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Abstract

We prove some estimates for the variations of transition probabilities of the (1+1)-affine
process. From these estimates we deduce the strong Feller and the ergodic properties of
the total variation distance of the process. The key strategy is the pathwise construction
and analysis of several Markov couplings using strong solutions of stochastic equations.

Keywords: Affine process; strong Feller property; ergodicity; total variation distance;
coupling

2020 Mathematics Subject Classification: Primary 60J80
Secondary 60J85; 60H15

1. Introduction

Let m ≥ 0 and n ≥ 0 be integers. A time-homogeneous (m + n)-dimensional Markov pro-
cesses {Xt : t ≥ 0} = {(Yt, Zt) : t ≥ 0} taking values in D :=R

m+ ×R
n is called an affine Markov

process if its characteristic function satisfies

E
(
ei〈Xt,u〉|X0 = x

) = exp{〈x, ψ(t, iu)〉 + φ(t, iu)}, x ∈ D, u ∈R
m+n, (1.1)

where φ and ψ satisfy certain generalized Riccati differential equations. The affine property
means roughly that the logarithm of the characteristic function is affine with respect to the
initial state. In this case, it is known that the m-dimensional process {Yt : t ≥ 0} is a continuous-
state branching process with immigration (CBI process). The n-dimensional process {Zt : t ≥
0} can be regarded as an Ornstein–Uhlenbeck-type process (OU-type process) depending on
{Yt : t ≥ 0}. Then the above formulation includes as special cases both the CBI process and the
OU-type process. A one-dimensional CBI process first appeared in the scaling limit theorem
for discrete Galton–Watson branching processes with immigration established in Kawazu and
Watanabe [12]. Compared with the discrete model, the CBI process is easier to deal with
because its time and state spaces are both smooth, and the distributions that appear are infinitely
divisible. For general treatments and backgrounds on branching processes in continuous state
spaces, the reader may refer to Kyprianou [14] and Li [15, 17]. The affine processes involve
rich common mathematical structures and have found interesting connections and applications
in several areas.
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Strong Feller and ergodic properties of affine process 813

The general theory of finite-dimensional affine Markov processes, including several equiv-
alent characterizations and common financial applications, was given by Duffie et al. [6] under
a regularity assumption. The regularity problem asks whether this property holds automati-
cally for stochastically continuous affine processes. This property was established in Dawson
and Li [4] under the first moment condition. The problem was finally settled in Keller-Ressel
et al. [13], where it was proved that any stochastically continuous affine Markov process is
regular. The connection of the regularity problem with Hilbert’s fifth problem is explained in
Keller-Ressel et al. [13].

The strong Feller and ergodic properties of the CBI and OU-type processes have been stud-
ied by a number of authors. In particular, a sufficient and necessary integrability condition
for the ergodicity of a one-dimensional subcritical or critical CBI process was announced in
Pinsky [23]; see Li [15] for a proof of the result. The strong Feller property and exponential
ergodicity in the total variation distance of one-dimensional CBI processes were established in
Li and Ma [16] by using a coupling process constructed using strong solutions of a stochastic
equation; see also Li [17]. The analytic properties of a finite-dimensional stable jump-type CBI
process were studied by Friesen and Jin [7], who proved that the transition kernel of the pro-
cess satisfies an a priori bound in a weighted anisotropic Besov norm. From this regularity they
deduced the strong Feller property and proved in the subcritical case the exponential ergodicity
in the total variation distance; see also Jin et al. [10]. The strong Feller and ergodic properties
of Dawson–Watanabe superprocesses with or without immigration were proved in the recent
work of Li [18] using coupling methods, which generalize the work of Li and Ma [16].

It was proved in Sato and Yamazato [26] that a finite-dimensional OU-type process is
ergodic if and only if the eigenvalues of its coefficient matrix have strictly negative real parts.
The coupling property and strong Feller property of finite-dimensional OU-type processes
were studied in Priola and Zabczyk [24] and Wang [28]. The ergodicity and exponential ergod-
icity of such processes in the total variation distance were proved in Schilling and Wang [27]
and Wang [29].

Barczy et al. [3] studied the existence and uniqueness of a stationary distribution for a
special subcritical two-factor affine process, where the first factor was an α-stable CBI pro-
cess and the second one was driven by a Brownian motion. The exponential ergodicity of
the process in the total variation distance was established in Jin et al. [9]. For a subcritical
two-factor affine process driven by Lévy stable processes, the exponential ergodicity in the L1-
Wasserstein distance was established in Bao and Wang [2] by a coupling approach. For general
finite-dimensional affine Markov processes, Jin et al. [11] proved a sufficient condition for the
ergodicity in weak convergence, which covers partially the results of Pinsky [23] and Sato
and Yamazato [26]. The necessity of the condition of Jin et al. [11] was still an open prob-
lem. The exponential ergodicities in two suitably chosen Wasserstein distances for the process
were established in Friesen et al. [8] by coupling methods. Some results on the ergodicity and
exponential ergodicity in the total variation distance for affine processes driven by Brownian
motions and compound Poisson processes were given by Zhang and Glynn [30]. For general
affine processes on cones, the exponential ergodicity was studied by Mayerhofer et al. [19]
under certain irreducibility, aperiodicity, and finite second moment assumptions.

In this paper, we prove some estimates for the variations of transition probabilities of the
(1+1)-affine process. From those estimates we deduce the strong Feller and the ergodic prop-
erties in the total variation distance of the process. The key strategy is to construct several
Markov couplings using strong solutions of stochastic equations, which naturally extend those
of the CBI process and the OU-type process introduced by Li and Ma [16], Schilling and Wang
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[27], and Wang [29]. The stochastic equations established by Dawson and Li [4, 5] provide an
efficient method for the pathwise construction and analysis of the couplings, which are of
interest in themselves; see, e.g., Friesen et al. [8, p. 2170] and Jin et al. [9, p. 1145]. For sim-
plicity, here we only discuss the (1+1)-dimensional process. The method can be modified to
treat general finite-dimensional affine processes by some extra work, which will be addressed
separately.

The paper is organized as follows. In Section 2, we give the definition and some basic
properties of the (1+1)-affine process. The key estimates for the variations of the transition
probabilities are established in Section 3, where the strong Feller property and the exponen-
tial ergodicity are also deduced. In Section 4, an ergodicity result is proved under a weaker
condition.

2. The affine process

Let us introduce more precisely the (1+1)-affine process. Here we adopt the framework
of Duffie et al. [6]; see also Dawson and Li [4]. Let D =R+ ×R be endowed with its Borel
σ -algebra.

Definition 2.1. A set of parameters (a, (αij), (b1, b2), (βij), μ, ν) is called admissible if the
following hold:

(i) a ∈R+ is a constant;

(ii) α= (αij) is a symmetric nonnegative definite (2 × 2) matrix;

(iii) b = (b1, b2) ∈ D is a vector;

(iv) β = (βij) is a (2 × 2) matrix with β12 = 0;

(v) μ(dv) =μ(dv1, dv2) is a σ -finite measure on D, supported on D \ {0}, such that∫
D

(
v1 ∧ v2

1 + |v2| ∧ |v2|2
)
μ(dv)<∞;

(vi) ν(dv) = ν(dv1, dv2) is a σ -finite measure on D, supported on D \ {0}, such that∫
D

(
v1 + |v2| ∧ |v2|2

)
ν(dv)<∞.

