$$
= \frac{1}{12n^2} - \frac{1}{4n^3} + 3\frac{1}{12n^4} + \dots
$$

$$
> \frac{1}{12n^2} - \frac{1}{4n^3}
$$

since the series is alternating and the terms converge monotonically to zero. Therefore, if we define

$$
\varepsilon_n = \frac{1}{12n^2} - \sum_{n=1}^{\infty} \sigma_n
$$

we conclude that

$$
0\ <\ \varepsilon_n\ <\ \frac{1}{4n^3}
$$

as stated in the theorem. This completes the proof.

Concluding remarks

Our method does not lead to an error term $O\left(\frac{1}{n^4}\right)$ since the terms of order $\frac{1}{n^3}$ for σ_n do not cancel. It would be desirable to modify this geometric reasoning to achieve such a cancellation (perhaps using telescopic cancellation, if necessary).

We are grateful to the anonymous referee for helpful and constructive criticism, and to Joseph C. Várilly for assistance with the figure.

References

- 1. R. M. Young, "Euler's constant", *Math. Gaz*. **75** (June 1991), pp. 187- 190.
- 2. J. Havil, *Gamma: Exploring Euler's Constant*, Princeton Univ. Press, Princeton, NJ, (2003) p. 74.

e-mail: *mark.villarino@ucr.ac.cr*

107.20 Euler's constant and the speed of convergence

Introduction

Inspired in part by [1, 2], we present an elementary and unified approach to defining Euler's constant γ , and to obtaining bounds on the associated speed of convergence. These bounds give a modest refinement (with entirely different proof) of those obtained in the much-cited paper [3]. See the Proposition below.

Definition of γ

Since $f(x) = \frac{1}{x}$ is decreasing on $(0, \infty)$ and $\int_{n}^{n+1} \frac{1}{x} dx = \ln\left(\frac{n+1}{n}\right)$, we have *n* 1 $\frac{1}{x} dx = \ln \left(\frac{n+1}{n} \right)$

$$
\frac{1}{n+1} \leq \ln\left(\frac{n+1}{n}\right) \leq \frac{1}{n} \qquad (n = 1, 2, 3, \dots). \tag{1}
$$

Consider now the sequence

$$
(a_n)
$$
 = $\left(1, \ln \frac{2}{1}, \frac{1}{2}, \ln \frac{3}{2}, \frac{1}{3}, \ln \frac{4}{3}, \frac{1}{4}, \ln \frac{5}{4}, \dots\right)$.

By (1) and the Alternating Series test, a.k.a. Leibniz's test, the series

$$
\sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_n
$$

converges to some number γ , which is Euler's constant. (The coarsest of estimates here gives $1 - \ln 2 \approx 0.3068 < \gamma < 1$. In fact, $\gamma \approx 0.5772$.

Denote by γ_{2n-1} a partial sum having an odd number of terms and by γ_{2n} the next partial sum, having an even number of terms:

$$
\gamma_{2n-1} = 1 - \ln \frac{2}{1} + \frac{1}{2} - \ln \frac{3}{2} + \dots + \frac{1}{n-1} - \ln \frac{n}{n-1} + \frac{1}{n},
$$

$$
\gamma_{2n} = 1 - \ln \frac{2}{1} + \frac{1}{2} - \ln \frac{3}{2} + \dots + \frac{1}{n-1} - \ln \frac{n}{n-1} + \frac{1}{n} - \ln \frac{n+1}{n}.
$$

Here then,

$$
\lim_{n \to \infty} \gamma_{2n-1} = \lim_{n \to \infty} \gamma_{2n} = \gamma,
$$

with γ_{2n-1} decreasing to γ and γ_{2n} increasing to γ . In each of these there is a lot of cancellation, and we get

$$
1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln(n+1) = \gamma_{2n} \leq \gamma \leq \gamma_{2n-1} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n.
$$

Speed of Convergence

In [3] are the estimates $\frac{1}{2(n+1)} \leq \gamma_{2n-1} - \gamma \leq \frac{1}{2}$. We improve these by continuing the current line of investigation. $\frac{1}{2(n + 1)}$ ≤ γ_{2*n*-1} − γ ≤ $\frac{1}{2n}$ 2*n*

Proposition:

$$
\frac{1}{2(n + 1)} \leq \gamma - \gamma_{2n} \leq \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) \leq \gamma_{2n - 1} - \gamma \leq \frac{1}{2n}.
$$

