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Abstract We investigate the groups of units of one-relator and special inverse monoids. These are inverse
monoids which are defined by presentations, where all the defining relations are of the form r = 1. We
develop new approaches for finding presentations for the group of units of a special inverse monoid, and
apply these methods to give conditions under which the group admits a presentation with the same
number of defining relations as the monoid. In particular, our results give sufficient conditions for the
group of units of a one-relator inverse monoid to be a one-relator group. When these conditions are
satisfied, these results give inverse semigroup theoretic analogues of classical results of Adjan for one-
relator monoids, and Makanin for special monoids. In contrast, we show that in general these classical
results do not hold for one-relator and special inverse monoids. In particular, we show that there exists
a one-relator special inverse monoid whose group of units is not a one-relator group (with respect to any
generating set), and we show that there exists a finitely presented special inverse monoid whose group of
units is not finitely presented.

1. Introduction and summary of results

The purpose of this paper is to undertake a systematic investigation into the groups
of units of one-relator and special inverse monoids. Throughout, there is a particular

emphasis on comparing and contrasting these groups with groups of units of special
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monoids, after the work of Adjan, Makanin, Lallement and Zhang, as well as with one-
relator groups themselves (see [1, 14, 20, 29]).

The word problem for semigroups defined by a single relation is one of the oldest, most

famous and most elementary to state open problems in the broad area of combinatorial
algebra. It asks whether for every monoid of the form M =Mon

〈
A |u= v

〉
, that is defined

by generators A and a single defining relation u= v, there is an algorithm which for any

two words w1,w2 ∈A∗ decides whether or not w1 = w2 in M. In his seminal work on the

subject in the 1960s and 1970s, Adjan proved, among other things, the following:

(A1) The word problem is soluble for every one-relator special monoid, that is monoid

defined by M =Mon
〈
A | r = 1

〉
(see [1]).

(A2) The word problem is soluble for every monoid of the form M =Mon
〈
A |u= v

〉
,

where u,v are nonempty words whose first letters are distinct and last letters are
distinct (see [1]).

(A3) If the word problem is soluble for all monoids of the form M =Mon
〈
A |au= av

〉
,

where a ∈A, and the final letters of u and v are distinct, then the word problem
for all one relation monoids is soluble; with Oganesjan [2].

Adjan’s proof of (A1) and some subsequent developments are of particular relevance for

our work, and we outline them here. The key feature is a focus on the group of units.

Specifically, suppose r is decomposed as r≡ r1 . . . rk, where ri are nonempty and invertible
and of shortest possible length subject to this requirement; we will call such ri theminimal

invertible pieces of r. Then the following holds:

Theorem 1.1 (Adjan [1]). If M =Mon
〈
A | r = 1

〉
, and if r= r1 . . . rk is the decomposition

into minimal invertible pieces, then the group of units U = U(M) of M is generated by

{r1, . . . ,rk}. Furthermore, if B is an alphabet in one-one correspondence ri �→ ri with the
set {r1, . . . ,rk}, then the group presentation Gp

〈
B | r1 . . . rn = 1

〉
defines U with respect to

this generating set.

It follows then that the group of units of M is a one-relator group, and hence has a

soluble word problem by a classical result of Magnus (see [18, 19]). It can be shown that

the submonoid of right units R of M is the free product of U and a free monoid of finite
rank, and hence, it is also finitely presented and has a soluble word problem. A further

normal form theorem can be proved that reduces the word problem for the entire monoid

M to those of U and R, and thus M has a soluble word problem too.
Makanin [20] generalises this approach to special monoids, that is monoids defined by

presentations of the form M =Mon
〈
A | ri = 1 (i ∈ I)

〉
. This time we decompose each ri

into minimal invertible pieces ri ≡ ri1 . . . riki
. Furthermore, we assign to each piece rij

a new letter rij , but this time in such a way that rij = rlm whenever rij = rlm in the
monoid M. Collecting these new letters into the alphabet B, we have:

Theorem 1.2 (Makanin [20]). The group of units of M = Mon
〈
A | ri = 1 (i ∈ I)

〉
is

generated by the set {rij : i ∈ I, 1≤ j ≤ ki}, and, in terms of these generators, is defined

by the presentation Gp
〈
B | ri1 . . . riki

= 1 (i ∈ I)
〉
.
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It follows that the group of units of a special monoid can be defined by a presentation
with no more defining relations than the original presentation for M.

A key property of the decompositions into minimal invertible pieces is that they do

not overlap with each other. This in fact yields an algorithm, which will be referred to
as the Adjan overlap algorithm, for computing the decomposition into minimal invertible

pieces for one-relator monoids (see Lallement [14]). The algorithm proceeds by finding

the overlaps of r with itself, forming certain cyclic conjugates of r and then repeating

this process. This algorithm also makes sense in the context of special monoids too,
and it computes some decomposition of the relators into invertible pieces. It turns out,

however, that these pieces need not be minimal in general (see Example 4.2). All the

results surveyed above concerning special monoids were revisited and simplified by Zhang
[29, 30] using the methodology of string rewriting systems.

In a separate strand, the 1990s and early 2000s saw a dynamic development of the

theory of presentations for inverse monoids. The catalyst for this was Stephen’s discovery
[25] of an algorithmic procedure, akin to the Todd–Coxeter algorithm from combinatorial

group theory, which computes the so called Schützenberger graph of an inverse monoid

M = Inv
〈
A |R

〉
based at an arbitrary word w ∈A

∗
. Linking this development with (A3),

Ivanov et al. [12] showed that if all one-relator inverse monoids Inv
〈
A | r = 1

〉
, where

r is a reduced word, have soluble word problems, then this would imply the same for

the monoids of the form M =Mon
〈
A |au= av

〉
, and hence for all one-relation monoids.

Relating to this, it was recently shown in [6] that, in general, not every one-relator inverse
monoid Inv

〈
A | r = 1

〉
has soluble word problems. However, the question of solubility of

the word problem in the case that r is a reduced word is still open. In their paper [12],

Ivanov et al. also essentially proved the generation part of the analogue of Theorem 1.2
for special inverse monoids:

Theorem 1.3 (Ivanov et al. [12, Proposition 4.2]). Suppose

M = Inv
〈
A | ri = 1 (i ∈ I)

〉
is a special inverse monoid, and that each relator ri is decomposed into minimal invertible

pieces ri ≡ ri1 . . . riki
. Then the set {rij : i ∈ I, 1 ≤ j ≤ ki} generates the group of units

of M.

Proof. The authors state their theorem under the assumption that all ri are cyclically
reduced words. However, on inspection, this condition is not used in the proof, and hence,

their proof in fact establishes the theorem as stated here.

However, there has been no further development along the Adjan/Makanin/Zhang lines,

towards establishing presentation properties of the group of units. In fact, partly to hint
at the difficulties that such an attempt would entail, Margolis et al. [22] introduce the

following specific one-relator monoid

O = Inv
〈
a,b,c,d |abcdacdadabbcdacd= 1

〉
= Inv

〈
a,b,c,d | r = 1

〉
,

which has since come to be known as the O’Hare monoid. It is defined by a single, positive

relator r (and hence, in particular, it is E -unitary). The relator has no overlaps with
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itself, so the Adjan overlap algorithm would terminate instantly, and return r as a single
invertible piece of itself. However, using van Kampen diagrams and Stephen’s procedure,

Margolis and Meakin succeed in showing that r in fact has a finer decomposition, namely

r ≡ abcd ·acd ·ad ·abbcd ·acd.

They provide no further information about the group of units.
Motivated by the developments described above, in this paper, we investigate the extent

to which the Adjan/Makanin/Zhang results for groups of units, and monoids of right

units, of one-relator and special monoids are also valid for one-relator and special inverse

monoids. In a nutshell, we will see that they do often, but not always. Exploration of when
they do will lead us to a general theorem, and several applications in concrete situations

with extra assumptions. On the negative side, we will see that the results may fail to

generalise to inverse semigroups for each of two possible reasons: the group defined by
the natural presentation on the minimal invertible pieces may not be isomorphic to the

group of units, and there are inherent structural difficulties in attempting to compute the

minimal pieces.
To elaborate a bit further, we consider the question of whether the group of units of a

one-relator inverse monoid is a one-relator group. In the positive direction, in Section 3,

we prove the following general sufficient condition for this to be the case:

Theorem 3.1. Let M = Inv
〈
A | ri = 1 (i ∈ I)

〉
be a special inverse monoid, let

ri ≡ ri1ri2 . . . riki
be a factorisation into invertible pieces for i ∈ I, and let H be the

subgroup of the free group FA generated by all the pieces rij (i ∈ I,1 ≤ j ≤ ki). Fix an

isomorphism φ : FY →H, and set

K =Gp
〈
Y |φ−1(ri1)φ

−1(ri2). . . φ
−1(riki

) = 1 (i ∈ I)
〉
.

If φ induces an embedding of the group K into the group Gp
〈
A | ri = 1 (i ∈ I)

〉
defined by

the same presentation as M, then φ induces an isomorphism between K and the subgroup
of the monoid M generated by the pieces.

We note that this result is valid for special inverse monoids in general, and that it enables

one to reduce the original question to a question purely referring to the corresponding

groups and their subgroups. In particular, our questions concerning one-relator inverse

monoids are reduced to questions about subgroups of one-relator groups. We therefore
go on to prove a number of results in which we identify situations where the conditions

of the theorem are met. As a consequence, in Section 5, we exhibit several families of

one-relator inverse monoids whose groups of units are all one-relator. In particular, we
are able to prove that the group of units of the O’Hare monoid O is the free group of

rank 2.

It is natural to ask whether the assumptions of Theorem 3.1 are perhaps always satisfied,
or at least always in the case of one-relator presentations. The answer to this is negative,

and in order to show this, we give a general construction in Section 6 which we then apply

in Section 7 to demonstrate the following:

https://doi.org/10.1017/S1474748023000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000439


On groups of units of special and one-relator inverse monoids 1879

• There exists a one-relator special inverse monoid whose group of units is not one-
relator (with respect to any generating set).

• There exists a finitely presented special inverse monoid whose group of units is
not finitely presented.

• There exists a one-relator special inverse monoid with finitely presented group of
units, and finitely generated but nonfinitely presented submonoid of right units.

• There exists a one-relator special inverse monoid whose submonoid of right units
is not a free product of the groups of units and a free monoid (this follows from
the previous point).

Also, using these results, at the end of Section 7, we will present several results which
show the close relationship between the question of finite presentability of the groups of

units of special one-relator inverse monoids, and an open problem of Baumslag [3, page

76] which asks whether every one-relator group is coherent. In particular, we show that
the problem of proving coherence of all one-relator groups is equivalent to the problem

of showing that the group of units of an E -unitary one-relator special inverse monoid is

always finitely presented.
Throughout the paper, the decompositions of relators into invertible pieces play a

pivotal role, and we discuss them in their own right in Section 4. Applying a result

of Narendran et al. [23], we observe that, unlike the situation in one-relator monoids,

for general special monoids, there is no algorithm to compute the decomposition into
minimal invertible pieces. The existence of such an algorithm for one-relator special

inverse monoids remains open. However, we present an algorithm which does compute a

decomposition into invertible pieces. The decomposition computed by this algorithm is
always at least as fine as that computed by the Adjan overlap algorithm, and, in fact, in

all the examples known to us in the one-relator case, including the O’Hare monoid O, it

computes the decomposition into minimal invertible pieces.

2. Preliminaries

For an alphabet A, we will denote the free monoid over A by A∗. It consists of all words
over A, including the empty word ε= εA. Since throughout words will play a somewhat

ambivalent role of elements in a free monoid, as well as those in a monoid defined by a

presentation, we will denote equality of words in A∗ by u≡ v.

A monoid presentation is a pair Mon
〈
A |R

〉
, where A is an alphabet and R⊆A∗×A∗

is a set of pairs of words. This presentation defines the monoid A∗/ρ, where ρ is the

congruence on A∗ generated by R. We will write M = Mon
〈
A |R

〉
. A typical relation

(u,v) ∈R is usually written u= v, and we extend this to pairs in ρ. Thus, in the context
of the monoid defined by a presentation, u= v means that u and v, interpreted as products

of generators, represent the same element of M. The monoid M is a natural homomorphic

image of the free monoid A∗ via the mapping w �→w/ρ, called the natural homomorphism.
The group of units U(M) of a monoid M consists of all elements x ∈ M which are

(two-sided) invertible, that is for which there exists y ∈M , such that xy = yx = 1M . A

presentation Mon
〈
A |R

〉
is called special if every defining relation has the form u = 1.
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The word u in such a relation is often called a relator. A one-relator monoid is a monoid
defined by a single relator, that is M =Mon

〈
A |u= 1

〉
.

For an alphabet A, let A−1 = {a−1 : a ∈A} be another alphabet disjoint from A and in

1-1 correspondence with A. Further, let A= A∪A−1, and extend the bijection a �→ a−1

first to A by (a−1)−1 ≡ a, and then entire A
∗
by (aε11 aε22 . . . aεnn )−1 = a−ε1

n . . . a−ε2
2 a−ε1

1

for ai ∈ A, εi = ±1. The free group FA over A consists of all reduced words from A
∗
,

that is words containing no subword of the form aa−1 with a ∈ A, under multiplication

u ·v=red(uv). Here, red(u) denotes the free reduction of u, that is the result of successively
deleting all pairs aa−1 in u. It is well known that the order of performing these deletions

is inconsequential. Sometimes we will write redA for red when we want to work with free

reductions over different alphabets. We will also extend the use of red to apply to sets of
words: red(W ) = {red(w) : w ∈W}.
A group presentation is a pair Gp

〈
A |R

〉
, where A is an alphabet and R⊆A

∗×{1}. The
group defined by presentation is G=Gp

〈
A |R

〉
=Mon

〈
A |R, aa−1 = a−1a= 1 (a ∈A)

〉
.

Alternatively, G can be viewed as the quotient FA/N , where N is the normal subgroup

of FA generated by all u, where (u,1) ∈ R. Again, G is a homomorphic image of FA via

the natural homomorphism w �→ wN .

The free inverse monoid over a set A will be denoted by FIA. It can be viewed as the
monoid

Mon
〈
A |uu−1u= u, uu−1vv−1 = vv−1uu−1 (u,v ∈A

∗
)
〉
.

An inverse monoid presentation is a pair Inv
〈
A |R

〉
, where R⊆A

∗×A
∗
. It defines the

quotient FIA/ρ, where ρ is the congruence generated by R, which is once again a natural
homomorphic image of FIA via w �→ w/ρ. If all the relations in R are of the form u= 1,

we say that Inv
〈
A |R

〉
is a special inverse monoid. A special inverse monoid Inv

〈
A |u= 1

〉
with a single relator is called a one-relator inverse monoid.
Every inverse monoid has a (unique) maximal group homomorphic image. For the free

inverse monoid FIA, this is the free group FA, while for a monoid Inv
〈
A |R

〉
, it is the

group Gp
〈
A |R

〉
defined by the same presentation.