Let U =C− × iR, where C− = {a + ib : a ∈R−, b ∈R} and iR= {ia : a ∈R}. Given a set
of admissible parameters (a, (αij), (b1, b2), (βij), μ, ν), we define the functions F and R on U
by the Lévy–Khintchine type representations

F(u) = 〈b, u〉 + au2
2 +

∫
D

(
e〈u,v〉 − 1 − v2u2

)
ν(dv) (2.1)

and

R(u) = 〈β·1, u〉 + 〈u, αu〉 +
∫

D

(
e〈u,v〉 − 1 − 〈u, v〉)μ(dv). (2.2)

The (1+1)-affine process {Xt : t ≥ 0} is a Markov process with state space D and Feller
transition semigroup (Pt)t≥0 defined by∫

D
e〈u,v〉Pt(x, dv) = exp

{〈x, ψ(t, u)〉 + φ(t, u)
}
, u ∈ U, (2.3)
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where (φ, ψ) is the unique solution of the system of equations
⎧⎪⎨
⎪⎩
∂tφ(t, u) = F(ψ(t, u)), φ(0, u) = 0,

∂tψ1(t, u) = R(ψ(t, u)), ψ1(0, u) = u1,

ψ2(t, u) = eβ22tu2.

(2.4)

The uniqueness of the solution implies that

ψ(s + t, u) =ψ(s, ψ(t, u)), s, t ≥ 0, u ∈ U. (2.5)

Clearly, we can rewrite (2.3) as
∫

D
e〈u,v〉Pt(x, dv) = exp

{
〈x, ψ(t, u)〉 +

∫ t

0
F(ψ(t, u))ds

}
, u ∈ U. (2.6)

The Feller property implies that {Xt : t ≥ 0} has a càdlàg realization.
Suppose that {Xt : t ≥ 0} = {(Yt, Zt) : t ≥ 0} is a (1+1)-affine process with transition semi-

group (Pt)t≥0 defined by (2.3) and (2.4). Then {Yt : t ≥ 0} is a Markov process on R+ with
Feller transition semigroup (P(1)

t )t≥0 defined by

∫
R+

e−λvP(1)
t (x, dv) = exp

{
xψ1(t,−λ, 0) +

∫ t

0
F(ψ1(t,−λ, 0), 0)ds

}
, (2.7)

where λ≥ 0. It is known that {Yt : t ≥ 0} is a continuous-state branching process with immigra-
tion (CBI process) with branching mechanism λ 	→ −R(− λ, 0) and immigration mechanism
λ 	→ −F(− λ, 0). It is known that

∫
R+

vP(1)
t (x, dv) = eβ11ty + [

b1 + m1(ν)
] ∫ t

0
eβ11sds, (2.8)

where

m1(ν) =
∫

D
v1ν(dv);

see, e.g., the formula (79) in Li [17].
In particular, when F(− λ, 0) ≡ 0 for all λ≥ 0, the CBI process {Yt : t ≥ 0} reduces to a

continuous-state branching process (CB process) with branching mechanism λ 	→ R(− λ, 0).
Then a CB process has Feller transition semigroup (Qt)t≥0 defined by

∫
R+

e−λvQt(x, dv) = exp
{
xψ1(t,−λ, 0)

}
, λ≥ 0. (2.9)

As a special case of (2.8) we have
∫
R+

vQt(y, dv) = yeβ11t, t ≥ 0, y ≥ 0. (2.10)

Then Jensen’s inequality implies

−ψ1(t,−λ, 0) ≤ eβ11tλ, t ≥ 0, λ≥ 0. (2.11)
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From (2.9) it is easy to see that zero is a trap for the CB process. For a càdlàg realization of the
CB process {Yt : t ≥ 0}, we define its extinction time

τ0 := inf{t ≥ 0 : Yt = 0}.
The reader may refer to Kyprianou [14] and Li [15, 17] for compact treatments of CB and CBI
processes.

Condition 2.2. (Grey’s condition.) There exists a constant λ0 > 0 such that

−R(− λ, 0)> 0 for λ≥ λ0 and −
∫ ∞

λ0

R(− λ, 0)−1dλ<∞.

Proposition 2.3. Suppose that F(− λ, 0) ≡ 0 and Condition 2.2 holds. Let {Yt : t ≥ 0} be a
càdlàg realization of the CB process with Y0 = y. Then we have

P(τ0 > t) = P(Yt > 0) = 1 − e−yv̄t , t> 0, (2.12)

where t 	→ v̄t := − limλ→∞ ψ1(t,−λ, 0) is the unique positive solution of

∂tv̄t = −R(− v̄t, 0), v̄0+ = ∞.

The above proposition follows from Theorem 3.4 and Corollary 3.14 in Li [17]. By (2.5)
and (2.11), for any t ≥ δ > 0 we have

v̄t = − lim
λ→∞ψ1(t − δ,−ψ1(δ,−λ, 0), 0)

= −ψ1(t − δ,−v̄δ, 0) ≤ eβ11(t−δ)v̄δ . (2.13)

Then for β11 < 0 the probability in (2.12) decays exponentially fast as t → ∞.
A càdlàg realization of the general (1+1)-affine process can be constructed as the unique

strong solution to a system of stochastic integral equations. Let σ0 = √
a, and let (σij) be a

(2 × 2) matrix satisfying (σij) = (αij)(αij)τ . Suppose that (�,F ,Ft, P) is a filtered proba-
bility space satisfying the usual hypotheses. Let W0(t) be a standard (Ft)-Brownian motion.
Let Wi(ds, du), i = 1, 2, be (Ft)-Gaussian white noises on (0,∞)2 with intensity dsdu. Let
M(ds, du, dv) be an (Ft)-Poisson random measure on (0,∞)2 × D with intensity dsduμ(dv),
and let N(ds, dv) be an (Ft)-Poisson random measure on (0,∞) × D with intensity dsν(dv).
The corresponding compensated measures are denoted by M̃(ds, du, dv) and Ñ(ds, dv). We
assume these random elements are independent of each other. Given an F0-measurable
random variable (Y0, Z0) ∈ D, we consider the following system of stochastic integral
equations:

Yt = Y0 +
∫ t

0
(b1 + β11Ys)ds + √

2σ11

∫ t

0

∫ Ys

0
W1(ds, du)

+ √
2σ12

∫ t

0

∫ Ys

0
W2(ds, du) +

∫ t

0

∫ Ys−

0

∫
D

v1M̃(ds, du, dv)

+
∫ t

0

∫
D

v1N(ds, dv) (2.14)
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and

Zt = Z0 +
∫ t

0
(b2 + β21Ys + β22Zs)ds + √

2σ0W0(t)

+ √
2σ21

∫ t

0

∫ Ys

0
W1(ds, du) + √

2σ22

∫ t

0

∫ Ys

0
W2(ds, du)

+
∫ t

0

∫ Ys−

0

∫
D

v2M̃(ds, du, dv) +
∫ t

0

∫
D

v2Ñ(ds, dv). (2.15)

Here and in the sequel, we understand that, for any a ≤ b ∈R,

∫ b

a
=

∫
(a,b]

and
∫ ∞

a
=

∫
(a,∞)

.

The existence and pathwise uniqueness of the solution to (2.14) follows from Theorem 8.5
in Li [17]. A weakly equivalent stochastic equation was first introduced by Dawson and Li [4];
see also Dawson and Li [5]. The existence and pathwise uniqueness of the solution to (2.15)
are straightforward. In fact, by (2.14)–(2.15), one can see using integration by parts that

e−β22tZt = Z0 +
∫ t

0
e−β22s(b2 + β21Ys)ds + √

2σ0

∫ t

0
e−β22sdW0(s)

+ √
2σ21

∫ t

0

∫ Ys

0
e−β22sW1(ds, du) + √

2σ22

∫ t

0

∫ Ys

0
e−β22sW2(ds, du)

+
∫ t

0

∫ Ys−

0

∫
D

e−β22sv2M̃(ds, du, dv) +
∫ t

0

∫
D

e−β22sv2Ñ(ds, dv). (2.16)

By Theorem 6.2 of Dawson and Li [4], the process {(Yt, Zt) : t ≥ 0} defined by (2.14)–(2.15)
is a (1+1)-affine process with transition semigroup (Pt)t≥0 given by (2.3) and (2.4).

