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A Ck-seeley-extension-theorem for
Bastiani’s differential calculus
Maximilian Hanusch
Abstract. We generalize a classical extension result by Seeley in the context of Bastiani’s differ-
ential calculus to infinite dimensions. The construction follows Seeley’s original approach, but is
significantly more involved as not only Ck -maps (for k ∈ N ∪ {∞}) on (subsets of) half spaces are
extended, but also continuous extensions of their differentials to some given piece of boundary of the
domains under consideration. A further feature of the generalization is that we construct families of
extension operators (instead of only one single extension operator) that fulfill certain compatibility
(and continuity) conditions. Various applications are discussed as well.

1 Introduction

The extension problem for differentiable maps naturally arises in the context of
manifolds with boundary or corners. In the finite-dimensional context, Whitney’s
extension theorem [20] guarantees more generally the extendability of Whitney jets
(families of continuous functions that define formal Taylor expansions) on closed
subsets of euclidean spaces. A characterization of closed subsets that admit continuous
linear extension operators on C∞ - Whitney jets was given by Tidten in [18] (see [2]
for further investigations). Recent research into Whitney-type extension operators [11,
16] is concerned with generalizations to maps on closed subsets of finite-dimensional
manifolds (Whitney germs in [11], and in [16], subsets that satisfy the so-called cusp
condition) with values in vector bundles or (infinite-dimensional) manifolds. In [11],
the smooth category in the context of the convenient calculus [7] is considered, and in
[16], the smooth category within Bastiani’s differential calculus [3]. Throughout this
paper, we work in Bastiani’s setting that is recalled in Section 2.1. We refer to [4, 15]
for self-contained introductions into Bastiani’s calculus.

Besides Whitney’s approach, there is an alternative (significantly simpler) exten-
sion construction available that works for maps defined on half spaces. This approach
is due to Seeley [17]. He constructs a continuous linear map that extends such
smooth maps (−∞, 0) × R

n → R (n ∈ N) to R × R
n , whose partial derivatives extend

continuously to (−∞, 0] × R
n . In this paper, we generalize Seeley’s result into several

directions:
Let E , F be Hausdorff locally convex vector spaces, and denote the system of

continuous seminorms on F by Sem(F). For k ∈ N ∪ {∞} and U ⊆ E nonempty open,
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A Ck-seeley-extension-theorem for Bastiani’s differential calculus 171

let Ck(U , F) denote the set of all k-times continuously differentiable maps U → F.
Let Ω(E) denote the set of all pairs (V ,V) such that V ⊆ E is nonempty open, and
V ⊆ E is contained in the closure of V in E with V ⊆ V. For −∞ ≤ a < b ≤ ∞, let
Ck
V

((a, b) × V , F) denote the set of all f ∈ Ck((a, b) × V , F), such that for each � ∈ N
with � ≤ k, the �th differential of f extends to a continuous map

Ext( f , �)∶ (a, b] × V × (R × E)� → F ,

(we set (a, b] ∶= (a, ∞) if b = ∞ holds). Our main result Theorem 3.1 (stated to the
full extent in Section 3.1) inter alia implies that, for −∞ ≤ a < τ < 0 fixed, there exists
a linear (extension) map

E∶Ck
V((a, 0) × V , F) → Ck

V((a, ∞) × V , F),

such that for f ∈ Ck
V

((a, 0) × V , F) and 0 ≤ � ≤ k, we have

Ext(E( f ), �)∣(a ,0]×V×(R×E)� = Ext( f , �),
Ext(E( f ), �)∣[∣τ∣,∞)×V×(R×E)� = 0.

For E = R
n , F = R, and a = −∞, this implies Seeley’s original theorem from [17]. We

mention, but do not present the details at this point, that Theorem 3.1 is formu-
lated more generally in terms of families of extension operators indexed by triples
(E , V ,V), where E runs over the class of Hausdorff locally convex vector spaces and
(V ,V) ∈ Ω(E) holds (a and τ are thus fixed parameters). Theorem 3.1 additionally
contains continuity estimates, as well as compatibility conditions that can be used, e.g.,
to construct extensions of maps by gluing together local extensions. This is demon-
strated in Example 3.10 for the unit ball in a real pre-Hilbert space. In Application 3.6 in
Section 3.2, we carry over the extension result (in the form stated above) to quadrants,
which is of relevance in the context of (infinite-dimensional) manifolds with corners
[8]. Specifically, given k ∈ N and (V ,V) ∈ Ω(E), we construct an extension operator
for Ck-maps (a1 , 0) × ⋯ × (an , 0) × V → F (with −∞ ≤ a1 , . . . , an < 0) whose �th
differential, for 0 ≤ � ≤ k, extends continuously to (a1 , 0] × ⋯ × (an , 0] × V × (Rn ×
E)�. We remark that in the convenient setting (for k = ∞ and V = V = E = {0}) the
existence of a continuous extension operator was already shown in Proposition 24.10
in [7]. The proof given there also works in Bastiani’s setting, but still only for k = ∞ as
the exponential law for smooth mappings is explicitly applied.1

We finally want to emphasize that our extension result can also be used to extend
Ck-maps on subsets in infinite dimensions that admit a certain kind of geometry.
Indeed, we have already mentioned that Example 3.10 covers the (real) pre-Hilbert
unit ball. In Application 3.8 in Section 3.3, we consider subsets of Hausdorff locally
convex vector spaces that are defined by a particular kind of distance function (e.g.,
nonzero Ck-seminorms). The (real) pre-Hilbert unit ball is an example for this, but
the construction in Example 3.10 differs from the construction in Application 3.8 that
gets along without explicit use of the compatibility property admitted by the extension
operators.

