Original Article

Identifying healthcare transmission routes of nontuberculous mycobacteria with whole genome sequencing: a systematic review

Spencer D. Schrank DO^{1,2} (1), Dale Z. Gozum DO³, Elise M. Martin MD, MS^{1,4} (1) and Graham M. Snyder MD, SM^{1,2} (1)

¹Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA, ²Department of Infection Prevention and Control, UPMC Presbyterian/Shadyside, Pittsburgh, PA, USA, ³Department of Medicine, UPMC Lititz, Lititz, PA, USA and ⁴Veterans' Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA

Abstract

Objective: To enumerate and describe the effect of whole genome sequencing (WGS) on epidemiological investigations of healthcareassociated transmission of nontuberculous mycobacteria (NTM).

Design: Systematic review.

Methods: We performed a literature search using targeted search terms to identify articles meeting inclusion criteria. Data extraction of study characteristics and outcomes was performed by two independent researchers. The primary outcome was the author interpretation of WGS utility in the investigation of suspected healthcare-associated transmission of NTM. The secondary outcome was whether a transmission route was identified through WGS.

Results: Thirty-one studies were included in the final analysis with 28 (90%) concluding that WGS was helpful in transmission investigations and in 19 of these 28 (68%) WGS aided in identifying a transmission route. The most common identified transmission routes were waterborne point sources (10), heater-cooler units (6), patient-to-patient (4), and a healthcare worker (1).

Conclusion: WGS is an informative tool in investigating healthcare transmission of NTM.

(Received 26 September 2024; accepted 31 December 2024)

Introduction

Nontuberculous mycobacteria (NTM) are ubiquitous environmental organisms that have been attributed to healthcare-associated transmission events for both local and global outbreaks.¹ Traditional epidemiological investigation methods of NTM healthcare transmission require identification of an outbreak by clinicians, infection prevention teams or microbiologists. Prolonged incubation periods, limited microbiologic techniques, and varying clinical presentations can make case ascertainment and identification of transmission pathways difficult.²

Whole genome sequencing (WGS) has become the gold standard for epigenomic investigations of healthcare-associated transmission.³ WGS has been most often used as a reactive tool to supplement traditional epidemiologic investigations of suspected healthcare-associated outbreaks but has more recently been used as a mode of surveillance to identify healthcare transmission when an outbreak is not apparent.⁴ WGS to identify healthcare transmission routes of NTM is becoming more prevalent, but additional

Corresponding author: Spencer D. Schrank; Email: schranks2@upmc.edu

studies are required to understand its utility supplementing traditional epidemiological methods.

In this systematic review, we aim to enumerate and describe the studies that have used WGS to identify or characterize healthcareassociated transmission of NTM. The purpose of this review is to characterize the reported value of adding WGS to traditional epidemiological investigation methods in identifying transmission routes, and therefore, opportunities to prevent nosocomial transmission of NTM. As WGS becomes more available and routinely used for pathogen transmission investigation, infection prevention teams can allocate resources to prevent transmission in healthcare settings.

Methods

Study selection

A literature search was performed In Ovid MEDLINE ALL from inception to February 2024 (Figure 1). The search terms "nontuberculous mycobacteria" AND "whole genome sequencing" AND ("healthcare-associated infections" OR "healthcare setting") were used. Results were restricted to English language. The title and abstract were screened for eligibility to exclude studies that were non-infection related, only antimicrobial susceptibility related, or selectively used non-WGS methods for transmission investigation. The Preferred Reporting Items for

Cite this article: Schrank SD, Gozum DZ, Martin EM, Snyder GM. Identifying healthcare transmission routes of nontuberculous mycobacteria with whole genome sequencing: a systematic review. *Infect Control Hosp Epidemiol* 2025. doi: 10.1017/ice.2025.6

[©] The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Figure 1. Flow diagram of study selection.

Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for reporting the results of this study.⁵

Data extraction was performed in duplicate by two independent physician researchers (SS, DG) with any discordances resolved through a joint evaluation. These variables included study, patient, infection, and genomic characteristics of each study (Supplemental Table 1).

Data analysis

The primary outcome was the study authors' conclusion about WGS utility in establishing or refuting a healthcare-associated transmission route. A secondary outcome included whether WGS identified a specific transmission route.