Let us remark that {Zt : t ≥ 0} reduces to a one-dimensional OU-type process if σ21 = σ22 =
β21 = 0 and μ is supported on (0,∞) × {0}. For instance, in this case, from (2.16) we have

Zt = Z0 +
∫ t

0
(b2 + β22Zs)ds + √

2σ0W0(t) +
∫ t

0

∫
D

v2Ñ(ds, dv). (2.17)

A number of moment estimates for general finite-dimensional affine processes were given
in Friesen et al. [8]. Since more accurate estimates are needed in this work, we here present
the following result.

Proposition 2.4. Let {(Yt, Zt) : t ≥ 0} be a (1+1)-affine process with Y0 = y ∈R+ and Z0 = z ∈
R. Let D1 =R+ × [− 1, 1] and Dc

1 = D \ D1. Then we have

E(|Zt|) ≤ eβ22t|z| +
(
|b2| + 2

∫
Dc

1

|v2|ν(dv)
) ∫ t

0
eβ22(t−s)ds

+
(
|β21| + 2

∫
Dc

1

|v2|μ(dv)
) ∫ t

0
eβ22(t−s)

E(Ys)ds
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+
[√

2σ0 +
( ∫

D1

v2
2ν(dv)

)1/2]( ∫ t

0
e2β22(t−s)ds

)1/2

+ √
2(σ21 + σ22)

( ∫ t

0
e2β22(t−s)

E(Ys)ds
)1/2

+
( ∫

D1

v2
2μ(dv)

)1/2( ∫ t

0
e2β22(t−s)

E(Ys)ds
)1/2

. (2.18)

Proof. We may assume that {(Yt, Zt) : t ≥ 0} is defined by (2.14)–(2.15). In view of (2.16)
we have

E
(
e−β22t|Zt|

) ≤ |z| + |β21|
∫ t

0
e−β22s

E(Ys)ds + √
2σ0E

(∣∣∣
∫ t

0
e−β22sdW0(s)

∣∣∣)

+ |b2|
∫ t

0
e−β22sds + √

2σ21

[
E

(∣∣∣
∫ t

0

∫ Ys

0
e−β22sW1(ds, du)

∣∣∣2)]1/2

+ √
2σ22

[
E

(∣∣∣
∫ t

0

∫ Ys

0
e−β22sW2(ds, du)

∣∣∣2)]1/2

+
[
E

(∣∣∣
∫ t

0

∫ Ys−

0

∫
D1

e−β22sv2M̃(ds, du, dv)
∣∣∣2)]1/2

+ E

(∣∣∣
∫ t

0

∫ Ys−

0

∫
Dc

1

e−β22s|v2|M̃(ds, du, dv)
∣∣∣)

+
[
E

(∣∣∣
∫ t

0

∫
D1

e−β22sv2Ñ(ds, dv)
∣∣∣2)]1/2

+ E

(∣∣∣
∫ t

0

∫
Dc

1

e−β22s|v2|Ñ(ds, dv)
∣∣∣)

≤ |z| +
(
|b2| + 2

∫
Dc

1

|v2|ν(dv)
) ∫ t

0
e−β22sds

+
(
|β21| + 2

∫
Dc

1

|v2|μ(dv)
) ∫ t

0
e−β22s

E(Ys)ds

+
[√

2σ0 +
( ∫

D1

v2
2ν(dv)

)1/2]( ∫ t

0
e−2β22sds

)1/2

+ √
2(σ21 + σ22)

( ∫ t

0
e−2β22s

E(Ys)ds
)1/2

+
( ∫

D1

v2
2μ(dv)

)1/2( ∫ t

0
e−2β22s

E(Ys)ds
)1/2

.

Then (2.18) follows. �

Proposition 2.5. Suppose that β11 < 0 and β22 < 0. Then the transition semigroup (Pt)t≥0
defined by (2.3) and (2.4) has a unique stationary distribution π , which is given by∫

D
e〈u,v〉π (dv) = exp

{ ∫ ∞

0
F(ψ(t, u))ds

}
, u ∈ U. (2.19)
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Moreover, the distribution π has finite first moment; that is,∫
D

(v1 + |v2|)π (dv)<∞.

Proof. By Theorem 2.7 of Jin et al. [11], the affine process has a unique stationary
distribution π given by (2.19). In particular, we have∫

D
e−λv1π (dv) = exp

{ ∫ ∞

0
F(ψ1(t,−λ, 0), 0)ds

}
, λ≥ 0.

By differentiating both sides of the above equality at λ= 0+ and using (2.1), one may
see that

m1(π ) :=
∫

D
v1π (dv) = [b1 + m1(ν)]

∫ ∞

0
e−|β22|sds<∞.

By (2.8) and (2.18) there is a constant C ≥ 0 such that∫
D

|v2|Pt(x, dv) ≤ e−|β22|t|z| + C(1 + y), t ≥ 0, x = (y, z) ∈ D.

Since π is a stationary distribution for (Pt)t≥0, it follows that∫
D

(|v2| ∧ k)π (dv) =
∫

D
π (du)

∫
D

(|v2| ∧ k)Pt(u, dv)

≤
∫

D

[
(e−|β22|t|u2| ∧ k) + C(1 + u1)

]
π (du)

≤
∫

D
(e−|β22|t|u2| ∧ k)π (du) + C[1 + m1(π )].

Then, letting t → ∞ and k → ∞, we obtain∫
D

|v2|π (dv) ≤ C[1 + m1(π )]<∞.

This proves the result. �

Proposition 2.6. For i = 1, 2, let xi = (yi, zi) ∈ D, and let {Xi(t) : t ≥ 0} = {(Yi(t), Zi(t)) : t ≥ 0}
be defined by (2.14) and (2.15) with (Yi(0), Zi(0)) = xi. Then, for any t ≥ 0,

E

(
sup

0≤s≤t
|Z1(s) − Z2(s)|

)

≤ eβ22t|z1 − z2| + |β21||y1 − y2|
∫ t

0
eβ11seβ22(t−s)ds

+ 2|y1 − y2|
∫

Dc
1

|v2|μ(dv)
∫ t

0
eβ11seβ22(t−s)ds

+ 2
√

2(σ21 + σ22)|y1 − y2|1/2
( ∫ t

0
eβ11se2β22(t−s)ds

)1/2

+ 2|y1 − y2|1/2
( ∫

D1

v2
2μ(dv)

)1/2( ∫ t

0
eβ11se2β22(t−s)ds

)1/2
.
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Proof. Without loss of generality, we may assume y1 ≥ y2. By Theorem 10.1 in Li [17] one
can see that {Y1(t) ≥ Y2(t) for every t ≥ 0} = 1 and {Y1(t) − Y2(t) : t ≥ 0} is a CB process with
transition semigroup (Qt)t≥0. Then we apply (2.16) to Z1(t) and Z2(t) and take the difference
to see

Z1(t) − Z2(t) = eβ22t
{

(z1 − z2) + β21

∫ t

0
e−β22s[Y1(s) − Y2(s)]ds

+ √
2σ21

∫ t

0

∫ Y2(s)

Y1(s)
e−β22sW1(ds, du)

+ √
2σ22

∫ t

0

∫ Y2(s)

Y1(s)
e−β22sW2(ds, du)

+
∫ t

0

∫ Y2(s−)

Y1(s−)

∫
D

e−β22sv2M̃(ds, du, dv)
}

.