For a monoid (respectively, inverse monoid or group) M and a subset X ⊆M , we will

denote the submonoid (respectively, inverse submonoid, subgroup) that X generates by

Mon
〈
X
〉
(respectively, Inv

〈
X
〉
, Gp

〈
X
〉
).

For a word w ∈A∗, we use pref(w) to denote the set of all prefixes of w, and suff(w) to
denote the set of suffixes.

Let X = {x1,x2, . . . ,xn} be an alphabet. We often use the notation w(x1, . . . ,xn) to

denote a word from X
∗
where we want to stress the fact that each letter of this word

belongs to X or to X−1. Given such a word w(x1, . . . ,xn) and given a sequence of words

p1, . . . ,pn from Y
∗
, we use w(p1, . . . ,pn) to denote the word from Y

∗
obtained by replacing

each letter xε
i (ε=±1) in the word w(x1, . . . ,xn) by the word pεi .

The following concept is of pivotal importance for the material in this paper:

Definition 2.1. Let M be the inverse monoid defined by the presentation

Inv
〈
A | ri = 1 (i ∈ I)

〉
.
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A set of invertible pieces (or often we just say a set of pieces) for this presenta-

tion is a collection of words p1, . . . ,pk ∈ A
∗

which are invertible in M and satisfy

ri ∈Mon
〈
p1, . . . ,pk

〉
≤A

∗
for all i ∈ {1,2, . . . ,n}. A factorisation of the relators ri with

respect to the pieces p1, . . . ,pk is a collection of words r′i (i= 1, . . . ,n) over k letters, such

that

ri ≡ r′i(p1, . . . ,pk) (i= 1, . . . ,n).

For i ∈ I by the decomposition into minimal invertible pieces, we mean the unique

factorisation

ri ≡ ri1ri2 . . . riki

with the property that each rij is a nonempty word in A
∗
which represents an invertible

element of M and which has no proper nonempty invertible prefixes.

The following facts about cancellation in an inverse semigroup will also be used

throughout the paper. They are well known and easy to prove (see [6, Lemma 3.1,
Corollary 3.2]):

Lemma 2.2. The following hold for any inverse monoid M:

(i) If s,x ∈M are such that sx is right invertible, then sxx−1 = s.

(ii) If s,t,x ∈M are such that sxx−1t is right invertible, then sxx−1t= st.

(iii) If M = Inv
〈
A
〉

and w ∈ A
∗

represents a right invertible element in M, then

w = red(w) in M.

3. Makanin-style presentation theorems for special inverse monoids

As discussed in the Introduction, given a special inverse monoid M=Inv
〈
A | ri=1(i∈I)

〉
,

and decomposition of each ri into invertible minimal pieces, one may ask whether turning
distinct pieces into distinct letters yields a presentation for the group of units of M, as

it does in the monoid case. It is easy to see that this is not true in general. Consider for

instance, the one-relator inverse monoid

M = Inv
〈
a,b,c |abc2b−1abc3b−1abc2b−1a= 1

〉
.

We claim that the minimal invertible pieces are a, bc2b−1, bc3b−1.
To see that these three words are invertible in M, we can argue as follows. First, note

that since a is both a prefix and suffix of the defining relator, it follows that a is both

left and right invertible, and hence is invertible. Multiplying the defining relator on the
left and right by the inverse of a then implies that bc2b−1abc3b−1abc2b−1 is invertible.

Since this invertible word has bc2b−1 both as a prefix and as a suffix, it follows that

bc2b−1 is invertible. Finally, multiplying on the left and right by the inverse of bc2b−1

and then the inverse of a, we deduce that bc3b−1 is invertible. A more general form of

reasoning like this to obtain invertible pieces, called the Adjan overlap algorithm, will

be discussed in Section 4. On the other hand, M is not a group, and b is not invertible,

because of the homomorphism M → B onto the bicyclic monoid B = Inv
〈
b | bb−1 = 1

〉
given by a,c �→ 1, b �→ b. Since b is not invertible but bc2b−1 is, it follows that bc is not
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A
∗

FA
H =Gp

〈
red(rij)

〉
=Gp

〈
sl
〉 FY

M
= Inv

〈
A | ri = 1

〉 G
=Gp

〈
A | ri = 1

〉 H̃
K

=Gp
〈
Y | r′i = 1

〉

U
= Inv

〈
πM (rij)

〉
= Inv

〈
πM (sl)

〉

red

πM πG

⊇

⊇

πG�H
πK

φ

ψ ⊇ ζ

η

⊆

Figure 1. Monoids, groups and homomorphisms in the proof of Theorem 3.1. Throughout, indexing is

understood as follows: i ∈ I, 1≤ j ≤ ki, l ∈ L.

invertible. Similarly, bc2 and bc3 are not invertible. Therefore, a, bc2b−1, bc3b−1 are indeed

the minimal invertible pieces, as claimed.
Replacing these pieces by letters x,y,z, respectively, yields the presentation

G=Gp
〈
x,y,z |xyxzxyx= 1

〉∼= Fx,y.

In the monoid M, we have

bcb−1 = (bc3b−1)(bc2b−1)−1,

so the elements a and t= bcb−1 form a generating set for the group of units U =U(M) of
M. These generators satisfy the relation xt2xt3xt2x=1. Since U is not free with respect to

{x,t} andG is free of rank 2, it follows that U 
∼=G. In fact, U is defined by the presentation

Gp
〈
x,t |xt2xt3xt2x= 1

〉
. This will follow from the more general results we will prove

below (see Corollary 3.13). A key feature of this example is that {a,bc2b−1,bc3b−1} is not

a basis for Gp
〈
a,bc2b−1,bc3b−1

〉
≤ Fa,b,c. We now prove a result that gives an approach

to studying groups of units of special inverse monoids which deals with this obstacle.

Theorem 3.1. Let M = Inv
〈
A | ri = 1 (i ∈ I)

〉
be a special inverse monoid, let

ri ≡ ri1ri2 . . . riki
be a factorisation into invertible pieces for i ∈ I, and let H be the

subgroup of the free group FA generated by all the pieces rij (i ∈ I,1 ≤ j ≤ ki). Fix an

isomorphism φ : FY →H, and set

K =Gp
〈
Y |φ−1(ri1)φ

−1(ri2). . . φ
−1(riki

) = 1 (i ∈ I)
〉
.

If φ induces an embedding of the group K into the group Gp
〈
A | ri = 1 (i ∈ I)

〉
defined by

the same presentation as M, then φ induces an isomorphism between K and the subgroup
of the monoid M generated by the pieces.

Proof. We begin working towards the diagram shown in Figure 1. Start from the

free monoid A
∗
= (A ∪ A−1)∗. The monoid M = Inv

〈
A | ri = 1 (i ∈ I)

〉
is a natural

homomorphic image of it, and we denote by πM :A
∗ →M the natural epimorphism.

https://doi.org/10.1017/S1474748023000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000439


On groups of units of special and one-relator inverse monoids 1883

Let FA denote the free group on A. Recall that we regard FA as consisting of
freely reduced words over A, and so FA ⊆ A

∗
. However, note that this inclusion is

not a homomorphism. The group FA is a homomorphic image of A
∗
, via the free

reduction homomorphism red :A
∗ →FA. The group G=Gp

〈
A | ri = 1 (i ∈ I)

〉
is a natural

homomorphic image of FA via πG : FA →G. Since G is also an inverse monoid, and since

M is defined by ri = 1, i ∈ I, it follows that there exists an epimorphism ψ :M →G, such

that

ψπM = πG red . (1)

Next, let

H =Gp
〈
{red(rij) : i ∈ I, 1≤ j ≤ ki}

〉
≤ FA,

and let

H̃ = πG(H)≤G.

As a subgroup of a free group, H itself must be free, that is H ∼= FY for some alphabet
Y = {yl : l ∈ L} as in the statement, with an isomorphism

φ : FY →H, yl �→ sl (l ∈ L). (2)

Since red(rij) ∈H, there exist r′ij ∈ FY , such that

φ(r′ij)≡ red(rij) (i ∈ I, 1≤ j ≤ ki). (3)

Let

r′i ≡ redY (r
′
i1r

′
i2 . . . r

′
iki

) ∈ FY ⊆ Y
∗
, (4)

where redY stands for the free reduction over the alphabet Y (and is not shown in the

diagram). Let

K =Gp
〈
Y | r′i = 1 (i ∈ I)

〉
=Gp

〈
Y |φ−1(ri1)φ

−1(ri2). . . φ
−1(riki

) = 1 (i ∈ I)
〉
, (5)

with the natural epimorphism πK : FY →K.

Next, we claim that the generators {πG(sl) : l ∈ L} of H̃ satisfy the relations r′i = 1,

i ∈ I. Indeed

πGφ(r
′
i) = πGφredY (r

′
i1 . . . r

′
iki

) (by (4))

= πG(φ(r
′
1i). . . φ(r

′
iki

)) (φ is a homomorphism)

= πG(red(ri1). . . red(riki
)) (by (3))

= πG red(ri1 . . . riki
) (red is a homomorphism)

= πG red(r) = 1.

Therefore, there exists an epimorphism

ζ :K →H, πK(yl) �→ πG(sl) (l ∈ L). (6)

To complete the set-up, we turn our attention to the subgroup U of M generated by

{πM (rij) : i ∈ I, 1≤ j ≤ ki}.
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We claim that

πM (sl) ∈ U for all l ∈ L. (7)

Since sl ∈H =Gp
〈
{red(rij) : i ∈ I, 1≤ i≤ ki}

〉
, it follows that

sl ≡ red(red(ri1j1)
ε1 . . . red(rimjm)εm)≡ red(rε1i1j1 . . . r

εm
imjm

).

But all πM (rij) are invertible in M by assumption, and so

U � πM (ri1j1)
ε1 . . . πM (rimjm)εm

= πM (rε1i1j1 . . . r
εmjm
im

) (πM is a homomorphism)

= πM (red(rε1i1j1 . . . r
εm
imjm

)) (by Lemma 2.2(iii))

= πM (sl),

as required.
Next, we claim that U is actually generated by {πM (sl) : l ∈ L}. This is proved by a

very similar argument to the one in the previous paragraph, starting from the fact that

{sl : l ∈L} is a generating set for H, expressing the generators red(rij) in terms of the sl,
and using (7). Furthermore, the generators {πM (sl) : l ∈ L} satisfy the relations r′i = 1.

Indeed

πMφ(r′i) = πMφredY (r
′
i1 . . . r

′
iki

) (by (4))

= πM (φ(r′i1). . . φ(r
′
iki

)) (φ is a homomorphism)

= πM (red(ri1). . . red(riki
)) (by (3))

= πM red(ri1). . . πM red(riki
) (πM is a homomorphism)

= πM (ri1). . . πM (riki
) (by Lemma 2.2(iii))

= πM (ri1 . . . riki
) (πM is a homomorphism)

= πM (r) = 1.

Therefore, there exists an epimorphism

η :K → U, πK(yl) �→ πM (sl) (l ∈ L). (8)

With the foregoing set-up, the assertion of our theorem can be stated as follows:

If ζ is an isomorphism between K and ˜H, then η is an isomorphism between K and U.

This is now actually easy to prove: it is sufficient to show that η and ζ−1ψ�U are
mutually inverse homomorphisms. To do so, in turn, it is sufficient to verify that their two

compositions act as the identity on the generating sets of U and K, respectively. Indeed,

we have:

ηζ−1ψ�UπM (sl) = ηζ−1πG red(sl) (by (1))

= ηζ−1πG(sl) (sl is reduced)

= ηπK(yl) (by (6))

= πM (sl) (by (8)),
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and

ζ−1ψ�UηπK(yl) = ζ−1ψπM (sl) (by (8))

= ζ−1πG red(sl) (by (1))

= ζ−1πG(sl) (sl is reduced)

= πK(yl) (by (6)),

completing the proof of the theorem.

It is reasonable to ask whether if one translates the presentation for K given in

Theorem 3.1 back into the alphabet A, the resulting presentation definesM. The following

theorem shows that this indeed is the case when the pieces are reduced words.

Theorem 3.2. Let M = Inv
〈
A | ri = 1 (i ∈ I)

〉
be a special inverse monoid, let

ri ≡ ri1ri2 . . . riki
be a factorisation into invertible pieces for i ∈ I and suppose that

all pieces are reduced words. Let φ be an epimorphism from some free group FY onto the

subgroup of FA generated by the pieces, and for every piece rij, pick a preimage r′ij ∈ FY

under φ. Finally, let π : Y
∗ → A

∗
be the homomorphism extending x �→ φ(x) (x ∈ X).

Then

M = Inv
〈
A | ri = 1 (i ∈ I)

〉
= Inv

〈
A |π(r′i1). . . π(r′iki

) = 1 (i ∈ I)
〉

(9)

and {π(y) : y ∈ Y } is a set of invertible pieces for Inv
〈
A |π(r′i1). . . π(r′iki

) = 1 (i ∈ I)
〉

which generates the same subgroup of M as the original pieces {rij : i ∈ I, 1≤ j ≤ ki}.

Proof. Denoting by redA the free reduction over the alphabet A, we have

redAπ(w)≡ φ(w) for all w ∈ Y
∗
,

and, in particular,

redAπ(r′ij)≡ rij (i ∈ I, 1≤ j ≤ ki) (10)

because all rij are reduced.

Now, we show that all the relations π(r′i1). . . π(r
′
iki

) = 1 hold in the monoid M. Indeed,

denoting by πM :A
∗ →M the natural epimorphism, we have

πM (π(r′i1). . . π(r
′
iki

)) = πM (redAπ(r′i1). . . redAπ(r′iki
)) (by Lemma 2.2(iii))

= πM (ri1 . . . riki
) (by (10))

= πM (ri) = 1M .

Furthermore, these relations imply the original ones. To see this, let M ′ be the monoid

defined by Inv
〈
A |π(r′i1). . . π(r′iki

) = 1 (i ∈ I)
〉
, and let πM ′ : A

∗ →M ′ be the associated

natural epimorphism, and then

1M ′ = πM ′(π(r′i1). . . π(r
′
iki

))

= πM ′(redAπ(r′i1). . . redAπ(r′iki
)) (by Lemma 2.2(iii))

= πM ′(ri1 . . . riki
) (by (10))

= πM ′(ri).

This proves (9).
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To prove that each π(y) is invertible in M, note that by the assumptions of the theorem,

φ(y) belongs to the subgroup of the free group FA generated by {rij : i ∈ I, 1≤ j ≤ ki},
and that π(y)≡ φ(y). Hence, we can write

π(y)≡ redA(ri1j1 . . . rikjk). (11)

Since all rij are units in M, by Lemma 2.2(iii), we have

πM (ri1j1 . . . rikjk) = πM redA(ri1j1 . . . rikjk). (12)

Combining (11) and (12), we obtain:

πMπ(y) = πM redA(ri1j1 . . . rikjk) = πM (ri1j1 . . . rikjk) = πM (ri1j1). . . πM (rikjk),

which is clearly a unit.

