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Abstract

This paper examines the issue of derivative pricing within the framework of a fractional
stochastic volatility model. We present a deterministic partial differential equation
system to derive an approximate expression for the derivative price. The proposed
approach allows for the stochastic volatility to be expressed as a composition of
deterministic functions of time and a fractional Ornstein—Uhlenbeck process. We apply
this method to the European option pricing under the fractional Stein—Stein volatility
model, demonstrating its feasibility and reliability through numerical simulations. Our
numerical simulations also illustrate the impact of the parameters in the fractional
stochastic volatility model on the option price.
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1. Introduction

The Black—Scholes—Merton pricing formula has long been regarded as a fundamental
tool for derivatives analysis [5, 20]. However, with the continuous fluctuation of
volatilities observed in financial markets, the stochastic volatility models have been
shown to provide a better description of market behaviour than the model with constant
volatility. Stein and Stein [25] examined the stock price distribution under a diffusion
process with a stochastic volatility parameter, known as the Stein—Stein model.
Chernov et al. [7] evaluated the effectiveness of various volatility specifications,
such as multiple stochastic volatility factors and jump components, in the appropriate
modelling of equity return distributions. Furthermore, Johnson and Shanno [18] used
the Monte Carlo method to price a European call option with the stochastic variance,

'School of Mathematics, Jilin University, Changchun 130012, China;

e-mail: hanyc @jlu.edu.cn, zxd22 @mails.jlu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

229

L))

Check f
https://doi.org/10.1017/51446181123000202 Published online by Cambridge University Press Updates.


http://dx.doi.org/10.1017/S1446181123000202
https://orcid.org/0000-0001-7403-632X
https://orcid.org/0009-0007-5383-4091
mailto:hanyc@jlu.edu.cn
mailto:zxd22@mails.jlu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181123000202&domain=pdf
https://doi.org/10.1017/S1446181123000202

230 Y. Han and X. Zheng 2]

while Wiggins [26] numerically solved the call option valuation problem under a
general continuous stochastic process for return volatility.

For continuous sampling, Neuberger [22] proposed a nonparametric approach to
study Delta hedging strategies based on variance swaps under a log contract. This
method applies to arbitrary stochastic volatility processes, eliminating the need to
assume a particular stochastic volatility model. In terms of discrete sampling, Elliot
et al. [10] solved the pricing problem of swaps using probabilistic methods and
partial differential equation methods. Additionally, Sepp [24] analysed the effect of
discrete sampling on the valuation of options on the realized variance in the Heston
stochastic volatility model. Short-term options on the realized variance can be priced
by the semi-analytical Fourier transform methods, while Zhu and Lian [27] proposed
a closed-form exact solution for pricing variance swaps under Heston’s two-factor
stochastic volatility model based on the partial differential equation system. Further,
Rujivan and Zhu [23] developed a simplified analytical approach and explored the
relationship between the parameter space and effectiveness.

While all the aforementioned stochastic volatility models are driven by Brownian
motion, empirical studies showed the presence of long-range correlation in the returns
of stocks in financial markets [3, 17, 19]. To address this phenomenon, Mandelbrot
and Van Ness [19] proposed fractional Brownian motion as a process based on
the path integral form of standard Brownian motion. Decreusefond and Ustunel [8]
used the stochastic calculus of variations to develop stochastic analysis theory for
the functionals of fractional Brownian motions, while Duncan et al. [9] defined the
multiple and iterated integrals of a fractional Brownian motion and provided various
properties of these integrals. Elliott and Van Der Hoek [11] presented an extended
framework for fractional Brownian motion, enabling processes with all indices to be
considered under the same probability measure. Biagini et al. [4] introduced the theory
of stochastic integration for fractional Brownian motion based on white-noise theory
and differentiation (see, for example, [1]). As an application, Necula [21] generalized
the risk-neutral valuation pricing formula in the framework of fractional Wick-type
integrals [9]. Hu and @ksendal [16] proved that the fractional Black—Scholes market
has no arbitrage if using the stochastic integration developed by Duncan et al. [9],
contrary to the situation when the pathwise integration is used.