1We refer to [1] for subtleties concerning the exponential law in the nonsmooth category.
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172 M. Hanusch

A brief outline of the paper is as follows. In Section 2, we fix the notations, recall
Bastiani’s differential calculus, and provide some elementary facts and definitions
concerning locally convex vector spaces (and maps) that we shall need in the main text.
In Section 3, we state our main result, Theorem 3.1, and discuss various applications
to it. Section 4 is dedicated to the proof of Theorem 3.1.

2 Preliminaries

Let hlcVect denote the class of Hausdorff locally convex vector spaces, and let E ∈
hlcVect be given. We denote the completion of E by comp(E) ∈ hlcVect. The system
of continuous seminorms on E is denoted by Sem(E). For p ∈ Sem(E), we let p̂ denote
the continuous extension of p to comp(E). For a subset V ⊆ E, we let clos(V) ⊆ E
denote the closure of V in E. A subset B ⊆ E is said to be bounded if sup{p(X) ∣ X ∈
B} < ∞ holds for each p ∈ Sem(E). Let −∞ ≤ a < b ≤ ∞ be given:
• For a = −∞, we set [a, b] ∶= (−∞, b] and [a, b) ∶= (−∞, b).
• For b = ∞, we set [a, b] ∶= [a, ∞) and (a, b] ∶= (a, ∞).
• For a = −∞, b = ∞, we set [a, b] ∶= (−∞, ∞).
Let k ∈ N ∪ {∞} be given. We write 0 ≤ � ⪯ k,
• for k ∈ N if N ∋ � ≤ k holds,
• for k = ∞ if � ∈ N holds.

2.1 Bastiani’s differential calculus

In this section, we recall Bastiani’s differential calculus, see also [3, 4, 12–15]. Let E , F ∈
hlcVect be given. A map f ∶ U → F, with U ⊆ E open, is said to be differentiable if

(Dv f )(x) ∶= limt→0 1/t ⋅ ( f (x + t ⋅ v) − f (x)) ∈ F

exists for each x ∈ U and v ∈ E. The map f is said to be k-times differentiable for k ≥ 1
if

Dvk , . . . ,v1 f ∶= Dvk (Dvk−1 (⋯(Dv1 ( f ))⋯))∶ U → F

is defined for all v1 , . . . , vk ∈ E. Implicitly, this means that f is p-times differentiable
for each 1 ≤ p ≤ k, and we set

dp
x f (v1 , . . . , vp) ≡ dp f (x , v1 , . . . , vp) ∶= Dvp , . . . ,v1 f (x) ∀ x ∈ U , v1 , . . . , vp ∈ E

for p = 1, . . . , k. We furthermore define d f ∶= d1 f , as well as dx f ∶= d1
x f for each x ∈ U .

The map f ∶ U → F is said to be
• of class C0 if it is continuous. In this case, we define d0 f ∶= f .
• of class Ck for k ≥ 1 if it is k-times differentiable, such that

dp f ∶ U × E p → F , (x , v1 , . . . , vp) ↦ Dvp , . . . ,v1 f (x)

is continuous for p = 0, . . . , k. In this case, dp
x f is symmetric and p-multilinear for

each x ∈ U and p = 1, . . . , k, see [3].
• of class C∞ if it is of class Ck for each k ∈ N.
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Remark 2.1 Let E , F be normed spaces. We define L0(E , F) ∶= F, and let L�(E , F),
for � ≥ 1, denote the space of all continuous �-multilinear maps E� → F equipped with
the operator topology.2 For k ∈ N and U ⊆ E non-empty open, we denote the set of
all k-times Fréchet differentiable maps U → F by FCk(U , F). Given f ∈ FCk(U , F),
we denote its �th Fréchet differential, for 0 ≤ � ⪯ k, by D(�) f ∶ U → L�(E , F). We recall
that Ck+1(U , F) ⊆ FCk(U , F) ⊆ Ck(U , F) holds [13, 20], with

D(�) f (x) = d�
x f ∀ x ∈ U , 0 ≤ � ⪯ k.

In particular, we have C∞(U , F) = FC∞(U , F).

We have the following differentiation rules [3].

Proposition 2.2 (a) A map f ∶ E ⊇ U → F is of class Ck for k ≥ 1 if and only if d f is of
class Ck−1 when considered as a map E × E ⊇ U × E → F.

(b) Let f ∶ E → F be linear and continuous. Then, f is smooth, with d1
x f = f for each

x ∈ E, as well as dp f = 0 for each p ≥ 2.
(c) Let F1 , . . . , Fm be Hausdorff locally convex vector spaces, and let fq ∶ E ⊇ U → Fq be

of class Ck for k ≥ 1 and q = 1, . . . , m. Then,

f ∶= f1 × ⋯ × fm ∶ U → F1 × ⋯ × Fm , x ↦ ( f1(x), . . . , fm(x))

is of class Ck , with dp f = dp f1 × ⋯ × dp fm for p = 1, . . . , k.
(d) Let F , F̄ , ¯̄F ∈ hlcVect, 1 ≤ k ≤ ∞, as well as f ∶ F ⊇ U → Ū ⊆ F̄ and f̄ ∶ F̄ ⊇ Ū → ¯̄U ⊆

¯̄F be of class Ck . Then, f̄ ○ f ∶ U → ¯̄F is of class Ck , with

dx ( f̄ ○ f ) = d f (x) f̄ ○ dx f ∀ x ∈ U .