Qualitative characteristics were summarized by the frequency with which they occur. The following study characteristics were summarized by measures of center: study duration, case and control patient and isolate frequencies, and SNP cutoff (if reported).

Microsoft Forms was used for data extraction for each study by both independent reviewers. Results were imported into Microsoft Excel after data extraction was completed by both reviewers. Qualitative and quantitative summary statistics were performed in Microsoft Excel.

Ethical and patient consent was not required for this study because data was retrieved and synthesized from previously published studies.

Results

One-hundred and thirty-one articles were identified using the initial search strategy. After screening all articles by titles and abstracts, 35 (27%) articles met screening criteria. One additional article was identified through a cited reference. Thirty-one articles were included in the final analysis after full text review (Figure 1).^{6–36}

Most studies were cohort design (23, 74%). Thirty-nine percent (12) were acute-care hospitals, 26% (8) were multi-facility, 23% (7) were mixed inpatient and outpatient facilities, 10% (3) were outpatient clinics, and 3% (1) was a long-term care facility. The median study duration was 5 years (interquartile range [IQR], 6) (Table 1). The most frequently investigated organisms were Mycobacteroides abscessus (16 studies totaling 3,681 isolates), Mycobacterium chimaera (8 studies, 111 isolates), and Mycobacterium fortuitum complex (2 studies, 42 isolates); 11 other species were reported across 9 studies, totaling 147 isolates. The median number of patient-cases investigated per study was 22 (IQR, 45) with 25 (IQR, 78) patient-isolates. For studies that included control cases (n = 6), the median number of control patients per study was 15 (IQR, 13) with 10 (IQR, 14) patientisolates. In studies that reported anatomic site of isolate collection, a total of 3,549 isolates were described with the most common anatomical site of collection being the lungs (n = 3,174 isolates, 174 isolates)89%) (Supplemental Table 2). The most frequently reported HAI was surgical-site infection (n = 333 isolates, 87%) (Supplemental Table 3) with the lungs being the most sequenced anatomic site of

Table 1. Characteristics of studies reporting the use of whole genome set	equencing to investigate potential transmission of non-tuberculous mycobacteria
---	---