Gatheral et al. [13] showed that the fractional stochastic volatility (fSV) models
have an excellent fit to financial time series data. Bayer et al. [2] showed how the
rough fractional stochastic volatility model can be used to price claims, and they
found that the rough Bergomi model with fewer parameters fits the volatility of the
S&P 500 index markedly better than conventional Markovian stochastic volatility
models. Cheridito et al. [6] proposed the fractional Ornstein—Uhlenbeck process [12]
as a model for stochastic volatility, by proving the existence of a stationary solution
to the Langevin equation [14] with fractional white noise. Garnier and Sg¢lna [12]
analysed the case where the stationary stochastic volatility model is constructed by a
fractional Ornstein—Uhlenbeck process. However, some classical models (for example,
the Stein—Stein model and the Heston model) introducing fractional Brownian motion
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have more general requirements for the volatility form. In this paper, we propose
an approximate pricing method for the fractional stochastic volatility model by
solving stochastic partial differential equations with variable coefficients, where
the volatility is constructed as a deterministic function of time and the fractional
Ornstein—Uhlenbeck process.

The paper is organized as follows. In Section 2, we introduce some basic back-
ground on the fractional Brownian motion and the fractional Ornstein—Uhlenbeck
process. Our main results are presented in Section 3. We derive the approximate
pricing formula, and prove that the approximation error can be limited. In Section 4,
we calculate the price of the European option under the fractional Stein—Stein model
[15] as an example to illustrate the feasibility and operability of the method. Numerical
simulations are presented in Section 5 as well as the conclusions in Section 6.

2. Fractional Brownian motion and Ornstein—-Uhlenbeck process

The fractional Brownian motion with Hurst parameter [19] H € (0, 1) is a zero-mean
Gaussian process (B),cg with covariance

2
(oa
E[BBM] = TH(WH +IsPH — |z — 5P,

where

- 1
TH T TH+ 1)2)
B 1

" T(QH + 1)sin(zH)’

1

* 1 4+ )12 _ H-1/22 0
[fo (1 +59) Vs 4

We use the following moving-average stochastic integral representation of the
fractional Brownian motion [16]:

1 _ _
B = E+13 fR (t -9 — (=)t 4B,

where (B;)cr is a standard Brownian motion. The filtration ¥, generated by Bf{ is also
the one generated by B;.

The fractional Brownian motion is self-similar, that is, (B%, ¢ € R) and (c?B,t € R)
have the same probability law for all ¢ > 0. Compared with Brownian motion,
it displays a long-range dependence and positive correlation properties when
1/2 < H < 1, and it displays negative correlation property when 0 < H < 1/2. This
special property of fractional Brownian motion allows it to describe path-dependent

models.
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The fractional Ornstein—Uhlenbeck process [12]

1 t
7/ = f e dBl =B —a f e B ds

o0 —00

is a zero-mean, stationary Gaussian process, with variance
2 _ H\27 _ 1, -2H 2
Oou = El(Z) ] = 34" T(2H + 1oy,
and covariance

1 1
E[ZFZZS] =02 —[— fe_l"|as + v dv — |as]

MTQRH+ 1D)I2 Ji
2 si H 00 1-2H
=02 Zsin(xH) cos(asx) al dx.
g 0 1+x2

Note that Z7 is neither a martingale nor a Markov process. The fractional
Ornstein—Uhlenbeck process also has the following representation of a moving-average
integral:

!
zH = f K(t - s)dB;,

where

_; -1/2 _ ft _ \H-1/2 —as
«(t)_l“(H+1/2)[tH a ] -y as)

3. Main results

Suppose that the market is self-financing and Z is adapted to the Brownian
motion B;. Here, B; and B; are two standard Brownian motions with correlation coef-
ficient p. In this section, we consider an option pricing problem, when the dynamics
of the underlying asset is driven by the following stochastic differential equation:

{dX[ = ,qu dr + V[Xt ch (3 1)

v = () + F(yZ{"),

where F and v are smooth, positive-valued functions, bounded away from zero, with
bounded derivatives. Here, ¢ and y are two constants.
Our objective is to calculate the price of the following derivative:

W = E[g(X7) | F1]. (3.2)
For notational simplicity, we introduce the operator

Ly = 0 + pxdy + %17(t)2x26§x.
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The following theorem gives an approximate expression of derivative price when y
is small.

