝑖 = 0, . . . , 𝑁 . First, note that ∪𝑁

𝑖=0Δ 𝑖 = P𝑁 . Since Δ 𝑖 ⊂ 𝑈𝑖 = {𝑧𝑖 ≠ 0}, we have Δ 𝑖 � Δ𝑁 and any
k-th intersection of Δ 𝑖’s is homeomorphic to (𝑆1)𝑘 ×Δ𝑁−𝑘 . Due to Hypothesis 4.6, we can identify the
base of ℎ𝑖 : 𝑌 → Δ𝑁 with Δ 𝑖 for all i’s. If we take the coordinates (𝑡𝑖0, · · · , 𝑡𝑖𝑖 , · · · , 𝑡𝑖𝑁 ) of Δ 𝑖 , where
𝑡𝑖𝑘 = 𝑧𝑘

𝑧𝑖
, then Δ 𝑖 becomes the closed unit disk. Then the chart map between Δ 𝑖 and Δ 𝑗 is exactly the

same as the relation (4.4) because this is given by multiplying 𝑡−1
𝑖 𝑗 . �

We keep the notation used in the proof of Proposition 4.7. Consider the moment map 𝜇 : P𝑁 → R𝑁
which is given by

𝜇 : P𝑁 → R𝑁

[𝑧0 : · · · : 𝑧𝑁 ] ↦→
(

|𝑧0 |∑𝑁
𝑖=0 |𝑧𝑖 |

, · · · , |𝑧𝑁−1 |∑𝑁
𝑖=0 |𝑧𝑖 |

)
.

Note that the image Im(𝜇) ∈ R𝑁 is the standard N-simplex Δ . Also, a fiber over a k-dimensional face
𝜎 is (𝑆1)𝑘 . We consider the dual spine Π𝑁 in Δ , defined as the subcomplex of the first barycentric
subdivision of Δ spanned by the 0-skeleton of the first barycentric subdivision minus the 0-skeleton of
Δ . Decomposing Δ along Π𝑁 , we have 𝑁 + 1 cubes �0, . . . ,�𝑁 , each of which is pulled a product of
disks 𝐷𝑁 in P𝑁 . These are exactly the polydisks Δ0, . . . ,Δ𝑁 we have introduced. We illustrate the case
of P2 in Figure 1: the dual spine Π2 is the union of dotted segments that decomposes Δ into three cubes
�0,�1 and �2. Also, observe that each k-th intersection of these cubes pulls backs to (𝑆1)𝑁−𝑘 × 𝐷𝑘 ,
which is the same as the k-th intersection of Δ 𝑖’s.

Now, we can see how �̃� : 𝑌 → C𝑁 sits in the fibration 𝜋 : 𝑌 → P𝑁 more rigorously. Take an
open cover {𝑉 ′

𝑖 |𝑖 = 0, . . . , 𝑁} of the N-simplex Δ such that for each subset 𝐼 ⊂ {0, . . . , 𝑁}, 𝑉 ′
𝐼 only

contains �𝐼 among �𝐽 ’s for |𝐽 | = |𝐼 |. Here, we follow our convention to denote the intersections. Let
𝑉𝑖 denote the preimage of 𝑉 ′

𝑖 under 𝜇. Suppose we remove the image of a generic P𝑁−1 ⊂ P𝑁 near
the dual spine Π𝑁 . The overlap 𝑉𝑖 𝑗 is now diffeomorphic to Δ𝑁−1 × (𝑆1 × [0, 1] − {𝑝𝑡}) hence not
contracts to Δ𝑁−1 × 𝑆1. However, if one instead removes a small closed neighborhood 𝑁𝜖 (P𝑁−1) of
P𝑁−1 in P𝑁 and shrink 𝑉𝑖’s if necessary, then 𝑉𝑖 𝑗 becomes diffeomorphic to Δ𝑁−1 (See Figure 2 for
𝑁 = 2). Since 𝑉𝑖 contracts to the base of the hybrid LG model (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖), the induced symplectic
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Figure 1. Description of the dual spine Π2.

Figure 2. Description of the intersection of 𝑉1 and 𝑉2 in P2.

fibration 𝜋 : 𝜋−1(P𝑁 \ 𝑁𝜖 (P𝑁−1)) → P𝑁 \ 𝑁𝜖 (P𝑁−1)) � C𝑁 can be seen as �̃� : 𝑌 → C𝑁 . In other
words, Proposition 4.7 is equivalent to saying that �̃� : 𝑌 → C𝑁 is compactifiable (to 𝜋 : 𝑌 → P𝑁 ) if
the condition (4.4) holds.
Remark 4.8. In general, there is a significant difference between gluing polydisks and the standard
open charts of P𝑁 . This is because the former procedure encodes information about singularities of
each hybrid LG model while the latter is too rigid to do so.
Theorem 4.9. Let 𝑋𝑐 =

⋃𝑁
𝑖=0 𝑋𝑖 be a d-semistable Calabi–Yau n-fold of type (𝑁 + 1) and X be its

smoothing. Suppose that we have hybrid LG models (𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → Δ𝑁 ) mirror to (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) that
satisfies Hypothesis 4.6 and the relation (4.4). Let 𝑌 and Y be glued symplectic manifolds constructed
above. Then

1. Y is topological mirror to X. In other words, 𝑒(𝑌 ) = (−1)𝑛𝑒(𝑋),
2. 𝑌 is topological mirror to 𝑋𝑐 . In other words, 𝑒(𝑌 ) = (−1)𝑛𝑒(𝑋),
where 𝑒(−) is the Euler characteristic.

Lemma 4.10. Let ℎ : 𝑌 → C𝑁 be a hybrid LG model. Then 𝑒(𝑌𝑠𝑚) =
∑𝑁

|𝐼 |=1(−1) |𝐼 |−1𝑒(𝑌𝐼 ).

Proof. The gluing property (Proposition 3.2) of the hybrid LG model ℎ : 𝑌 → C𝑁 implies that there
exists an open cover {𝑈𝑖 |𝑖 = 1, . . . , 𝑁} of 𝑌𝑠𝑚 such that the induced fibration ℎ|𝑈𝐼 : 𝑈𝐼 → C𝑁−|𝐼 | is
isotopic to ℎ|𝑌𝐼 : 𝑌𝐼 → C𝑁−|𝐼 | . The conclusion follows from the Mayer–Vietoris argument. �

Proof of Theorem 4.9. Both items (1) and (2) are proven by the Mayer–Vietoris argument. We prove
the item (2) first. By the Mayer–Vietoris sequence, we have

𝑒(𝑋𝑐) =
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 |−1𝑒(𝑋𝐼 )

=
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 |−1(−1)𝑛−|𝐼 |+1𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

= (−1)𝑛
𝑁+1∑
|𝐼 |=1

𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚).
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Now, it is enough to show that 𝑒(𝑌 ) =
∑𝑁+1

|𝐼 |=1 𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚). Take an open cover {𝑈𝑖 |𝑖 = 0, . . . , 𝑁} of
the base of �̃� : 𝑌 → C𝑁 such that �̃�−1(𝑉𝐼 ) contracts to 𝑌𝐼 for all I. By applying the Mayer–Vietoris
argument, we have

𝑒(𝑌 ) =
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 |−1𝑒(𝑌𝐼 ).

Since 𝑒(𝑌𝐼 ) = 𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) + 𝑒(𝑌𝐼 ,𝑠𝑚), Lemma 4.10 implies that

𝑒(𝑌 ) =
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 |−1(𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) + 𝑒(𝑌𝐼 ,𝑠𝑚))

=
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 |−1���𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) +
𝑁+1−|𝐼 |∑

|𝐽 |=1,𝐽∩𝐼=∅
(−1) |𝐽 |−1𝑒(𝑌𝐼 ,𝐽 )

���.
Here, 𝑌𝐼 ,𝐽 is the same with 𝑌𝐼∪𝐽 by Hypothesis 4.6 (1), but we use different notation to emphasize
the Mayer–Vietoris procedure. By rewriting 𝑒(𝑌𝐼 ,𝐽 ) = 𝑒(𝑌𝐼 ,𝐽 , 𝑌𝐼 ,𝐽 ,𝑠𝑚) + 𝑒(𝑌𝐼 ,𝐽 ,𝑠𝑚), we can iteratively
apply Lemma 4.10. Then we get 𝑒(𝑌 ) =

∑𝑁+1
|𝐼 |=1 𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) by taking the resummation.