					Cas	ses	Cont	rols	
Publication First Author, Year	Study Design	Study Duration (Years)	Facility Type	NTM Species Investigated	Patients	Isolates	Patients	Isolates	SNP Cutoff
Bryant, 2013 ⁶	Cohort	4	MIO	Mycobacteroides abscessus complex	31	168			50
Harris, 2015 ⁸	Cohort	NR	MIO	Mycobacteroides abscessus complex	20	27			25
Robinson, 2016 ⁹	Case Report	1	MF	Mycobacterium chimaera	1	1	1	1	NR
Chand, 2016 ¹⁰	Case- Control	8	MF	Mycobacterium chimaera	15	29	159	200	NR
Everall, 2017 ¹¹	Cohort	6	MF	Mycobacteroides abscessus complex	14	14			NR
Hasan, 2019 ¹²	Case- Control	2	MF	Mycobacterium chimaera	24	24	7	8	NR
Decalonne, 2019 ¹³	Case Report	1	OC	Mycobacteroides chelonae	1	1			NR
Gu, 2020 ¹⁴	Cohort	1	ACH	Mycobacteroides chelonae	7	7			NR
Yan, 2020 ⁷	Cohort	4.3	МЮ	Mycobacteroides abscessus complex	22	22			20
Labuda, 2020 ¹⁵	Cohort	0.75	OC	Unknown species	52	52			NR
Doyle, 2020 ¹⁶	Cohort	16	MIO	Mycobacteroides abscessus complex	62	145			NR
Ghodousi, 2020 ¹⁷	Cohort	5	ACH	Mycobacterium chimaera	23	23	15	15	NR
Wetzstein, 2020 ¹⁸	Cohort	12	MIO	Mycobacteroides abscessus complex	29				25
Xu. 2021 ¹⁹	Cohort	2.58	ACH	Mycobacterium chimaera	18	25			NR
Lipworth 2021 ²⁰	Cohort	4.83	MIO	Mycobacteroides abscessus complex	906	2431			25
Lecorche 2021 ²¹	Cohort	6.83	АСН	Mycobacterium chimaera	2	3			NR
Euliwara 2022 ²³	Cohort	0.05	АСН	Mycobacteroides abscessus complex	2	25			25
Waglochnor 2022 ²⁴	Cohort	5		Mycobactoroidos abscessus complex	7	20	7	10	25
Daniau 2022	Cohort		UC ME	Mycobacteronaes abscessas complex	1	200	1	10	25
Daniau, 2022 ²⁰	Cohort	7.5	MF	Mycobacterium fortuitum complex Mycobacteroides chelonae		42 30			10
	Cohort	7.5	MF	Mycobacteroides abscessus complex		14			10
	Cohort	7.5	MF	Mycobacterium mucogenicum		5			10
	Cohort	7.5 7.5	ME	Mycobacterium chimaera Mycobacterium avium complex		4			10
	Cohort	7.5	MF	Mycobacterium neoaurum		2			10
	Cohort	7.5	MF	Mycobacterium lentiflavum		1			10
	Cohort	7.5	MF	Mycobacterium marinum		1			10
	Cohort	7.5	MF	Mycobacterium fuerthensis		1			10
	Conort	1.5	IVIF			1			10
Inkster, 2022 ²⁰	Cohort	1	ACH	Mycobacteroides chelonae	2	2			NR
Davidson, 2022 ²⁷	Cohort	1.4	ACH	Mycobacteroides abscessus complex	7	7	15	15	NR
Gross, 2022 ²²	Cohort	7	MF	Mycobacteroides abscessus complex	27	27			10
Wetzstein, 2022 ²⁸	Cohort	4	MF	Mycobacteroides abscessus complex	123	154			25
Dedrick, 2023 ²⁹	Cohort	2	MF	Mycobacteroides abscessus complex	90	90			7
Gross, 2023 ³⁶	Cohort Cohort	2 2	MIO MIO	Mycobacterium avium complex Mycobacterium chimaera	9 2	9 2			30 30
Nagano, 2023 ³⁰	Cohort	1	ACH	Mycobacterium lentiflavum	22	22			NR
Komiya, 2023 ³¹	Cohort	4	LTCF	Mycobacteroides abscessus complex	52	52			NR
Faury, 2023 ³²	Case Report	7.3	ACH	Mycobacterium fortuitum	1	1			NR
Kling, 2023 ³³	Cohort	0.5	ACH	Mycobacterium xenopi	6	3			NR
Groenewald, 2023 ³⁴	Case-	1.5	ACH	Mycobacterium goodii	3	3			NR
	Control Case- Control	1.5	ACH	Mycobacterium wolinskyi	5	5			NR
Klompas, 2023 ³⁵	Cohort	3	ACH	Mycobacteroides abscessus complex	4	4			40

Note. ACH, inpatient acute care hospital; LTCF, long-term care facility; MIO, mixed inpatient and outpatient; MF, multi-facility; NR, not reported; NTM, non-tuberculous mycobacteria; OC, outpatient clinic; SNP, single nucleotide polymorphism.

collection among studies that reported the breakdown of sequenced isolates implicated in transmission by anatomic site (n = 762 isolates, 74%) (Supplemental Table 4).

Among the 14 (45%) studies reporting SNP, the median SNP cutoff used for genetic relatedness was 25 (range, 5-30 SNPs) (Table 1). Eighteen (58%) studies used reactive WGS and 13 (42%) studies used WGS surveillance to identify a potential transmission route among epidemiologically linked infections. Twenty-eight (90%) of the studies in this review determined that WGS aided in their investigation of NTM healthcare transmission (Table 2, Supplemental Table 5). Of these 28 studies, 19 (68%) identified a transmission route using WGS. One (3%) study concluded that WGS did not provide additional information in their transmission investigation and two (6%) studies did not report whether WGS aided in their investigation, despite the authors suspecting patient-to-patient transmission routes. Transmission routes identified were water-borne (n = 10), associated with heater-cooler units (n = 6), patient-to-patient (n = 4) and related to a healthcare worker (n = 1). The waterborne transmission routes included both potable and nonpotable water sources. Patient-to-patient transmission routes were identified among cystic fibrosis patients in two studies, chronically ventilated non-cystic fibrosis patients in one study and was unspecified in another study. One study identified multiple transmission routes. Environmental culture analysis, including WGS, was performed in 61% (19) of studies. (Table 2).