THEOREM 3.1. If the underlying asset and the derivative follow the dynamics given by
equations (3.1) and (3.2), we approximate the price of the derivative as follows:

W, = M(1,X,) + 0y,
where
M, X;) = Mi(t, X;)

+a(t, X, )yv(t)p, ()M (1, X,) + a(t, X, ) ypMa(t, X,)
+ vy M5(t, X;) + yMy(t, X;) + yoMs(t, X,),

and ¢; = E[ j; ! Zf ds | ). The other elements are deterministic, and can be solved by
the following partial differential equation system:

LM, (t,x) = 0,

LM (t,x) = =H(0)*(x0,(x*0% )M (£, x)0, 7,

LsyMs(t,x) = —(202)M (1, 0)[a(t, )V (1) + 9(1) Lya(t, )],
LyoyMy(t,x) = —=v(0)(x0)M5(t, )0, 1,

LyyMs(t,x) = =M (t, x) Lypa(t, x),

(1 —af(t, x))V(t)(xza)zcx)Ml (t,x) — M5(t,x) = 0,

M\(T,x) = gx),

My(T,x) = M5(T,x) = My(T,x) = Ms(T,x) =0,

(3.3)

where 6,1 = fOT_t KW)dv.

PROOF. For the smooth function M| (¢, x), we have by 1t6’s formula [1],
y2"(Z})
2
+ v (x0,)M (¢, X;) dB;,

dM,(t,X,) = (W(z)zﬁ + )(xzc')fx)Ml (t,X,) dt

and
d($(CTIM (1, X)) = (P07 )M (1, X)d, + ¢,d[(x*07)M 1 (1, X,)]
+ded((P 07 )M, (1, X))
= ~ZH (PP )M (t, X,)dt + (P 0% )M, (1, X,)d,
+ v, (X0, (0% )M, (¢, X,) dB;

2 H
ez + TEED

+ v, (x0,(PI2)IM (t, X,)d{¢, B,),

)(xzaix(xzﬁix))Ml (1, X,) dt
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where

Fow) —wy | Fo)?
2 2
Notice that v(¢) is a function of ¢, so we cannot eliminate the first term in dM, (¢, X,)

using d(¢,(x*8%)M,(t,X;)) only. This problem is solved by introducing the function
a(t,x) in equation (3.3). We have (¢,, B;) = p{y;, B;), and therefore,

T
¢:=E[j; ZdeITt], g’ (y) =2v()

d(M (1, X,) + a(t, X, )yv(t)p, (P 02)M, (1, X,))
Y8 (Zh
2
Y u(t)g"(Z1) )
2

- (y(l —at, X )7 + )(xzaix)M1 (t. X)) dt

+alt, x,)ast(yzv(r)zz{’ - (P05, (P05 ))M (8, X,) dt

+ alt, X ypu(tvi X (0. (T )WM (1, X)W, BY)
+ V(@ (COLIM (8, X)dalt, X,)o() + M,
where Mt(l) is a martingale satisfying
dM® = a(t, X,)v,X,0:M, (1, X;) dB,
+ alt, X)yv() (P9 )M (1, X,) dip,
+ alt, X, ) yv(O) v X, (0. (x* 0% )M, (t, X;) dB;.