(e) Let F1 , . . . , Fm , E ∈ hlcVect, and f ∶ F1 × ⋯ × Fm ⊇ U → E be of class C0. Then, f is
of class C1 if and only if for each p = 1, . . . , m, the partial derivative

∂p f ∶ U × Fp ∋ ((x1 , . . . , xm), vp)
↦ limt→0 1/t ⋅ ( f (x1 , . . . , xp + t ⋅ vp , . . . , xm) − f (x1 , . . . , xm)),

exists in E and is continuous. In this case, we have

d f ((x1 , . . . , xm), v1 , . . . , vm) = ∑m
p=1 ∂p f ((x1 , . . . , xm), vp),

(= ∑m
p=1 d f ((x1 , . . . , xm), (0, . . . , 0, vp , 0, . . . , 0))),

for each (x1 , . . . , xm) ∈ U, and vp ∈ Fp for p = 1, . . . , m.

We observe the following.

Corollary 2.3 Let F , F̄ , ¯̄F ∈ hlcVect, 1 ≤ k ≤ ∞, as well as f ∶ F ⊇ U → Ū ⊆ F̄ and
f̄ ∶ F̄ ⊇ Ū → ¯̄U ⊆ ¯̄F be of class Ck . Then, for 1 ≤ � ⪯ k we have

d�( f̄ ○ f )(x , v1 , . . . , v�) = d� f̄ ( f (x), d f (x , v1), . . . , d f (x , v�)) + Λ f (x , v1 , . . . , v�),

2The notations here are adapted to the notations used (Appendices A.2 and A.3) in [20], where the
relationships between Bastiani’s differentiability concept and Fréchet differentiability are presented in
detail.
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where Λ f ∶ U × F� → ¯̄F is given as a linear combination of maps of the form

U × F� ∋ (x , v1 , . . . , v�)
↦ dq f̄ ( f (x), dp1 f (x , v1 , . . . , vp1 ), . . . , dpq f (x , v�−pq+1 , . . . , v�)) ∈ ¯̄F ,

such that the following conditions are fulfilled:
• We have 1 ≤ q < �, as well as p1 , . . . , pq ≥ 1 with p1 + ⋯ + pq = �.
• If � ≥ 2 holds, then we have p i ≥ 2 for some 1 ≤ i ≤ q.

Proof For � = 1, the claim is clear from (d) in Proposition 2.2. Moreover, we obtain
from the differentiation rules in Proposition 2.2 that

d2( f̄ ○ f )(x , v1 , v2) = d2 f̄ ( f (x), d1 f (x , v1), d1 f (x , v2)) + d1 f̄ ( f (x), d2 f (x , v1 , v2))
holds, which proves the claim for � = 2. The rest now follows by induction from
Proposition 2.2. ∎

Let us finally consider the situation, where f ≡ γ∶ U ≡ I → F holds for a nonempty
open interval I ⊆ R (hence, E ≡ R). It is then not hard to see that γ is of class Ck for
k ∈ N≥1 ∪ {∞} if and only if γ(p), inductively defined by γ(0) ∶= γ as well as3

γ(p)(t) ∶= limh→0
1
h ⋅ (γ(p−1)(t + h) − γ(p−1)(t)) ∀ t ∈ I, p = 1, . . . , k

exists and is continuous for 0 ≤ p ⪯ k. If D ⊆ R is an arbitrary interval (connected,
nonempty and nonsingleton), we let Ck(D, F) (k ∈ N ∪ {∞}) denote the set of all
maps γ∶ D → F, such that γ = γ̃∣D holds for some γ̃ ∈ Ck(I, F) with I ⊆ R an open
interval such that D ⊆ I. In this case, we set γ(p) ∶= γ̃(p)∣D for each 0 ≤ p ⪯ k.

2.2 Locally convex vector spaces

In this section, we collect some elementary statements concerning locally convex
vector spaces.

2.2.1 Product spaces and continuous maps

Given F1 , . . . , Fn , F ∈ hlcVect, the Tychonoff topology on E ∶= F1 × ⋯ × Fn equals the
Hausdorff locally convex topology that is generated by the seminorms

max[q1 , . . . , qn]∶ E ∋ (X1 , . . . , Xn) ↦ max(q1(X1), . . . , qn(Xn)),(2.1)

with qp ∈ Sem(Fp) for p = 1, . . . , n. We recall the following statements.

Lemma 2.4 For each q ∈ Sem(E), there exist qp ∈ Sem(Fp) for p = 1, . . . , n, with q ≤
max[q1 , . . . , qn].

Proof Since the seminorms (2.1) form a fundamental system, the claim is clear from
Proposition 22.6 in [9], when applied to the identity idE .4 ∎

3We have γ(p)(t) = dp
t γ(1, . . . , 1) for t ∈ I and p = 1, . . . , k.

4Observe c ⋅max[q1 , . . . , qn] = max[c ⋅ q1 , . . . , c ⋅ qn] with c ⋅ qp ∈ Sem(Fp) for p = 1, . . . , n, for
each c > 0.
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Lemma 2.5 Let X be a topological space, and let Φ∶ X × F1 × ⋯ × Fn → F be contin-
uous, such that Φ(x , ⋅) is n-multilinear for each x ∈ X. Then, for each compact K ⊆ X
and each p ∈ Sem(F), there exist seminorms qp ∈ Sem(Fp) for p = 1, . . . , n, as well as
O ⊆ X open with K ⊆ O, such that

(p ○ Φ)(x , X1 , . . . , Xn) ≤ q1(X1)⋅⋯⋅qn(Xn) ∀ x ∈ O , X1 ∈ F1 , . . . , Xn ∈ Fn .