Discussion

We identified 31 publications describing investigations of healthcare-associated infection due NTM using WGS to characterize the outbreak. Of these 31 studies, 28 (90%) described WGS as being helpful in their investigation and 19 (61%) studies identified a transmission route through WGS. Based on this published experience, WGS is a useful tool to aid investigations of clusters of NTM infections.

Traditional epidemiological investigations of NTM transmission are challenging because of the microbiologic characteristics of these organisms. Previous studies have supported WGS in identifying HAI transmission routes of various NTM pathogens, but prior to this review, there has been limited assessment of the effectiveness of WGS on NTM transmission route identification.³⁷ Through WGS, most authors were able to identify or hypothesize transmission routes, with water-borne point sources including potable water, water flushes, and ice machines being most common, followed by heater-cooler-units and patient-to-patient transmission. A recent review by Abbas et al described both healthcare-associated and nonhealthcare-associated transmission of NTM. They concluded that hospital water systems act as a reservoir for NTM leading to equipment contamination with subsequent transmission.³⁸ Identification of specific transmission routes allowed authors to perform targeted interventions within their facility or in the case of more regional studies, give insight into infection prevention and control practices.

WGS in transmission investigations can be used as both a reactive tool and an active surveillance tool.³⁹ This review identified both methods being deployed by authors in their investigations (Table 2). For example, Davidson *et al.* performed WGS on *M. abscessus* isolates that were already implicated in a biphasic hospital outbreak and additionally performed WGS on environmental samples as part of their epigenomic investigation.

Patient and environmental isolates were found to be highly genetically related, confirming their hypothesis that the hospital water system was the source of their original outbreak.²⁷ Although their retrospective epigenomic investigation identified a transmission route, if active surveillance had been performed, disruption in transmission during their biphasic outbreak might have occurred sooner. Alternatively, Komiya et. al performed active surveillance sequencing of isolates to investigate whether there was undetected transmission of *M. abscessus* among ventilator dependent patients without cystic fibrosis. Their findings suggested patient-to-patient transmission.³¹ This contrast in surveillance methodology demonstrates the ability for WGS active surveillance to identify undetected transmission events.

The anatomical site of infection may also provide insight into the risk of prior healthcare-associated transmission. Omori et al found that 9% of their patients had extrapulmonary NTM infections. Of these patients the most prominent sites of infection were skin and soft tissue (44%) followed by blood (20%).⁴⁰ In this systematic review we found that the anatomic site most often implicated in healthcare-associated transmission of NTM by WGS was skin and soft tissue (194, 53%). We can hypothesize that patients identified with extrapulmonary NTM infections with recent healthcare exposure may warrant additional investigation, including WGS, for potential healthcare-associated transmission.

This review also builds a collection of evidence that WGS is essential for HAI transmission investigations by supporting infection prevention teams in identifying transmission routes that were previously unrecognized. Kling et al. identified a doubling in their case rates of Mycobacterium xenopi respiratory cultures during a six-month period, finding no epidemiological links through their investigation to support an outbreak or pseudooutbreak. WGS was performed which found the isolates to be genetically dissimilar, supporting the hypothesis that NTM acquisition was likely outside the healthcare setting. Harris et al. reviewed epidemiologic data of a pediatric cystic fibrosis cohort that showed limited spatiotemporal healthcare interaction among patients with M. abscessus. WGS performed on their isolates also showed no genetic relatedness among these patients, refuting potential cross-transmission in the healthcare setting.³³ These studies show the importance of WGS as a tool to exclude healthcare transmission more particularly when epidemiological investigations do not identify transmission routes but cases show temporospatial clustering.

This study has several limitations. Publication bias likely exists within this review but given the descriptive nature of these studies assessing publication bias through statistical tools such as funnel plots is not feasible.⁸ Several studies were only able to ascertain patient data through large national health records, preventing investigators from identifying specific transmission routes. SNP threshold analysis has been studied for M. abscessus and M. chimaera given the prior experience with healthcare-associated outbreaks.^{12,41,42} SNP interpretations should continue to be done cautiously since variation does exist and there is limited data behind SNP thresholds of other species of NTM. This method of SNP analysis is commonly adopted but other methods of evaluating genetic relatedness may emerge (Supplemental Table 6). This review focused on the SNP analysis reported by the authors though the studies also described additional genomic analyses (Supplemental Table 7). Lastly, this review reports on the authors' conclusions of transmission routes and utility of WGS but does not further identify the additional interventions to stop additional