We apply similar argument to prove an item (1). It follows from the same method in [23, Proposition
3.2] that the Euler characteristic of the smoothing manifold X is given by

𝑒(𝑋) =
𝑁+1∑
|𝐼 |=1

(−1) |𝐼 | |𝐼 |𝑒(𝑋𝐼 ).

By assumption, we have 𝑒(𝑋) = (−1)𝑛
∑𝑁+1

|𝐼 |=1 |𝐼 |𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚). Take an open cover {𝑈𝑖 |𝑖 = 0, . . . , 𝑁} of
the base of ℎ : 𝑌 → P𝑁 as before. Note that for any I, the intersection𝑈𝐼 contracts to (𝑆1) |𝐼 |−1×Δ𝑁+1−|𝐼 | .
Applying the Mayer–Vietoris argument with respect to the induced open cover {ℎ−1(𝑈𝑖)}, one can see
that the Euler characteristic 𝑒(ℎ−1 (𝑈𝐼 )) vanishes for |𝐼 | > 1 because ℎ−1 (𝑈𝐼 ) contracts to a fiber bundle
over (𝑆1) |𝐼 |−1 with a fiber 𝑌𝐼 . Therefore,

𝑒(𝑌 ) =
∑
|𝐼 |=1

𝑒(𝑌𝐼 ) =
∑
|𝐼 |=1

𝑒(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) + 𝑒(𝑌𝐼 ,𝑠𝑚).

By iteratively applying Lemma 4.10, we get the conclusion. �

5. Mirror P=W conjectures

We maintain the notation used in the previous section. Let X be a smoothing of 𝑋𝑐 =
⋃𝑁
𝑖=0 𝑋𝑖 , a

d-semistable Kähler Calabi–Yau n-fold of type (𝑁 +1). We have introduced the topological construction
of their mirror objects that comes with additional symplectic fibration structure (𝑌, 𝜋 : 𝑌 → P𝑁 ) and
(𝑌, �̃� : 𝑌 → C𝑁 ), respectively. In this section, we discuss a refined version of Theorem 4.9. In the
degeneration picture, we have two filtrations on the cohomology groups: the monodromy weight filtration
𝑊lim • on 𝐻∗(𝑋) and the Deligne’s canonical weight filtration 𝑊• on 𝐻∗(𝑋𝑐). The corresponding mirror
filtrations are conjectured to be the perverse Leray filtration (equivalently, the 𝛿-flag filtration) on 𝐻∗(𝑌 )
associated to h and the perverse Leray filtration (equivalently, the G-flag filtration) on 𝐻∗(𝑌 ) associated
to ℎ̃, respectively.

Degeneration (B-side) Fibration (A-side)
Monodromy weight filtration 𝑊lim • Perverse Leray filtration 𝑃𝜋

• associated to 𝜋
Deligne’s canonical weight filtration 𝑊• Perverse Leray filtration 𝑃 �̃�

• associated to �̃�
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As noted in Remark 1, since the gluiing construction (Proposition 4.7) is not performed in the
complex category, we mainly consider the flag filtrations introduced in Section 2.3 which are potentially
equivalent to the perverse Leray filtrations.

Theorem 5.1. Suppose that each mirror pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ) |(𝑌𝑖 , 𝜔𝑖 , ℎ𝑖 : 𝑌𝑖 → C𝑁 ) satisfies Conjec-
ture 3.7. Then

1. for X and Y, we have ⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹Gr𝑊𝑙𝑖𝑚
𝑝+𝑞 𝐻 𝑝+𝑞+𝑙 (𝑋) � Gr𝑃

𝜋

𝑛+𝑎𝐻
𝑛+𝑎+𝑙 (𝑌 ),

where −𝑁 ≤ 𝑙 ≤ 𝑁 .
2. for 𝑋𝑐 and 𝑌 , we have ⊕

𝑝−𝑞=𝑎
Gr𝑝𝐹Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑙 (𝑋𝑐) � Gr𝑃

�̃�

𝑛+𝑎𝐻
𝑛+𝑎+𝑙
𝑐 (𝑌 ),

where 0 ≤ 𝑙 ≤ 𝑁 .

Proof of Theorem 5.1-(1). Let 𝜋 : 𝑌 → P𝑁 be a gluing of 𝑁 + 1 hybrid LG models (𝑌𝑖 , ℎ𝑖 : 𝑌𝑖 → C𝑁 ).
Take an open cover {𝑉𝑠} of P𝑁 as explained in the discussion after Proposition 4.7 such that the induced
fibration 𝜋−1(𝑉𝑠) → 𝑉𝑠 contracts to ℎ𝑠 : 𝑌𝑠 → Δ𝑁 . We consider a general linear flag in P𝑁

ℌ : 0 = 𝐻−𝑁−1 ⊂ 𝐻−𝑁 ⊂ · · · ⊂ 𝐻−1 ⊂ 𝐻0 = P𝑁

which satisfies several properties:

1. ℌ intersects transversally with the discriminant locus of 𝜋 in the sense of [7, Definition 5.2.4];
2. the induced flag ℌ ∩𝑉𝑠 is not parallel to any coordinate lines of the base of ℎ𝑠 : 𝑌𝑠 → Δ𝑁 .

We also consider a pair of such general linear flags (𝐻•, 𝐿•) of P𝑁 ,

ℌ : 𝐻−𝑛 ⊂ · · · ⊂ 𝐻−1 ⊂ 𝐻0 = P𝑁

𝔏 : 𝐿−𝑛 ⊂ · · · ⊂ 𝐿−1 ⊂ 𝐻0 = P𝑁 .

Due to the genericity, for 𝑖 = −𝑁, . . . , 0 and 𝑗 = 0, . . . , 𝑁 , we may assume there exists a collection of
sufficiently small 𝜖 𝑗 > 0 which yields isomorphisms of pairs

((𝐻− 𝑗 − 𝐻− 𝑗−1) ∩ 𝐿𝑖 , (𝐻− 𝑗 − 𝐻− 𝑗−1) ∩ 𝐿𝑖−1) � ((𝐻− 𝑗 − 𝑁𝜖 𝑗 (𝐻− 𝑗−1)) ∩ 𝐿𝑖 , (𝐻− 𝑗 − 𝑁𝜖 𝑗 (𝐻− 𝑗−1)) ∩ 𝐿𝑖−1).
(5.1)

Not only that, we further assume that a flag 𝔏 satisfies the following: if necessary, one can modify the
cover {𝑉𝑠} in a way that the induced cover of P𝑁 −𝑁𝜖0 (𝐻−1), denoted by {𝑉 (0)

𝑠 }, satisfies the following
properties:

1. for nonempty index set I, 𝑉 (0)
𝐼 � Δ𝑁+1−|𝐼 |;

2. the induced open regions {𝑉 (0)
𝑠𝑡 |𝑡 ≠ 𝑠} yield the gluing property of the induced flag 𝑉 (0)

𝑠 ∩ 𝔏 in the
sense of the discussion before Lemma 3.5.

The first condition is the one explained in the discussion after Proposition 4.7. The second condition
can be obtained by rescaling each hybrid LG potential ℎ𝑠 : 𝑌𝑠 → Δ𝑁 before the gluing. Again, one
can further modify the open cover {𝑉𝑠} in a way that the induced cover of 𝐻−1 \ 𝑁𝜖1 (𝐻−2), denoted by
{𝑉 (1)

𝑠 } satisfies the following properties
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𝑉 (1)
𝐼 �

{
Δ 𝐼 ∩ 𝐻−1 |𝐼 | < 2
𝐷𝑁−|𝐼 | |𝐼 | ≥ 2,

where 𝐷𝑁−|𝐼 | is some polydisk in the intersection Δ 𝐼 � 𝑆 |𝐼 |−1 × 𝐷𝑁−|𝐼 | for |𝐼 | > 1. Similarly, we may
assume that the induced open regions {𝑉𝑠𝑡 |𝑡 ≠ 𝑠} restricted to P𝑁 \𝑁𝜖1 (𝐻−2) yields the gluing property
of the induced flag 𝔏 ∩ 𝐻−1 ∩𝑉𝑠 . Inductively, we obtain an open cover {𝑉𝑠} such that the induced open
cover of 𝐻− 𝑗 \ 𝑁𝜖 𝑗 (𝐻− 𝑗−1), denoted by {𝑉 ( 𝑗)

𝑠 }, satisfies the following properties

𝑉
( 𝑗)
𝐼 �

{
Δ 𝐼 ∩ 𝐻− 𝑗 |𝐼 | < 𝑗 + 1
𝐷𝑁−|𝐼 | |𝐼 | ≥ 𝑗 + 1

for 𝑗 = 0, . . . , 𝑁 . Also, the induced open regions {𝑉𝑠𝑡 |𝑡 ≠ 𝑠} restricted to P𝑁 \ 𝑁𝜖 𝑗 (𝐻− 𝑗−1) yields the
gluing property of the induced flag 𝔏 ∩ 𝐻− 𝑗 ∩𝑉𝑠 . Let’s write 𝑍− 𝑗 := 𝜋−1 (𝐻− 𝑗 ) and 𝑊𝑖 := 𝜋−1 (𝐿𝑖).