Proof See, e.g., Corollary 1 in [5]. ∎

2.2.2 The Riemann integral

Let γ ∈ C0([r, r′], F) be given. We denote the Riemann integral5 of γ by ∫ γ(s) ds ∈
comp(F), and define

∫
b

a γ(s) ds ∶= ∫ γ∣[a ,b](s) ds ∀ r ≤ a < b ≤ r′ .

The Riemann integral is linear, with

p̂( ∫
b

a γ(s) ds) ≤ ∫
b

a p(γ(s)) ds ∀ p ∈ Sem(F), r ≤ a < b ≤ r′ .

It follows that the Riemann integral is C0-continuous, i.e., continuous w.r.t. the
seminorms
p∞(γ) ∶= sup{p(γ(t)) ∣ t ∈ [a, b]} ∀ p ∈ Sem(F), γ ∈ C0([a, b], F), a < b.

For γ ∈ C1(I, F) (I ⊆ R an open interval) and a < b with [a, b] ⊆ I, we have by [3]
that

γ(b) − γ(a) = ∫
b

a γ(1)(s) ds.(2.2)

It is furthermore not hard to see that given γ ∈ C0(I, F), then for a < b with [a, b] ⊆ I
and Γ∶ [a, b] ∋ t ↦ ∫

t
a γ(s) ds ∈ comp(F), we have

Γ ∈ C1([a, b], comp(F)) with Γ(1) = γ∣[a ,b].(2.3)

2.2.3 Harmonic subsets and extensions

Let {0} ≠ H ∈ hlcVect, U ⊆ H nonempty open, and ∅ ≠ A ⊆ U closed in U w.r.t. the
subspace topology on U. Then, A is said to be harmonic if for each (x , v) ∈ A ×
(H/{0}), there exists δ > 0 as well as γ±∶ [0, 1) → H continuous at 0 with γ±(0) = 0,
such that6

( x + γ±((0, 1)) ± (0, δ) ⋅ v ) ⊆ U/A.(2.4)

Example 2.6 (Harmonic Subsets)

(i) If A ⊆ U is harmonic and ∅ ≠ B ⊆ A closed in U, then B ⊆ U is harmonic.

5The Riemann integral can be defined exactly as in the finite-dimensional case; namely, as a limit
over Riemann sums. Details can be found, e.g., in Section 2 in [7].

6More precisely, this means (x + γ+((0, 1)) + (0, δ) ⋅ v) ⊆ U/A as well as (x + γ−((0, 1)) − (0, δ) ⋅
v) ⊆ U/A.
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(ii) Each nonempty finite subset of U is harmonic.
Proof If ∅ ≠ A ⊆ U is finite, then A is closed in U. For x ∈ A fixed, there exists h ∈
Sem(H) with B1(x) ∶= {y ∈ H ∣ h(y − x) < 1} ⊆ U , such that A ∩ (B1(x)/{x}) =
∅ holds. For 0 ≠ v ∈ H fixed, we set δ ∶= 1

2 max(1,h(v)) and define γ±∶ [0, 1) ∋ t ↦
0 ∈ H. Then, we have

x + γ± ± λ ⋅ v = x ± λ ⋅ v ≠ x ,
h(x − (x + γ± ± λ ⋅ v)) = λ ⋅ h(v) < δ ⋅ h(v) < 1,

for all λ ∈ (0, δ), hence (x + γ±((0, 1)) ± (0, δ) ⋅ v) ⊆ B1(x)/{x} ⊆ U/A. ∎
(iii) Let H̃ ∶= H × F with F ∈ hlcVect, ∅ ≠ W ⊆ F open, and Ũ ∶= U × W . If A ⊆ U is

harmonic, then Ã ∶= A × W ⊆ Ũ is harmonic.
Proof Let x̃ ≡ (x , z) ∈ Ã and ṽ ≡ (v , u) ∈ H̃/{(0, 0)} be given.
• Let v ≠ 0. We choose δ > 0 and γ± as in (2.4). Shrinking δ > 0 if necessary,

we can assume z + (−δ, δ) ⋅ u ⊆ W (as W is open). We set γ̃±∶ [0, 1) ∋ t ↦
(γ±(t), 0) ∈ H̃, and obtain

x̃ + γ̃±(λ) ± μ ⋅ ṽ = ( x + γ±(λ) ± μ ⋅ v , z ± μ ⋅ u ) ∈ (U/A) × W = Ũ/Ã,

for all λ ∈ (0, 1) and μ ∈ (0, δ), hence x̃ + γ̃±((0, 1)) ± (0, δ) ⋅ ṽ ⊆ Ũ/Ã.
• Let v = 0. We fix 0 ≠ w ∈ H, and choose δ > 0 and γ± as in (2.4) for v ≡ w there.

Shrinking δ > 0 if necessary, we can assume z + (−δ, δ) ⋅ u ⊆ W (as W is open).
We set γ̃±∶ [0, 1) ∋ t ↦ (γ±(t) ± t ⋅ δ ⋅ w , 0) ∈ H̃, and obtain (observe μ ⋅ v = 0
and λ ⋅ δ ∈ (0, δ) for λ ∈ (0, 1))

x̃ + γ̃±(λ) ± μ ⋅ ṽ = ( x + γ±(λ) ± λ ⋅ δ ⋅ w , z ± μ ⋅ u ) ∈ (U/A) × W = Ũ/Ã,

for all λ ∈ (0, 1) and μ ∈ (0, δ). Hence, we have x̃ + γ̃±((0, 1)) ± (0, δ) ⋅ ṽ ⊆
Ũ/Ã. ∎

(iv) Let H = R × E for E ∈ hlcVect, p ∈ R, as well as U = R × V with ∅ ≠ V ⊆ E open.
Then, {p} × V ⊆ U is harmonic.