Table 2. Author-reported transmission routes and utility of whole genome sequencing in investigations of infection clusters attributable to non-tuberculous mycobacteria

Publication First Author, Year	Transmission route identified	Environmental culture analysis with WGS performed	Did sequencing aid in identifying point source of outbreak?	What type of WGS method was used?	
Bryant, 2013 ⁶	Patient-to-patient	Yes	Yes	Active	
Harris, 2015 ⁸	None	Not performed	Yes	Active	
Robinson, 2016 ⁹	None	Yes	Yes	Reactive	
Chand, 2016 ¹⁰	HCU	Yes	Yes	Reactive	
Everall, 2017 ¹¹	None	Not performed	Yes	Reactive	
Hasan, 2019 ¹²	HCU	Yes	Yes	Reactive	
Decalonne, 2019 ¹³	Clinic water supply	Yes	Yes	Reactive	
Gu, 2020 ¹⁴	None	Not performed	Yes	Reactive	
Yan, 2020 ⁷	Pulmonary function testing	Not performed	Yes	Active	
Labuda, 2020 ¹⁵	Water flush	Yes	Yes	Reactive	
Doyle, 2020 ¹⁶	None	Not performed	Yes	Active	
Ghodousi, 2020 ¹⁷	HCU	Yes	Yes	Reactive	
Wetzstein, 2020 ¹⁸	None	Not performed	Yes	Active	
Xu, 2021 ¹⁹	HCU	Yes	Yes	Reactive	
Lipworth, 2021 ²⁰	None	Not performed	Yes	Active	
Lecorche, 2021 ²¹	HCU	Yes	Yes	Reactive	
Fujiwara, 2022 ²³	Patient-to-patient	Not performed	Not reported	Active	
Waglechner, 2022 ²⁴	None	Not performed	No	Active	
Daniau, 2022 ²⁵	HCU Water faucet Autologous stem cell transplant	Yes	Yes	Reactive	
Inkster, 2022 ²⁶	Water faucet	Yes	Yes	Reactive	
Davidson, 2022 ²⁷	Facility water	Yes	Yes	Reactive	
Gross, 2022 ²²	Community water	Yes	Yes	Active	
Wetzstein, 2022 ²⁸	None	Not performed	Yes	Active	
Dedrick, 2023 ²⁹	Patient-to-patient	Not performed	Not reported	Active	
Gross, 2023 ³⁶	Drinking fountain	Yes	Yes	Active	
Nagano, 2023 ³⁰	Tap water	Yes	Yes	Reactive	
Komiya, 2023 ³¹	Patient-to-patient	Yes	Yes	Active	
Faury, 2023 ³²	Shower head	Yes	Yes	Reactive	
Kling, 2023 ³³	None	Not performed	Yes	Reactive	
Groenewold, 2023 ³⁴	Healthcare worker	Yes	Yes	Reactive	
Klompas, 2023 ³⁵	Ice machine	Yes	Yes	Reactive	

transmission or the incremental effectiveness of transmission interruption (and therefore, case prevention) that adding WGS to traditional epidemiological methods may afford. Although these interventions can be inferred, the details were not always reported and would be therefore difficult to validate.

Although studies have shown the effectiveness of WGS in healthcare transmission investigations, no prior studies have summarized whether it can be used effectively for NTM. This systematic review supports the need for including NTM as part of epidemiological investigations with WGS and traditional epidemiological investigations. **Supplementary material.** The supplementary material for this article can be found at https://doi.org/10.1017/ice.2025.6

Financial support. None reported.

Competing interests. All authors report no conflicts of interest relevant to this article.

References

 Koh W-J. Nontuberculous mycobacteria—overview. Microbiol Spectr 2017;5:10.1128/microbiolspec.tnmi7-0024-2016.