We partially eliminate the first term in dM, (¢, X;). To eliminate it completely, we
introduce M(t, x) and M;(t, x). Applying [12, Lemma A.1], notice that

dW, B,y = 6, dt.
Thus, we can write
d(My(1. X)) + at, X)y (D¢ (P Fe )My (1. X))
+d(a(t, X)) ypMo (1, X;) + y¢:M3(1, X))
= ypM,(t, X,)da(t, X;) + yv,(x0,)M3(t, X;)0; 1 dt
v dR + " + dm®,
where
M = Y@ )M (1, X)W (v, (xD.)alt, X,) dB;
+ a(t, X,)ypv,(x0, )M (t, X,) dB,
+yMs(t, X)) dy,
+ yvi(x0 )M;5(t, X;) dB;,
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and

dR" = (PP IM (1, X,) dt

Y rg"(Z)
2
+a(t, X))y pv(OZF (x0,(*02))M (t, X,)0, 7 dt
a(t, X))y pg? (ZH)

2

Y28 (Z)
2

+at, X,)¢,(y2v(z)zz,ﬂ + )(ﬁ&ﬁx(xzaix))M] (t. X)) dt

+ (a(t, X))y ov(H)Z! + )(xzaﬁx)Mz(t, X,)dt

Y@

. )(xzaix)a(z, X,)dt

- %(ast(xzaix)Ml (t, xg)v(r)(yzv(z)zf’ +

3 H
+ ¢,(y2v(z)zf’ + %)(ﬁa@m(z, X,)dt.

In summary,
d(M (1, X,) + a(t, X, )yv(t)p,(*O2)M (1, X,))
+d(a(t, X,yypMa(t, X;) + y:Ms(t, X,))
+d(yMy(t, X)) + ypMs(t, X,))
= dR" + dR® + dM" + am? + dM(”,
where
3 57 ZH
v pg’(Z, )) s
2
+ 2 pZ (x0.)M5(t, X6, 7 dt

3,7 ZH
+ (yz\_/(t)Zf{ + %(’))(fa};x)m(z, X,)dt

dR? = My(1, X,)(yzpf/(t)Z,H +

3 oY ZH
%(’))(xzaist(t, X,)dt,

+ (yzp\_/(t)qu +
dM;? = viX,M(1, X,)dB, + yvi(x0.)Ma(t, X,) dB,

+ ypvi(x0)Ms(t, X;) dB;.

Therefore,
dM(t,X;) = dM + dM® + dM® + dRV + dR?,
where M, M, M are martingales. Let
M =M"+M>+M>, R =R"+R?.

In addition, according to equation (3.3), we have M(T, X7) = g(X7) and

W = Elg(X7) | 1]
= E[M(T, X7) | ]
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T
= M(.X) + EMr — M, | 731+ E| f ar; | 73|
t

T
= M(t.X,) + E[ f dR, | ﬁ].
t
Note that g”(y) is bounded uniformly in y by
18O < (PlleollF o + IF 115y

This completes the proof of Theorem 3.1, since E[ fl r dR, | ] is of order y>. O

4. European option pricing under the fractional Stein—Stein volatility model

In this section, we calculate the approximate price of a European call option with a
strike price of K under the fractional Stein—Stein volatility model as an example, that is,

dX; = uX,dt + \v/|X; dB;, (4.1)
dv, = B(a — v,)dt +y dB}!, |
W, = E[(X7 - K)' | 71, 4.2

where X, is risky asset price process. Here, i is the drift rate of the risk asset price
process. Since the volatility process is a mean-reverting process, v; tends towards a
long-term value @ with rate 3. Here, y is a constant and BY is a fractional Brownian
motion with Hurst parameter H > 1/2.

LEMMA 4.1. The equation
dv, = Bl — v, dt +ydB" 4.3)

has a unique solution of the form

5 5
v, = e Py +,80/f PO ds + ny{ —ﬂf yeB(‘Y_’)B? ds
0 0
= (1) +yZ!.

PROOF. By using It6’s formula under fractional Brownian motion [9, Theorem 4.3],
proof of Lemma 4.1 can be obtained directly. ]

PROPOSITION 4.2. If the underlying asset and the derivative follow the dynamics
given by equations (4.1) and (3.2) instead of equations (3.1) and (3.2), then Theorem
3.1 still holds.