Proof A ∶= {p} ⊆ R is harmonic by (ii). The claim thus follows
from (iii) (with H, U ≡ R, F ≡ E and W ≡ V ). ∎

(v) If p ∈ (0, ∞) and 0 ≠ h ∈ Sem(H), then U ∩ h−1(p) ⊆ U is harmonic.

Proof B ∶= h−1(p) is closed in H as h is continuous, as well as nonempty as
h ≠ 0. Hence, A ∶= U ∩ B is closed in U. For z ∈ B and w ∈ H, the reverse triangle
inequality yields

∣h(z − λ ⋅ (z ± w)) − h(∓λ ⋅ w)∣ ≤ h(z − λ ⋅ z) = (1 − λ) ⋅ h(z) = (1 − λ) ⋅ p,
(2.5)

for all λ ∈ (0, 1). Let now x ∈ A and 0 ≠ v ∈ H be given:
• Let h(v) = 0. Then, (2.5) applied to z = x and w = μ ⋅ v for μ ∈ (0, ∞) yields

h(x − λ ⋅ (x ± μ ⋅ v)) ≤ (1 − λ) ⋅ p < p ∀ λ ∈ (0, 1), μ ∈ (0, ∞),
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hence (x − (0, 1) ⋅ x ± (0, 1) ⋅ v) ⊆ H/B. Since U is open with x ∈ U , there
exists ε > 0 with (x − (0, ε) ⋅ x ± (0, ε) ⋅ v) ⊆ U , hence (x − (0, ε) ⋅ x ± (0, ε) ⋅
v) ⊆ U/B = U/A. The condition (2.4) thus holds for δ ∶= ε and γ± ≡ γ∶ [0, 1) ∋
t ↦ −(t ⋅ ε) ⋅ x ∈ H.

• Let h(v) > 0. Since h(x) = p > 0 holds, there exists (by continuity) 0 < σ <
min (1, p

h(v)) with

λ ⋅ μ ⋅ h(v) < h(x − λ ⋅ (x ± μ ⋅ v)) ∀ 0 < λ, μ < σ .

Then, given λ, μ ∈ (0, σ), (2.5) applied to z = x and w = μ ⋅ v yields

h(x − λ ⋅ (x ± μ ⋅ v)) ≤ λ ⋅ μ ⋅ h(v) + (1 − λ) ⋅ p = p − λ ⋅ (p − μ ⋅ h(v)) < p.

We obtain (x − (0, σ 2) ⋅ x ± (0, σ 2) ⋅ v) ⊆ H/B. Since U is open with x ∈ U ,
there exists 0 < ε < σ 2 with (x − (0, ε) ⋅ x ± (0, ε) ⋅ v) ⊆ U , hence (x − (0, ε) ⋅
x ± (0, ε) ⋅ v) ⊆ U/B = U/A. The condition (2.4) thus holds for δ ∶= ε and γ± ≡
γ∶ [0, 1) ∋ t ↦ −(t ⋅ ε) ⋅ x ∈ H. ∎

(vi) If 0 ≠ h ∈ Sem(H), then U ∩ h−1(0) ⊆ U is harmonic.

Proof B ∶= h−1(0) is closed in H as h is continuous. Hence, A ∶= U ∩ B is closed
in U. The reverse triangle inequality yields (observe ∣h(z + w) − h(w)∣ ≤ h(z) for
all z, w ∈ H)

h(z + w) = h(w) ∀ z ∈ B, w ∈ H.(2.6)

Since h ≠ 0 holds, there exists some u ∈ H/B. Let now x ∈ A and 0 ≠ v ∈ H be
given:
• Let h(v) > 0. Then, (x ± (0, ∞) ⋅ v) ⊆ H/B holds, by (2.6) applied to z = x and

w = ± μ ⋅ v for μ ∈ (0, ∞). Since U is open with x ∈ U , there exists ε > 0 with
(x ± (0, ε) ⋅ v) ⊆ U , hence (x ± (0, ε) ⋅ v) ⊆ U/B = U/A. Condition (2.4) thus
holds for δ ∶= ε and γ±∶ [0, 1) ∋ t ↦ 0 ∈ H.

• Let h(v) = 0. We obtain for t, μ ∈ (0, ∞) that

h(x + t ⋅ (±v + μ ⋅ u)) (2.6)= h(t ⋅ (±v + μ ⋅ u))

= t ⋅ h(±v + μ ⋅ u) (2.6)= t ⋅ h(μ ⋅ u) = t ⋅ μ ⋅ h(u) > 0

holds, hence (x + (0, ∞) ⋅ u ± (0, ∞) ⋅ v) ⊆ H/B. Since U is open with x ∈ U ,
there exists ε > 0 with (x + (0, ε) ⋅ u ± (0, ε) ⋅ v) ⊆ U/B = U/A, so that (2.4)
holds for δ ∶= ε and γ± ≡ γ∶ [0, 1) ∋ t ↦ (t ⋅ ε) ⋅ u ∈ H. ∎

Notably, the statement in (iv) also follows from (i), (v), and (vi):

Proof Let h∶ H ∋ (x , v) ↦ ∣x∣ ∈ [0, ∞) for H = R × E. Then, 0 ≠ h ∈ Sem(H) holds,
with h−1(p) = {−p, p} × E. Hence, we have A ∶= {−p, p} × V = U ∩ h−1(p) for U =
R × V , so that (v) (p ≠ 0) and (vi) (p = 0) show that A ⊆ U is harmonic. By (i), then
also B ∶= {p} × V ⊆ A is harmonic, as nonempty and closed in U. ∎

We have the following statement.
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Lemma 2.7 Let H, F ∈ hlcVect, U ⊆ H nonempty open, A ⊆ U harmonic, and S ⊆ H
a subset with U ⊆ S. Let f ∈ Ck(U/A, F) for k ∈ N ∪ {∞} be given. For each 0 ≤ � ⪯ k,
let Φ�∶ S × H� → F be continuous with

Φ�∣(U/A)×H� = d� f .