Lemma 5.2. For each 𝑞 ≥ 0, we have

𝐻𝑞
𝑍− 𝑗−𝑍− 𝑗−1

(𝑌,C|𝑊𝑖−𝑊𝑖−1) �
⊕

|𝐼 |= 𝑗−𝑖+1
𝐻𝑞−2𝑟 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚;C), (5.2)

where r is the codimension of 𝑍− 𝑗 ∩𝑊𝑖 in 𝑊𝑖 .

Proof of Lemma 5.2. We first rewrite the cohomology 𝐻𝑞
𝑍− 𝑗−𝑍− 𝑗−1

(𝑌,C|𝑊𝑖−𝑊𝑖−1) by considering the
excision principle for local cohomology groups. Then we have

𝐻𝑞
𝑍− 𝑗−𝑍− 𝑗−1

(𝑌,C|𝑊𝑖−𝑊𝑖−1) � 𝐻𝑞
𝑍− 𝑗∩(𝑌−𝑍− 𝑗−1) (𝑌 − 𝑍− 𝑗−1,C|𝑊𝑖−𝑊𝑖−1∩(𝑊−𝑍− 𝑗−1) )

�
[
𝐻𝑞
𝑍− 𝑗∩𝑊 ◦

𝑖
(𝑊◦

𝑖 ) → 𝐻𝑞
𝑍− 𝑗∩𝑊 ◦

𝑖−1
(𝑊◦

𝑖−1)
]

� 𝐻𝑞−2𝑟 (𝑍− 𝑗 ∩𝑊◦
𝑖 , 𝑍− 𝑗 ∩𝑊◦

𝑖−1),

where 𝑊◦
• := 𝑊• −𝑊• ∩ 𝑍− 𝑗−1. The last isomorphism comes from the tubular neighborhood theorem.

By the condition (5.1) on the flag ℌ, we have

𝐻𝑞−2𝑟 (𝑍− 𝑗 ∩𝑊◦
𝑖 , 𝑍− 𝑗 ∩𝑊◦

𝑖−1) � 𝐻𝑞−2𝑟 ((𝑍− 𝑗 − 𝜋−1 (𝑁𝜖 𝑗 (𝐻− 𝑗−1)) ∩𝑊𝑖 , (𝑍− 𝑗 − 𝜋−1 (𝑁𝜖 𝑗 (𝐻− 𝑗−1))) ∩𝑊𝑖−1).

Now, we take Mayer–Vietoris sequence with respects to {𝑈𝑠 := 𝜋−1 (𝑉𝑠) |𝑠 = 0, · · · , 𝑁}. Note that over
𝑈𝐼 , the gluing property yields

𝑈𝐼 ∩ (𝑍− 𝑗 − 𝜋−1(𝑁𝜖 𝑗 (𝐻− 𝑗−1))) �
{
𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗−|𝐼 |+1) |𝐼 | < 𝑗 − 𝑖 + 1
𝑌𝐼 |𝐼 | ≥ 𝑗 − 𝑖 + 1.

Therefore, the Mayer–Vietoris sequence is given by⊕
|𝐼 |=1

𝐻𝑞−2𝑟 (𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗) , 𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗+1) )
𝑑1−−→

⊕
|𝐼 |=2

𝐻𝑞−2𝑟 (𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗−1) , 𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗) )

𝑑1−−→ · · · 𝑑1−−→
⊕

|𝐼 |= 𝑗−𝑖+1
𝐻𝑞−2𝑟 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚) → 0,

(5.3)

where the differential satisfies the Mayer–Vietoris sign rule (2.1). Also, for 𝐼 = {𝑖1, . . . , 𝑖𝑘 }, the direct
summand 𝐻𝑞−2𝑟 (𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗+1−𝑘) , 𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗−𝑘) ) of the k-th term can be computed by regarding the pair
(𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗+1−𝑘) , 𝑌𝐼 ,𝑠𝑚(−𝑖+ 𝑗−𝑘) ) as subspaces of 𝑌𝑖1 . The choice of the index 𝑖1 does not matter because of
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the topological restriction we’ve made (Hypothesis 4.6). Then it becomes
⊕

𝐽 𝐻𝑞−2𝑟 (𝑌𝐼∪𝐽 , 𝑌𝐼∪𝐽 ,𝑠𝑚)
for 𝐽 ⊂ {0, . . . , 𝑁} \ 𝐼 with |𝐽 | = −𝑖 + 𝑗 + 1 − 𝑘 . In other words, the k-th term is given by

𝑆𝑘 :=
⊕
|𝐼 |=𝑘

⊕
𝐽 ⊂{0,...,𝑁 }\𝐼 , |𝐽 |=−𝑖+ 𝑗+1−𝑘

𝐻𝑞−2𝑟 (𝑌𝐼∪𝐽 , 𝑌𝐼∪𝐽 ,𝑠𝑚)

so that the sequence (5.3) becomes

𝑆1
𝑑−→ 𝑆2

𝑑−→ · · · 𝑑−→ 𝑆 𝑗−𝑖+1 → 0,

where each map d is the signed sum of the isomorphisms where the signs are determined by the Mayer–
Vietoris rule (2.1). In fact, it fits into the simple combinatorial sequence

0 → 𝑆0
𝑑−→ 𝑆1

𝑑−→ 𝑆2
𝑑−→ · · · 𝑑−→ 𝑆 𝑗−𝑖+1 → 0

hence the conclusion follows. �

Next, we rewrite the 𝐸1-page of the spectral sequence for the 𝛿-filtration. Recall that 𝛿𝐸 𝑙,𝑛+𝑎
1 =⊕

𝑖+ 𝑗=𝑙 𝐻
𝑛+𝑎+𝑙
𝑍− 𝑗−𝑍− 𝑗−1

(𝑌,C|𝑌𝑖−𝑌𝑖−1) and the differential 𝑑1 is the signed sum of the connecting homomor-
phisms (see 2.4 for the precise description). Since we choose the open cover {𝑈𝑠 |𝑠 = 0, · · · , 𝑁} in
the proof of Lemma 5.2 that is independent of i and j, the isomorphisms in Lemma 5.2 respects the
functoriality. Then we have

𝛿𝐸 𝑙,𝑛+𝑎
1 �

⊕
𝑖+ 𝑗=𝑙

⊕
|𝐼 |= 𝑗−𝑖+1

𝐻𝑛+𝑎+𝑙−2𝑟 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚;C),

where r is the codimension of 𝑍− 𝑗 ∩𝑊𝑖 in 𝑊𝑖 . More explicitly, we have

𝐸−1,𝑛+𝑎
1 𝐸0,𝑛+𝑎

1 𝐸1,𝑛+𝑎
1

⊕
|𝐼 |=2 𝐻𝑛+𝑎−1 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

⊕
|𝐼 |=1 𝐻𝑛+𝑎 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

⊕
|𝐼 |=4 𝐻𝑛+𝑎−3 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

⊕
|𝐼 |=3 𝐻𝑛+𝑎−2(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

⊕
|𝐼 |=2 𝐻𝑛+𝑎−1 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

...
⊕

|𝐼 |=5 𝐻𝑛+𝑎−4(𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)
⊕

|𝐼 |=4 𝐻𝑛+𝑎−3 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚).