Finally, since each relator π(r′i1). . . π(r
′
iki

) is clearly a product of the π(y),

it follows that {π(y) : y ∈ Y } is indeed a set of pieces for the presentation
Inv

〈
A |π(r′i1). . . π(r′iki

) = 1 (i ∈ I)
〉
.

Remark 3.3. Both Theorems 3.1 and 3.2 of course apply when the pieces rij are minimal.

In that case, the subgroup U generated by them is the group of units ofM by Theorem 1.3.

Remark 3.4. In the statement of Theorem 3.2, some π(y) may actually not occur in

π(r′i1). . . π(r
′
iki

). Also, we note that the assumptions in Theorem 3.2 can be weakened a

little further: instead of the original pieces being reduced, one could require that rij can
be obtained from π(r′ij) by using reductions.

Remark 3.5. The statement of Theorem 3.2 is technical. When Theorem 3.2 is applied

in the particular case where the factorizations of the defining relators are all into minimal

invertible pieces, then, expressed in a slightly less technical way, this theorem tells us
that given M = Inv

〈
A | ri = 1 (i ∈ I)

〉
, then for any basis B ⊆ FA of the subgroup of FA

generated by the minimal invertible pieces of the relators of this presentation, there is a

presentation Inv
〈
A |si = 1 (i ∈ I)

〉
for M for which B is a set of invertible pieces and also

generates the group of units of M. As we shall see below, changing the presentation for

M in this way will often be a useful first step when analysing examples.

We note that the assumption that the pieces are reduced is necessary in Theorem 3.2.
Indeed, in the monoid Inv

〈
x,y |xx−1yy−1xx−1 = 1

〉
, the minimal invertible pieces are

xx−1 and yy−1. In Fx,y, they generate the trivial subgroup. However, the original monoid

is not isomorphic to the free inverse monoid Inv
〈
x,y |

〉
.

Motivated by Theorem 3.1, we introduce the following concept:

Definition 3.6. A finite set of words w1, . . . ,wk ∈ A
∗
is free for substitution in a group

presentation

Gp
〈
x1, . . . ,xk | ri(x1, . . . ,xk) = 1 (i ∈ I)

〉
if the subgroup of

Gp
〈
A | ri(w1, . . . ,wk) = 1 (i ∈ I)

〉
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generated by w1, . . . ,wk is isomorphic to Gp
〈
x1, . . . ,xk | ri(x1, . . . ,xk) = 1 (i ∈ I)

〉
via the

map xi �→ wi.

Corollary 3.7. Let A be an alphabet, and suppose that r1, . . . ,rk ∈ A
∗
are such that the

free group H = Gp
〈
r1, . . . ,rk

〉
≤ FA has a basis which is free for substitution into any

one-relator presentation. Then the group U of units of any one-relator inverse monoid
M = Inv

〈
A | r = 1

〉
, where the minimal invertible pieces of r are precisely r1, . . . ,rk, is

again a one-relator group. Specifically, if {p1, . . . ,pn} is a basis for H, if each rj is

expressed in terms of this basis as rj = r′j(p1, . . . ,pn), where r′j ∈ {x1, . . . ,xn}
∗
, and if

r = r′(r1, . . . ,rk), then U is defined by

U =Gp
〈
x1, . . . ,xn | r′(r′1, . . . ,r′k) = 1

〉
.

Proof. This follows immediately from Definition 3.6 and Theorem 3.1.

It is therefore of interest to investigate sets that are free for substitutions into one-
relator presentations, or indeed, into arbitrary presentations. For instance, we can prove

the following:

Theorem 3.8. Let A be an alphabet, let p1, . . . ,pn ∈FA and denote by Ai the set of letters

of A that occur in pi. If

Ai 
⊆
⋃
j �=i

Aj for all i= 1, . . . ,n,

then {p1, . . . ,pn} is free for substitutions into any one-relator presentation.

The following two lemmas will be used in the proof:

Lemma 3.9. If G = Gp
〈
A | r1 = 1,r2 = 1

〉
, where each ri is cyclically reduced and

contains a letter ai not contained by the other rj, then the one-relator groups
G1 =Gp

〈
A\{a2} | r1 = 1

〉
and G2 =Gp

〈
A\{a1} | r2 = 1

〉
both embed naturally into G.

Proof. The subgroup of G1 generated by A \ {a1,a2} is free on that set by Frei-

heitsatz [19, Theorem 4.10], since the letter a1 occurs in r1. Likewise, writing G2 =
Gp

〈
A′ \{a′1} | r′2 = 1

〉
over a disjoint copy of A, the subgroup generated by A′ \{a′1,a′2} is

free. So we can form the free product with amalgamation

Gp
〈
(A\{a2})∪ (A′ \{a′1}) | r1 = 1, r′2 = 1, a= a′ (a ∈A\{a1,a2})

〉
into which G1 and G2 will embed naturally. Now perform Tietze transformations [19,

Section 1.5] to remove the generators a′ with a ∈ A\{a1,a2}, rename a′2 into a2 and we
obtain Gp

〈
A | r1 = 1, r2 = 1

〉
=G.

Lemma 3.10. Let A and X = {x1, . . . ,xn} be two alphabets, and let r= r(x1, . . . ,xn)∈FX

be a cyclically reduced word in which all of the letters x1, . . . ,xn appear. Further, let

p1, . . . ,pn ∈ FA, and denote by Ai the set of letters of A that appear in pi. Suppose that

Ai 
⊆
⋃
j �=i

Aj for all i= 1, . . . ,n,
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with ai ∈ Ai \
⋃

j �=iAj. Then each of the letters ai (i = 1, . . . ,n) appears in any cyclic

reduction of the word r(p1, . . . ,pn).

Proof. Since r is cyclically reduced, and since we are concerned with cyclically reduced

forms of r(p1, . . . ,pn), we may without loss of generality assume that r has the form

r ≡ xα1
i1
xα2
i2

. . . xαk
ik
,

where ij ∈ {1, . . . ,n} and αj ∈ Z for j = 1, . . . ,k, and

i1 
= i2 
= i3 . . . 
= ik 
= i1.

Consider the word

r(p1, . . . ,pn)≡ pα1
i1
pα2
i2

. . . pαk
ik
,

and inside it, for every j = 1, . . . ,k, consider all the occurrences of the letter aij appearing

in the reduced word red(p
αj

ij
). Notice that there must be at least one such occurrence,

since pij is reduced, and hence, the set of letters appearing in pij is the same as the set

of letters appearing in red(p
αj

ij
). We claim that none of these occurrences are cancelled in

the process of free reduction of r(p1, . . . ,pn).
To see this, suppose, to the contrary, that two occurrences of some ai cancel each

other. Let those two occurrences appear in pαl
il

and pαm
im

, where i = il = im and l ≤ m.

Furthermore, choose i, l and m so that m− l is as small as possible. By assumption, the

occurrence of ai in pil is not cancelled when reducing to red(pαl
il
), and hence, we cannot

have m= l. Also, since il+1 
= il, the word pil+1
contains no occurrences of ai = ail , and so

m 
= l+1. Therefore, we must have m≥ l+2. But now, in order for the two occurrences

of ai in pαl
il

and pαm
im

to cancel each other, any occurrence of ail+1
in p

αl+1

il+1
must also be

cancelled. Since there are no occurrences of ail+1
in pαl

il
, it follows that these occurrences

must cancel within p
αl+1

il+1
. . . pαm

im
, and this contradicts the minimality of m− l. This proves

the claim that no two occurrences of some ai within some pαl
il

and pαm
im

(il = im = i) cancel
each other in the process of free reduction of r(p1, . . . ,pn).

Now suppose that a cancellation of some ail appearing in some pαl
il

can happen during

the cyclic reduction of r(p1, . . . ,pn). Then this occurrence of ail would be cancelled during

the free reduction of at least one of the words

pαl
il
. . . pαk

ik
pα1
i1

. . . p
αl−1

il−1
or p

αl+1

il+1
. . . pαk

ik
pα1
i1

. . . pαl
il
.

However, the words

xαl
il
. . . xαk

ik
xα1
i1

. . . x
αl−1

il−1
and x

αl+1

il+1
. . . xαk

ik
xα1
i1

. . . xαl
il

satisfy the original assumptions made about r, and hence, such cancellation cannot take

place by the argument from the previous paragraph. This completes the proof of the
lemma.

Proof of Theorem 3.8. Let X = {x1, . . . ,xn}. Suppose p1, . . . ,pn ∈A
∗
, and let Ai be the

set of letters appearing in pi. For every i = 1, . . . ,n, pick ai ∈ Ai \
⋃

j �=iAj . We need to

show that for every r ∈X
∗
, the subgroup of
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G=Gp
〈
A | r(p1, . . . ,pn) = 1

〉
(13)

generated by p1, . . . ,pn is naturally isomorphic to Gp
〈
X | r = 1

〉
. Clearly, we may assume

without loss of generality that r is cyclically reduced. We will prove the assertion by
induction on the length of the word r(p1, . . . ,pn). If |r(p1, . . . ,pn)|= 0, Lemma 3.10 gives

|r|= 0, and the assertion is obvious. It is also obvious when |pi|= 1 for all i= 1, . . . ,n. So,

suppose that some pi has length greater than 1. Without loss, we may assume |pn|> 1. In
the presentation (13) for G, introduce a new generator xn satisfying xn = pn, to obtain:

G=Gp
〈
A,xn |pnx−1

n = 1, r(p1, . . . ,pn−1,xn) = 1
〉

(14)

= Gp
〈
A,xn |pnx−1

n = 1, r = 1
〉
, (15)

where r denotes a cyclically reduced form of r(p1, . . . ,pn−1,xn). We claim that presentation
(15) satisfies the assumptions of Lemma 3.9. Indeed:

• The word pnx
−1
n is cyclically reduced because pn is a reduced word over A and

xn 
∈A.
• The word r is cyclically reduced by assumption.
• The letter an appears in pn and in none of p1, . . . ,pn−1; hence, an will appear in

pnx
−1
n but not in r(p1, . . . ,pn−1,xn), and hence, not in r either.

• The letter a1 appears in p1, but not in any other p2, . . . ,pn; hence, it will appear
in r(p1, . . . ,pn−1,xn) by Lemma 3.10, but not in pnx

−1
n .

By Lemma 3.9, the group

Gp
〈
A\{an},xn | r = 1

〉
=Gp

〈
A\{an},xn | r(p1, . . . ,pn−1,xn)

〉
(16)

embeds naturally into G, as defined by (15). Note that |r(p1, . . . ,pn−1,xn)|< |r(p1, . . . ,pn)|
because |pn| ≥ 2. Furthermore, note that the words p1, . . . ,pn−1,xn satisfy all the original

assumptions about p1, . . . ,pn – they are reduced, and each contains a letter not appearing

in any of the others. Therefore, the inductive hypothesis applies, and the subgroup of the
group (16) generated by p1, . . . ,pn−1,xn is naturally isomorphic to Gp

〈
X | r = 1

〉
. But,

inside G, this subgroup coincides with the subgroup generated by p1, . . . ,pn, and the

theorem is proved.

We can generalise the above condition a bit further:

Theorem 3.11. Let A=B∪C, where B and C are disjoint alphabets, and let p1, . . . ,pn ⊆
FA. Denoting by c(pi) the set of letters from C that appear in pi, suppose that there is a

bijection μ : {p1, . . . ,pn}→ C, such that at least one of the following two conditions holds
for every i= 1, . . . ,n:

(i) c(pi) = {μ(pi)}; or
(ii) μ(pi) occurs precisely once in pi and

c(pi)\
⋃

1≤j≤i−1

c(pj) = {μ(pi)}.

Then p1, . . . ,pm are free for substitutions into arbitrary one-relator presentations.
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Remark 3.12. Theorem 3.8 is indeed a special case of Theorem 3.11, corresponding to
the case where Condition (i) is satisfied for every i= 1, . . . ,n.

Proof. We may reorder p1, . . . ,pn so that p1, . . . ,pm satisfy Condition (i) and pm+1, . . . pn
satisfy Condition (ii) for some 1 ≤ m ≤ n. For i = 1, . . . ,n, let ci = μ(pi) so that

C = {c1, . . . ,cn}, and let x1, . . . ,xn,dm+1, . . . ,dn be new letters, not in A.
We need to prove that for every word r = r(x1, . . . ,xn) over {x1, . . . ,xn}, the subgroup

of

Gp
〈
A | r(p1, . . . ,pn) = 1

〉
(17)

generated by p1, . . . ,pn is naturally isomorphic to Gp
〈
X | r = 1

〉
, where X = {x1, . . . ,xn}.

To begin with, by Theorem 3.8, the subgroup of

Gp
〈
B,c1, . . . ,cm,dm+1, . . . ,dn | r(p1, . . . ,pm,dm+1, . . . ,dn) = 1

〉
generated by p1, . . . ,pm,dm+1, . . . ,dn is naturally isomorphic to Gp

〈
X | r = 1

〉
. We treat

this as the inductive anchor for the claim that for every k = 0, . . . ,n−m, the subgroup of

Gp
〈
B,c1, . . . ,cm+k,dm+k+1, . . . ,dn | r(p1, . . . ,pm+k,dm+k+1, . . . ,dn) = 1

〉
(18)

generated by p1, . . . ,pm+k,dm+k+1, . . . ,dn is naturally isomorphic to Gp
〈
X | r = 1

〉
. Sup-

pose the claim is true for some k, and we prove it for k+1. First, we write pm+k+1 ≡
qcm+k+1r, where q,r ∈B∪{c1, . . . ,cm+k}

∗
, because of Condition (ii). Then, we introduce

a new generator cm+k+1 into (18), via the relation cm+k+1 = q−1dm+k+1r
−1. Then, we

use this relation to eliminate the generator dm+k+1 via dm+k+1 = qcm+k+1r = pm+k+1.

Thus, we obtain the presentation

Gp
〈
B,c1, . . . ,cm+k,cm+k+1,dm+k+2, . . . ,dn | r(p1, . . . ,pm+k,pm+k+1,dm+k+2, . . . ,dn) = 1

〉
which defines a group naturally isomorphic to the group defined by (18). The subgroup
of this group generated by p1, . . . ,pm+k+1,dm+k+2, . . . ,dn is isomorphic to the subgroup

of (18) generated by p1, . . . ,pm+k,dm+k+1, . . . ,dn, which, in turn, is isomorphic to

Gp
〈
X | r = 1

〉
by induction. This completes the inductive proof. Putting k = n−m,

we obtain that the subgroup of (17) generated by p1, . . . ,pn is naturally isomorphic to
Gp

〈
X | r = 1

〉
, and this completes the proof of the theorem.