It follows that

E

(
sup

0≤s≤t
|Z1(s) − Z2(s)|

)

≤ eβ22t
{
|z1 − z2| + |β21|

∫ t

0
e−β22s

E[Y1(s) − Y2(s)]ds

+ 2
√

2σ21

[
E

(∣∣∣
∫ t

0

∫ Y2(s)

Y1(s)
e−β22sW1(ds, du)

∣∣∣2)]1/2

+ 2
√

2σ22

[
E

(∣∣∣
∫ t

0

∫ Y2(s)

Y1(s)
e−β22sW2(ds, du)

∣∣∣2)]1/2

+ 2
[
E

(∣∣∣
∫ t

0

∫ Y2(s−)

Y1(s−)

∫
D1

e−β22sv2M̃(ds, du, dv)
∣∣∣2)]1/2

+ E

(∣∣∣
∫ t

0

∫ Y2(s−)

Y1(s−)

∫
Dc

1

e−β22s|v2|M̃(ds, du, dv)
∣∣∣)}

≤ eβ22t
{
|z1 − z2| + |β21|

∫ t

0
e−β22s

E[Y1(s) − Y2(s)]ds

+ 2
√

2(σ21 + σ22)
( ∫ t

0
e−2β22s

E[Y1(s) − Y2(s)]ds
)1/2

+ 2
( ∫

D1

v2
2μ(dv)

)1/2( ∫ t

0
e−2β22s

E[Y1(s) − Y2(s)]ds
)1/2

+ 2
∫

Dc
1

|v2|μ(dv)
∫ t

0
e−β22s

E[Y1(s) − Y2(s)]ds
}
,

where we have used Doob’s L2 inequality for the square-integrable martingales; see, e.g.,
Revuz and Yor [25, Theorem 1.7, p. 54]. Then the desired estimate follows by (2.10). �
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A Markov process {(X1(t), X2(t)) : t ≥ 0} with state space D2 is called a Markov coupling of
the (1+1)-affine process with transition semigroup (Pt)t≥0 defined by (2.3) and (2.4) with cou-
pling time τ := inf{t ≥ 0 : X1(t) = X2(t)} if both {X1(t) : t ≥ 0} and {X2(t) : t ≥ 0} are Markov
processes with transition semigroup (Pt)t≥0 and X1(τ + t) = X2(τ + t) for every t ≥ 0.

The method of couplings provides an efficient way to estimate the variations of the tran-
sition probabilities of the affine process. Let ‖ · ‖var denote the total variation norm of signed
measures. Let B1 be the set of Borel functions f on D satisfying |f | ≤ 1. Then we have

∥∥Pt(x1, ·) − Pt(x2, ·)
∥∥

var = sup
f ∈B1

[
Ptf (x1) − Ptf (x2)

]
. (2.20)

Let {(X1(t), X2(t)) : t ≥ 0} be a Markov coupling of the affine process with initial state
(X1(0), X2(0)) = (x1, x2) and coupling time τ . From (2.20) it follows that

∥∥Pt(x1, ·) − Pt(x2, ·)
∥∥

var = sup
f ∈B1

E
[
f (X1(t)) − f (X2(t))

] ≤ 2P(τ > t). (2.21

By the pathwise uniqueness for (2.14)–(2.15), the process {(X1(t), X2(t)) : t ≥ 0} defined in
Proposition 2.6 is a Markov coupling of the affine process with transition semigroup (Pt)t≥0.
Based on this coupling, several different couplings of the affine process will be given in the
next two sections. We shall see that the stochastic equations (2.14)–(2.15) and (2.16) provide an
efficient method for the pathwise construction and analysis of those couplings. The approach of
stochastic equations has also played an important role in other recent developments concerning
branching processes in continuous state spaces; see, e.g., Bansaye and Méléard [1], Li [17],
Pardoux [22], and the references therein.

3. Estimates for variations of probabilities

In this section, we study the strong Feller property and the exponential ergodicity of the
total variation distance of the affine process. Let ‖ · ‖var denote the total variation norm of
signed measures. Our strategy is to establish some estimates for the differences of the transition
probabilities in the form (2.20). The proofs of the estimates are based on couplings of the
affine process constructed in terms of strong solutions of stochastic equations. From those
estimates we deduce the strong Feller property and the exponential ergodicity under natural
conditions.

We first consider the case σ0 > 0. Write x1 = (y1, z1) and x2 = (y2, z2), where y1, y2 ∈R+
and z1, z2 ∈R. For i = 1, 2 let (Yi(t), Zi(t)) be defined by (2.14)–(2.16) with (Yi(0), Zi(0)) =
(yi, zi), and write Xi(t) = (Yi(t), Zi(t)). Then {(X1(t), X2(t)) : t ≥ 0} is a Markov coupling of the
affine process. The pathwise uniqueness of the solution for (2.14) implies Y1(τ0 + t) = Y2(τ0 +
t) for t ≥ 0. In fact, by Theorem 10.1 in Li [17] it is easy to see that {|Y1(t) − Y2(t)| : t ≥ 0}
is a CB process with transition semigroup (Qt)t≥0. Let τ0 = inf{t ≥ 0 : Y1(t) = Y2(t)} be the
extinction time of the process. By Proposition 2.3 we have

P(τ0 > t) = 1 − e−|y1−y2|v̄t ≤ |y1 − y2|v̄t, t ≥ 0. (3.1)

Let a(τ0) = [Z1(τ0) − Z2(τ0)]/2
√

2σ0 and

τ = inf
{

t ≥ 0 :
∫ t

0
e−β22sdW0(τ0 + s) = −a(τ0)

}
.
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Then we define the process {Z2
′(t) : t ≥ 0} by

e−β22tZ2
′(t) = z1 +

∫ t

0
e−β22s[b2 + β21Y2(s)]ds + √

2σ21

∫ t

0

∫ Y2(s)

0
e−β22sW1(ds, du)

+ √
2σ22

∫ t

0

∫ Y2(s)

0
e−β22sW2(ds, du) + √

2σ0

[ ∫ t∧τ0

0
e−β22sdW0(s)

−
∫ t∧(τ0+τ )

t∧τ0

e−β22sdW0(s) +
∫ t

t∧(τ0+τ )
e−β22sdW0(s)

]

+
∫ t

0

∫ Y2(s−)

0

∫
D

e−β22sv2M̃(ds, du, dv) +
∫ t

0

∫
D

e−β22sv2Ñ(ds, dv).

It is clear that Z2
′(t ∧ τ0) = Z2(t ∧ τ0) for t ≥ 0. Write X2

′(t) = (Y2(t), Z2
′(t)). Then

{(X1(t), X2
′(t)) : t ≥ 0} is also a Markov coupling of the affine process. For t ≥ 0 let

ζ (t) = Z1(τ0 + t) − Z2
′(τ0 + t).

Since Y1(τ0 + t) = Y2(τ0 + t) for t ≥ 0, by the construction of Z1(t) and Z2
′(t) we have

ζ (t) = 2
√

2σ0eβ22t
[
a(τ0) +

∫ t∧τ

0
e−β22sdW0(τ0 + s)

]
. (3.2)

It follows that \Pτ = inf{t ≥ 0 : ζ (t) = 0}, and so

τ0 + τ = inf{t ≥ τ0 : Z1(t) = Z2
′(t)} = inf{t ≥ τ0 : X1(t) = X2

′(t)}.
Then τ0 + τ is the coupling time of {(X1(t), X2

′(t)) : t ≥ 0}.
Theorem 3.1. Suppose that σ0 > 0. Then there is a constant C ≥ 0 such that

‖Pt(x1, ·) − Pt(x2, ·)‖var

≤ 2|y1 − y2|v̄t/2 + C
{

eβ22t|z1 − z2| + |β21||y1 − y2|
∫ t/2

0
eβ11seβ22(t/2−s)ds

+ 2
√

2(σ21 + σ22)|y1 − y2|1/2
( ∫ t/2

0
eβ11se2β22(t/2−s)ds

)1/2

+ 2
[ ∫

D1

v2
2μ(dv)

]1/2|y1 − y2|1/2
( ∫ t/2

0
eβ11se2β22(t/2−s)ds

)1/2

+ 2
∫

Dc
1

|v2|μ(dv)|y1 − y2|
∫ t/2

0
eβ11seβ22(t/2−s)ds

}( ∫ t/2

0
e−2β22sds

)−1/2
,

t> 0, xi = (yi, zi) ∈ D, i = 1, 2.