𝑑1 𝑑1

⊕ ⊕
⊕ ⊕ ⊕

The horizontal (resp. antidiagonal) differential 𝑑𝐼 (resp. 𝑑𝐼 𝐼 ) is the signed sum of the relevant connecting
homomorphisms 𝜌𝐽𝐼 (resp. (𝜌𝐽𝐼 )

∨) following the Mayer–Vietoris sign rule (2.1). The differential 𝑑1 :
𝛿𝐸 𝑙,𝑛+𝑎

1 → 𝛿𝐸 𝑙+1,𝑛+𝑎
1 is given by 𝑑1 = 𝑑𝐼 + (−1)𝑙𝑑𝐼 𝐼 . Therefore, we have the following equivalence of

the 𝐸1-page of the spectral sequences

(
⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹
𝑊 (𝑀 )𝐸 𝑙, 𝑝+𝑞

1 , 𝑑1) � ( 𝛿𝐸 𝑙,𝑛+𝑎
1 , 𝑑1).

Since both spectral sequences degenerate at the 𝐸2-page, we have⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹Gr𝑊𝑙𝑖𝑚
𝑝+𝑞 𝐻 𝑝+𝑞+𝑙 (𝑋) =

⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹 (
𝑊 (𝑀 )𝐸 𝑙, 𝑝+𝑞

2 ) � 𝛿𝐸 𝑙,𝑛+𝑎
2 = Gr𝑙𝛿𝐻

𝑛+𝑎+𝑙 (𝑌 ).
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The conclusion follows from Theorem 2.12 (3):

𝛿𝐸 𝑙,𝑛+𝑎
2 = Gr𝑙𝛿𝐻

𝑛+𝑎+𝑙 (𝑌 ) = Gr𝑃𝑛+𝑎𝐻𝑛+𝑎+𝑙 (𝑌 ). �

Proof of Theorem 5.1-(2). The proof of item (2) is almost the same. We use the Mayer–Vietoris argument
to describe the 𝐸1-page of the spectral sequence for the flag (=perverse) filtration. To do so, we should
work with the regular cohomology groups, not compactly supported ones. The idea is to apply the
well-known Poincaré duality statement for the perverse filtration on 𝐻∗

𝑐 (𝑌 ):

Gr𝑃𝑛+𝑎𝐻𝑛+𝑎+𝑙
𝑐 (𝑌 ) � (Gr𝑃𝑛−𝑎𝐻𝑛−𝑎−𝑙 (𝑌 ))∗.

In terms of the G-flag filtration, this is isomorphic to (Gr−𝑙𝐺𝐻𝑛−𝑎−𝑙 (𝑌 ))∗. Therefore, it is enough to show
that ⊕

𝑝−𝑞=𝑎
Gr𝑝𝐹Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑙 (𝑋𝑐) � (Gr−𝑙𝐺𝐻𝑛−𝑎−𝑙 (𝑌 ))∗.

By applying the Mayer–Vietoris argument, the 𝐸1-page of the spectral sequence for the G-flag filtration
is given by

𝐺𝐸−𝑙,𝑛−𝑎
1 �

⊕
|𝐼 |=𝑙

𝐻𝑛−𝑎−𝑙 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚),

and the differential 𝑑𝐺1 : 𝐺𝐸−𝑙,𝑛−𝑎
1 → 𝐺𝐸−𝑙+1,𝑛−𝑎

1 is the signed sum of the relevant connecting ho-
momorphisms (𝜌𝐽𝐼 ) following the Mayer–Vietoris sign rule (2.1). Since the spectral sequence for the
G-filtration degenerates at 𝐸2-page, we have 𝐺𝐸−𝑙,𝑛−𝑎

2 � Gr−𝑙𝐺𝐻𝑛−𝑎−𝑙 (𝑌 ). To compute the Poincaré dual
(Gr−𝑙𝐺𝐻𝑛−𝑎−𝑙 (𝑌 ))∗, we take the dual of the 𝐸1-page (𝐺𝐸−𝑙,𝑛−𝑎

1 , 𝑑𝐺1 ), denoted by (𝐺𝐸−𝑙,𝑛−𝑎∗
1 , (𝑑𝐺1 )∗).

By Poincaré duality (3.2), this becomes

(𝐺𝐸−𝑙,𝑛−𝑎
1 )∗ �

⊕
|𝐼 |=𝑙

𝐻𝑛+𝑎−𝑙 (𝑌𝐼 , 𝑌𝐼 ,𝑠𝑚)

with the induced differential, the signed sum of the relevant connecting homomorphisms (𝜌𝐽𝐼 )
∨ following

the Mayer–Vietoris sign rule (2.1). By the assumption (Conjecture 1.6), we have the mirror equivalence
of the 𝐸1-page of the spectral sequences

(
⊕
𝑝−𝑞=𝑎

Gr𝑝𝐹
𝑊 𝐸 𝑙, 𝑝+𝑞

1 , 𝑑1) � ((𝐺𝐸 𝑙,𝑛+𝑎
1 )∗, (𝑑𝐺1 )∗).

As both spectral sequences degenerate at the 𝐸2-page, we get the conclusion. �

6. Toric degeneration

In this section, we provide a combinatorial way of achieving the degeneration-fibration correspondence
for Batyrev mirror paris. After that, we propose how one can see the previous gluing construction.

6.1. Backgrounds on toric varieties

We recollect some backgrounds about toric varieties. We refer for more details to [8]. Let N and M be
dual lattices of rank n with the natural bilinear pairing 〈−,−〉 : 𝑁 × 𝑀 → Z. We write 𝑁R := 𝑁 ⊗Z R
and 𝑀R = 𝑀 ⊗Z R. A rational convex polyhedra cone (simply called cone) 𝛼 in 𝑁R is a convex cone
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generated by finitely many vectors in N. Associated to a cone 𝛼, one can construct an affine toric variety
𝑋𝛼 := Spec(C[𝛼∨ ∩ 𝑀]) where 𝛼∨ ⊂ 𝑀R is a dual cone of 𝛼 defined by

𝛼∨ := {𝑣 ∈ 𝑀R |〈𝑣, 𝑢〉 ≥ 0 for all 𝑢 ∈ 𝛼}.

Such affine toric varieties can be glued to produce more general toric varieties. This gluing data is
combinatorially encoded in a fan Σ ⊂ 𝑁R which is a collection of cones such that

1. each face of a cone in Σ is also a cone in Σ,
2. the intersection of two cones in Σ is a face of each cone.

Given a fan Σ, we define a toric variety 𝑋 = 𝑋Σ by gluing the affine toric varieties 𝑋𝛼 := Spec(C[𝛼∨ ∩
𝑀]): Two affine toric varieties 𝑋𝛼 and 𝑋𝛽 are glued over 𝑋𝛼𝛽 := Spec(C[(𝛼∩ 𝛽)∨ ∩𝑀]). We call {𝑋𝛼}
a toric chart of 𝑋Σ. If |Σ | = 𝑁R, it is called complete, and the corresponding toric variety 𝑋Σ is compact.

Let Σ[1] be a collection of integral primitive ray generators of Σ. Consider the lattice morphism
𝑔 : 𝑁 → ZΣ [1] given by 𝑔(𝑣) = (〈𝑣, 𝜌〉)𝜌∈Σ [1] . This induces a short exact sequence

0 → 𝑁
𝑔
−→ ZΣ [1] → 𝐴𝑛−1 (𝑋Σ) → 0,

where ZΣ [1] is the set of torus invariant Weil divisors and 𝐴𝑛−1 (𝑋Σ) is the Chow group of 𝑋Σ. Applying
the functor Hom(−,C∗) to the above sequence, we get a short exact sequence

1 → 𝐺 → (C∗)Σ [1] → 𝑀 ⊗Z C∗ → 1. (6.1)

Let {𝑥𝜌}𝜌∈Σ [1] be a standard basis of rational functions on CΣ [1] and V be the vanishing locus
of {

∏
𝜌∉𝜎 𝑥𝜌 |𝜎 ⊂ Σ}. The sequence (6.1) shows that G acts naturally on C[(𝑥𝜌)𝜌∈Σ [1] ] and leaves

V invariant. Then the toric variety 𝑋Σ is the quotient (C[(𝑥𝜌)𝜌∈Σ [1] ] \ 𝑉)//𝐺 and the homogeneous
coordinate ring of 𝑋Σ is equipped with the grading given by the action of G. The sublocus of 𝑋Σ

corresponding to 𝐷𝜌 = {𝑥𝜌 = 0} is exactly the torus invariant divisors associated to the ray generator
𝜌. A torus invariant divisor 𝐷 =

∑
𝜌∈Σ [1] 𝑎𝜌𝐷𝜌 is Cartier if and only if there is some piecewise linear

function 𝜌 on 𝑀R which linear on the cones of Σ, which takes the integral values on M.
A rational convex polytope Δ in 𝑀R is the convex hull of finite number of points. We say Δ is a

lattice polytope if every vertex of Δ is in M. For example, a lattice polytope is given by the intersection
of some half spaces cut out by affine hyperplanes

Δ = {𝑣 ∈ 𝑀R |〈𝑣, 𝑛𝑖〉 ≥ −𝑎𝑖 , 𝑛𝑖 ∈ 𝑁, 𝑎𝑖 ∈ Z for 𝑖 = 1, . . . , 𝑠}.