PROOF. Applying Lemma 4.1 and noting that |v,/> = v?, we replace v; in the proof of
Theorem 3.1 with |v,|, such as

aMi(1.X) = (yr0z! + r’s 2( : ))< 262 )M (1, X,) di

+ Vil (x0)M (¢, X;) dB;.
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Then, the proof of Proposition 4.2 is complete, since M, is still a martingale and
E[flT dR, | F,] is still of order y2. O

If the underlying asset and the derivative follow the dynamics given by equations
(4.1) and (4.2), applying Proposition 4.2, our approximate pricing method proceeds as
follows.

STEP 1. We solve M,(t, x) by

(4.4)

LM, (t,x) = 0,
M(T.x) = (x - K)*.

Let

y= xeu(T—t)’

{u = Ml(tvx)’

then equation (4.4) becomes

4.5)

o:u + %T/(t)zyz@fyu =0,
U=r = (y = K)*.

Likewise, let 7 = fot ¥(s)? ds, then equation (4.5) becomes

Yy

Ou + %y2c')2 u=0,
u|1-=f‘ = (y - K)+’

where 7' = fOT (s)? ds. Applying the Black-Scholes formula (see, [3, 20]),

My(1,x) = u(y, 7)
= yN(d\) - KN(d>)
= xe*TIN(dy) - KN(d»),

where
. InG/K) + (F-1/2  IG/K) (T -0+ (1/2) [ (s ds
dl = — = N
VT -7 7 ws)? ds
and

~ A~ A A T 1 3 ]
dz=d1—VT—T=d1—\/f %(s)° ds, N(x)=—f 12 ds.
' Va2r J-o
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Moreover,
. u(T=1) g=d\" /2 Ke—®'/2
OeMy (1, x) = TIN(dy) + —eeee — =8 :
T T

\/27r ft v(s)? ds x\/27r ft v(s)? ds

w(T—1) ~d )2 u(T—1) —412/2j

5 My (1) = e e e e 1

T o(s) Var [T (s d

x27rft V(s)>ds XN VIS)aS

Ke ' 124, Ke=&'12

+ + )
T _
x2\/27rft V(s)?ds 2o sz (s)? ds

STEP 2. We solve M»(t, x) by

LyoyMa(t,x) = =0(1)* (60, (3 02))M1 (1,060, 1 = M, (2, %),
Mz(T, )C) =0.

Let
z = Inx,
T=T-1,
then equation (4.6) becomes

=2

72 2 y —
0-M, — EazzMz - (/J - 3)3ZM2 =M,
M= = 0.
Let
M = ue®™ P, {=f v ds,
0
where
1 pu\/3u \72) I u
=\-4+—=)\— - — ==+ —.
“ (2 vZ)(z i) FE3t

Then equation (4.7) becomes

Ocu — 10%.u = My(£, 2),
ulg=o = 0,

where

M,

M\(&.2) = =5
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[10]

(4.6)

4.7

(4.8)


https://doi.org/10.1017/S1446181123000202

[11] Approximate pricing of derivatives under fSV model 239

We get the solution of equation (4.8) as follows:

{ przr-m)2
u(l,z2) = f f M, (m, n)dndm,
0 z—({-m)/2

¢ perEm2
M, = e"”&f f M, (m,n)dndm.
0 7—({-m)/2

STEP 3. We solve M;3(¢, x) and a(t, x) by

LyyMs(t,x) = ~(CI)M(1,0)[a(t, )V (1) + (1) Lpalt, x)],
(1 = a(t, )V PP IM (1, X) = M3(1,x) = 0, 4.9)
M5(T,x) = 0.

Let
a(t,x) =a(t,x)—1, z=Inx,
then equation (4.9) is translated into

[F(DSf (1, ) + uP(D)f (1, x) + 3V OZf (1, ) — 39(1)*0f (1, %)]
xa(t, x) + v()30.f (t, x)0.a(t, x) = V' ()f (¢, x),

Ms(t,x) = a(t, )p(Of (2, x),

a(T, x) = 0.