Then, we have f̃ ∶= Φ0∣U ∈ Ck(U , F), with d� f̃ = Φ�∣U×H� for all 0 ≤ � ⪯ k.

Proof By definition, we have f̃ ∈ C0(U , F) with d0 f̃ = f̃ = Φ0∣U . We thus can
assume that there exists 0 ≤ q < k, such that f̃ is of class Cq with d� f̃ = Φ�∣U×H� for
all 0 ≤ � ≤ q. The claim then follows by induction once we have shown that7

limh→0
1
h ⋅ (Φq(x + h ⋅ v , v1 , . . . , vq) − Φq(x , v1 , . . . , vq)) = Φq+1(x , v1 , . . . , vq , v)

(2.7)

holds for all x ∈ A and v1 , . . . , vq , v ∈ H. To show (2.7), we choose δ > 0 and γ±∶ [0, 1) →
H as in (2.4), and consider the maps

α±∶ [0, 1) × [0, δ] ∋ (λ, s) ↦ Φq+1(x + γ±(λ) ± s ⋅ v , v1 , . . . , vq , ±v) ∈ F .
• By assumption, we have

α±(λ, s) = dq+1 f (x + γ±(λ) ± s ⋅ v , v1 , . . . , vq , ±v) ∀ λ ∈ (0, 1), s ∈ (0, δ).

• By compactness and continuity, we have limλ→0 p∞(α±(λ, ⋅) − α±(0, ⋅)) = 0 for
each p ∈ Sem(F).
Since the Riemann integral is C0-continuous (used in the second step), and since

Φq is continuous (used in the last step), we obtain for 0 < h < δ that (in the fourth
step, we apply (2.2) as well as Proposition 2.2.(d))

± ∫
h

0 Φq+1(x ± s ⋅ v , v1 , . . . , vq , v) ds

= ∫
h

0 α±(0, s) ds

= lim0<λ→0 ∫
h

0 α±(λ, s) ds

= lim0<λ→0 ∫
h

0 dq+1 f (x + γ±(λ) ± s ⋅ v , v1 , . . . , vq , ±v) ds

= lim0<λ→0 dq f (x + γ±(λ) ± h ⋅ v , v1 , . . . , vq)
− lim0<λ→0 dq f (x + γ±(λ), v1 , . . . , vq)

= lim0<λ→0 Φq(x + γ±(λ) ± h ⋅ v , v1 , . . . , vq)
− lim0<λ→0 Φq(x + γ±(λ), v1 , . . . , vq)

= Φq(x ± h ⋅ v , v1 , . . . , vq) − Φq(x , v1 , . . . , vq)
holds. Together with (2.3) this implies (2.7). ∎

2.3 Particular mapping spaces

Let H, F ∈ hlcVect and k ∈ N ∪ {∞} be given. Let Ω(H) denote the set of all pairs
(U ,U) that consist of a nonempty open subset U ⊆ H, and a subset U ⊆ clos(U) with

7Due to the assumptions, (2.7) holds for all x ∈ U/A.
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U ⊆ U. Let Ck
U

(U , F) denote the set of all f ∈ Ck(U , F), such that d� f extends for
0 ≤ � ⪯ k to a continuous map Ext( f , �)∶U × H� → F.

Remark 2.8 Let 1 ≤ � ⪯ k, (U ,U) ∈ Ω(H), and f ∈ Ck
U

(U , F) be given. By continuity,
the map Ext( f , �)(z, ⋅)∶ H� → F is necessarily �-multilinear and symmetric for each
fixed z ∈ U. Thus, given p ∈ Sem(F) and K ⊆ U compact, Lemma 2.5 provides h ∈
Sem(H) as well as O ⊆ H open with K ⊆ O, such that

(p ○ Ext( f , �))(z, w) ≤ h(w1)⋅⋯⋅h(w�)

holds for all z ∈ O ∩ U and w = (w1 , . . . , w�) ∈ H�. ∎
We have the following corollary to Lemma 2.7.

Corollary 2.9 Let H, F ∈ hlcVect, (U ,U) ∈ Ω(H), A ⊆ U harmonic, and f ∈
Ck(U/A, F) for k ∈ N ∪ {∞} be given. For each 0 ≤ � ⪯ k, let Φ�∶U × H� → F be
continuous with

Φ�∣(U/A)×H� = d� f .

Then, we have f̃ ∶= Φ0∣U ∈ Ck
U

(U , F), with Ext( f̃ , �) = Φ� for all 0 ≤ � ⪯ k.

Proof Set S ≡ U in Lemma 2.7. ∎
Corollary 2.3 provides the following statement.

Lemma 2.10 Let H, H̄, F ∈ hlcVect, O ⊆ H, Ō ⊆ H̄ both nonempty open, and ψ ∈
Ck(O , Ō) be fixed. Let (U ,U) ∈ Ω(H) with U ⊆ O be given, as well as (Ū , Ū) ∈ Ω(H̄)
with ψ(U) ⊆ Ū and ψ(U) ⊆ Ū. Then, for f ∈ Ck

Ū
(Ū , F) we have f ○ψ∣U ∈ Ck

U
(U , F).

Specifically, the following assertions hold:
(i) We have Ext( f ○ψ∣U , 0) = Ext( f , 0)○ψ∣U.