A l-face 𝜎 is the intersection of Δ with 𝑛 − 𝑙 supporting hyperplanes, and we will denote it by 𝜎 ≺ Δ .
We also write Δ [𝑙] for the collection of l-faces of Δ . In particular, a 0-face, a 1-face and a (𝑛 − 1)-face
are called a vertex, an edge and a facet of Δ , respectively. For each face 𝜎 ≺ Δ , the cone 𝛼𝜎 dual to 𝜎
is defined by

𝛼𝜎 = {𝑢 ∈ 𝑁R |〈𝑣, 𝑢〉 ≤ 〈𝑣′, 𝑢〉 for all 𝑣 ∈ 𝜎 and 𝑣′ ∈ Δ}.

A collection of dual cones 𝛼𝜎 forms a fan ΣΔ , called a normal fan of Δ , and we write 𝑋Δ for the
associated toric variety.

To a lattice polytope Δ , the associated toric variety 𝑋Δ comes with the divisor 𝐷Δ = −
∑
𝜌 𝑎𝜌𝐷𝜌

(or simply denoted by D) where the sum is taken over all facets 𝜌 ≺ Δ . Equivalently, we get a support
function of D, a piecewise linear function 𝜙𝐷 such that 𝜙𝐷 (𝑣𝜌) = −𝑎𝜌 for the privimite vector 𝑣𝜌 to the
dual cone of the face 𝜌 ≺ Δ . Let Δ𝐷 = {𝑢 ∈ 𝑀R |𝑢 ≥ 𝜙𝐷 on 𝑁R}. Geometrically, Δ𝐷 ∩ 𝑀 generates
the space of sections of the line bundle O𝑋 (𝐷). Note that D is trivial, generated by sections and ample
if and only if 𝜙𝐷 is affine, convex and strictly convex, respectively.
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A polytope Δ ⊂ 𝑀R is called simplicial, if there are exactly n edges at each vertex and the primary
vectors at each vertex span 𝑀R as a vector space. A fan Σ in 𝑁R is simplicial if all the maximal cones
in Σ is simplicial. In particular, if the primary vectors span the lattice, then it is called nonsingular.

Proposition 6.1. If Δ is simplicial (resp. nonsingular), then 𝑋Δ is an orbifold (resp. manifold).

6.2. Batyrev mirror pairs

We introduce Batyrev mirror pairs [5]. Let Δ be a simplicial lattice polytope in 𝑀R. A polar dual of the
polytope Δ is defined to be Δ◦ := {𝑢 ∈ 𝑁R |〈𝑢, 𝑣〉 ≥ −1 for 𝑣 ∈ Δ}. A lattice polytope is called reflexive
if its polar dual Δ◦ is also a lattice polytope. This is equivalent to the condition that the zero 0𝑀 is the
only one interior lattice point of Δ . Geometrically, the associated toric variety 𝑋Δ is a Gorenstein Fano
variety. From now on, we fix a reflexive polytope Δ ⊂ 𝑀R and write ΣΔ for the fan over the facets of Δ
and PΔ := 𝑋ΣΔ for the associated toric variety. Note that ΣΔ is also the normal fan of the polar dual Δ◦,
so we have PΔ = 𝑋ΣΔ = 𝑋ΣΔ◦ = 𝑋Δ◦ .

Consider a general Calabi–Yau hypersurface 𝑉Δ of PΔ . Since PΔ is an orbifold in general, the
hypersurface 𝑉Δ may have singularities. We assume that the hypersurface 𝑉Δ is Δ-regular, meaning
that the singular locus of 𝑉Δ is induced from the singular locus of ambient space PΔ . Then one may
desingularize 𝑉Δ by taking a partial resolution of PΔ . Such resolution is given by a refinement Σ̃Δ of
the fan ΣΔ whose cone is contained in a cone of ΣΔ . In this case, to ΣΔ , one can add all rays pointing
to the elements in 𝜕Δ ∩ 𝑀 to obtain Σ̃Δ . Batyrev shows that the induced resolution 𝑓 : 𝑋Σ̃Δ

→ PΔ
is crepant and this is called a maximal projective crepant partial (MPCP) resolution of PΔ [5, Section
2.2]. In particular, if 𝑋 := 𝑓 ∗(𝑉Δ ) is smooth, then we say Δ satisfies maximal projective crepant smooth
(MPCS) resolution condition. Note that this condition always holds for 𝑛 ≤ 4 [5, Section 2.2]. Similarly,
consider the dual construction for Δ◦ and write 𝑋∨ for a MPCP resolution of 𝑉Δ◦ .

Theorem 6.2 [5]. The pair of Calabi–Yau hypersurfaces (𝑉Δ , 𝑉Δ◦ ) (or (𝑋, 𝑋∨)) satisfies (stringy) Hodge
number mirror relation. We call this pair a Batyrev mirror pair.

6.3. The degeneration-fibration correspondence for Batyrev mirror pairs

We start with reviewing a semistable toric degeneration introduced in [20]. Fix an n-dimensional
simplicial polytope Δ . Let Γ be a partition of the polytope Δ into smaller polytopes {Δ (𝑖) }. We say the
partition Γ is simplicial if all subpolytopes {Δ (𝑖) } are simplicial polytopes. We define 𝜎 to be l-face of
Γ, denoted by 𝜎 ≺ Γ, if 𝜎 is a l-face of Δ (𝑖) for some i.

Definition 6.3. A simplicial partition Γ is semistable if the following conditions hold:

1. each vertex of Δ belongs to only one of Δ (𝑖) ’s;
2. for any l-face 𝜎 ≺ Γ and k-face 𝜏 ≺ Δ with 𝜎 ⊂ 𝜏, then there are exactly 𝑘 − 𝑙 + 1Δ (𝑖) ’s such that

𝜎 ≺ Δ (𝑖) .

From now on, we distinguish vertices in Γ from those of Δ: When we say p is a vertex of Γ, it means
that p is a vertex of Δ (𝑖) for some i that is not a vertex of Δ . The restriction of Γ to some face 𝜎 ≺ Δ is
defined to be the partition induced by {Δ (𝑖) ∩ 𝜎}, and denote it by Γ ∩ 𝜎.

By definition, if ∩𝑙𝑘=1Δ (𝑖𝑘 ) ≠ ∅, then it has dimension 𝑛 − 𝑙 + 1. Also, for any vertex p of Γ, there are
exactly 𝑛+ 1-edges 𝜎0, . . . , 𝜎𝑛 of Γ such that 𝑝 ≺ 𝜎𝑖 . This allows us to define a dual simplicial complex
𝐾Γ whose vertex set is the set of polytopes Δ ( 𝑗) ’s in the partition Γ. For example, 𝐾Γ is l-simplex if and
only if there is a l-face of Δ that contains all vertices of Γ.

Definition 6.4. A vertex 𝑝 ≺ Γ is nonsingular if p is nonsingular in one (thus all) subpolytope containing
p. A semistable partition Γ is nonsingular if all of vertices are nonsingular.

Definition 6.5. A lifting of Δ by a semistable partition Γ is a triple (Δ̃ , �̃�, 𝜋), where Δ̃ is a lattice
polytope of �̃� and 𝜋 : �̃� → 𝑀 is a surjective morphism satisfying the following condition: for �̃� ≺ Δ̃ ,
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either 𝜋∗(�̃�) ≺ Δ or 𝜋∗(�̃�) ≺ Γ where 𝜋∗ : �̃�R → 𝑀R is the induced map from 𝜋. If 𝜋∗(�̃�) ≺ Γ,
𝜋∗(�̃�) is said to be a lift of 𝜋∗(�̃�). Also, the lifting is called nonsingular if all polytopes involved are
nonsingular.

Proposition 6.6 [20, Proposition 3.12]. For a nonsingular semistable partition Γ, there exists a concave
integral piecewise linear function 𝐹Γ on Δ that is linear on each face of Γ.

One can take a minimal integral lifting of 𝐹Γ, and we denote it by F.