(4.10)

The solutions of equation (4.10) are as follows:

. T 4
G = e Jmasds f f n(t,s)dsdr, M;s(t,x) = av(t)f (1, x),
t 0

where
92 1
f/zang-'_\%-"z;zf—z,
n(t,z) = —,(q(t, 2)eb ™),
v
P3of
STEP 4. Using a similar approach as in Step 2, we solve the M,(z, x) and Ms(t, x) by

m(t,z) =

qt,z) =

LinyMy(t, x) = —0()(x0,)M5(t, x)6; 1 2_1‘73
LipyMs(t,x) = =My (t,x) Lyya(t,x) = M, (4.11)
My(T,x) = Ms5(T,x) = 0.
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We get the solution of the above equation as follows:

o reH(d-m)/2
My = ¥ f Ms(m, n)dndm,
0

—(G-m)/2
{ perEm2
Ms = e“”ﬁzf f M>(m, n)dndm,
0 Je—-m2
where
— M; — M,
M3(Z,2) = preveeel My (£, 2) = et

5. Numerical simulations

In this section, we compare the fractional Stein—Stein volatility model with
different H. Taking European options as an example and applying the Proposition 4.2,
we illustrate and analyse the properties of the model with different volatilities,
maturities and strike prices. Subsequently, we fix other parameters and adjust y to
illustrate the reliability of the asymptotic analysis.

To simplify the analysis, we set = 0, u = 0 and p = 0. In the following numerical
examples, H = 0.5, 0.7, 0.9, respectively, and X, = 50, 8 =0.5. Notice that the
volatility process is an Ornstein—Uhlenbeck process when H = 0.5.

First, we let y = 0.1, T =1 and show the impact of K, @ and H (see Table 1,
Figures 1 and 2). For Figure 1, when « is small, the effect of H is weak. When «
takes a larger value, the option prices under stochastic volatility models with different
H reflect significant differences. Compared with the case where the volatility process
is an Ornstein—Uhlenbeck process, when @ = 2.5, the option prices under stochastic
volatility models with H = 0.7 and H = 0.9 are lower and higher, respectively. This
indicates that option prices under this model are not positively or negatively correlated
with the Hurst parameter. According to Lemma 4.1 and Proposition 4.2, « directly

affects v(¢), and H affects
T
o=t [ zasi7)
t

by directly affecting Z”. When the other parameters except H are fixed, the solution
of the partial differential equation system of equation (3.3) is fixed. Thus, H only
affects M(t, X;) through ¢;. See Table 2 for the relationship between H and ¢ in
this simulation. When H = 0.7, ¢, obtained from this simulation takes a higher value
compared with the other two cases in Figure 1, which leads to lower approximation
results. This result also shows that the method requires us to better work out the
conditional expectation ¢,. Unlike the case with @ = 2.5, when a = 0.5, we observe
that options with different strike prices are influenced by K in different ways. More
specifically, options with K < 50 are more affected by changes in K, that is, the curve
is steeper, while options with K > 50 are less affected. In Figure 2, notice that the
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TABLE 1. Option prices with different H, @ and K.