Proof: Since $f(x) = \frac{1}{x}$ is convex on $(0, \infty)$, the midpoint rule applied on $[n, n + 2]$ is an underestimate of the definite integral there, and so

$$
\frac{2}{n+1} \leqslant \ln\left(\frac{n+2}{n}\right) = \ln\left(\frac{n+2}{n+1}\right) + \ln\left(\frac{n+1}{n}\right).
$$

That is

$$
\frac{1}{n+1} - \ln\left(\frac{n+2}{n+1}\right) \le \ln\left(\frac{n+1}{n}\right) - \frac{1}{n+1}.
$$
 (2)

Likewise, the trapezium rule applied on $[n, n + 1]$ is an overestimate, and so

$$
\ln\left(\frac{n+1}{n}\right) \leqslant \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n+1}\right).
$$

That is

$$
\ln\left(\frac{n+1}{n}\right) - \frac{1}{n+1} \leq \frac{1}{n} - \ln\left(\frac{n+1}{n}\right). \tag{3}
$$

Inequalities (2) and (3) together read

$$
\frac{1}{n+1} - \ln\left(\frac{n+2}{n+1}\right) \leq \ln\left(\frac{n+1}{n}\right) - \frac{1}{n+1} \leq \frac{1}{n} - \ln\left(\frac{n+1}{n}\right).
$$

Therefore, setting

$$
b_n = a_n - a_{n+1},
$$

we have

$$
b_{n+2} \leq b_{n+1} \leq b_n. \tag{4}
$$

Now, by the right-hand inequality in (4),

$$
\gamma_{2n-1} - \gamma = \left(\ln\left(\frac{n+1}{n}\right) - \frac{1}{n+1}\right) + \left(\ln\left(\frac{n+2}{n+1}\right) - \frac{1}{n+2}\right) + \left(\ln\left(\frac{n+3}{n+2}\right) - \frac{1}{n+3}\right) + \dots
$$

\n
$$
= b_{n+1} + b_{n+3} + b_{n+5} + b_{n+7} + \dots
$$

\n
$$
= \frac{1}{2} \left(b_{n+1} + b_{n+1} + b_{n+3} + b_{n+3} + b_{n+5} + b_{n+5} + \dots\right)
$$

\n
$$
\leq \frac{1}{2} \left(b_n + b_{n+1} + b_{n+2} + b_{n+3} + b_{n+4} + b_{n+5} + \dots\right)
$$

\n
$$
= \frac{1}{2} a_n = \frac{1}{2n}.
$$

By the left-hand inequality in (4), we obtain very similarly

$$
\gamma_{2n-1} - \gamma \ge \frac{1}{2} \left(b_{n+1} + b_{n+2} + b_{n+3} + b_{n+4} + b_{n+5} + \dots \right)
$$

= $\frac{1}{2} a_{n+1} = \frac{1}{2} \ln \left(\frac{n+1}{n} \right)$.

Therefore

$$
\frac{1}{2}\ln\left(\frac{n+1}{n}\right) \leq \gamma_{2n-1} - \gamma \leq \frac{1}{2n}.
$$

In an almost identical way – we leave the details to the reader – one obtains

NOTES 323

$$
\frac{1}{2(n+1)} \leq \gamma - \gamma_{2n} \leq \frac{1}{2} \ln \left(\frac{n+1}{n} \right).
$$

Remark

The estimates in the Proposition offer $2(\gamma - \gamma_{2n})$ and $2(\gamma_{2n-1} - \gamma)$ as refinements of inequalities (1). Consequently,

$$
\left(1 + \frac{1}{n}\right)^n \le e^{2n(\gamma_{2n-1} - \gamma)} \le e \le e^{2(n+1)(\gamma - \gamma_{2n})} \le \left(1 + \frac{1}{n}\right)^{n+1}
$$

References

- 1. P. Calabrese, A note on alternating series, *Amer. Mathematical Monthly* **69** (1962) pp. 215-217.
- 2. M. A. Pinsky, Averaging an alternating series, *Mathematics Magazine*, **51** (1978) pp. 235-237.
- 3. R. M. Young, Euler's constant, *Math. Gaz*. **75** (June 1991) pp. 187-190.

Published by Cambridge University Press on *Dept. Mathematics,*

behalf of The Mathematical Association *SUNY College at Buffalo,*

10.1017/mag.2023.66 © The Authors, 2023 PETER R. MERCER *Buffalo NY 14222 USA* e-mail: *mercerpr@buffalostate.edu*

107.21 Proof Without Words: An inverse tangent inequality

FIGURE 1

.