Theorem 6.7 [20, Theorem 3.13]. Let 𝜋 be the projection Z ⊕ 𝑀 → 𝑀 and Δ̃ = {(𝑦, 𝑥) |𝑦 ≥ 𝐹 (𝑥)} ⊂
R×Δ ⊂ R×𝑀R. Then (Δ̃ ,Z⊕𝑀, 𝜋) is a lifting ofΔ by Γ. If 𝛾 is a nonsingular partition of a nonsingular
polytope, then the lifting is nonsingular.

Theorem 6.8 [20, Theorem 4.1]. Suppose Δ and Γ are both nonsingular. Then there exists a semistable
degeneration 𝑝 : 𝑋Δ̃ → C of 𝑋Δ to 𝑝−1 (0). The dual complex G of the degenerate fiber 𝑝−1 (0) is
isomorphic to 𝐾Γ, and each component in 𝑝−1 (0) is the toric variety defined by the corresponding
subpolytope in Δ .

The semistable degeneration 𝑝 : 𝑋Δ̃ → C induces a semistable degeneration of a Calabi–Yau
hypersurface X in 𝑋Δ whose degenerate fiber consists of a generic hypersurface 𝑋𝑖 of 𝑋Δ (𝑖) in the linear
system |𝐷Δ (𝑖) |. In other words, the normal crossing variety 𝑋𝑐 = ∪𝑙𝑖=0𝑋𝑖 is d-semistable of type 𝑙 + 1
and X is its smoothing.

Next, we assume that the nonsingular polytope Δ ⊂ 𝑀R is reflexive and the origin 0𝑀 is a unique
lattice point.

Definition 6.9. A semistable partition Γ is central if 0𝑀 ≺ Δ (𝑖) for all i.

Let Γ be a nonsingular, central, semistable partition of the polytope Δ . If 𝐾Γ is l-dimensional, there
is a unique codimension l linear subspace 𝐿 ⊂ 𝑀R passing through the origin such that Δ ∩ 𝐿 ≺ Δ (𝑖) for
all i as a (𝑛− 𝑙)-face. Consider l primitive vectors given by the intersection of each Δ (𝑖𝑘) := Δ (𝑖) ∩Δ (𝑘)
with the orthogonal complement 𝐿⊥ of L. Note that the restriction Δ∩𝐿⊥ is also reflexive and simplicial
while the induced partition is not necessarily semistable. Thus, there are 𝑙 + 1 such primitive vectors
𝑣0, . . . , 𝑣𝑙 such that for each i, Δ (𝑖) contains all 𝑣 𝑗 except 𝑗 = 𝑖.

Next, consider the dual reflexive polytope Δ◦ ⊂ 𝑁R whose dual fan is ΣΔ ⊂ 𝑀R. For simplicity,
we assume that Δ◦ satisfies the MPCS resolution condition. We explain what the central semistable
partition corresponds to in the dual picture. Let 𝑣0, . . . , 𝑣𝑙 be primitive vectors introduced above. We
define new fans Σ′

Γ ⊂ ΣΓ ⊂ 𝑀R where

1. Σ′
Γ is generated by primitive vectors in all Δ (𝑖𝑘) ’s and all 𝑣𝑖’s;

2. ΣΓ is a subfan of Σ′
Γ that is generated by all primitive vectors lying in Δ ∩ 𝐿 and all 𝑣′𝑖𝑠.

Furthermore, we consider the fan Σ′ := ΣΔ ∪ Σ′
Γ. Geometrically, this refinement amounts to taking a

(maximal) projective crepant partial resolution of 𝑋ΣΔ , denoted by 𝜙Δ : 𝑋Σ′ → 𝑋ΣΔ . We also have
a blow-down map 𝜙Γ : 𝑋Σ′ → 𝑋ΣΓ which is not necessarily crepant. Consider the projection of the
lattices Π𝑣 : 𝑀 → 𝑀𝑣 , where 𝑀𝑣 is the sublattice of M generated by 𝑣𝑖’s. This provides a surjective
toric morphism 𝜋𝑣 : 𝑋ΣΓ → 𝑋Σ𝑣 , where Σ𝑣 ⊂ 𝑀𝑣,R is the fan generated by all 𝑣𝑖’s. In fact, 𝜋𝑣 is a
trivial fibration whose fiber is a toric variety associated to a fan generated by all primitive vectors in
Δ ∩ 𝐿, denoted by 𝑋𝐿 . In summary, we have the following diagrams of toric morphisms

𝑋Σ′

𝑋ΣΔ 𝑋ΣΓ 𝑋Σ𝑣 ,

𝜙Δ 𝜙Γ

𝜋Γ

𝜋𝑣

where 𝜋Γ := 𝜙Γ ◦ 𝜋𝑣 . Since 𝜋Γ : 𝑋Σ′ → 𝑋Σ𝑣 is the composition of toric morphisms, a generic fiber is
the toric variety 𝑋𝐿 . In fact, over the open dense torus (C∗)𝑙 ⊂ 𝑋Σ𝑣 , the morphism 𝜋Γ is trivial fibration
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with fiber 𝑋𝐿 . We also present the coordinate description. Consider the homogeneous coordinates of
𝑋Σ′ (resp. 𝑋Σ𝑣 ), (𝑧𝜎 |𝜎 ∈ Σ′) (resp. (𝑧𝜎0 , . . . , 𝑧𝜎𝑙 )). In terms of these coordinates, 𝜋Γ is given by

𝜋Γ =
���

∏
Π𝑣 (𝜎)=𝜎0

𝑧𝜎 , . . . ,
∏

Π𝑣 (𝜎)=𝜎𝑙

𝑧𝜎
���.

Let’s take a generic anticanonical divisor Y in 𝑋Σ′ and the induced fibration 𝜋 := 𝜋Γ |𝑌 . Recall that
we assume that Δ◦ satisfies the MPCS resolution condition so that Y is nonsingular. Also, it is clear
that a generic fiber of 𝜋 is Calabi–Yau as this is a nonsingular general member of the anticanonical
divisor of 𝑋𝐿 .

SinceΓ is nonsingular, the base 𝑋Σ𝑣 is isomorphic to the projective spaceP𝑙 and we write {𝑧𝑖 := 𝑧𝑣𝑖 |𝑖 =
0, . . . , 𝑙} for the homogeneous coordinates. For each i, we take a polydisk Δ 𝑖 = {|𝑧 𝑗 | ≤ |𝑧𝑖 | | 𝑗 ≠ 𝑖} ⊂ P𝑙
and set 𝑌𝑖 := 𝜋−1 (Δ 𝑖) and ℎ𝑖 := 𝜋 |𝑌𝑖 : 𝑌𝑖 → Δ 𝑖 . It follows from the genericity condition on Y that the
restriction of 𝜋 : 𝑌 → P𝑙 over each boundary component of Δ 𝑖 is locally trivial with smooth fibers and
intersects transversally to each other. This implies that (𝑌𝑖 , ℎ𝑖 : 𝑌 → Δ 𝑖) is a hybrid LG model.

Recall that on the degeneration side, the semistable partition Γ provides a semistable degeneration of
a nonsingular Calabi–Yau hypersurface of 𝑋Δ . Each irreducible component 𝑋𝑖 of the degenerate fiber
𝑋𝑐 = ∪𝑙𝑖=0𝑋𝑖 is a general hypersurface of the toric variety 𝑋Δ (𝑖) determined by all facets in the facets ofΔ .

Conjecture 6.10. For each i, the hybrid LG model (𝑌𝑖 , ℎ𝑖 : 𝑌𝑖 → Δ 𝑖) is mirror to the pair (𝑋𝑖 ,∪ 𝑗≠𝑖𝑋𝑖 𝑗 ).

Remark 6.11. One may apply the same construction without imposing MPCS resolution condition on
Δ◦. In this case, Y becomes an orbifold so that one needs more general notion of hybrid LG models.

One of the major difficulties in proving Conjecture 6.10 and verifying the gluing condition
(Ansatz 3.9) is the lack of mirror symmetry results for irreducible components of the degenerate fiber
as quasi-Fano varieties. For instance, unlike the Fano case, a toric mirror construction (e.g., Givental’s
construction [14]) may not be sufficient and needs further modification, especially in the non-nef case.
See [11] for the Tyurin degeneration case. In this regard, this conjecture can be viewed as the reverse
construction of the one introduced in Section 4. In other words, this could be one way to obtain a mir-
ror hybrid LG model for a quasi-Fano pair. We further explore this direction in subsequent work. We
conclude this section by providing two simple pieces of evidence for Conjecture 6.10.