- Ryu YJ, Koh W-J, Daley CL. Diagnosis and treatment of nontuberculous mycobacterial lung disease: clinicians' perspectives. *Tuberc Respir Dis* 2016;79:74–84.
- Sundermann AJ, Javaid W. Whole-genome sequencing surveillance: growing evidence for a future potential practice standard of infection prevention. *Infect Control Hosp Epidemiol* 2024;45:135–136.
- 4. Sundermann AJ, Chen J, Kumar P, *et al.* Whole-genome sequencing surveillance and machine learning of the electronic health record for enhanced healthcare outbreak detection. *Clin Infect Dis* 2021;75: 476–482.
- 5. Page MJ, McKenzie JE, Bossuyt PM, *et al.* The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372: n71.
- Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013;381:1551–1560.
- 7. Yan J, Kevat A, Martinez E, *et al.* Investigating transmission of Mycobacterium abscessus amongst children in an Australian cystic fibrosis centre. *J Cyst Fibros* 2020;19:219–224.
- Harris KA, Underwood A, Kenna DT, *et al.* Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. *Clin Infect Dis* 2015;60:1007–1016.
- Robinson JO, Coombs GW, Speers DJ, et al. Mycobacterium chimaera colonisation of heater-cooler units (HCU) in Western Australia, 2015: investigation of possible iatrogenic infection using whole genome sequencing, Euro Surveill 2016;21:17.
- Chand M, Lamagni T, Kranzer K, *et al.* Insidious risk of severe mycobacterium chimaera infection in cardiac surgery patients. *Clin Infect Dis* 2017;64:335–342.
- 11. Everall I, Nogueira CL, Bryant JM, et al. Genomic epidemiology of a national outbreak of post-surgical Mycobacterium abscessus wound infections in Brazil. *Microb Genomics* 2017;3:e000111.
- Hasan NA, Epperson LE, Lawsin A, et al. Genomic analysis of cardiac surgery-associated mycobacterium chimaera infections, United States. Emerg Infect Dis 2019;25:559–563.
- 13. Decalonne M, Lecorche E, Hau E, *et al.* Cause analysis of an infection in facelift surgery due to Mycobacterium chelonae. *Front Med* 2019;6:243.
- Gu CH, Zhao C, Hofstaedter C, et al. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. *PLoS ONE* 2020;15:e0236533.
- Labuda SM, Garner K, Cima M, et al. Bloodstream infections with a novel nontuberculous mycobacterium involving 52 outpatient oncology clinic patients-arkansas, 2018. Clin Infect Dis 2020;71:e178–e185.
- Doyle RM, Rubio M, Dixon G, et al. Cross-transmission is not the source of new mycobacterium abscessus infections in a multicenter cohort of cystic fibrosis patients. *Clin Infect Dis* 2020;70:1855–1864.
- Ghodousi A, Borroni E, Peracchi M, *et al.* Genomic analysis of cardiac surgery-associated mycobacterium chimaera infections in Italy. *PLoS ONE* 2020;15:e0239273.
- Wetzstein N, Kohl TA, Schultze TG, *et al.* Antimicrobial susceptibility and phylogenetic relations in a German cohort infected with mycobacterium abscessus. *J Clin Microbiol* 2020;58:18.
- Xu K, Finn LE, Geist RL, et al. Mycobacterium chimaera infections among cardiothoracic surgery patients associated with heater-cooler devices-Kansas and California, 2019. Infect Control Hosp Epidemiol 2021;43:1333– 1338.
- Lipworth S, Hough N, Weston N, et al. Epidemiology of Mycobacterium abscessus in England: an observational study. Observational study. Lancet Microbe 2021;2:e498–e507.
- 21. Lecorche E, Daniau C, La K, et al. Mycobacterium chimaera genomics with regard to epidemiological and clinical investigations conducted for an open chest postsurgical mycobacterium chimaera infection outbreak. Open Forum Infect Dis 2021;8:ofab192.
- 22. Gross JE, Caceres S, Poch K, *et al.* Investigating nontuberculous mycobacteria transmission at the colorado adult cystic fibrosis program. *Am J Respir Crit Care Med* 2022;205:1064–1074.