241

K 30 35 40 45 50 55 60 65 70
H=05
a=05 2153 1788 1475 1210 990  8.09 6.61 541 442
a=10 2707 2470 22.61 2076 1912 17.65 1635 1517 14.12
a=15 3333 3172 3027 2897 2778 26.69 2569 2477 2391
a=20 3820 3712 3615 3526 3444 33.68 3298 3232 3170
a=25 4225 4154 4090 4031 39.76 39.25 38.77 3832 37.89
H=0.7
a=05 21.65 18.00 1485 1218 997 814 6.65 543 444
a=10 2689 2452 2244 2060 1896 1750 16.20 15.02 13.97
a=15 3228 3067 2923 2794 2675 2567 2468 2376 2291
a=20 3955 3848 3751 36.63 3582 3507 3437 3372 3311
a=25 3858 3788 3725 36.67 3613 3563 3516 3471 3429
H=09
a=05 2147 1782 14.68 12.02 9.8l 799 650 528 430
a=10 2719 2482 2273 2089 1926 1780 1650 1533 14.27
a=15 3309 3147 3003 2872 2753 2644 2543 2450 23.65
a=20 3872 3764 36.66 3576 3493 3416 3344 3277 3214
a=25 4380 43.09 4244 4185 4130 40.79 4032 39.87 39.44
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FIGURE 1. Option prices with different H, & and K.
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FIGURE 2. Option prices with different H, @ and K.
TABLE 2. Simulated ¢y = E[fOT Zf’ ds | Fo] with different H and a.
H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a =25 2499926 250001 2.499773 2.500149 2.500011 2.499999 2.500085 2.500262 2.499959
a=0.5 0499936 0.499901 0.499958 0.500249 0.499885 0.499722 0.500092 0.499778 0.499782

change of option price caused by the change of strike price narrows with the increase
of a. Moreover, it is by no means the case that larger « leads to higher option prices.
When the other parameters except « are fixed, the solution of the complex partial
differential equation system of equation (3.3) is affected by ¥(#). The solution and v(#)
together lead to the complex result in Figure 2.

Second, we let y = 0.1 and show the impact of T (see Table 3 and Figure 3). In most
cases (except when H = 0.9, a = 2.5, K = 30, 35), the option prices with the same
strike price increase as time to maturity 7 increases. As can be seen from the data
in Table 3, option prices with different parameters have different sensitivities to 7.
In-the-money options are less sensitive to 7 compared to out-of-the-money options.
Options with higher 7" and higher mean-reversion level « are less sensitive to K when
other parameters are fixed. For short-term maturity option cases (when T’ = 0.25), they
are most sensitive to K and least affected by H.

Finally, we let H = 0.9 and show the impact of y (see Table 4 and Figure 4). How
v affects the option price depends on the value of @. For this part of the numerical
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TABLE 3. Option prices with different H, @, T and K.
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K 30 35 40 45 50 55 60 65 70
H=05,a=05
=025 20.02 1531 11.09 760 496 3.09 186 109 0.62
=050 2043 1618 1250 945 7.01 513 371 266 190
=100 2153 1788 1475 1210 990 8.09 6.61 541 442
=200 2375 2075 1814 1588 1394 1227 10.82 957 849
H=07,a=05
=025 2002 1530 11.07 758 492 306 1.83 1.06  0.60
T=050 2047 1622 1253 947 702 513 371 267 1.91
=100 2165 18.00 14.85 1218 997 814 6.65 543 444
=200 2359 2058 1796 1570 13.75 12.07 10.61 936  8.28
H=09,a=05
=025 2009 1538 1115 765 498 310 186 1.09 0.62
=050 2052 1627 1258 951 706 517 374 2.69 1.92
=100 2147 1782 1468 1202 981 799 650 528 430
T=200 2346 2045 1784 1559 13.65 1199 1056 932 825
H=05a=25
=025 3000 28.05 2631 2476 2335 2208 2092 1986 18.89
T=050 3660 3529 3410 33.03 32.04 3113 3029 2950 28.76
T=100 4225 4154 4090 4031 39.76 39.25 38.77 3832 37.89
T=200 5738 5714 5692 56.71 5652 5634 5617 56.01 55.86
H=07a=25
T=025 3019 2824 2650 2495 2354 2228 2112 20.06 19.09
T=050 3555 3425 33.07 3201 31.03 3013 29.29 2851 27.78
T=100 3858 3788 3725 36.67 36.13 3563 3516 3471 3429
T=200 4420 4395 4373 4352 4332 4314 4297 4280 42.65
H=09,a=25
T=025 3045 2851 2677 2522 2382 2255 2140 2034 1937
T=050 3480 3349 3231 3124 3026 2935 2851 2773 27.00
T=100 4380 43.09 4244 4185 4130 40.79 4032 39.87 39.44
T=200 4313 4289 4266 4245 4226 42.07 4190 4173 41.57