Corollary 3.13. Let M = Inv
〈
A | r = 1

〉
, and let r≡ r1 . . . rk be the factorisation of r into

minimal invertible pieces. If there is a basis p1, . . . ,pn of Gp
〈
r1, . . . ,rk

〉
≤FA satisfying the

condition in the statement of Theorem 3.11, then the group of units of M is a one-relator

group. Specifically, expressing each rj = r′j(p1, . . . ,pn) in FA, where r′j ∈ {x1, . . . ,xn}
∗
, the

group of units of M is defined by

Gp
〈
x1, . . . ,xn | r′1 . . . r′k = 1

〉
.

Proof. This follows immediately from Theorem 3.11 and Corollary 3.7.
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As a special case of Theorem 3.11, we see that any sets {p1, . . . ,pn}⊆FA of the following

types are free for substitutions into any one-relator presentations:

(F1) pis are powers of distinct generators from A (this is Corollary 4.10.2 in [19]);

(F2) pis are words over disjoint subalphabets of A;

(F3) for each pi, there exists a letter ai ∈ A which appears in pi precisely once, and
does not appear in any pj with j < i.

We do not know whether the assumptions in Theorems 3.8 or 3.11 actually imply that the

sets in question are free for substitutions in any presentations. However, this is the case

for the above-listed special instances, as we shall see in the next theorem. At this point, it
is very natural to wonder whether for a set of pieces to be free for substitutions, it might

suffice just to assume that the set of words is Nielsen reduced (see [18, page 6]). We will

see later in Section 5.2 that the answer to this question is no (see Proposition 5.1).

Theorem 3.14. If p1, . . . ,pn ∈ FA satisfy any of (F1), (F2) or (F3), then {p1, . . . ,pn} is

free for substitution into any presentation.

Proof. (F1) is a special case of (F2), so there is no need to prove it separately. Suppose

that (F2) is satisfied. We need to prove that for any group G = Gp
〈
X | ri = 1 (i ∈ I)

〉
,

with X = {x1, . . . ,xn}, it naturally embeds into

Gp
〈
A | ri(p1, . . . ,pn) = 1 (i ∈ I)

〉
. (19)

To this end, for k = 1, . . . ,n, let Ak ⊆ A be the set of letters that appear in pi, let

A′ =A\ (A1∪·· ·∪An) and let

Gk =Gp
〈
A1, . . . ,Ak−1,A

′,xk, . . . ,xn | ri(p1, . . . ,pk−1,xk, . . . ,xn) = 1 (i ∈ I)
〉
.

We claim that for all k = 1, . . . ,n−1, the group Gk embeds naturally into Gk+1 via

a �→ a (a ∈A1∪·· ·∪Ak−1∪A′),

xk �→ pk,

xj �→ xj (j = k+1, . . . ,n).

Once the claim is proved, composing all these embeddings together with the obvious
embedding of Gp

〈
X | ri = 1 (i ∈ I)

〉
into

G1 =Gp
〈
A′,x1, . . . ,xn | ri(x1, . . . ,xn) = 1 (i ∈ I)

〉
=Gp

〈
X | ri = 1 (i ∈ I)

〉
∗FA′

gives the desired embedding of Gp
〈
X | ri = 1 (i ∈ I)

〉
into (19).

To prove the claim, let m be the order of xk in Gk if this is finite, and otherwise let

m= 0. Note that by [19, Corollary 4.4.11], the element pk in the group Gp
〈
Ak |pmk = 1

〉
has finite order if and only if m > 0, and that in this case, the order is precisely m. It
follows that we can form the free product with amalgamation of the group Gk with the

group Gp
〈
Ak |pmk = 1

〉
, amalgamating the subgroup Gp

〈
xk

〉
of the former with Gp

〈
pk
〉

of the latter. This group naturally embeds Gk and has the presentation

Gp
〈
A1, . . . ,Ak,A

′,xk, . . . ,xn | ri(p1, . . . ,pk−1,xk, . . . ,xn) = 1 (i ∈ I), pmk = 1, xk = pk
〉
.
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Eliminate xk using the last relation in this presentation, to obtain

Gp
〈
A1, . . . ,Ak,A

′,xk+1, . . . ,xn | ri(p1, . . . ,pk−1,pk, . . . ,xn) = 1 (i ∈ I), pmk = 1
〉
.

Notice that the specified mapping is certainly a homomorphism, and hence, pmk is a

consequence of the relations ri(p1, . . . ,pk,xk+1, . . . ,xn) = 1 (i ∈ I). Eliminating it yields
the presentation for Gk+1 and proves the claim, and hence this case of the theorem.

Suppose now that (F3) holds. Write

pj ≡ p′ja
εj
j p′′j , j = 1, . . . ,n,

and let A′ = A \ {a1, . . . ,an}. Let X = {x1, . . . ,xn} and consider arbitrary ri = ri(x1, . . . ,

xn) ∈X
∗
(i ∈ I). We need to show that the group

Gp
〈
X | ri(x1, . . . ,xn) = 1 (i ∈ I)

〉
(20)

naturally embeds into

Gp
〈
A | ri(p1, . . . ,pn) = 1 (i ∈ I)

〉
. (21)

It is clear that (20) embeds into

Gp
〈
A′,X | ri(x1, . . . ,xn) = 1 (i ∈ I)

〉
=Gp

〈
X | ri(x1, . . . ,xn) = 1 (i ∈ I)

〉
∗FA′ . (22)

By assumption, p′j,p
′′
j ∈A′∗, so in (22), we can introduce redundant generators a1, . . . ,an

as follows:

Gp
〈
A′,a1, . . . ,an,X | ri(x1, . . . ,xn) = 1 (i ∈ I), a

εj
j = (p′j)

−1xj(p
′′
j )

−1 (j = 1, . . . ,n)
〉

= Gp
〈
A,X | ri(x1, . . . ,xn) (i ∈ I), xj = pj (j = 1, . . . ,n)

〉
.

Eliminating the xj from the last presentation yields the group (21), showing that it is

isomorphic to (22), and thus naturally embedding (20), as required.

Corollary 3.15. Let M = Inv
〈
A | ri = 1 (i ∈ I)

〉
be any special inverse monoid, and let

ri ≡ ri1 . . . riki
be the factorisation of ri into minimal invertible pieces. If there is a basis

p1, . . . ,pn of Gp
〈
{rij : i ∈ I, 1≤ j ≤ ki}

〉
≤ FA satisfying any of (F1), (F2) or (F3), then

the group of units U of M can be defined by a presentation with generators A and |I|
many defining relations. Specifically, if each rij is written as rij = r′ij(p1, . . . ,pn), where

r′ij ∈ {x1, . . . ,xn}
∗
, then U is defined by

U =Gp
〈
x1, . . . ,xn | r′i1 . . . r′iki

= 1 (i ∈ I)
〉
.

Proof. This analogous to Corollary 3.13.

4. An approach to computing pieces via regular languages

There already is in the literature an algorithm for computing a decomposition into
invertible pieces. It was originally introduced by Adjan [1], and modified by Zhang [30]. It

was designed for the setting of special monoid presentations, rather than inverse monoid

presentations, but in fact remains valid for the latter as well.
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The description we now give of the Adjan overlap algorithm follows that given by
Lallement in [14], who was chiefly concerned with one-relator monoids Mon

〈
A | r = 1

〉
.

Here, we shall explain the natural generalisation of that algorithm to arbitrary finitely

presented special monoids Mon
〈
A | ri (i ∈ I)

〉
. In general, this algorithm will compute a

decomposition of the relators into pieces, but these will not in general be the minimal

pieces (see Example 4.2 below). However, in the particular case of one-relator monoids

Mon
〈
A | r = 1

〉
, an important theorem of Adjan [1] shows that this algorithm does

compute the minimal invertible pieces of the defining relator r.
Let M =Mon

〈
A | ri = 1 (i ∈ I)

〉
be a special monoid, and set R = {ri : i ∈ I}. We say

that a submonoid T of the free monoid A∗ has property (A) if

(A) For all α,β,γ ∈A∗, if αβ ∈ T and βγ ∈ T then {α,β,γ} ⊆ T .

Let U(R) be the smallest submonoid of A∗, such that R⊆ U(R) and U(R) satisfies (A).

To see that the monoid U(R) exists, note that the set of submonoids of A∗ containing

R and satisfying (A) is nonempty (since e.g. A∗ satisfies these properties), and it follows
from the definitions that the intersection of any family of submonoids of A∗ with these

properties again gives a submonoid of A∗ with these properties.

Recall that a subset C of A+ is called a code if C is a set of free generators for

the submonoid Mon
〈
C
〉
≤ A+. A subset C of A+ is said to have the prefix property if

CA+∩C =∅. Similarly, we say C has the suffix property if C ∩A+C =∅. Any subset C

of A+ with the prefix property is a code. We call these prefix codes. Similarly, if C has

the suffix property, then C is a code called a suffix code. If C is both a prefix and a suffix
code, then we call C a biprefix code.

We now make some observations about the set U(R).

(a) Every word w ∈ U(R) represents and invertible element of the monoid M.

(b) U(R) is a free monoid which is freely generated by a finite biprefix code B(R).

(c) There is an algorithm which takes any finite set R of words as input and computes

the biprefix code B(R).

For proofs of these facts, we refer the reader to [14, Section 1]. The idea behind the proof
of (a) is to observe that if γ and δ are words that represent invertible elements of M, then

so does their product, and also, if αβ and βγ are words that represent invertible elements

of M, then the words α, β and γ all also represent invertible elements of M. The starting

point for the algorithm is provided by the members of R, which, being equal to 1 in M,
certainly represent invertible elements. Since U(R) is obtained from R by closing under

taking products and under adding triples of words α,β and γ to ensure condition (A),

this can be used to prove (a).
Regarding (a), it is important to note that even for one-relator monoids, we are not

claiming that every word which represents an invertible element of M necessarily belongs

to the set U(R). Indeed, if one considers the simple example of the bicyclic monoid
Mon

〈
b,c | bc= 1

〉
, then clearly U(R) = {bc}∗ is the smallest submonoid of {b,c}∗ which

contains {bc} and has property (A). But the word bbcc is equal to 1 in the bicyclic monoid,

so certainly represents an invertible element, while bbcc 
∈ {bc}∗ = U(R).
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Even though we do not need it in this paper, for the sake of completeness, we explain
here an algorithm which computes the finite biprefix code B(R) that generates the free

monoid U(R). This description follows [14, page 372] (with a small correction we have

made to a typo in (i) on [14, page 372]).
For i ∈ N, we define the set Wi inductively as follows. First, set W0 =R= {ri : i ∈ I}.

Then, for i > 0, we define Wi inductively in the following way. For u ∈ A∗, we have

u ∈Wi+1 if and only if one of the following conditions holds:

(i) u ∈Wi and v 
∈ pref(u) and v 
∈ suff(u) for all v ∈Wi \{u};
(ii) there exist v,v′ ∈X∗ not both equal to ε, such that uv ∈Wi and v′u ∈Wi;

(iii) there exist v,v′ ∈X∗ with v 
= ε, such that uv ∈Wi and vv′ ∈Wi;

(iv) there exist v,v′ ∈X with v′ 
= ε, such that v′u ∈Wi and vv′ ∈Wi.

It may be shown that there is a number n, such that Wn =Wn′ for all n′ ≥ n that is this
process eventually stabilises. Then B(R) = Wn is a biprefix code that freely generates

B(R) (see [14, Theorem 1(i)]). Roughly speaking, the idea behind the above algorithm is

that steps (ii)–(iv) are designed to ensure that the set we construct does satisfy property
(A), while step (i) ensures that the set constructed has the prefix and suffix properties.

Since B(R) is a code which generates the free monoid U(R), it follows that every word

w ∈ U(R) can be written uniquely as w ≡ w1 . . . wk, where wi ∈B(R) for 1≤ i≤ k. Since

R ⊆ U(R), it follows that, in particular, every relator word ri with i ∈ I decomposes
uniquely as a product of words from B(R). We call this the decomposition of relators

into invertible pieces determined by the Adjan algorithm. The key result showing the

importance of this algorithm is that for special one-relator monoids, this algorithm
actually computes the decomposition of the relator into minimal invertible pieces. We

have already seen that the presentation determined by these pieces is then a presentation

for the group of units of the monoid (see Theorem 1.2). This gives the following result of
Adjan [1].

Theorem 4.1 (Adjan [1, Chapter III, Theorem 7]). For any one-relator special monoid
Mon

〈
A | r = 1

〉
, the Adjan algorithm computes the decomposition of r into minimal

invertible pieces. More precisely, the biprefix code B({r}) computed by the Adjan algorithm

is equal to the set of minimal invertible pieces of the relator r. Hence, there is an
algorithm that takes any special one-relator monoid as input, and computes a one-relator

presentation which is isomorphic to the group of units of the monoid.

For arbitrary special monoid presentations, this result is no longer true, as the following

example demonstrates.

Example 4.2. Consider the monoid presentation

Mon
〈
a,b,c,d |ab= 1,cabd= 1,cdd= 1

〉
.

There are no overlaps, but d=1 is easily seen to be a consequence of the defining relations.
In particular, the letter d represents an invertible element. From this it follows that all

the letters here are invertible, but this is not something that the Adjan algorithm will

discover.
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In fact, it is proved in [23] that the problem of whether a finitely presented special

monoid is a group is undecidable. From this, it follows that there is no algorithm which

takes finite special monoid presentations as input and computes the minimal invertible
pieces of the relator.

It is natural to ask whether there is an algorithm which takes finite one-relator special

inverse monoid Inv
〈
A | r = 1

〉
as input and computes the minimal invertible pieces of the

relator r. This is a question that was considered by Margolis et al. in [22]. As already

mentioned above, in that paper, the following example is introduced

O = Inv
〈
a,b,c,d |abcdacdadabbcdacd= 1

〉
= Inv

〈
a,b,c,d | r = 1

〉
,

called the O’Hare monoid. As explained above, one thing that makes this example

significant is that the defining relator word clearly has no overlaps with itself, and hence,
the Adjan overlap algorithm would terminate instantly, and return r as a single invertible

piece of itself. However, Margolis et al. [22], using van Kampen diagrams and Stephen’s

procedure, succeed in showing that r in fact has a finer decomposition, namely

r ≡ abcd ·acd ·ad ·abbcd ·acd.

They provide no further information about the group of units of the monoid O.

Our aim now is to give a unit computing algorithm for special inverse monoid

presentations, which improves on the Adjan algorithm. Specifically, our new algorithm,
which we shall call the Benois algorithm, will have the following properties

(1) it correctly computes the minimal invertible pieces of the O’Hare example, and

(2) it always computes a refinement of the Adjan algorithm.

These properties mean that every invertible piece that the Adjan algorithm discovers,

the Benois algorithm also discovers, and there are examples where the Benois algorithm
discovers strictly smaller pieces than the Adjan algorithm does.

Let M = Inv
〈
A | ri = 1 (i ∈ I)

〉
be a finitely presented special inverse monoid. Let

Σ =
⋃
i∈I

(pref(ri)∪pref(r−1
i ))⊆A

∗
.