Example 6.12. Consider the reflexive square Δ with the semistable partition Γ given by the vertical line

𝑣0 𝑣1

where dotted arrows are primitive vectors 𝑣0 and 𝑣1. This describes a semistable degeneration of a
nonsingular Calabi–Yau hypersurface of 𝑋Δ = P1 × P1, which is elliptic curve, into the union of two
rational curves 𝑋0 and 𝑋1 intersecting over two points 𝑋01. Consider the fans ΣΔ , Σ′ and Σ𝑣 described
below (Figure 3):

Geometrically, 𝑋Σ′ is a blow up of P1 × P1 along the four corners and 𝑋Σ𝑣 � P
1. The morphism

𝜋Γ : 𝑋Σ′ → 𝑋Σ𝑣 is the one given by the projection to the first factor. In terms of the homogeneous

Figure 3. Fans ΣΔ , Σ′ and Σ𝑣 from the left.
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coordinate {𝑧𝜎 |𝜎 ∈ Σ′[1]}, this is given by

𝜋Γ =
[
𝑧𝜎 (−1,1) 𝑧𝜎 (−1,0) 𝑧𝜎 (−1,−1) : 𝑧𝜎 (1,1) 𝑧𝜎 (1,0) 𝑧𝜎 (1,1)

]
. (6.2)

Take a generic section Y of | −𝐾𝑋Σ′ | that is not singular over the locus {|𝑧0 | = |𝑧1 |} ∈ P1 � 𝑋𝑣 . Then
the induced fibration 𝜋 : 𝑌 → P1 becomes a double cover with four ramification points. Note that two of
them lie near 0 ∈ P1 while the other two points lie near ∞ ∈ P1. For 𝑖 = 0, 1, we take 𝑌𝑖 := 𝜋−1 (Δ 𝑖) and
w𝑖 := 𝜋 |𝑌𝑖 : 𝑌𝑖 → Δ 𝑖 . We show that the pair (𝑌𝑖 , w𝑖) is mirror to the pair (𝑋𝑖 , 𝑋01). To describe mirror
of 𝑋0 (the parallel argument works for 𝑋1), we first make the rectangle Δ (0) reflexive by shifting the
middle vertical line (a facet of Δ (0) ) to the right by length 1. We still denote it by Δ (0) . Then we apply
Givental’s construction to get a mirror of 𝑋0 [14, 17]. We consider the polar dual of Δ (0) , denoted by
Δ (0) , and regard it belongs to M to match the notation we have used. Note that we have a nef partition
of Δ (0) = Δ (0)

1 +Δ (0)
2 where Δ (0)

1 [0] are the red vertices and Δ (0)
2 [0] is blue one in the following picture

(left).

The right picture describes the dual partition ∇(0)
1 and ∇(0)

2 . Then the LG model for 𝑋0 is given by

𝑌0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

𝜌∈Δ (1)
1 ∩𝑀

𝑎𝜌𝑧𝜌 = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊂ (C∗)2, w0 =
∑

𝜌∈Δ (1)
2 ∩𝑀

𝑎𝜌𝑧𝜌,

where 𝑎𝜌’s are general complex coefficients and 𝑧𝜌 =
∏𝑛

𝑖=1 𝑧
〈𝑒𝑖 ,𝜌〉
𝑖 , where {𝑒1, . . . , 𝑒𝑛} is the basis of N.

A fiber is of w0 is compactified to

𝑎𝜌(0,0) 𝑧𝜎 (0,1) 𝑧𝜎 (−1,1) 𝑧𝜎 (−1,0) 𝑧𝜎 (−1,−1) 𝑧𝜎 (0,−1)

+ 𝑎𝜌(1,0) 𝑧𝜎 (0,1) 𝑧𝜎 (0,−1) 𝑧𝜎 (1,0)

+ 𝑎𝜌(0,1) 𝑧
2
𝜎 (0,1) 𝑧

2
𝜎 (−1,1) 𝑧𝜎 (−1,0)

+ 𝑎𝜌(0,−1) 𝑧
2
𝜎 (0,−1) 𝑧

2
𝜎 (−1,−1) 𝑧𝜎 (−1,0) = 0

and

𝜆𝑧𝜎 (1,0) − 𝑎𝜌(−1,0) 𝑧𝜎 (−1,1) 𝑧𝜎 (−1,0) 𝑧𝜎 (−1,−1) = 0,

where 𝑧𝜎 is the homogeneous coordinate of 𝑋∇(0) . For generically chosen 𝑎𝜌’s, we see that near 𝜆 = 0,
this is a double cover of C with two ramification points. In fact, locally, this morphism is the same with
one described in (6.2). As we have the parallel argument for Δ (1) , we get the conclusion.

Example 6.13. Consider the reflexive polytope Δ with 𝑋Δ = P2 and the semistable partition Γ described
as follows:
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Figure 4. Fans ΣΔ , Σ′ and Σ𝑣 from the left.

This describes a semistable degeneration of an elliptic curve into the wheel of three rational curves
𝑋0, 𝑋1 and 𝑋2. Consider the fans ΣΔ , Σ′ and Σ𝑣 described below (Figure 4):

There is a canonical fan morphism Σ′ → Σ𝑣 which induces the birational map 𝜋Γ : 𝑋Σ′ → 𝑋Σ𝑣 .
Similar to Example 6.12, one can write down the coordinates and see whether each hybrid LG model
is mirror to one of the degeneration components. Instead, we take another approach. Note that 𝑋Σ′ is
obtained by taking iterated blow ups of 𝑋Σ𝑣 � P

2. More explicitly, take a coordinate [𝑧0 : 𝑧1 : 𝑧2] and
blow up 𝑋Σ𝑣 � P

2 over three torus invariant points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] and denote the
exceptional divisors 𝐸0, 𝐸1 and 𝐸2, respectively. We also denote 𝐷𝑖 the proper transform of the torus
invariant divisor (𝑧𝑖 = 0) for 𝑖 ≡ 0, 1, 2(mod3). We blow up further along the intersection locus 𝐸𝑖∩𝐷𝑖+1.
The resulting variety is 𝑋Σ′ . By the adjunction formula, a section of the anticanonical line bundle −𝐾𝑋Σ′

is given by a section of −𝐾𝑋Σ𝑣
that vanishes at (𝑧𝑖 = 𝑧𝑖+1 = 0) with multiplicity at least 2 along (𝑧𝑖 = 0).

Therefore, a generic section is given by 𝑠(𝑧0, 𝑧1, 𝑧2) = 𝑎1𝑧
2
1𝑧2 + 𝑎2𝑧

2
2𝑧0 + 𝑎3𝑧

2
0𝑧1 + 𝑎4𝑧0𝑧1𝑧2for some

coefficients 𝑎𝑖’s. Since the irreducible components of the degenerate fiber are all P1, we may choose
𝑎1 = 𝑎2 = 𝑎3. Then for sufficiently small |𝑎4 | (e.g. |𝑎4 | ≤ 1

2 |𝑎1 |), over Δ 𝑖 ⊂ 𝑋Σ𝑣 one can see that
ℎ𝑖 : 𝑌𝑖 → Δ 𝑖 is a topologically hybrid LG model for P1. This is due to the fact that Δ 𝑖 is much smaller
than the standard chart (𝑧𝑖 ≠ 0), and there is only one solution of 𝑠 = 0 for fixed 𝑧𝑖+1 ∈ Δ 𝑖 .

Remark 6.14. One can generalize the notion of a semistable partition by relaxing condition (2) in
Definition 6.3 so that the dual complex 𝐾Γ is not just the standard simplex, but a moment polytope
of a nonsingular toric variety 𝑇𝑉 . The same construction provide a Calabi–Yau fibration structure
𝜋 : 𝑌 → 𝑇𝑉 , although one needs to introduce a higher-dimensional base on the degeneration side to
achieve semistability. This will be also a topic for the subsequent work.

7. Poincaré duality of hybrid LG models

Let (𝑌, 𝜔, ℎ = (ℎ1, . . . , ℎ𝑁 ) : 𝑌 → C𝑁 ) be a hybrid LG model of rank N. As the Kähler form 𝜔 does
not play a crucial role in the following discussion, we drop it from the notation. We recall the definition
of the compactified hybrid LG model of (𝑌, ℎ : 𝑌 → C𝑁 ) [24, Section 4.2].