simulation results, when @ = 0.5, an increasing y generally leads to a decrease in the
option price. However, when a = 2.5, an increasing y generally leads to an increase
in the option price. Moreover, as the y decreases from 1 to 0.001, the option prices
calculated by the approximation method in this paper gradually converge to a relatively
stable level. This result is consistent with Proposition 4.2 we have obtained and
demonstrates the reliability of the approximation method.
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FIGURE 3. H = 0.9. Option prices with different 7, @ and K.
TABLE 4. Option prices with different @ and K.
K 30 35 40 45 50 55 60 65 70
H=09,y=1
a=0.5 23.34 19.87 16.83 14.25 12.14 10.43 9.06 7.96 7.07
a=10 27.53 25.12 23.00 21.14 19.52 18.09 16.83 15.71 14.73
a=15 32.47 30.82 29.34 28.02 26.82 25.73 24.74 23.83 22.99
a=20 39.02 37.89 36.88 35.96 35.11 34.33 33.60 32.93 32.29
a=2.5 42.94 42.20 41.53 40.92 40.35 39.82 39.33 38.86 38.43
H=09,y=0.1
a=0.5 21.47 17.82 14.68 12.02 9.81 7.99 6.50 5.28 4.30
a=10 27.19 24.82 22.73 20.89 19.26 17.80 16.50 15.33 14.27
a=15 33.09 31.47 30.03 28.72 27.53 26.44 25.43 24.50 23.65
a=20 38.72 37.64 36.66 35.76 34.93 34.16 33.44 32.77 32.14
a=2.5 43.80 43.09 42.44 41.85 41.30 40.79 40.32 39.87 39.44
H =09,y =001
a=0.5 21.62 17.96 14.81 12.15 9.93 8.11 6.61 5.40 4.41
a=10 27.40 25.03 22.95 21.11 19.47 18.01 16.70 15.52 14.46
a=15 32.89 31.29 29.85 28.56 27.38 26.30 25.31 24.40 23.55
a=20 38.24 37.15 36.17 35.27 34.44 33.67 32.95 32.28 31.65
a=25 45.26 44.56 43.92 43.33 42.78 42.27 41.79 41.34 40.92
H =09,y =0.001
a=0.5 21.58 17.93 14.79 12.13 9.91 8.08 6.57 5.34 4.34
a=10 27.52 25.15 23.06 21.21 19.57 18.10 16.79 15.61 14.54
a=15 33.33 31.70 30.24 28.92 27.72 26.62 25.62 24.69 23.82
a=2.0 36.95 35.87 34.89 34.00 33.17 32.41 31.71 31.05 30.43
a=2.5 45.06 44.35 43.71 43.13 42.58 42.07 41.59 41.13 40.71
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FIGURE 4. a = 0.5. Option prices with different y and K.

It is important to note that the requirement for y for the option price to reach a
relatively stable level is related to the value of the @. When @ = 0.5, y = 0.1 is sufficient
to make the option price reach a relatively stable level. However, when a = 2.5,
v = 0.01 is required to achieve this goal.

6. Conclusions

In this paper, we investigate the problem of pricing derivatives under a fractional
stochastic volatility model. We obtain a method for approximating the prices of
derivatives where the stochastic volatility can be composed of deterministic functions
of time and the fractional Ornstein—Uhlenbeck process. Some fractional stochastic
volatility models can be generalized to this type of problem. As an example, we give an
approximate pricing expression and numerical simulation of a European option under
the fractional Stein—Stein model. Numerical simulation results demonstrate the impact
of the parameters in the fractional stochastic volatility model on the option price. By
numerical simulation, we also show that the price of the option can reach a relatively
stable level as y decreases, which is consistent with the main results we have obtained
and demonstrates the reliability of the approximation method.
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