(ii) For 1 ≤ � ⪯ k, we have

Ext( f ○ ψ∣U , �)(x , v1 , . . . , v�)
= Ext( f , �)(ψ(x), dψ(x , v1), . . . , dψ(x , v�)) + Λψ(x , v1 , . . . , v�),

where Λψ ∶ U × H� → F is given as a linear combination of maps of the form

(x , v1 , . . . , v�)
↦ Ext( f , q)(ψ(x), dp1 ψ(x , v1 , . . . , vp1 ), . . . , dpq ψ(x , v�−pq+1 , . . . , v�)),

such that the following conditions are fulfilled:
• We have 1 ≤ q < �, as well as p1 , . . . , pq ≥ 1 with p1 + ⋯ + pq = �.
• If � ≥ 2 holds, then we have p i ≥ 2 for some 1 ≤ i ≤ q.

Proof Part (i) is clear from the continuity properties of the involved maps. Now,
we have f ○ψ ∈ Ck(U , F), as ψ is of class Ck . Moreover, ψ is defined on U ⊆ O with
ψ(U) ⊆ Ū. Part (ii) is thus clear from Corollary 2.3, as well as from continuity of the
occurring differentials and their extensions. ∎

For K ⊆ U compact, B ⊆ H bounded, p ∈ Sem(F), f ∈ Ck
U

(U , F), we define

p
0
K ≡ p[0]K×B( f ) ∶= sup{p(Ext( f , 0)(z)) ∣ z ∈ K},
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p[�]K×B( f ) ∶= sup{p(Ext( f , �)(z, w)) ∣ z ∈ K, w ∈ B�} ∀ 1 ≤ � ⪯ k,
p

s
K×B( f ) ∶= max (0 ≤ � ≤ s ∣ p[�]K×B( f )) ∀ 0 ≤ s ⪯ k.(2.8)

Finally assume H = P × E with P, E ∈ hlcVect. Then,
(U ,U) ∶= (W × V ,W × V) ∈ Ω(H) holds for all

(W ,W) ∈ Ω(P) and (V ,V) ∈ Ω(E).

In the following, we will rather denote
Ck
V(W × V , F) ∶= Ck

U(W × V , F),

as it will be clear from the context, which W ⊆ clos(W) has to be assigned to some
given W ⊆ P.

3 Statement of the results

In this section, we state our main result Theorem 3.1, and discuss several applications.
Theorem 3.1 is proven in Section 4.

3.1 Statement of the main result

Let F ∈ hlcVect and k ∈ N ∪ {∞} be fixed. For each E ∈ hlcVect, we set H[E] ∶= R ×
E, and define8

Ck
V((a, b) × V , F) ∶= Ck

(a ,b]×V((a, b) × V , F) ∀ − ∞ ≤ a < b ≤ ∞,(3.1)

for each (V ,V) ∈ Ω(E). For a bounded subset B ⊆ E, we set
B(B) ∶= {(1, 0)} ∪ (0 × B) ⊆ H[E].(3.2)

Let R ⊆ R be a subset, and W ⊆ E a linear subset.
• For each x ∈ E and � ∈ N, we define

W(R, x , �)∶ R × (R × W)� ↪ H[E] × H[E]� , (t, w) ↦ ((t, x), w),

hence W(R, x , 0)∶ R ∋ t ↦ (t, x) ∈ H[E].
• Given Ē ∈ hlcVect, x̄ ∈ Ē, � ∈ N, and a linear map Υ∶W → Ē, we define

WΥ(R, x̄ , �)∶ R × (R × W)� ↪ H[Ē] × H[Ē]� ,
(t, w) ↦ ((t, x̄), (idR × Υ)�(w)),

hence WΥ(R, x̄ , 0)∶ R ∋ t ↦ (t, x̄) ∈ H[Ē].
Our main result states the following.

Theorem 3.1 Let −∞ ≤ a < τ < b < ∞ be fixed. There exist linear (extension) maps

Ea ,τ ,b(E , V ,V)∶Ck
V((a, b) × V , F) → Ck

V((a, ∞) × V , F),

for E ∈ hlcVect and (V ,V) ∈ Ω(E), such that the following conditions are fulfilled:

8Observe that, according to our conventions concerning intervals, we have (a, b] = (a, b) if b = ∞
holds.
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(1) For E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((a, b) × V , F), 0 ≤ � ⪯ k, we have

Ext(Ea ,τ ,b(E , V ,V)( f ), �)∣(a ,b]×V×H[E]� = Ext( f , �),
Ext(Ea ,τ ,b(E , V ,V)( f ), �)∣[2b−τ ,∞)×V×H[E]� = 0.

(2) There exist constants {Cs}0≤s⪯k ⊆ [1, ∞), such that the following assertions hold
for each E ∈ hlcVect, (V ,V) ∈ Ω(E), t ∈ (b, ∞), x ∈ V, p ∈ Sem(F), and f ∈
Ck
V

((a, b) × V , F):
• We have p(Ext(Ea ,τ ,b(E , V ,V)( f ), 0)(t, x)) ≤ C0 ⋅ p0

[τ ,b]×{x}( f ).
• For 1 ≤ � ≤ s ⪯ k, B ⊆ E bounded, and w = ((λ1 , X1), . . . , (λ� , X�)) ∈ (R × B)�

we have
p(Ext(Ea ,τ ,b(E , V ,V)( f ), �)((t, x), w))

≤ Cs ⋅ max(1, ∣λ1∣, . . . , ∣λ�∣)� ⋅ ps
[τ ,b]×{x}×B(B)( f ).