Proof. Let {(X1(t), X2
′(t)) : t ≥ 0} be the coupling of the affine process constructed as above.

Then we have

P(τ0 + τ > t) ≤ P(τ0 > t/2) + P(τ0 ≤ t/2, τ0 + τ > t),
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Strong Feller and ergodic properties of affine process 823

where P(τ0 > t/2) ≤ |y1 − y2|v̄t/2 by (3.1). In view of (3.2), there is a standard Brownian
motion {B(t) : t ≥ 0} independent of Fτ0 such that

ζ (t) = 2
√

2σ0eβ22t[a(τ0) + B(ρ(t ∧ τ ))
]
,

where

ρ(t) =
∫ t

0
e−2β22sds, t ≥ 0.

Since t − τ0 is measurable relative to Fτ0 , by the reflection principle for the Brownian motion
we get

P(τ0 ≤ t/2, τ0 + τ > t) =E
[
1{τ0≤t/2}P(τ0 + τ > t|Fτ0 )

]
≤E

[
1{τ0≤t/2}P(|B(ρ(t − τ0))|< |a(τ0)|)]

≤E

[
1{τ0≤t/2}

2|a(τ0)|√
2πρ(t − τ0)

]

≤ 1

2σ0
√
πρ(t/2)

E
[
1{τ0≤t/2}|Z1(τ0) − Z2(τ0)|]

≤ 1

2σ0
√
πρ(t/2)

E

(
sup

0≤s≤t/2
|Z1(s) − Z2(s)|

)
.

Then the result follows by Proposition 2.6 and (2.21). �

Corollary 3.2. Suppose that σ0 > 0. Then (Pt)t≥0 is a strong Feller transition semigroup.

Corollary 3.3. Suppose that β11 < 0, β22 < 0, and σ0 > 0. Let π be the unique stationary
distribution for (Pt)t≥0. Then for every δ > 0 there is a constant Cδ ≥ 0 such that

‖Pt(x, ·) − π‖var ≤ Cδ(1 + |x|)e−κt/2, t ≥ δ, x ∈ D,

where κ = |β11| ∧ |β22|.
Proof. By Proposition 2.5, the stationary distribution π possesses a finite first moment. It is

well known that

‖Pt(x, ·) − π‖var ≤
∫

D
‖Pt(x, ·) − Pt(x2, ·)‖varπ (dx2). (3.3)

By Theorem 3.1, there is a constant C ≥ 0 such that, for xi = (yi, zi) ∈ D, i = 1, 2,

‖Pt(x1, ·) − Pt(x2, ·)‖var

≤ C
(|x1 − x2| + |y1 − y2|1/2

)[
v̄t/2 ∨ e−|β22|t/2(1 − e−|β22|t)−1/2].

Then the desired estimate follows by (2.13). �

Now let us consider the case where ν(D)> 0. For ε > 0 let Dε =R+ × [− ε, ε] and Dc
ε =

D \ Dε. By choosing sufficiently small ε ∈ (0, 1] we have 0< ν(Dc
ε)<∞. Let νε be the finite

measure on D defined by

νε(A) =
{
ν(A) if ν(D)<∞,

ν(A ∩ Dc
ε) if ν(D) = ∞,

(3.4)

where A ∈ B(D). Let ν̂ε = νε(D)−1νε.

https://doi.org/10.1017/jpr.2022.100 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.100


824 S. CHEN AND Z. LI

Condition 3.4. There exists ε ∈ (0, 1] such that

lim sup
|z|→0

|z|−1‖ν̂ε − δ(0,z) ∗ ν̂ε‖var <∞.

The above condition is a slight modification of (10) in Wang [29] for OU-type processes.
As in Wang [29, p. 996], one may see that the above condition implies

Kε := sup
z∈R

|z|−1‖ν̂ε − δ(0,z) ∗ ν̂ε‖var <∞. (3.5)

Theorem 3.5. Suppose that Condition 3.4 is satisfied for some ε ∈ (0, 1]. Then we have

‖Pt(x1, ·) − Pt(x2, ·)‖var

≤ 2
(|y1 − y2|v̄t/3 + e−ν(Dc

ε)t/3
) + Kεe

β22t/3
{

eβ22t/3|z1 − z2|

+
(
β21| + 2

∫
Dc

1

|v2|μ(dv)
)
|y1 − y2|

∫ t/3

0
eβ11seβ22(t/3−s)ds

+ 2
√

2(σ21 + σ22)|y1 − y2|1/2
( ∫ t/3

0
eβ11se2β22(t/3−s)ds

)1/2

+ 2
( ∫

D1

v2
2μ(dv)

)1/2|y1 − y2|1/2
( ∫ t/3

0
eβ11se2β22(t/3−s)ds

)1/2}
,

t ≥ 0, xi = (yi, zi) ∈ D, i = 1, 2.

Proof. Step 1. Consider the case where y1 = y2 = y ∈R+. Let {Yt : t ≥ 0} be the solution
of (2.14) with Y0 = y. Let z0 = 0. For i = 0, 1, 2 let {Zi(t) : t ≥ 0} be defined by (2.16), with
Zi(0) = zi. It is easy to see that

Zi(t) = eβ22tzi + Z0(t), t ≥ 0, i = 1, 2. (3.6)

Let {ηε(t) : t ≥ 0} be the compensated compound Poisson process defined by

ηε(t) =
∫ t

0

∫
Dc
ε

v2Ñ(ds, dv).

Let τ1 = inf{t ≥ 0 : ηε(t) �= ηε(t −)} be the first jump time of this process. For any f ∈ B1 we
have

∣∣Ptf (y, z1) − Ptf (y, z2)
∣∣ = ∣∣E[

f (Yt, Z1(t)) − f (Yt, Z2(t))
]∣∣

≤ 2P(τ1 > t) + pε(t),

where P(τ1 > t) = e−ν(Dc
ε)t and

pε(t) =
∣∣∣E{[

f (Yt, Z1(t)) − f (Yt, Z2(t))
]
1{τ1≤t}

}∣∣∣.
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By the strong Markov property and (2.16),

pε(t) =
∣∣∣∣E

{ ∫ t

0
ν(Dc

ε)e
−ν(Dc

ε)s
[ ∫

D
Pt−sf (Ys, Z1(s −) + r)ν̂ε(dr)

−
∫

D
Pt−sf (Ys, Z2(s −) + r)ν̂ε(dr)

]
ds

}∣∣∣∣
=

∣∣∣∣E
{ ∫ t

0
ν(Dc

ε)e
−ν(Dc

ε)s
[ ∫

D
Pt−sf (Ys, Z1(s) + r)ν̂ε(dr)

−
∫

D
Pt−sf (Ys, Z1(s) + r)δ(0,eβ22s(z2−z1)) ∗ ν̂ε(dr)

]
ds

}∣∣∣∣
≤

∫ t

0
ν(Dc

ε)e
−ν(Dc

ε)s‖ν̂ε − δ(0,eβ22s(z2−z1)) ∗ ν̂ε‖ds

≤ Kεν(Dc
ε)|z2 − z1|

∫ t

0
e−ν(Dc

ε)sds ≤ Kε|z2 − z1|.
It follows that ∣∣Ptf (y, z1) − Ptf (y, z2)

∣∣ ≤ 2e−ν(Dc
ε)t + Kε|z1 − z2|. (3.7)

Then we can use the Markov property and the representation (3.6) to get∣∣Ptf (y, x1) − Ptf (y, x2)
∣∣

=
∣∣∣E[

f (Yt, Z1(t)) − f (Yt, Z2(t))
]∣∣∣

=
∣∣∣E[

Pt/2f (Yt/2, Z1(t/2)) − Pt/2f (Yt/2, Z2(t/2))
]∣∣∣

≤ 2e−ν(Dc
ε)t/2 + KεE

[|Z1(t/2) − Z2(t/2)|]
≤ 2e−ν(Dc

ε)t/2 + Kε|z1 − z2|eβ22t/2.