Let V = red(Σ∗)⊆ FA. For each i ∈ I, decompose

ri ≡ ri1ri2 . . . riki
, (23)

such that for every proper prefix p of ri, we have

red(p−1) ∈ V ⇔ p≡ ri1ri2 . . . rij for some j ∈ {1, . . . ,ki}. (24)

Intuitively, this decomposition is obtained by ‘reading’ ri from left to right, and ‘marking’

each prefix p with the property that red(p−1) ∈ V .

Lemma 4.3. For each i ∈ I, the factorisation (23) is a decomposition into invertible

pieces.

Proof. We need to prove that each rij represents an invertible element of M. This is

equivalent to each prefix pij ≡ ri1ri2 . . . rij being invertible, and we proceed to prove this
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latter assertion. Since every word in Σ clearly represents a right invertible element of
M, it follows that every word in Σ∗ represents a right invertible element of M. Applying

Lemma 2.2(iii) it follows that every word in V represents a right invertible element of M.

Since pij represents a right invertible element of M it follows from Lemma 2.2(iii) that
pij = red(pij) in M. The word p−1

ij represents a left invertible element of M, and hence,

p−1
ij = red(p−1

ij ) also holds in M by an obvious dual of Lemma 2.2(iii). By (24), we have

red(p−1
ij ) ∈ V , implying that p−1

ij represents a right invertible element of M, and therefore

pij represents an invertible element of M, as required.

Note that this lemma does not claim that (23) is a decomposition into minimal
invertible pieces. In fact, it remains an open question whether this is the case.

Next, we turn our attention to the question of whether the above decomposition of the

relations into invertible pieces is computable. It is a consequence of a theorem of Benois

that the free group FA has a decidable submonoid membership problem (see [15] and the
references to Benois’s original work therein).

Lemma 4.4. There is an algorithm which takes any finite inverse monoid presen-

tation Inv
〈
A | ri = 1 (i ∈ I)

〉
and any word w ∈ A

∗
, and decides whether red(w) ∈ V .

Therefore, there is an algorithm which takes any finite inverse monoid presentation

Inv
〈
A | ri = 1 (i ∈ I)

〉
and computes the decomposition into invertible pieces given by (23)

for all relators ri in the presentation.

Proof. By definition, the set V is a finitely generated submonoid of the free group FA,

and the word red(w) is an element of the free group FA. Hence, Benois’ theorem can be

applied to decide whether or not red(w) ∈ V . The second assertion in the statement of

the lemma is then immediate.

We shall call the algorithm for computing invertible pieces given in Lemma 4.4 the
Benois algorithm.

Our aim is to prove the following result, which explains the relationship between the

Benois algorithm and the Adjan algorithm.

Theorem 4.5. Let M = Inv
〈
A | ri = 1(i ∈ I)

〉
. Then, for all i ∈ I, the decomposition of

ri into pieces computed by the Benois algorithm is a refinement of the decomposition

computed by the Adjan algorithm.

We need a few more definitions and lemmas before we can prove Theorem 4.5. For any

two words α,β ∈A
∗
, we write α→ β if β can be obtained from α by a single application

of a rewrite rule xx−1 → 1 or x−1x→ 1 (with x ∈ A). Let us write →∗ for the reflexive

transitive closure of → that is α→∗ β means that β can be obtained from α by a finite
(possibly empty) sequence of deletions xx−1 → 1 or x−1x→ 1. If α→∗ β, we say that α

can be partially freely reduced to β (partially, since β need not be a reduced word).

Define
−→
Σ∗ = {β ∈A

∗
: α→∗ β for some α ∈ Σ∗}.

So
−→
Σ∗ is the closure of the set Σ∗ under partial free reduction →∗.
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It follows from Lemma 2.2 that every word in
−→
Σ∗ represents a right invertible element

of M.

Remark 4.6. Although we do not need it here, it may be shown that
−→
Σ∗ is a regular

language, that is there is a finite state automaton A, such that the language L(A)

recognised by the automaton is L(A) =
−→
Σ∗. The proof of this can be found in [15]. The

idea is to use an automaton saturation procedure. We begin with a finite state automaton

B with L(B) = Σ∗ and then add ε transitions wherever we can read xx−1, and repeat this

process until no more ε transitions need to be added. Note that given reduced word u,
we can check if u ∈ V by testing whether u ∈ L(A).

Define U ⊆ −→
Σ∗ in the following way

U = {β ∈
−→
Σ∗ : β−1 ∈

−→
Σ∗}.

Note that every word u ∈ U represents an invertible element of M.

The important thing to note about the set U is the following: Let p be a prefix of some

relator ri with i ∈ I. Then, by definition, p ∈ Σ⊆−→
Σ∗. If, in addition, p ∈ U , then p is an

invertible prefix of a relator, and we will prove below that this invertible prefix p will

be computed by the Benois algorithm. However, it is very important to note that the

converse need not be true since it is possible that p ∈ −→
Σ∗, p−1 
∈ −→

Σ∗ but red(p−1) ∈ −→
Σ∗.

Lemma 4.7. Let p be a prefix of the relator ri, where i ∈ I. If p ∈ U , then p is an

invertible prefix of ri computed by the Benois algorithm.

Proof. Since p ∈ U , it follows by definition of U that p−1 ∈ −→
Σ∗. Hence red(p−1) ∈ −→

Σ∗,

since by definition the set
−→
Σ∗ is closed under the operation of partial free reduction of

words, and hence

red(p−1) ∈ red(
−→
Σ∗) = red(Σ∗) = V.

It follows from the definition of the Benois algorithm that p is an invertible piece of ri
computed by the Benois algorithm.

Remark 4.8. It is important to note that we are not claiming that U contains all the

invertible prefixes of relators computed by the Benois algorithm.

We will now prove that U does contain all prefixes of relators computed by the Adjan

algorithm. Combining this with Lemma 4.7 will prove Theorem 4.5.

Lemma 4.9. Let γ,δ ∈A
∗
with γ → δ. Then for any decomposition δ ≡ δ1δ2, there exists

a decomposition γ ≡ γ1γ2, such that γ1 →∗ δ1 and γ2 →∗ δ2.

Proof. Since γ → δ, we can write γ ≡ γ′xx−1γ′′, where δ ≡ γ′γ′′ and x ∈A.

Now we have δ1δ2 ≡ δ ≡ γ′γ′′. Then γ′ is a prefix of δ1, or else γ′′ is a suffix of δ2.
We consider the former case, and the latter is dealt with analogously. Write δ1 ≡ γ′μ. So
γ′γ′′ ≡ δ≡ δ1δ2 ≡ γ′μδ2. Hence, γ

′′ ≡ μδ2 and so γ ≡ γ′xx−1μδ2. So if we set γ1 ≡ γ′xx−1μ

and γ2 ≡ δ2, then γ ≡ γ1γ2 and γ1 →∗ γ′μ≡ δ1 and γ2 →∗ δ2, as required.

https://doi.org/10.1017/S1474748023000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000439


1898 R. D. Gray and N. Ruškuc

Corollary 4.10. Let γ,δ ∈ A
∗
with γ →∗ δ. Then for any decomposition δ ≡ δ1δ2, there

exists a decomposition γ ≡ γ1γ2, such that γ1 →∗ δ1 and γ2 →∗ δ2.

Proof. Since γ →∗ δ, we can write

γ ≡ w0 → w1 → . . . → wk ≡ δ.

We have wk ≡ δ ≡ δ1δ2. Then applying Lemma 4.9 to wi → wi+1 for all i, it follows that
each wi can be decomposed as wi ≡ w′

iw
′′
i and

w′
0 → w′

1 → . . . → w′
k−1 → δ1 and w′′

0 → w′′
1 → . . . → w′′

k−1 → δ2.

Setting γ1 ≡ w′
0 and γ2 ≡ w′′

0 then proves the result.

Note that the set Σ∗ is clearly prefix closed.

Lemma 4.11. The set
−→
Σ∗ is prefix closed, that is for any words α,β ∈A

∗
if α ∈ −→

Σ∗ and
β is a prefix of α, then β ∈ −→

Σ∗.

Proof. Let β be a prefix of α. Write α ≡ ββ′. Since α ∈ −→
Σ∗, there exists a word γ ∈ Σ∗,

such that γ →∗ α≡ ββ′. It follows from Corollary 4.10 that there exists a decomposition
γ ≡ γ1γ2 with γ1 →∗ β and γ2 →∗ β′. Since γ ∈ Σ∗ and γ1 is a prefix of γ, it follows that

γ1 ∈ Σ∗. Since γ1 ∈ Σ∗ and γ1 →∗ β, it follows that β ∈ −→
Σ∗.

Note that Σ∗ is closed under products.

Lemma 4.12. The set
−→
Σ∗ is closed under products, that is if α ∈ −→

Σ∗ and β ∈ −→
Σ∗, then

αβ ∈ −→
Σ∗.

Proof. Let α0,β0 ∈ Σ∗, such that α0 →∗ α and β0 →∗ β. It follows that α0β0 ∈ Σ∗ with

α0β0 → αβ, hence, αβ ∈ −→
Σ∗.

Lemma 4.13. We have ri ∈ U for all i ∈ I.

Proof. By definition of Σ, both ri ∈ Σ and r−1
i ∈ Σ. Since Σ is a subset of

−→
Σ∗, it follows

from the definition of U that ri ∈ U .

The following is immediate from the definition of U .

Lemma 4.14. The set U is closed under inverses, that is if α ∈ U , then α−1 ∈ U .

Lemma 4.15. The set U is closed under products, that is if α ∈ U and β ∈ U , then

αβ ∈ U .

Proof. Since U is closed under inverses by Lemma 4.14, it follows that α,α−1,β,β−1 ∈−→
Σ∗.

But
−→
Σ∗ is closed under products by Lemma 4.12, hence, αβ ∈−→

Σ∗ and (αβ)−1 ≡ β−1α−1 ∈−→
Σ∗, hence, αβ ∈ U by definition of U .

Note that the set U will not in general be closed under prefixes.

Lemma 4.16. The set U is closed under partial free reductions, that is if α ∈ U and

α→∗ β, then β ∈ U .

https://doi.org/10.1017/S1474748023000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000439


On groups of units of special and one-relator inverse monoids 1899

Proof. Since α ∈ U , it follows from the definition of U that α ∈ −→
Σ∗ and α−1 ∈ −→

Σ∗. Since
α→∗ β, it follows from the definition of→∗ that α−1 →∗ β−1. Hence, β ∈−→

Σ∗ and β−1 ∈−→
Σ∗.

Since β ∈ −→
Σ∗ and β−1 ∈ −→

Σ∗, it follows from the definition of U that β ∈ U .

We are now in a position to prove the key lemma that we need to prove our main result

relating the Benois algorithm and the Adjan algorithm.

Lemma 4.17. The set U is closed under the Adjan overlap algorithm, that is for all words

α,β,γ ∈ A
∗
, if αβ ∈ U and βγ ∈ U , then {α,β,γ} ⊆ U . In other words, the submonoid U

of A
∗
has property (A).

Proof. Since αβ,βγ ∈ U and U is closed under inverses by Lemma 4.14, it follows that

{αβ, β−1α−1, βγ, γ−1β−1} ⊆ U ⊆
−→
Σ∗.

Since
−→
Σ∗ is prefix closed by Lemma 4.11, and β−1α−1,βγ ∈−→

Σ∗, it follows that β−1,β ∈−→
Σ∗,

which implies β ∈ U and β−1 ∈ U . Since U is closed for products by Lemma 4.15, and

β−1 ∈ U and βγ ∈ U , it follows that β−1βγ ∈ U , and hence, γ ∈ U since U is closed under

partial free reductions by Lemma 4.16.
Also, αβ ∈ U and β−1 ∈ U implies αββ−1 ∈ U by Lemma 4.15, which thus α ∈ U by

Lemma 4.16.

This completes the proof that {α,β,γ} ⊆ U .

We now have all we need to prove our main result of this section.

Proof of Theorem 4.5. Let p be some prefix of some relator ri, with i∈ I. Write ri ≡ pq.

Suppose p is an invertible prefix of ri computed by the Adjan algorithm. By definition of

the Adjan algorithm, this means that p belongs to the submonoid U(R) of A
∗
generated

by the finite biprefix code B(R) computed by the Adjan algorithm, where R= {ri : i∈ I}.
Since ri ∈ U for all i ∈ I by Lemma 4.13 and U is closed under the Adjan algorithm by

Lemma 4.17, it follows that U is a submonoid of A
∗
with R ⊆ U and U has property

(A). By definition, U(R) is the smallest submonoid of A
∗
, such that R⊆ U(R) and U(R)

satisfies (A). Hence, it follows that U(R) ⊆ U . Since p belongs to U(R) by assumption,

it follows that p also belongs to U . But then by Lemma 4.7, since p ∈ U , it follows that p
is an invertible prefix of a relator (specifically of the relator ri) computed by the Benois
algorithm.

Definition 4.18. We call a set of words W ⊆X∗ overlap free, if for all w1,w2 ∈W , we
have

pref(w1)∩ suff(w2) =

{
{ε} if w1 
= w2

{ε,w1} if w1 = w2.

Definition 4.19. We call a set W ⊆A
∗
i-overlap free if W ∪W−1 is overlap free.

Remark 4.20. It is not clear (and possibly not true in general) that the set of Benois

pieces is i -overlap free. However, it is a consequence of the results above that if all the
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relators ri (i ∈ I) are reduced words, then the Benois pieces are all i -overlap free. To see

this, suppose that p is a prefix of ri with p ∈ V and red(p−1) ∈ V (i.e. p is computed

by the Benois algorithm). Since p is a reduced word, it follows that p−1 is also reduced,

so p−1 ≡ red(p−1) ∈ V . So we have both p ∈ V and p−1 ∈ V , where V = red(Σ∗) ⊆ −→
Σ∗.

Since p ∈ −→
Σ∗ and p−1 ∈ −→

Σ∗, it follows from the definition of U that p ∈ U . It then follows

by Lemma 4.17 that when all the relators ri are reduced words, all the pieces of relators

computed by the Benois algorithm also belong to the set U . But then since U is closed
under taking inverses by Lemma 4.14, it follows from Lemma 4.17 that the set pieces of

the relators computed by the Benois algorithm is i -overlap free.

Example 4.21. We now illustrate the Benois algorithm by applying it to the O’Hare

monoid

O = Inv
〈
a,b,c,d |abcdacdadabbcdacd= 1

〉
= Inv

〈
a,b,c,d | r = 1

〉
.

We claim that when applied to this example, the Benois algorithm will compute the

following decomposition of r into invertible pieces

r ≡ abcd ·acd ·ad ·abbcd ·acd.

For notational convenience, we set

α≡ abcd, β ≡ acd, γ ≡ ad, δ ≡ abbcd.