Definition 7.1. A compactified hybrid LG model of (𝑌, ℎ : 𝑌 → C𝑁 ) is a datum ((𝑍, 𝐷𝑍 ), 𝑓 : 𝑍 →
(P1)𝑁 ) where:

1. Z is a smooth projective variety and 𝑓 = ( 𝑓1, . . . , 𝑓𝑁 ) : 𝑍 → (P1)𝑁 is a projective morphism where
each morphism 𝑓𝑖 = ( 𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑁 ) : 𝑍 → (P1)𝑁−1 is the compactification of the potential
ℎ̂𝑖 = (ℎ1, . . . , ℎ̂𝑖 , . . . , ℎ𝑁 ) : 𝑌 → C𝑁−1 for all 𝑖 = 1, . . . , 𝑁;

2. the complement of Y in Z is a simple normal crossing anticanonical divisor 𝐷𝑍 := 𝐷 𝑓1 � · · · � 𝐷 𝑓𝑁

where 𝐷 𝑓𝑖 := ( 𝑓 −1
𝑖 (∞))𝑟𝑒𝑑 is the reduced pole divisor of 𝑓𝑖 for all 𝑖 = 1, . . . , 𝑁;

3. the morphism 𝑓 : 𝑍 → (P1)𝑁 is semistable at (∞, . . . ,∞).

In particular, we call the compactified LG model ((𝑍, 𝐷𝑍 ), 𝑓 ) tame if the pole divisor 𝑓 −1
𝑖 (∞) is

reduced for all i.

Consider the logarithmic de Rham complex (Ω•
𝑍 (log 𝐷𝑍 ), 𝑑). We define f -adapted de Rham complex

of Z, denoted by (Ω•
𝑍 (log 𝐷𝑍 , 𝑓 ), 𝑑), to be subcomplex which is preserved by the wedge product of all

𝑑𝑓𝑖’s.
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Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) := {𝜂 ∈ Ω𝑎

𝑍 (log 𝐷𝑍 ) |𝜂 ∧ 𝑑𝑓𝑖 ∈ Ω𝑎+1
𝑍 (log 𝐷𝑍 ) for all 𝑖 = 1, . . . , 𝑛.}

First, note that it is a locally free O𝑍 -module of rank
(𝑛
𝑎

)
. Here is the local description. Denote 𝐷∞ the

corner that is the intersection of 𝐷 𝑓𝑖 ’s. For 𝑝 ∈ 𝐷∞, we can find local analytic coordinates 𝑧𝑖1, · · · , 𝑧𝑖𝑘𝑖
centered at p with 𝑘1 + · · · 𝑘𝑁 ≤ 𝑛 such that in a small neighborhood of p, the divisor 𝐷 𝑓𝑖 is given by∏𝑘1

𝑖=1 𝑧𝑖 = 0 and the potential 𝑓𝑖 is given by

𝑓𝑖 (𝑧1, · · · , 𝑧𝑛) =
1

𝑧𝑎𝑖1𝑖1 · · · 𝑧𝑎𝑖𝑘𝑖1𝑘1

for some 𝑎𝑖𝑘𝑖 ≥ 1.

Lemma 7.2. The 𝑓𝑖-adapted de Rham complex Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓𝑖) is locally free of rank

(𝑛
𝑎

)
for all 𝑎 ≥ 0.

Explicitly,

Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓𝑖) =

𝑎⊕
𝑝=0

[
1
𝑓𝑖
∧𝑝 𝑊𝑖 ⊕ 𝑑 log 𝑓𝑖 ∧

(
∧𝑝−1𝑊𝑖

)] ⊗
∧𝑎−𝑝𝑅𝑖 ,

where 𝑊𝑖 is spanned by logarithmic 1-forms associated to the vertical part of 𝑓𝑖 : 𝑍 → P1 and 𝑅𝑖
is spanned by holomorphic 1-forms on Y and logarithmic 1-forms associated to the horizontal part of
𝑓𝑖 : 𝑍 → P1.

Proof. See [21, Lemma 2.12] �

The above local description allows one to describe Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) for all 𝑎 ≥ 0. Explicitly, we have

Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) =

𝑎⊕
𝑝1+···+𝑝𝑁=0

𝑁⊗
𝑖=1

[
1
𝑓𝑖
∧𝑝𝑖 𝑊𝑖 ⊕ 𝑑 log 𝑓𝑖 ∧

(
∧𝑝𝑖−1𝑊1

)]
∧𝑎−(𝑝1+···+𝑝𝑁 ) 𝑅, (7.1)

where R is spanned by holomorphic 1-forms on Y. Consider the cup(=wedge) product

∪ : Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) ⊗ Ω𝑛−𝑎

𝑍 (log 𝐷𝑍 , 𝑓 ) → Ω𝑛
𝑍 (log 𝐷𝑍 , 𝑓 ) = Ω𝑛

𝑍 (log 𝐷𝑍 ).

Note that this is nondegenerate. From the description of the local form, one can see that it factors through
Ω𝑛
𝑍 , the sheaf of holomorphic n-forms on Z. In other words, we have the following commutative diagram

Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) ⊗ Ω𝑛−𝑎

𝑍 (log 𝐷𝑍 , 𝑓 ) Ω𝑛
𝑍 (log 𝐷𝑍 )

Ω𝑛
𝑍 .

∪

This provides the natural isomorphism of locally free O𝑍 -modules

Ω𝑎
𝑍 (log 𝐷𝑍 , 𝑓 ) � 𝐻𝑜𝑚O𝑍 (Ω𝑛−𝑎

𝑍 (log 𝐷𝑍 , 𝑓 ),Ω𝑛
𝑍 ) � (Ω𝑛−𝑎

𝑍 (log 𝐷𝑍 , 𝑓 ))∗ ⊗ Ω𝑛
𝑍 .

Therefore, we have a perfect pairing which is given by the composition of cup product with the natural
trace map:

H𝑞 (𝑍,Ω𝑝
𝑍 (log 𝐷𝑍 , 𝑓 )) ⊗ H𝑛−𝑞 (𝑍,Ω𝑛−𝑝

𝑍 (log 𝐷𝑍 , 𝑓 )) → 𝐻𝑛 (𝑋,Ω𝑛
𝑍 )

𝑇 𝑟−−→ C,

hence we have the Serre duality for the f -adapted de Rham forms.
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Proposition 7.3 [24, Proposition 4.16]. The f-adapted de Rham complex Ω•
𝑍 (log 𝐷𝑍 , 𝑓 ) satisfies the

Hodge to de Rham degeneration property. In particular, we have

H𝑎 (𝑍,Ω•
𝑍 (log 𝐷𝑍 , 𝑓 )) �

⊕
𝑝+𝑞=𝑎

H𝑞 (𝑍,Ω𝑝
𝑍 (log 𝐷𝑍 , 𝑓 )).

It is known that the cohomology H𝑎 (𝑍,Ω•
𝑍 (log 𝐷𝑍 , 𝑓 )) is isomorphic to the relative cohomology

𝐻𝑎 (𝑌,�𝑁
𝑖=1𝑌𝑖 ,C), where 𝑌𝑖 is a smooth generic fiber of ℎ𝑖 : 𝑌 → C near infinity and �𝑁

𝑖=1𝑌𝑖 is the
normal crossing union of𝑌𝑖’s. The gluing property of the hybrid LG model (Proposition 3.2) provides an
isomorphism 𝐻𝑎 (𝑌,�𝑁

𝑖=1𝑌𝑖 ,C) � 𝐻𝑎 (𝑌,𝑌𝑠𝑚,C), where 𝑌𝑠𝑚 is a smooth generic fiber of the associated
ordinary LG potential w : 𝑌 → C. Therefore, we have

Theorem 7.4 (Poincaré duality). Let (𝑌, ℎ : 𝑌 → C𝑁 ) be a rank N hybrid LG model. Then for 𝑎 ≥ 0,
there is an isomorphism of cohomology groups

𝐻𝑎 (𝑌,𝑌𝑠𝑚,C) � 𝐻2𝑛−𝑎 (𝑌,𝑌𝑠𝑚,C)∗,

where 𝑛 = dimC𝑌 .

We note that the similar result for proper ordinary LG models is done in [17, Section 2.2].

Remark 7.5. For the Poincaré duality statement, we take the topological trace map instead of the
algebraic trace map. This amounts to multiplying the sign (−1)𝑛.
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