Step 2. In the general case, we have x1 = (y1, z1) and x2 = (y2, z2), where y1, y2 ∈R+ and
z1, z2 ∈R+. It suffices to consider the case of y1 ≥ y2. Let {(Yi(t), Zi(t)) : t ≥ 0} be defined by
(2.14)–(2.15) with (Yi(0), Zi(0)) = xi, i = 1, 2. Then∣∣Ptf (x1) − Ptf (x2)

∣∣ =
∣∣∣E[

f (Y1(t), Z1(t)) − f (Y2(t), Z2(t))
]∣∣∣

≤ 2P(τ0 > t/3) + qε(t),

with P(τ0 > t/3) ≤ |y1 − y2|v̄t/3 and

qε(t) =
∣∣∣E{[

f (Y1(t), Z1(t)) − f (Y1(t), Z2(t))
]
1{τ0≤t/3}

}∣∣∣
=

∣∣∣E{
1{τ0≤t/3}E

[
f (Y1(t), Z1(t)) − f (Y1(t), Z2(t))

∣∣Fτ0

]}∣∣∣
=

∣∣∣E{
1{τ0≤t/3}

[
Pt−τ0 f (Y1(τ0), Z1(τ0)) − Pt−τ0 f (Y1(τ0), Z2(τ0))

]}∣∣∣
≤ 2e−ν(Dc

ε)t/3 + KεE
(
1{τ0≤t/3}|Z1(τ0) − Z2(τ0)|)eβ22t/3

≤ 2e−ν(Dc
ε)t/3 + KεE

(
sup

s≤t/3
|Z1(s) − Z2(s)|

)
eβ22t/3,
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where we have used (3.7) for the first inequality. Then the desired estimate follows by (2.20)
and Proposition 2.6. �

Corollary 3.6. Suppose that Condition 3.4 is satisfied for a sequence {εn} ⊂ (0, 1] and
limn→∞ ν(Dc

εn
) = ∞. Then (Pt)t≥0 is a strong Feller transition semigroup.

Proof. Suppose that {xk} ∈ D is a sequence such that limk→∞ xk = x0 ∈ D. By Theorem 3.5,
for t> 0 and n ≥ 1 we have

lim sup
k→∞

‖Pt(xk, ·) − Pt(x0, ·)‖var ≤ 2e−ν(Dc
εn )t/3.

The left-hand side vanishes since limn→∞ ν(Dc
εn

) = ∞. �

Corollary 3.7. Suppose that β11 < 0, β22 < 0, and Condition 3.4 is satisfied. Then there is a
constant Cε ≥ 0 such that

‖Pt(x, ·) − π‖var ≤ Cε(1 + |x|)e−κε t/3, t ≥ 0, x ∈ D, (3.8)

where κε = |β11| ∧ |β22| ∧ ν(Dc
ε).

Proof. By Theorem 3.5 there is a constant Cε ≥ 0 such that, for t> 0 and xi = (yi, zi) ∈ D,
i = 1, 2,

‖Pt(x1, ·) − Pt(x2, ·)‖var

≤ 2e−ν(Dc
ε)t/3 + Cε

(|x1 − x2| + |y1 − y2|1/2
)
(v̄t/3 ∨ e−|β22|t/3).

Then the result follows as in the proof of Corollary 3.3. �

Theorems 3.1 and 3.5 and their corollaries are natural extensions of the existing results
on CBI and OU-type processes in the literature. In fact, one may see that some parts of the
proofs given above essentially follow the ideas of Li and Ma [16] and Wang [29]; see also
Wang [28]. For general affine processes on cones, Mayerhofer et al. [19] studied the exponen-
tial ergodicity in the total variation distance under certain irreducibility, aperiodicity, and finite
second moment assumptions. Their techniques were based on the theory of stochastic stability
of Markov processes; see Meyn and Tweedie [20, 21] and the references therein. While the
results of Mayerhofer et al. [19] were formulated in an abstract framework, it seems a deli-
cate task to check their conditions for the process discussed here. Moreover, the finite second
moment condition of Mayerhofer et al. [19] rules out some natural examples.

4. A weaker condition for ergodicity

Throughout this section, we assume β11 < 0 and β22 < 0. We shall establish the ergodicity
of the affine process under a condition on the Lévy measure ν weaker than Condition 3.4. The
proof of the result is based on a coupling similar to those used in the last section. Suppose that
ν(D)> 0 and choose 0< ε < 1 so that 0< ν(Dε)<∞, where Dε =R+ × [− ε, ε]. Let νε and
ν̂ε be defined as in the last section. Let γ εz = ν̂ε ∧ (δ(0,z) ∗ ν̂ε) for z ∈R.

Condition 4.1. There are constants ε ∈ (0, 1] and δ > 0 such that

q := inf|z|≤δ γ
ε
z (D) = inf|z|≤δ ν̂ε ∧ (δ(0,z) ∗ ν̂ε)(D)> 0.
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The above condition was introduced for general finite-dimensional OU-type processes by
Schilling and Wang [27] and Wang [29]; see also Wang [28]. As observed in Wang [29, p.
992], the condition is weaker than Condition 3.4.

Lemma 4.2. Suppose that Condition 4.1 is satisfied. For |z| ≤ δ, let γ̂ εz = γ εz (D)−1γ εz , and let
(η, ρ1, ζ ) be a random vector such that, for A ∈ B(D),

P{(η, ρ1, ζ ) ∈ A × B} =

⎧⎪⎨
⎪⎩

qγ̂ ε−z(A)/2, B = {z},
qγ̂ εz (A)/2, B = {−z},
[ν̂ε − q(γ̂ ε−z + γ̂ εz )/2](A), B = {0}.

(4.1)

Let ρ2 = ρ1 + ζ . Then we have

P(ζ = z) = P(ζ = −z) = q/2, P(ζ = 0) = 1 − q (4.2)

and

P{(η, ρ1) ∈ A} = P{(η, ρ2) ∈ A} = ν̂ε(A), A ∈ B(D). (4.3)

Proof. From (4.1) it is easy to see that ζ has distribution given by (4.2). Moreover, for any
A ∈ B(D) we have

P{(η, ρ1) ∈ A} = P{(η, ρ1) ∈ A, ζ = z} + P{(η, ρ1) ∈ A, ζ = −z}
+ P{(η, ρ1) ∈ A, ζ = 0}

= qγ̂ ε−z(A)/2 + qγ̂ εz (A)/2 + [ν̂ε − q(γ̂ ε−z + γ̂ εz )/2](A)

= ν̂ε(A)

and

P{(η, ρ2) ∈ A} = P{(η, ρ2) ∈ A, ζ = z} + P{(η, ρ2) ∈ A, ζ = −z}
+ P{(η, ρ2) ∈ A, ζ = 0}

= P{(η, ρ1) ∈ A − (0, z), ζ = z} + P{(η, ρ1) ∈ A + (0, z), ζ = −z}
+ P{(η, ρ1) ∈ A, ζ = 0}

= qγ̂ ε−z(A − (0, z))/2 + qγ̂ εz (A + (0, z))/2 + [ν̂ε − q(γ̂ ε−z + γ̂ εz )/2](A)

= qγ̂ εz (A)/2 + qγ̂ ε−z(A)/2 + [ν̂ε − q(γ̂ ε−z + γ̂ εz )/2](A)

= ν̂ε(A).