- 23. Fujiwara K, Yoshida M, Murase Y, *et al.* Potential cross-transmission of mycobacterium abscessus among non-cystic fibrosis patients at a tertiary hospital in Japan. *Microbiol Spectr* 2022;10:e0009722.
- 24. Waglechner N, Tullis E, Stephenson AL, *et al.* Genomic epidemiology of Mycobacterium abscessus in a Canadian cystic fibrosis centre. *Sci Rep* 2022;12:16116.
- 25. Daniau C, Lecorche E, Mougari F, et al. Association of healthcare and aesthetic procedures with infections caused by nontuberculous Mycobacteria, France, 2012–2020. Emerging Infect Dis 2022;28:518–526.
- 26. Inkster T, Peters C, Seagar AL, Holden MTG, Laurenson IF. Investigation of two cases of Mycobacterium chelonae infection in haemato-oncology patients using whole-genome sequencing and a potential link to the hospital water supply. J Hosp Infect 2021;114:111–116.
- 27. Davidson RM, Nick SE, Kammlade SM, *et al.* Genomic analysis of a hospital-associated outbreak of mycobacterium abscessus: implications on transmission. *J Clin Microbiol* 2022;60:e0154721.
- Wetzstein N, Diricks M, Kohl TA, et al. Molecular epidemiology of mycobacterium abscessus isolates recovered from German cystic fibrosis patients. *Microbiol Spectr* 2022;10:e0171422.
- 29. Dedrick RM, Abad L, Storey N, *et al.* The problem of Mycobacterium abscessus complex: multi-drug resistance, bacteriophage susceptibility and potential healthcare transmission. *Clin Microbiol Infect* 2023;29:1335.e9–1335.e16.
- Nagano Y, Kuronuma K, Kitamura Y, et al. Pseudo-outbreak of Mycobacterium lentiflavum at a general hospital in Japan. Infect Control Hosp Epidemiol 2023;44:1809–1815.
- 31. Komiya K, Yoshida M, Uchida S, *et al.* Massive and lengthy clonal nosocomial expansion of mycobacterium abscessus subsp. massiliense among patients who are ventilator dependent without cystic fibrosis. *Microbiol Spectr* 2023;11:e0490822.
- 32. Faury HB, Awad Z, Jolivet S, *et al.* Investigation of a Mycobacterium fortuitum catheter-related bloodstream infection in an oncology unit. *Infect Control Hosp Epidemiol* 2023;44:1342–1344.
- 33. Kling K, Osborn R, Menon A, et al. A cluster of six respiratory cultures positive for Mycobacterium xenopi -clinical characteristics and genomic characterization. J Clin Tuberculosis Other Mycobacterial Dis 2023;33:100397.
- 34. Groenewold MR, Flinchum A, Pillai A, et al. Investigation of a cluster of rapidly growing mycobacteria infections associated with joint replacement surgery in a Kentucky hospital, 2013–2014 with 8-year follow-up. Am J Infect Control 2023;51:454–460.
- 35. Klompas M, Akusobi C, Boyer J, et al. Mycobacterium abscessus cluster in cardiac surgery patients potentially attributable to a commercial water purification system. Ann Intern Med 2023;176:333–339.
- 36. Gross JE, Teneback CC, Sweet JG, *et al.* Molecular epidemiologic investigation of mycobacterium intracellulare subspecies chimaera lung infections at an adult cystic fibrosis program. *Ann Am Thoracic Soc* 2023;20:677–686.
- Popovich KJ, Snitkin ES. Whole genome sequencing—implications for infection prevention and outbreak investigations. *Curr Infect Dis Rep* 2017;19:15.
- Abbas M, Khan MT, Iqbal Z, et al. Sources, transmission and hospitalassociated outbreaks of nontuberculous mycobacteria: a review. Future Microbiol 2024;19:715–740.
- Doll M, Bryson AL, Palmore TN. Whole genome sequencing applications in hospital epidemiology and infection prevention. *Curr Infect Dis Rep* 2024;26:115–121.
- 40. Omori K, Kitagawa H, Yamaguchi K, et al. Clinical characteristics of extrapulmonary nontuberculous mycobacteria infections in comparison with pulmonary infections: a single-center, retrospective study in Japan. J Infect Chemother 2023;29:875–881.
- Bronson RA, Gupta C, Manson AL, et al. Global phylogenomic analyses of mycobacterium abscessus provide context for non cystic fibrosis infections and the evolution of antibiotic resistance. Nat Commun 2021;12:5145.
- Davidson RM, Hasan NA, Epperson LE, et al. Population genomics of mycobacterium abscessus from U.S. cystic fibrosis care centers. Ann Am Thorac Soc 2021;18:1960–1969.