Using the same notation as above, we have

Σ = pref(r)∪ suff(r)−1 = {a,ab,abcd,abcda, . . . ,r}∪{d−1,(cd)−1,(acd)−1, . . . ,r−1},

and V = red(Σ∗), which is a subset of FA. Since r is a positive word, it follows that for

every prefix p of r, both p and p−1 are reduced words. It follows that the Benois algorithm
will compute the set of all prefixes p of r, such that p−1 ∈ V .

Let us now list some of the prefixes p that this algorithm will compute. It is a

straightforward calculation to verify that

red( β(αβγδβ)−1(αβγ) )≡ δ−1

and

red(β−1αδ−1)≡ α−1.

Then, we have:

α−1 ≡ red(β−1αδ−1)≡ red( β−1 ·αβ · (αβγδβ)−1 · (αβγ) ) ∈ V

(αβ)−1 ≡ β−1α−1 ≡ red( β−1β−1αδ−1 )≡ red( β−1 ·β−1 ·αβ · (αβγδβ)−1 · (αβγ) ) ∈ V

(αβγ)−1 ≡ red((δβ)(αβγδβ)−1)≡ red((αβ−1α)β(αβγδβ)−1)

≡ red(α ·β−1 ·αβ · (αβγδβ)−1) ∈ V

(αβγδ)−1 = red(β(αβγδβ)−1) = red(αδ−1α(αβγδβ)−1)

= red((αβ) · (δβ)−1 ·α · (αβγδβ)−1) ∈ V.

https://doi.org/10.1017/S1474748023000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000439


On groups of units of special and one-relator inverse monoids 1901

This proves that the Benois algorithm computes a decomposition which is a refinement of
the above decomposition. To show that it is exactly this decomposition that is computed,

it may be shown, by appealing to bicyclic monoid homomorphic images of this monoid,

that none of the pieces of this decomposition has a proper nonempty invertible prefix.
Indeed, if there were a finer decomposition into minimal invertible pieces, then one quickly

sees that in all possible cases, this would imply that all the generators are invertible, and

so the monoid O would need to be a group. However, O is not a group since the map

from {a,b,c,d}∗ onto {x,y}∗ defined by a �→ a, b �→ 1, c �→ 1 and d �→ d induces a surjective
a homomorphism from O onto the bicyclic monoid Inv

〈
a,d |ad= 1

〉
.

We leave the details of this as an exercise for the reader.

5. Examples

This section will contain some examples of one-relator groups, and one-relator inverse

monoids, to which the results of the previous sections can be applied. We have already
seen some applications in Section 3, for example to the case where the pieces pi are powers

of generators from A (see (F1) in Section 3).

We are motivated by the question of whether the group of units of a one-relator inverse
monoid is a one-relator group. Recall that at the start of Section 3, we gave the example

of the one-relator inverse monoid

M = Inv
〈
a,b,c |a(bc2b−1)a(bc3b−1)a(bc2b−1)a= 1

〉
,

with minimal invertible pieces a, bc2b−1, and bc3b−1. We observed there that

Gp
〈
x,y,z |xyxzxyx= 1

〉
= Fx,y

is not a presentation for the group of units of the monoidM. A key feature of that example

was that {a,bc2b−1,bc3b−1} is not a basis for Gp
〈
a,bc2b−1,bc3b−1

〉
≤ Fa,b,c. On the other

hand, {a,bcb−1} is a basis for Gp
〈
a,bc2b−1,bc3b−1

〉
≤ Fa,b,c, and this basis satisfies the

conditions of Theorem 3.11 (setting μ(a) = a and μ(bcb−1) = c). Using this fact, we can

express each of the original pieces {a,bc2b−1,bc3b−1} in terms of the basis {a,bcb−1}, which
rewrites the relator word

a(bc2b−1)a(bc3b−1)a(bc2b−1)a

as

a(bcb−1)2a(bcb−1)3a(bcb−1)2a

and then by Corollary 3.13, we can conclude that the group of units ofM is the one-relator
group with presentation

Gp
〈
x,t |xt2xt3xt2x= 1

〉
.

It is natural to ask whether this approach might be used for other one-relator inverse
monoids. As explained in the Introduction, one of the key motivating examples for the

work is the O’Hare monoid. We shall now show how the group of units of the O’Hare

monoid can indeed be computed using a similar approach to the example above.
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5.1. The group of units of the O’Hare monoid

Recall from the Introduction that the O’Hare monoid O is the inverse monoid defined by

the following inverse monoid presentation

Inv
〈
a,b,c,d |abcdacdadabbcdacd= 1

〉
= Inv

〈
a,b,c,d | r = 1

〉
.

As explained in the Introduction, this was one of the main motivating examples which
prompted the research presented in this paper. As already mentioned above, Margolis

et al. [22] proved that the decomposition into minimal invertible pieces of this defining

relator is

r ≡ abcd ·acd ·ad ·abbcd ·acd.

They prove this using van Kampen diagrams and Stephen’s procedure. We gave an

alternative proof of this fact in Example 4.21 using the Benois algorithm (see Lemma

4.4). As in Example 4.21, for notational convenience, we set

α≡ abcd, β ≡ acd, γ ≡ ad, δ ≡ abbcd.

We shall now show how the results from Section 3 can be applied to prove that the group

of units U(O) of the O’Hare monoid O is the free group of rank 2.

This is interesting for two reasons. Firstly, it shows that the groups of units of the

O’Hare monoid O is a one-relator group (since every free group is vacuously a one-relator
group). Secondly, while the group of units of O is a one-relator group, the group of units

is not isomorphic to the group

H =Gp
〈
α,β,γ,δ |αβγδβ = 1

〉
,

which is the presentation obtained by replacing each minimal invertible piece by a letter
in the obvious way. Indeed, in the presentation for H, we can remove the redundant

generator δ, and so H is the free group on {α,β,γ}.
This gives another example (in addition to the example discussed at the start of

Section 3) showing that Makanin’s theorem for special monoids (Theorem 1.2) does not

generalise directly to special inverse monoids. We will construct further examples later

in this paper which show just how dramatically Makanin’s theorem fails to generalise to
special inverse monoids.

So we are left with the task of proving that the group of units U(O) of O is a free group

of rank 2.

The first step will be to write down an alternative one-relator presentation for O which
has minimal invertible pieces that satisfy condition (F3) from Section 3.

Since α, β, γ and δ all represent invertible elements of the monoid O, it follows that

δα−1 = abbcdd−1c−1b−1a−1,

and

βγ−1 = acdd−1a−1

are both invertible in O. Hence, by Lemma 2.2, it follows that these words are equal in

O to the words obtained by freely reducing them, namely, the words aba−1 and aca−1.
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This shows that

aba−1, aca−1 and ad

are all invertible in O. It follows that any product of these words is also invertible in O.

In particular, the word

u≡ (aba−1)(aca−1)(ad)(aca−1)(ad)(ad)(aba−1)(aba−1)(aca−1)(ad)(aca−1)(ad)

is invertible in O. Since this word is invertible, it follows from Lemma 2.2 that it is equal

in O to the word obtained by freely reducing this word. But it is easy to see that the
free reduction of this word gives the defining relator r in the original presentation for O.

Hence, u= r = 1 holds in the monoid O.

Conversely, let M be the inverse monoid defined by the presentation

Inv
〈
a,b,c,d |u= 1

〉
,

where u is the word above. Since u is invertible in M, it follows that u = red(u) in M.

Hence, u= r in M.
Combining these observations, we have proved

Inv
〈
a,b,c,d | r = 1

〉
= Inv

〈
a,b,c,d | r = 1,u= 1

〉
= Inv

〈
a,b,c,d |u= 1

〉
.

So the O’Hare monoid is defined by the presentation

Inv
〈
a,b,c,d | (aba−1)(aca−1)(ad)(aca−1)(ad)(ad)(aba−1)(aba−1)(aca−1)(ad)(aca−1)(ad) = 1

〉
.

Next, we claim that working with this new presentation for O, the minimal invertible

pieces of the defining relator u are aba−1, aca−1 and ad. We already proved above that
each of these words represents an invertible element of O, so these are certainly invertible

pieces of the defining relator u. For minimality, if any of these pieces was not a minimal

invertible piece, then in all cases, it would follow that a is invertible. But a is not invertible
in O since ad is a minimal invertible piece of r.

We claim that the decomposition of u into minimal invertible pieces in the presentation

Inv
〈
a,b,c,d |u= 1

〉
satisfies condition (F3) from Section 3. For this, we just need to observe

that each piece contains a letter which appears in that piece exactly once, and does not
appear in any of the other pieces. Here, we can take b in the piece aba−1, c in the piece

aca−1 and the letter d in the piece ad.

Since condition (F3) holds, it follows that the hypotheses of Corollary 3.13 are satisfied,
and hence, applying this corollary, we conclude that the group of units U(O) of O is

isomorphic to

Gp
〈
x,y,z |xyzyzzxxyzyz = 1

〉
.

Comparing this with the example at the start of Section 3, what we have proved here

is that the situation with the O’Hare monoid is similar. Indeed, the original set of

pieces {abcd,acd,ad,abbcd} is not a basis for Gp
〈
abcd,acd,ad,abbcd

〉
≤ Fa,b,c,d. On the

other hand, {aba−1,aca−1,ad} is a basis for Gp
〈
abcd,acd,ad,abbcd

〉
≤ Fa,b,c,d, and this

basis satisfies the conditions of Theorem 3.11 (setting μ(aba−1) = b, μ(aca−1) = c and

μ(ad) = d). If we rewrite the pieces in the original O’Hare presentation in terms of this
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basis and then apply Corollary 3.13, we conclude (via the calculations above) that the

group of units of O is isomorphic to the one-relator group Gp
〈
x,y,z |xyzyzzxxyzyz = 1

〉
.

Now, we have

Gp
〈
x,y,z |xyzyzzxxyzyz = 1

〉
=Gp

〈
x,y,z,t |xttzxxtt= 1,t= yz

〉
=Gp

〈
x,y,z,t |xttzxxtt= 1,y = tz−1

〉
=Gp

〈
x,z,t |xttzxxtt= 1

〉∼= FG(x,t).

The last isomorphism follows upon removing the redundant generator z in the previous

presentation. This completes the proof that the group of units of the O’Hare monoid is a
free group of rank 2.

Both the O’Hare monoid and the example at the start of Section 3 are examples of

one-relator inverse monoids

Inv
〈
A | r = 1

〉
,

which show that the obvious generalisation of Makanin’s theorem to special one-relator

monoids does not hold. However, for both these examples, it was possible to resolve the
issue by finding a suitable basis for the subgroup of FA generated by the pieces of r

and then rewriting each of the pieces, and the relator r, in terms of this new basis. In

both cases, this gave us a one-relator presentation for the group of units of the inverse
monoid in question. Specifically, these examples do not resolve the question of whether

the group of units of a special one-relator inverse monoid is a one-relator group. Given

these examples, it is natural to ask whether in fact the key property that we need for a set
of pieces to be free for substitutions is that they are a basis for the subgroup of FA that

they generate (like in these two examples). The following example which was originally

due to Higman shows that this is not the case. Specifically, it shows that the conditions

in the theorems in Section 3 cannot be weakened to just insisting that the set of pieces
is Nielsen reduced.

5.2. The G. Higman example

This example appears in the following paper of Steve Pride [24], where he attributes the

example to Graham Higman. As explained there, if we let

B =Gp
〈
a,b | b−1a2b= a3

〉
,

then the subgroup Gp
〈
a4,b

〉
≤B is not free and every presentation of the group Gp

〈
a4,b

〉
with respect to the generating set {a4,b} requires at least two relators. Note, the group

B is the well-known Baumslag-Solitar group BS(2,3).

This example arose as part of an investigation by Pride of conditions under which
subgroups of one-relator groups are again one-relator. One interesting thing in this

example is that the two-generated subgroup Gp
〈
a4,b

〉
of the one-relator group B does

not admit a one-relator presentation with respect to the generators {a4,b} (as proved
by Higman). On the other hand, the subgroup Gp

〈
a4,b

〉
is actually a one-relator group.

Indeed, it may be shown that Gp
〈
a4,b

〉
=B, that is, {a4,b} is a generating set for B. To

see this, it suffices to observe that in B, we have
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a2 = [a6](a4)−1 = [(b−1a2b)2](a4)−1 = [b−1a4b](a4)−1 ∈Gp
〈
a4,b

〉
.

But now since a2 and b both belong to Gp
〈
a4,b

〉
, it follows that a3 = b−1a2b ∈Gp

〈
a4,b

〉
,

and finally, since a3 and a2 both belong to Gp
〈
a4,b

〉
, it follows that a= (a3)(a2)−1 also

belongs to Gp
〈
a4,b

〉
. Hence, Gp

〈
a4,b

〉
= Gp

〈
a,b

〉
= B. So this is a concrete example

showing that a two-generated one-relator group can admit a one-relator presentation

with respect to a generating set of size two, but not admit any one-relator presentation

with respect to another generating set of size two. Among other things, this shows how

sensitive the property of being one-relator is to the choice of finite generating set for the
group.

The following result shows how this example can be adapted to give an example of a

Nielsen reduced set which is not free for substitutions into one-relator groups. We shall
not need the definition of Nielsen reduced here. The definition can be found in [18, page

6]. The thing that is relevant for us here is the result (see [18, Proposition 2.6]) that if

X ⊆ FA is Nielsen reduced, then Gp
〈
X
〉
≤ FA is free with basis X.

Proposition 5.1. Let X = {ab−1a2,b,a4}, which is Nielsen reduced a subset of the free

group Fa,b. Let φ : Fx,y,z → Fa,b be the unique homomorphism extending

x �→ ab−1a2, y �→ b, z �→ a4.

Set

K =Gp
〈
x,y,z |xyz−1 = 1

〉
and

G=Gp
〈
a,b | (ab−1a2)(b)(a−4) = 1

〉
.

Let φ̂ : K → G be the homomorphism induced by φ. Then φ̂ is not injective, and
hence is not an isomorphism between K and the subgroup H of G generated by the set

X = {ab−1a2,b,a4}. That is, the Nielsen reduced set X = {ab−1a2,b,a4} is not free for

substitution into the one-relator group Gp
〈
x,y,z |xyz−1 = 1

〉
via x �→ ab−1a2,y �→ b and

z �→ a4.

Proof. It is a straightforward exercise to check that X is a Nielsen reduced set of reduced
words in the free group Fa,b, and hence, Gp

〈
X
〉
≤Fa,b is freely generated by X. Certainly,

φ defines a homomorphism since φ(xyz−1) = 1 in G. Clearly, K is isomorphic to the free

group on y and z. In particular, the words z2y and yz3 represent distinct elements in the
group K. On the other hand

φ(z2y) = φ(yz3)

in G. Indeed, in G, we have a2b= ba3, and hence

φ(z2y) = a8b= (a2)4b= b(a3)4 = ba12 = φ(yz3),

as required.