Then (4.3) holds. �

Lemma 4.3. Suppose that Condition 4.1 is satisfied. Let Q(z, ·) denote the joint distribution of
(η, ρ1, ρ2). Then Q(z, ·) is a probability kernel from [− δ, δ] to R+ ×R

2.

Proof. It is easy to see that z 	→ δ(0,z) ∗ ν̂ε is a Borel probability kernel from [− δ, δ] to D.
Let

mε(z, ·) = (ν̂ε − δ(0,z) ∗ ν̂ε)+ + (ν̂ε − δ(0,z) ∗ ν̂ε)−
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denote the total variation of the signed measure ν̂ε − δ(0,z) ∗ ν̂ε. By the regularity of the
measures, for any bounded positive continuous function f on D we have

∫
D

f (v)mε(z, dv) = sup
g∈C1

∫
D

f (v)g(v)
[
ν̂ε(dv) − (δz ∗ ν̂ε)(dv)

]
,

where C1 is the set of continuous functions g on D satisfying |g| ≤ 1. Then the mapping

z 	→
∫

D
f (v)mε(z, dv)

is lower semicontinuous, so it is a Borel function on [− δ, δ]. It follows that mε(z, ·) and γ εz =
ν̂ε + δz ∗ ν̂ε − mε(z, ·) are kernels from [− δ, δ] to D. From (4.1) we see that Q(z, ·) is a Borel
probability kernel from [− δ, δ] \ {0} to R+ ×R

2. �

Now let us define the first coupling in this section. The basic idea follows that of Schilling
and Wang [27] and Wang [29]. Here we give a pathwise construction of the coupling in terms of
stochastic integrals. Let x1 = (y, z1) ∈ D and x2 = (y, z2) ∈ D, where y ∈R+ and z1, z2 ∈R sat-
isfy z1 �= z2. Let k = �δ−1|z1 − z2|� + 1. Then k−1|z1 − z2| ≤ δ. Let G =R+ ×R

2 be endowed
with its Borel σ -algebra. In addition to the noises in (2.14) and (2.15), let N0(ds, du, dv1, dv2)
be an (Ft)-Poisson random measure on (0,∞) × G with intensity

νε(D)dsQ(k−1(z1 − z2)eβ22s, du, dv1, dv2). (4.4)

We assume all of these noises are independent of each other. For t ≥ 0 let

ξ (t) = (z1 − z2) +
∫ t

0

∫
G

(v1 − v2)e−β22sN0(ds, du, dv1, dv2). (4.5)

Then we have

ξ (t) = (z1 − z2)[1 + L(t)], t ≥ 0, (4.6)

where

L(t) = (z1 − z2)−1
∫ t

0

∫
G

(v1 − v2)e−β22sN0(ds, du, dv1, dv2).

Let N0(ds, dr) be the image of N0(ds, du, dv1, dv2) under the mapping

(s, u, v1, v2) 	→ (s, r) = (s, (z1 − z2)−1(v1 − v2)eβ11s).

We easily see that N0(ds, dr) is a Poisson random measure on (0,∞) ×R with intensity
νε(D)dsπ (s, dr), where π (s, dr) is the probability measure on R defined by

π (s, {1/k}) = π (s, {−1/k}) = q/2, π (s, {0}) = 1 − q.

It follows that

N(t) :=
∫ t

0

∫
R+

∫
R2

1{v1 �=v2}N0(ds, du, dv1, dv2)
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is a Poisson process with parameter qνε(D). For i ≥ 1, let ξi denote the size of the ith jump
of the process {L(t) : t ≥ 0}. Then {ξi : i ≥ 1} are independent and identically distributed (i.i.d.)
random variables with

P(ξi = 1/k) = P(ξi = −1/k) = 1/2. (4.7)

Let S(n) = ∑n
i=1 ξi. Then the processes {N(t) : t ≥ 0} and {S(n) : n ≥ 0} are independent and

L(t) = S(N(t)), t ≥ 0.

This proves the following.

Lemma 4.4. The process {L(t) : t ≥ 0} is a continuous-time simple random walk with i.i.d.
jumps {ξi : i ≥ 1} satisfying (4.7).

Let τ = inf{t ≥ 0 : ξ (t) = 0} = inf{t ≥ 0 : L(t) = −1}, and let {Y ′(t) : t ≥ 0} be the solution of

Y ′(t) = y +
∫ t

0
[b1 + β11Y ′(s)]ds + √

2σ11

∫ t

0

∫ Y′(s)

0
W1(ds, du)

+ √
2σ12

∫ t

0

∫ Y′(s)

0
W2(ds, du) +

∫ t

0

∫ Y′(s−)

0

∫
D

vM̃(ds, du, dv, dr)

+
∫ t

t∧τ

∫
D

v1N(ds, dv) +
∫ t∧τ

0

∫
G

uÑ0(ds, du, dv1, dv2). (4.8)

Let {Z1
′(t) : t ≥ 0} and {Z2

′(t) : t ≥ 0} be defined by

Z1
′(t) = eβ22t

[
z1 +

∫ t

0
e−β22s[b2 + β21Y ′(s)]ds + √

2σ0

∫ t

0
e−β22sdW0(s)

+ √
2σ21

∫ t

0

∫ Y′(s)

0
e−β22sW1(ds, du) + √

2σ22

∫ t

0

∫ Y′(s)

0
e−β22sW2(ds, du)

+
∫ t

0

∫ Y′(s−)

0

∫
D

e−β22srM̃(ds, du, dv, dr) +
∫ t

t∧τ

∫
D

e−β22sv2Ñ(ds, dv)

+
∫ t∧τ

0

∫
G

e−β22sv1Ñ0(ds, du, dv1, dv2)
]

(4.9)

and

Z2
′(t) = eβ22t

[
z2 +

∫ t

0
e−β22s[b2 + β21Y ′(s)]ds + √

2σ0

∫ t

0
e−β22sdW0(s)

+ √
2σ21

∫ t

0

∫ Y′(s)

0
e−β22sW1(ds, du) + √

2σ22

∫ t

0

∫ Y′(s)

0
e−β22sW2(ds, du)

+
∫ t

0

∫ Y′(s−)

0

∫
D

e−β22srM̃(ds, du, dv, dr) +
∫ t

t∧τ

∫
D

e−β22sv2Ñ(ds, dv)

+
∫ t∧τ

0

∫
G

e−β22sv2Ñ0(ds, du, dv1, dv2)
]
. (4.10)
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Let N1(ds, du, dv1) and N2(ds, du, dv2) respectively denote the images of the random measure
N0(ds, du, dv1, dv2) under the mappings

(s, u, v1, v2) 	→ (s, u, v1), (s, u, v1, v2) 	→ (s, u, v2).

Clearly, both N1(ds, du, dw) and N2(ds, du, dw) are Poisson random measures on (0,∞) ×
D with intensity νε(D)dsν̂ε(du, dw) = dsνε(du, dw). It follows that both {(Y ′(t), Z1

′(t)) : t ≥ 0}
and {(Y ′(t), Z2

′(t)) : t ≥ 0} are affine processes with transition semigroup (Pt)t≥0. From (4.8),
(4.9), and (4.10) we see that

ζ (t) := Z1
′(t) − Z2

′(t) = eβ22tξ (t ∧ τ ). (4.11)

Then {(Y ′(t), Z1
′(t), Y ′(t), Z2

′(t)) : t ≥ 0} is a coupling of the affine process with coupling time

τ = inf{t ≥ 0 : ζ (t) = 0} = inf{t ≥ 0 : X1
′(t) = X2

′(t)}.

Remark 4.5. The intensity (4.4) of the Poisson random measure N0(ds, du, dv1, dv2) in (4.8)
and (4.9)–(4.10) depends on the difference Z1

′(0) − Z2
′(0) = z1 − z2.

