

FIGURE 2

Acknowledgements

The author would like to thank the anonymous reviewer for comments and suggestions.

Reference

1. F. Laudano, $c^2 = a^2 + bd$, a visual extension of the Pythagorean theorem, *Math. Gaz.* **105** (November 2021) pp. 520-521.

10.1017/mag.2023.110 © The Authors, 2023 Published by Cambridge University Press on behalf of The Mathematical Association FRANCESCO LAUDANO
Liceo "Pagano"
Campobasso - Italy
Via L. Pirandello,
86100 - Campobasso - Italy

37 - 86100 - Campobasso - Italy e-mail: francesco.laudano@unimol.it

107.39 Enomoto's problem in Wasan geometry

Japanese mathematics developed in the Edo era (1603-1868) is called *Wasan*. In this Note we consider a problem in Wasan geometry that appeared in a sangaku, which is a framed wooden board with geometric problems written on it. The figures of the problems were beautifully drawn in colour and the board was dedicated to a shrine or a temple. Today, sangaku is an iconic word for Wasan geometry. For a brief introduction of Wasan geometry, see [1]. In this Note, we consider the sangaku problem proposed by Enomoto (榎本信房) in 1807 [2], which can be stated as follows (see Figure 1):

NOTES 515

FIGURE 1: $4r_1r_2 = (n-1)^2 r^2$

Problem 1: Let D_1, D_2, \ldots, D_n be a chain of circles of radius r touching two parallel lines t_1 and t_2 . A circle C_i of radius r_i touches t_i from the side opposite to t_j for $\{i, j\} = \{1, 2\}$ so that the line joining the centres of C_1 and C_2 is the perpendicular bisector of the segment joining the centres of D_1 and D_n . If a circle touches C_1 , C_2 , D_1 and D_n internally, then show that the following relation holds:

$$4r_1r_2 = (n-1)^2r^2. (1)$$

Problem 1 can be generalised as follows.

Theorem 1: For a semicircle γ of diameter AB, let δ be a circle of centre H touching γ . If D is the foot of the perpendicular from H to the line AB and the two tangents of δ parallel to DH meet AB in points E and E so that \overrightarrow{AB} and \overrightarrow{EF} have the same direction, then the following statements hold.

- (i) If δ touches γ internally, then $|AE| |BF| = |DH|^2$.
- (ii) If δ touches γ externally, then $|AF| |BE| = |DH|^2$.

Proof: Assume that r > 0 and the points A, B, E and F have coordinates (-r, 0), (r, 0), (2e, 0) and (2f, 0), respectively, and C is the centre of γ , i.e., the origin.

Then D has coordinates (e+f, 0), |CD|=|e+f| and δ has radius f-e. If δ touches γ internally (see Figures 2 and 3), we get |CH|=|r-(f-e)| and

$$|AE||BF| = |-r - 2e||r - 2f| = |CH|^2 - |CD|^2 = |DH|^2$$

by the right triangle *CHD*. This proves (i). The part (ii) is proved similarly, where we use |CH| = |r + (f - e)| (see Figure 4).

FIGURE 2: $|AE| |BF| = |DH|^2$

FIGURE 3: $|AE| |BF| = |DH|^2$

The theorem shows that the products |AE||BF| and |AF||BE| are constant if the segment DH and the circle δ are fixed while the points A and B vary. Problem 1 and its solution (1) are obtained if |DH| = (n-1)r in (i). The solution to this problem cited in both [3] (as Problem 4.9.2) and [4] (as Problem 8.9.3) states $r_1r_2 = \left(\frac{1}{2}(2n-1)\right)^2r^2$, which is incorrect by (1). If the circle δ degenerates to the point H, we get the relation $|AD||BD| = |DH|^2$, which shows the unsigned power of the point D with respect to the circle γ (see Figure 5). Therefore Theorem 1 is also a generalisation of this relation.

FIGURE 4: $|AF| |BE| = |DH|^2$

FIGURE 5: $|AD| |BD| = |DH|^2$

Acknowledgement

The author would like to thank the reviewer for the useful comment.

References

- 1. H. Okumura, Wasan Geometry. In: B. Sriraman (eds), *Handbook of the Mathematics of the Arts and Sciences*, Springer Cham, 2020.
- 2. Nakamura (ed.), Saishi Shinsan, 1830, Tohoku University Digital Collection.
- 3. H. Fukagawa, J. Rigby, *Traditional Japanese Mathematics Problems of the 18th & 19th Centuries*, SCT publishing, Singapore, 2002.
- 4. H. Fukagawa, D. Sokolowsky, *Japanese mathematics; How many problems can you solve?* (Vol. 2) Morikita Shuppan 1994 (in Japanese).

10.1017/mag.2023.111 © The Authors, 2023

HIROSHI OKUMURA

Published by Cambridge University Press Maebashi Gunma, 371-0123, Japan on behalf of The Mathematical Association e-mail: hokmr@yandex.com