Note that as it stands, the example in Proposition 5.1 does not immediately give

a special inverse monoid with interesting properties, since the set X = {ab−1a2,b,a4}
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cannot be the set of minimal invertible words in an inverse monoid presentation (since,

for instance, a4 invertible implies a is invertible, and hence, a4 is not a minimal invertible

piece). Also, in this example, the subgroup generated by the pieces X = {ab−1a2,b,a4} is
in fact a one-relator group since (as explained before the statement of the theorem), but

this theorem shows that it does not admit the ‘obvious’ one-relator presentation given by

replacing the pieces by letters in the obvious way.
However, this example is the first evidence that there may exist examples of one-relator

special inverse monoids with group of units not being a one-relator group. This will be

explored further in the next section.

6. A construction

In this section, we shall give a general construction, which will then be used in the next

section to give examples of special inverse monoids that exhibit unexpected behaviour in

terms of their groups of units.

The construction we give here was used in [6] to give an example of a one-relator special
inverse monoid with undecidable word problem. It has also been used in the papers [7]

and [9] to construct counterexamples to questions about the prefix membership problem

for one-relator groups, and the word problem for finitely presented inverse monoids with
hyperbolic Schützenberger graphs. To make this paper self-contained, we provide full

details of the construction here. Also, we use slightly different notational conventions

than those used in [6]. Some of the results we need about this construction have already
been proved in [6], but there are some other facts about the construction that we need

here that are not proved in that paper, so we will provide the necessary proofs.

6.1. The construction

Let A = {a1, . . . ,an} be a finite nonempty alphabet. Let Q = {ri : i ∈ I} be a subset

of A
∗
, where I is nonempty, and we assume there is a distinguished symbol 1 ∈ I. Let

W = {wj : j = 1, . . . ,k} be a finite subset of A
∗
. Let t be a symbol not in A.

We define two groups which depend on Q by

KQ =Gp
〈
A | ri = 1 (i ∈ I)

〉
(25)

GQ =Gp
〈
A,t | ri = 1 (i ∈ I)

〉
=KQ ∗Ft. (26)

Given a list of words u1, . . . ,um ∈A
∗
, we define

e(u1,u2, . . . ,um) = u1u
−1
1 u2u

−1
2 . . . umu−1

m ,

noting that this clearly freely reduces to 1 in the free group FA.

We also define two inverse monoids, the first depending on Q, and the second on both

Q and W, as follows:

NQ = Inv
〈
A | ri = 1 (i ∈ I)

〉
(27)

MQ,W = Inv
〈
A,t |fr1 = 1,ri = 1 (i ∈ I \{1})

〉
, (28)
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where

f = e(a1, . . . ,an,tw1t
−1, . . . ,twkt

−1,a−1
1 , . . . ,a−1

n ). (29)

We make the following observations about the groups and monoids we have just defined:

(M1) KQ is the maximal group image of NQ, and GQ is the maximal group image of
MQ,W (under the natural homomorphisms).

(M2) Presentation (28) for MQ,W is equivalent to

MQ,W = Inv
〈
A,t | ri = 1, aja

−1
j = a−1

j aj = 1, (30)

twlt
−1tw−1

l t−1 = 1 (i∈I, j ∈ [n], l∈[k])
〉

in the sense that two words over (A∪{t}) are equal modulo the relations of (28)

if and only if they are equal modulo the relations (30).

(M3) All the generators aj ∈A are invertible in MQ,W , while t and all of the elements

twlt
−1 are right invertible in M.

(M4) MQ,W maps naturally onto the bicyclic monoid B = Inv
〈
b | bb−1 = 1

〉
via aj �→ 1,

t �→ b.

(M5) t is not invertible in MQ,W .

Indeed, observation (M1) is immediate from the definitions and the general fact that the

maximal group image of an inverse monoid defined by a presentation is the group defined

by the same presentation. (M2) can be proved using Lemma 2.2. A full proof is given in
[6, Lemma 3.3]. (M3) follows from (M2) and the defining relations in the presentation

(30). (M4) is immediate from the fact that MQ,W is given by the presentation (30) and

then the observation that replacing a by 1 and t by b in that presentation just leaves the
relation bb−1bb−1 = 1 which certainly holds in B. (M5) follows from (M4) since b is not

invertible in the bicyclic monoid B, and the image of an invertible element of a monoid

under a surjective homomorphism must again be an invertible element.
We will make use of the following general lemma, which follows immediately from the

universal properties of free products.

Lemma 6.1. Let G and H be groups. Let M be a submonoid of G and N be a submonoid

of H. Then the submonoid of the free product G∗H generated by M ∪N is isomorphic to
M ∗N .

The following lemma is probably well known, but we give a proof for completeness.

Lemma 6.2. Let H be a group. Then the subgroup of the free product G=H ∗Ft generated
by H ∪ tHt−1 is isomorphic to H ∗H.

Proof. Set H = tHt−1 ≤ G =H ∗Ft. Let L be the subgroup of G generated by H ∪H.

Now H and H are subgroups of L and H ∩H = ∅ by the normal form theorem for
elements in free products of groups. Given a reduced sequence g1,g2, . . . ,gn, where the gi
all belong to L and alternate between H and H, if n > 0, then it again follows from the

normal form theorem in G that g1g2 . . . gn 
= 1. Thus, all the conditions of [18, Lemma 1.7]
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are satisfied, and we conclude that L ∼=H ∗H. Clearly, H ∼=H since they are conjugate
subgroups of G. This completes the proof that L∼=H ∗H.

We are now in a position to state and prove the main result of this section, which

establishes the key properties of the monoid MQ,W that we will need in our applications

and examples in the next section.

Theorem 6.3. With the above definitions and notation, the special inverse monoid

MQ,W has the following properties.

(i) The presentation (28) of MQ,W has the same number of defining relations as the

original presentation (25) of KQ.

(ii) The monoid MQ,W is E-unitary.

(iii) Let TW be the submonoid of the group KQ generated by W. Then the submonoid

of right units R(MQ,W ) of MQ,W is isomorphic to the submonoid of the group

GQ =KQ ∗Ft generated by {t}∪KQ∪ tTW t−1.

(iv) Let VQ,W be the submonoid of R(MQ,W ) generated by A∪A−1 ∪ tWt−1. Then
VQ,M is isomorphic to the free product KQ ∗TW and the complement of VQ,W in

R(MQ,W ) is an ideal of R(MQ,W ).

(v) The group of units U(MQ,W ) of MQ,W is isomorphic to the free product KQ ∗HW ′,

where HW ′ is the subgroup of KQ generated by the subset W ′ of W defined by

W ′ = {wl ∈W : twlt
−1 is invertible inMQ,W }.

In particular, if W =W−1, then W ′ =W , and so U(MQ,W )∼=KQ ∗HW .

(vi) If R(MQ,W ) is finitely presented, then KQ and TW are both finitely presented.

Proof. (i) is obvious since they both have |I| defining relations, and (ii) is [6, Theorem
3.8].

(iii) By [21, Lemma 1.5], since MQ,W is E-unitary, it follows that the canonical

homomorphism θ : MQ,W → GQ = KQ ∗Ft from MQ,W onto its maximal group image
(see (M1)) induces an embedding of each R-class of M into GQ. In particular, θ induces

an embedding of the right units R(MQ,W ) into GQ. By the argument given in the proof

of [12, Proposition 4.2], it follows that R(MQ,W ) is generated by the prefixes of the
defining relators in the presentation (30) of MQ,W . Note that in [12, Proposition 4.2], an

assumption is made that the defining relators are all cyclically reduced words, but this

hypothesis is not used in the proof, and so the statement holds with that assumption

removed (cf. Theorem 1.3).
This implies that R(MQ,W ) is isomorphic to the submonoid of GQ generated by the

prefixes of the defining relators in the presentation (30). We claim that this is equal to

the submonoid of GQ generated by the set

Y =A∪A−1∪{t}∪{twlt
−1 : l ∈ [k]}.

Indeed, we have already observed that all these words represent right invertible elements

(see (M3)). Furthermore, all the prefixes of relators in (30) are equal in MQ,W to products
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of those words. This is immediate for the prefixes of ri, aja
−1
j , a−1

j aj , as they are products

of generators from A. The proper prefixes of twlt
−1 are products of generators from

A∪{t}. Finally, longer prefixes of twlt
−1tw−1

l t−1 are equal in MQ,W to prefixes of twlt
−1

by Lemma 2.2(i). This completes the proof of the claim that R(MQ,W ) is isomorphic to

the submonoid of GQ generated by Y.
Since the submonoid of GQ generated by A∪A−1 is KQ, and the submonoid of GQ

generated by {twjt
−1 : j ∈ [k]} is tTW t−1, this completes the proof of (iii).

(iv) As in the previous part, E-unitarity of MQ,W implies that VQ,W is isomorphic
to the submonoid of GQ generated by KQ ∪ tTW t−1. By Lemma 6.2, the submonoid of

KQ ∗Ft generated by KQ∪ tKQt
−1 is isomorphic to KQ ∗KQ. Combining this fact with

Lemma 6.1, we conclude that the submonoid of KQ ∗Ft generated by KQ ∪ tTW t−1 is

isomorphic to KQ ∗TW . Hence, we have shown that VQ,W is isomorphic to KQ ∗TW .
To see thatR(MQ,W )\VQ,W is an ideal inR(MQ,W ), it suffices to observe that under the

natural epimorphism from MQ,W onto the bicyclic monoid B (see (M4)), the submonoid

R(MQ,W ) is mapped onto R′ = {bi : i ∈ N0}, while R(MQ,W ) \ VQ,W is mapped onto
V ′ = {bi : i ∈ N}, and that V ′ is an ideal of R′. Since the preimage of an ideal, with

respect to a surjective homomorphism, is itself an ideal, this completes the proof that the

complement of VQ,W in R(MQ,W ) is an ideal of R(MQ,W ).
(v) Observe that U(MQ,W ) is contained in R(MQ,W ) and the complement R(MQ,W )\

U(MQ,W ) is an ideal of the monoid R(MQ,W ). Also, it follows from the proof of part

(iii) that R(MQ,W ) is the submonoid of MQ,W generated by {t}∪A∪A−1∪ tWt−1. Since

R(MQ,W )\U(MQ,W ) is an ideal of the monoid R(MQ,W ), it follows that

Z = ({t}∪A∪A−1∪ tWt−1)∩U(MQ,W )

is a monoid generating set for U(MQ,W ) (this follows from the more general fact [6,

Lemma 3.5]). By (M5), t is not invertible inMQ,W and hence t 
∈Z. By (M3), A∪A−1 ⊆Z.

The remaining elements of Z are those from the set tWt−1 ∩U(MQ,W ) which is by
definition equal to the set tW ′t−1, where

W ′ = {wl ∈W : twlt
−1 is invertible inMQ,W }.

This proves that the group of units U(MQ,W ) is isomorphic to the submonoid of R(MQ,W )

generated by

Z =A∪A−1∪ tW ′t−1.

It follows that the image of U(MQ,W ) under the isomorphism from (iii) is the submonoid
of GQ =KQ ∗Ft generated by the image of Z under the isomorphism from (iii). Since the

submonoid of KQ ∗Ft generated by A∪A−1 is KQ, it follows that the image of U(MQ,W )

under the isomorphism from (iii) is precisely the submonoid of KQ ∗Ft generated by
KQ ∪ tW ′t−1. Since U(MQ,W ) is a group, this must also be equal to the subgroup of

KQ ∗Ft generated by KQ∪ tW ′t−1. Under the isomorphism from (iv), this corresponds to

KQ ∗HW ′ , proving the first assertion. For the second assertion, observe that if W =W−1

then W ′ =W immediately from the presentation (30) for MQ,W .

(vi) If R(MQ,W ) is finitely presented, then by part (iv), it follows that VQ,W is finitely

presented since its complement is an ideal. The fact that finite presentability is inherited
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by submonoids with ideal complement is well-known, for example, it is a corollary of [8,

Theorem B]. Therefore, KQ ∗TW is finitely presented, which implies that KQ and TW

are both finitely presented, being retracts of KQ ∗TW . Here, we have used the fact that
any retract of a finitely presented monoid is again finitely presented. This follows from

the proof of [26, Theorem 3.4] (see, in particular, the remark in [26] immediately after

the proof of Theorem 3.4 of that paper).

7. Applications to further examples

The central theme in this article as outlined in Section 1 has been to investigate the
extent to which analogues of the results of Adjan/Makanin/Zhang for finitely presented

special monoids can be proved for special inverse monoid presentations. Both the example

at the start of Section 3 and the O’Hare monoid example considered in Section 5.1 show
that while the obvious näıve generalisation to special inverse monoids does not hold,

by an appropriate choice of basis, the hypotheses of Theorem 3.1 are satisfied by these

two examples. In particular, in each case, their groups of units are one-relator groups.

As explained in Section 1, it is natural to ask whether the assumptions of Theorem 3.1
are perhaps always satisfied, or at least always in the case of one-relator presentations.

The main results in Section 3 identify several sufficient conditions under which the

assumptions of Theorem 3.1 are satisfied (see, for example, the conditions (F1), (F2),
and (F3)).

In this section, we will use the general construction and Theorem 6.3 from the previous

section to prove that in general, none of the main results of Adjan/Makanin/Zhang for
special monoids can be extended to special inverse monoids.

We also prove a result which shows a close relationship between finite presentability

of the units of special one-relator inverse monoids and the question of coherence of one-

relator groups.

7.1. A one-relator special inverse monoid whose group of units is not

one-relator

If we input a one-relator group KQ into the construction from Section 6, then Theorem

6.3(v) shows that the group of units of the one-relator special inverse monoid MQ,W is

isomorphic to the free product of groups KQ ∗HW , where by appropriate choice of W in

the construction, the group H ′
W can be any finitely generated subgroup of KQ that we

please. In particular, the set W can be chosen so that the group of units of the one-relator

special inverse monoid MQ,W is isomorphic to KQ ∗KQ.

Since in general, the free product KQ ∗KQ of a one-relator group KQ with itself is not
a one-relator group, this can be used to construct examples of special one-relator inverse

monoids whose groups of units are not one-relator. This leads to the following result.

Theorem 7.1. There exists a one-relator special inverse monoid M = Inv
〈
A |w = 1

〉
,

whose group of units G is not a one-relator group with respect to any finite generating

set. Moreover, M can be chosen to be E-unitary.
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Proof. Let A= {a,b,c,d}, let Q= {aba−1b−1cdc−1d−1} and set W = {a±1,b±1,c±1,d±1}.
Then, by Theorem 6.3 (i), (ii), (v), the monoid M = MQ,W is a one-relator E-unitary
special inverse monoid with group of units U(M)∼=K ∗K, where

K =KQ =Gp
〈
a,b,c,d | [a,b][c,d] = 1

〉
=Gp

〈
a,b,c,d |aba−1b−1cdc−1d−1 = 1

〉
.