Lemma 4.6. Suppose that Condition 4.1 is satisfied. Then there exists a constant Cε > 0 such
that

P{Z1
′(t) �= Z2

′(t)} = P(τ > t) ≤ Cε
(
1 + |x2 − x1|

) 1√
t
, t> 0. (4.12)

Proof. By the reflection principle for the symmetric simple random walk, we have

P

(
min
k≤n

S(k)>−1
)

≤ P
(|S(n)| ≤ 1

) = P

(k|S(n)|√
n

≤ k√
n

)
;

see, e.g., Lemma 2.3 in Schilling and Wang [27]. By the Berry–Esseen inequality, there is a
universal constant C0 > 0 such that

∣∣∣P(
x ≤ kS(n)√

n
≤ y

)
− 1√

2π

∫ y

x
e−z2/2dz

∣∣∣ ≤ C0√
n
, x ≤ y ∈R.

Let T = inf{n ≥ 0 : S(n) = −1}. Then we have

P(T > n) = P

(
min
k≤n

S(k)>−1
)

≤ C0√
n

+ 1√
2π

∫ k/
√

n

−k/
√

n
e−z2/2dz

≤ C0√
n

+
√

2k√
nπ

≤ C1(k + 1)
1√
n
,

https://doi.org/10.1017/jpr.2022.100 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.100


Strong Feller and ergodic properties of affine process 831

where C1 = 1 ∨ C0. By the total probability formula and the independence of {S(n) : n ≥ 0} and
{N(t) : t ≥ 0}, it follows that

P(τ > t) =
∞∑

n=0

P(N(t) = n)P(T > n|N(t) = n)

= e−qνε(D)t
[
1 +

∞∑
n=1

(qνε(D)t)n

n! P(T > n)
]

≤ e−qνε(D)t
[
1 + C1(k + 1)

∞∑
n=1

(qνε(D)t)n

n!
1√
n

]

≤ e−qνε(D)t
[
1 + C1(k + 1)(eqνε(D)t − 1)1/2

( ∞∑
n=1

(qνε(D)t)n

n · n!
)1/2]

≤ e−qνε(D)t
[
1 + C1(k + 1)

(2(eqνε(D)t − 1)

qνε(D)t

∞∑
n=1

(qνε(D)t)n+1

(n + 1) · n!
)1/2]

≤ e−qνε(D)t
[
1 + √

2C1(k + 1)(eqνε(D)t − 1)
1√

qνε(D)t

]

≤ e−qνε(D)t + √
2C1(|x1 − x2| + 2)(1 − e−qνε(D)t)

1√
qνε(D)t

.

Then (4.12) holds for some constant Cε ≥ 0. �

We next construct the main coupling of this section, through a concatenation of two
couplings. Let D([0,∞),D2) denote the space of càdlàg paths from [0,∞) to D. Let
{w(t) : t ≥ 0} = {(w1(t),w2(t), w3(t),w4(t)) : t ≥ 0} denote the coordinate process of this space,
and let (Ft : t ≥ 0) be its natural filtration generated by the coordinate process. Let τw

0 = {t ≥
0 : w1(t) = w3(t)} and τw = {t ≥ τ0(w) : w2(t) = w4(t)}. For s ≥ 0, let θs be the shifting opera-
tor on D([0,∞),D2) defined by θsw(t) = w(s + t), t ≥ 0. For s ≥ 0 and w ∈ D([0,∞),D2), the
stopped path ws ∈ D([0,∞),D2) is defined by ws(t) = w(s ∧ t), t ≥ 0.

Let x1 = (y1, z1) ∈ D and x2 = (y2, z2) ∈ D, where y1, y2 ∈R+ and z1, z2 ∈R. For i =
1, 2, let {Yi(t) : t ≥ 0} be the solution of (2.14) with Yi(0) = yi, and let {Zi(t) : t ≥ 0} be
defined by (2.16) with Zi(0) = zi. Let P

2,2
(x1,x2) be the distribution on D([0,∞),D2) of

{(Y1(t), Z1(t), Y2(t), Z2(t)) : t ≥ 0}. Let P1,2
(y,z1,z2) be the distribution on D([0,∞),D2) of the pro-

cess {(Y ′(t), Z1
′(t), Y ′(t), Z2

′(t)) : t ≥ 0} defined by (4.8)–(4.10). Let P(x1,x2) be the probability
measure on D([0,∞),D2) defined by

P(x1,x2)
[
F
(
(w1,w2,w3,w4)τ

w
0
)
G

(
θτw

0
(w1,w2,w3,w4)

)]
= P

2,2
(x1,x2)

[
F
(
(w1,w2,w3,w4)τ

w
0
)
P

1,2
(w1(τw

0 ),w3(τw
0 ),w4(τw

0 ))G(w1,w2,w3,w4)
]
,

where F and G are Borel functions on D([0,∞),D2), and the probability symbols are
used to denote the corresponding expectations. Then under P(x1,x2) the coordinate process
{(w1(t),w2(t), w3(t),w4(t)) : t ≥ 0} evolves according to the transition law of {(Y1(t), Z1(t),
Y2(t), Z2(t)) : t ≥ 0} up to time τw

0 , after which it evolves according to the transition
law of {(Y ′(t), Z1

′(t), Y ′(t), Z2
′(t)) : t ≥ 0}. It is clear that both {(w1(t),w2(t)) : t ≥ 0} and
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{(w3(t),w4(t)) : t ≥ 0} are affine processes with transition semigroup (Pt)t≥0. Thus they form a
coupling of the affine process with coupling time τw.

Remark 4.7. One might wish to construct a coupling through stochastic equations by a
direct concatenation of the two sets of stochastic equations. As above, one first constructs
the process {(Y1(t), Z1(t), Y2(t), Z2(t)) : t ≥ 0} by (2.14)–(2.16) and defines the stopping time
τ0 = {t ≥ 0 : Y1(t) = Y2(t)}. By Remark 4.5 one would need a Poisson random measure with
intensity depending on the random variable Z1(τ0) − Z2(τ0) to define the coupling process on
the time interval [τ0,∞) by (4.8)–(4.10). We leave the details to the interested reader.

Theorem 4.8. Suppose that Condition 4.1 is satisfied. Then there is a constant Cε ≥ 0 such
that

‖Pt(x1, ·) − Pt(x2, ·)‖var ≤ Cε(1 + |x1 − x2|)t−1/2, t> 0, x1, x2 ∈ D. (4.13)

Proof. There is no loss of generality in assuming y1 ≥ y2. Using the coupling of the affine
process constructed above, we have

P(x1,x2)(τ
w
1 > t) ≤ P(x1,x2)(τ

w
0 > t/2) + P(x1,x2)(τ

w
0 ≤ t/2, τw

1 > t),

where P(x1,x2)(τw
0 > t/2) ≤ |y1 − y2|v̄t/2 by (3.1). Since t − τw

0 is measurable relative to Fτw
0

,
we can use Lemma 4.6 to see

P(x1,x2)
(
τw

0 ≤ t/2, τw
1 > t

)
= E(x1,x2)

[
1{τw

0 ≤t/2}P(x1,x2)
(
τw

1 > t|Fτw
0

)]
≤ CεE(x1,x2)

[
1{τw

0 ≤t/2}
(
1 + |w3(τw

0 ) − w4(τw
0 )|)(t − τw

0 )−1/2]

≤ Cεt
−1/2

E

(
1 + sup

0≤s≤t/2
|Z1(s) − Z2(s)|

)
.

Then the result follows by Proposition 2.6 and (2.21). �

Corollary 4.9. Suppose that Condition 4.1 is satisfied. Then there is a constant Cε ≥ 0 such
that

‖Pt(x, ·) − π‖var ≤ Cε(1 + |x|)t−1/2, t> 0, x ∈ D. (4.14)

The above corollary gives an extension of Theorem 1.1 of Schilling and Wang [27]; see also
Theorem 2(i) of Wang [29].
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