Note that K is a torsion-free one-relator group. In fact, it is a one-relator surface group:
the fundamental group of a surface of genus 2. To complete the proof, it now suffices to

prove that the free product K ∗K of this one-relator group with itself is not a one-relator

group with respect to any finite generating set. One way to see this is as follows.
It follows from Lyndon’s Identity theorem [17], see also [4, page 37, Example 3], that

H2(K) = Z, where H2(K) denotes the second homology group of K. Indeed, it follows

from Lyndon’s results that if G=Gp
〈
X |s= 1

〉
is a torsion-free one-relator group, where

s is a cyclically reduced word, then

H2(G)∼=
{
Z if s ∈ F ′

X

0 otherwise,

where F ′
X is the derived subgroup of the free group. From H2(K) = Z it follows by [27,

Corollary 6.2.10] or [11, page 220, Theorem 14.2] that

H2(K ∗K)∼=H2(K)⊕H2(K)∼= Z⊕Z.

Clearly, K ∗K is torsion free, since K is torsion free, and thus by Lyndon’s result above, it

follows that K ∗K cannot be a one-relator group with respect to any generating set.

7.2. A one-relator special inverse monoid whose group of units is finitely

presented, but the monoid of right units is not finitely presented

An important structural result arising from the work of Adjan/Makanin/Zhang is that the
monoid of right units of a finitely presented special monoid is isomorphic to a free product

of its group of units and a finitely generated free monoid. The results in this subsection

will show that this is far from being true in the case of special inverse monoids.
Theorem 6.3(vi) tells us that, for that construction, finite presentability of the right

units R(MQ,W ) of the special inverse monoid MQ,W is determined by finite presentability

of the group KQ, and of the submonoid TW of KQ. Since there are examples of finitely
generated submonoids of one-relator groups that are not finitely presented, this leads to

the following result.

Theorem 7.2. There exists a one-relator special inverse monoid M = Inv
〈
A | r = 1

〉
with

the following properties:

• the group of units G of M is finitely presented, and
• the submonoid of right units R of M is finitely generated but not finitely presented.

Hence, there is no finitely presented monoid N, such that R∼=G∗N . In particular, there

is no free monoid F, such that R∼=G∗F . Throughout, M can be chosen to be E-unitary.
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Proof. Let A= {a1, . . . ,an}, let Q=∅ and let W = {w1, . . . ,wk} be a finite subset of A∗,
such that the submonoid of A∗ generated by W is not finitely presented (e.g. [5, Example

4.5]). Then we have

MQ,W = Inv
〈
A,t |e(a1, . . . ,an,tw1t

−1, . . . ,twkt
−1,a−1

1 , . . . ,a−1
n ) = 1

〉
.

The maximal group image of MQ,W is the free group GQ = FA∪{t}, and KQ = FA.

The submonoid TW of KQ generated by W is not finitely presented by choice of W,
and hence by Theorem 6.3(vi), the submonoid of right units R(MQ,W ) is not finitely

presented. The submonoid of right units R(MQ,W ) is finitely generated by Theorem

6.3(iii). Since MQ,W is E-unitary and the maximal group image is free, it follows that

the group of units of MQ,W is a finitely generated free group and, in particular, is
finitely presented. Since the group of units G is finitely presented, it follows that for

any finitely presented monoid N, the free product G∗N is also finitely presented. As R

is not finitely presented, we conclude that there is no finitely presented monoid N, such
that R ∼= G∗N . For the last statement, if R ∼= G∗F , then since R is finitely generated,

it would follow that F is finitely generated, and hence finitely presented (since F is free).

But since G is finitely presented, this contradicts the fact that R ∼=G∗F is not finitely
presented.

Remark 7.3. If we modify the above construction slightly and instead simply take the
inverse monoid

Inv
〈
A,t |e(tw1t

−1, . . . ,twkt
−1) = 1

〉
,

then again the right units will not be finitely presented, but the group of units in

this case will be the trivial group. To prove the latter statement, it is sufficient to
observe that the elements twlt

−1 (with wl nonempty) are not invertible in the submonoid

tTW t−1 of GQ,W = FA∪{t}. To see this, note that in the proof of Theorem 7.2, we took

W = {w1, . . . ,wk} be a certain finite subset of the free monoid A∗. Hence, the submonoid
TW of KQ = FA generated by W must also be contained in A∗, and hence must have a

trivial group of units, since TW ⊆A∗ ⊆ FA and A∗ has a trivial group of units. Since the

submonoid tTW t−1 of GQ,W = FA∪{t} is isomorphic to the monoid TW , it follows that
tTW t−1 also has a trivial group of units.

Remark 7.4. The easy example M = Inv
〈
a,b |aba−1b−1 = 1

〉
shows that even in cases

where the group of units and the monoid of right units are both finitely presented, it is

not the case that the monoid of right units decomposes as the free product of the groups

of units and a free (or free inverse) monoid. Indeed, in this example, it can be shown that
the group of units is trivial, while the submonoid of right units is isomorphic to the free

commutative monoid of rank 2.

Indeed, since aba−1b−1 is cyclically reduced, it follows that the monoid M is E-unitary,
hence the submonoid of right units R of M is isomorphic to the submonoid of the group

G=Gp
〈
a,b |aba−1b−1 = 1

〉
generated by the prefixes a, ab and aba−1 = b. This is clearly

equal to the submonoid of this group generated by {a,b} which has the free commutative
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monoid of rank 2. The group of units of the free commutative monoid of rank 2 is easily
seen to be the trivial group, from which it follows that M has a trivial group of units, as

claimed.

7.3. A finitely presented special inverse monoid whose group of units is not

finitely presented

Another key result due to Makanin (see Theorem 1.2 above) is that the group of units of

a finitely presented special monoid is a finitely presented group, with the same number
of defining relations. Here, we show that the analogous result does not hold for finitely

presented special inverse monoids.

Theorem 7.5. There exists an inverse monoid M defined by a finite special inverse

monoid presentation M = Inv
〈
A | ri = 1 (i ∈ I)

〉
, such that M has nonfinitely presented

group of units G. Moreover, such an example exists where all ri belong to A+, and so are
all cyclically reduced, and M is E-unitary.

Proof. It is well known that there exist finitely presented groups which contain finitely
generated subgroups that are not finitely presented; for instance, such examples can

already be found in the direct product of two free groups [10]. In the construction

described in Section 6, choose Q = {ri : i ∈ I} and W = {wj : j ∈ J}, such that I and

J are finite, W =W−1, and such that the subgroup HW of KQ = Gp
〈
A | ri = 1 (i ∈ I)

〉
generated by W is not finitely presented. Then by Theorem 6.3 (i), (ii), (v), it follows

that MQ,W is an E-unitary finitely presented special inverse monoid with nonfinitely

presented group of units U(MQ,W ). Here, U(MQ,W )∼=KQ ∗HW is not finitely presented
since HW is not finitely presented and HW is a retract of KQ ∗HW . For the last part of

the statement, we start from the presentation (30) for MQ,W

MQ,W = Inv
〈
A,t | ri = 1 (i ∈ I), aa−1 = 1, a−1a= 1 (a ∈A),

twjt
−1tw−1

j t−1 = 1, tw−1
j t−1twjt

−1 = 1 (j ∈ J)
〉
.

We then apply a sequence of Tietze transformations on this presentation: we introduce
new generators t′ and A′ = {a′ : a ∈ A}, representing t−1 and {a−1 : a ∈ A}, and then

replace all occurrences of the inverses by these new generators, to obtain the following

presentation for MQ,W :

Inv
〈
A,A′,t,t′ | ri = 1 (i ∈ I), aa′ = 1, a′a= 1 (a ∈A), tt′ = 1,

twjt
′tw−1

j t′ = 1, tw−1
j t′twjt

′ = 1 (j ∈ J)
〉
,

where v is the word obtained from v by replacing each a−1 by a′ for a ∈A. Then this is a

finite special inverse presentation for the same monoid MQ,W but with the property that
all the defining relators are now strictly positive words.

The examples given by this theorem show just how far the Makanin’s result given in
Theorem 1.2 is from being true for special inverse monoid presentations.

As explained in the proof of Theorem 7.5, there are well-known examples of finitely

presented groups with finitely generated nonfinitely presented subgroups, and the parent
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group can even be chosen to be a very easy group, namely the direct product of two
free groups. The simple nature of these examples makes the process of writing down

concrete examples of inverse monoids satisfying the hypothesis of Theorem 7.5 quite

straightforward. We do just this in the next example.

Example 7.6. We shall now use the result from [10] to write down a concrete example

of a finitely presented special inverse monoid with a nonfinitely presented group of units.
Let KQ be the direct product FG(c1,c2)×FG(d1,d2) of two free groups of rank 2 which

has the presentation

Gp
〈
c1,c2,d1,d2 | cidjc−1

i d−1
j = 1, (i,j ∈ {1,2})

〉
.

Let φ : FG(c1,c2)→ FG(t) be the surjective homomorphism mapping c1 �→ t and c2 �→ 1,

and let ψ : FG(d1,d2) → FG(t) be the surjective homomorphism mapping d1 �→ t and
d2 �→ 1. Let

H = {(u,v) : φ(u) = ψ(v)} ≤KQ.

Then it follows from Grunewald’s result [10] that H is a finitely generated but nonfinitely

presented subgroup of KQ. In particular, a finite group generating set for H is given by

the set {(c1,d1),(c2,1),(1,d2)}. In terms of the presentation above, these generators are
represented by the words c1d1, c2 and d2, respectively. So if we set

W = {c1d1,c2,d2}∪{d−1
1 c−1

1 ,c−1
2 ,d−1

2 },

then W =W−1, and KQ and HW satisfy the hypotheses in the proof of Theorem 7.5.

Using this example, the argument in the proof of Theorem 7.5 then shows that if M is

the finitely presented special inverse monoid defined by the following finite presentation

Inv〈c1,c2,d1d2,t,C1,C2,D1,D2,T |ciCi = 1, Cici = 1, (i ∈ {1,2})
diDi = 1, Didi = 1 (i ∈ {1,2})
tT = 1,

cidjCiDj = 1, (i,j ∈ {1,2}),
tc2TtC2T = 1, tC2Ttc2T = 1,

td2TtD2T = 1, tD2Ttd2T = 1,

tc1d1TtD1C1T = 1, tD1C1Ttc1d1T = 1〉,

then the group of units of M is not finitely presented. Note that all the relators in this

finite presentation are positive words.

7.4. Group of units finitely presented implies coherence

Recall that a finitely presented group G is said to be coherent if every finitely generated

subgroup of G is finitely presented. A well-known question of Baumslag [3, page 76] asks
whether every one-relator group is coherent. This question remains open in general, but

it has recently been shown by Louder and Wilton [16], and independently by Wise [28],

that all one-relator groups with torsion are coherent.
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Given that above we have shown in Theorem 7.1 that the group of units of a special one-
relator inverse monoid need not be a one-relator group, and we have shown in Theorem

7.5 that there are finitely presented special inverse monoids with nonfinitely presented

groups of units, it is natural to ask whether the group of units of a special one-relator
inverse monoid must be finitely presented.

This question remains open, but in the subsection, we present some results which show

a close connection between this question and Baumslag’s open problem.

Theorem 7.7. If all one-relator special inverse monoids M = Inv
〈
A | r = 1

〉
have finitely

presented groups of units, then all one-relator groups are coherent. In fact, if all E-unitary
one-relator special inverse monoids M = Inv

〈
A | r = 1

〉
have finitely presented groups of

units, then all one-relator groups are coherent.

Proof. Suppose there is a one-relator group G=Gp
〈
A | r = 1

〉
which is not coherent. Set

KQ = G, and let W = A−1 be a finite subset of FA, such that the subgroup HW of G
generated by W is not finitely presented. Then Theorem 6.3 (i), (ii), (v) imply that MQ,W

is a one-relator E-unitary special inverse monoid with a nonfinitely presented group of

units.

Since the group of units of an E-unitary special inverse monoid embeds in the maximal

group image, we obtain both directions in that case.

Theorem 7.8. The following are equivalent:

(1) All one-relator groups are coherent.

(2) Every E-unitary one-relator special inverse monoid M = Inv
〈
A | r = 1

〉
has a finitely

presented group of units.

Proof. (ii) ⇒ (i) This follows from Theorem 7.7.

(i) ⇒ (ii) Suppose all one-relator groups are coherent. Then, by Theorem 1.3, given

any E-unitary one-relator special inverse monoid M = Inv
〈
A | r = 1

〉
, its group of units

U(M) is isomorphic to a finitely generated subgroup of the maximal group image

G=Gp
〈
A | r = 1

〉
which is coherent, hence, U(M) is finitely presented.

Combining the argument of (i) ⇒ (ii) from above with the recent result of Louder
and Wilton [16] and independently Wise [28] that one-relator groups with torsion are

coherent, we obtain the following positive result.

Theorem 7.9. Let M = Inv
〈
A | rm = 1

〉
, where m > 1, r ∈ A

∗
and M is E-unitary (in

particular, this is true if r is a cyclically reduced word). Then the group of units G of M
is finitely presented.

8. Concluding remarks and open problems

In this section, we list some open problems which naturally arise from the work done in

this article.
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Question 8.1. Is the group of units of a one-relator inverse monoid Inv
〈
A | r = 1

〉
finitely

presented? How about a torsion one-relator inverse monoid Inv
〈
A | rk = 1

〉
(k > 1)?

Question 8.2. Do the minimal invertible pieces for Inv
〈
A | rk = 1

〉
and Inv

〈
A | r = 1

〉
coincide?

The analogous statement for monoid presentations is true as a consequence of Adjan

overlap algorithm. For inverse monoids, it is certainly true that the minimal pieces of

Inv
〈
A | rk = 1

〉
are invertible in Inv

〈
A | r = 1

〉
, but it is not clear that the converse is true.

Question 8.3. Is the group of units of a one-relator inverse monoid Inv
〈
A | r = 1

〉
embeddable into a one-relator group?

Related to this, we have the following question.

Question 8.4. Does the group of units of a one-relator inverse monoid Inv
〈
A | r = 1

〉
have a soluble word problem?

Question 8.5. Is every finitely generated subgroup of a one-relator group the group of
units of some one-relator inverse monoid?

Question 8.6. Is every finitely generated, recursively presented group the group of units
of a finitely presented special inverse monoid?

Question 8.7. The special one-relator inverse monoid counterexamples in Section 7 are

all of the form Inv
〈
A | r = 1

〉
, where r is not a reduced word. If we add the hypothesis

that r is reduced, or cyclically reduced, is it still possible to construct counterexamples?

For example, it is still open whether for every cyclically reduced word r the group of units

of Inv
〈
A | r = 1

〉
is a one-relator group (although we suspect that it is not true).

Added in proof. It has recently been announced in [13] that all one-relator groups are

coherent. Equivalently, by Theorem 7.8 above, that result shows that every E-unitary one-

relator special inverse monoid has a finitely presented group of units. The corresponding
question in the non-E-unitary case remains open (see Question 8.1 above).
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