(3) Let E , Ē ∈ hlcVect, W ⊆ E a linear subspace, Υ∶W → Ē a linear map, (V ,V) ∈
Ω(E), (V̄ , V̄) ∈ Ω(Ē), as well as

f ∈ Ck
V((a, b) × V , F), f̄ ∈ Ck

V̄
((a, b) × V̄ , F),

x ∈ V, x̄ ∈ V̄, 0 ≤ s ⪯ k.

Then, the first line implies the second line:

Ext( f , �) ○ W([τ, b], x , �)
= Ext( f̄ , �) ○ WΥ([τ, b], x̄ , �) ∀ 0 ≤ � ≤ s,

Ext(Ea ,τ ,b(E , V ,V)( f ), s) ○ W([τ, ∞), x , s)
= Ext(Ea ,τ ,b(Ē , V̄ , V̄)( f̄ ), s) ○ WΥ([τ, ∞), x̄ , s).

Remark 3.2 The extension operator in Theorem 3.1 and the constants {Cs}0≤s⪯k in
Part (2), only depend on the choice of some fixed ρ ∈ C∞(R,R) with

∣ρ∣ ≤ 1, ρ∣(−∞,τ] = 0, ρ∣[υ ,b] = 1,

for some τ < υ < b. Specifically, see (4.1) for the case a = −∞ and b = 0 as well as
(4.3) for an ad hoc definition of the extension f̃ ∈ Ck

V
((−∞, ∞) × V , F) of some given

f ∈ Ck
V

((−∞, 0) × V , F). See also (4.27) and (4.29) for the definition of the constants
{Cs}0≤s⪯k via the constants (4.2), i.e.,

Mp = sup {∣ ρ( j)(t)∣ ∣ t ∈ [τ, 0], 0 ≤ j ≤ p } ∀ p ∈ N.

Remark 3.3 Let E , F be normed spaces, and recall the definitions made in Remark
2.1. Given (V ,V) ∈ Ω(E), a < b and k ∈ N, let FCk

V((a, b) × V , F) denote the set
of all f ∈ FCk((a, b) × V , F), such that D(�) f extends for 0 ≤ � ⪯ k to a continuous
map FExt( f , �)∶ (a, b] × V → L�(E , F). Seeley already mentioned in [17] that his
construction also works for smooth R-valued functions defined on half Banach
spaces. Expectably, the same holds true for the construction made in Section 4, then
leading to extension operators

FEa ,τ ,b(E , V ,V)∶FCk
V((a, b) × V , F) → FC

k
V((a, ∞) × V , F),
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for a < τ < b, (V ,V) ∈ Ω(E), k ∈ N that admit properties analogous to that in The-
orem 3.1. We will not provide the details in this paper, but mention that Theorem 3.1
together with Remark 2.1 already provides the extension operators9

Ea ,τ ,b(E , V , V)∣FC∞V ((a ,b)×V ,F)∶FC∞V ((a, b) × V , F) → C∞((a, ∞) × V , F)
= FC∞((a, ∞) × V , F)

for V ⊆ E non-empty open and a < τ < b. ∎
Remark 3.4 The second point in Theorem 3.1 shows that the extension opera-
tors constructed admit considerable continuity properties. Seeley already mentioned
in [17] that his extension operator is continuous in many functional topologies.
Expectably, the same holds true for their infinite-dimensional counterparts. However,
it would go far beyond the scope of this article to investigate all possible continuity
properties of the extension operators provided here—they have to be extracted on
demand from the explicit construction performed in Section 4. At this point, we only
want to emphasize the following:
• The second estimate in Theorem 3.1.(2) can be sharpened if λ j = 0 holds for j =

1, . . . , �. Specifically, on the right side of this estimate, the set B(B) then can just
be replaced by {0} × B.

• Let 0 ≤ s ⪯ k, x ∈ V, f ∈ Ck
V

((a, b) × V , F) be given. Then, Theorem 3.1.(2) shows

Ext( f , �)∣[τ ,b]×{x}×H[E]� = 0 ∀ 0 ≤ � ≤ s,
%⇒ Ext(Ea ,τ ,b(E , V ,V)( f ), �)∣[τ ,∞)×{x}×H[E]� = 0 ∀ 0 ≤ � ≤ s.

• Let f , g ∈ Ck
V

((a, b) × V , F) be given, such that

C ∶= clos({z ∈ (a, b) × V ∣ Ext( f , 0)(z) ≠ Ext(g , 0)(z)})
is compact. Then, C ⊆ [c, b] × K holds for certain −∞ < c ≤ b as well as K ⊆ V

compact. Then, C̃ ∶= C ∪ ([b, 2b − τ] × K) is compact, and the parts (1) and (3) of
Theorem 3.1 imply

clos({z ∈ (a, b) × V ∣ Ext(Ea ,τ ,b(E , V ,V)( f ), 0)(z)
≠ Ext(Ea ,τ ,b(E , V ,V)(g), 0)(z)}) ⊆ C̃.

This might be of relevance, e.g., in the context of spaces of smooth mappings
f ∶ M → N between manifolds M , N (N possibly infinite-dimensional), where the
D-topology [10] (called very strong topology in [6]) is refined to the FD-topology
[11] (called fine very strong topology in [6]) by additionally considering the classes
defined by the equivalence relation

f ∼ g ⇐⇒ clos({x ∈ M ∣ f (x) ≠ g(x)}) ⊆ M is compact

with f , g ∈ C∞(M , N). ∎
We close this section with the following summarizing corollary to Lemma 2.4 and

Remark 2.8 that we shall need for our estimates in Section 4.3.

9It is straightforward from Remark 2.1 thatFC∞V ((a, b) × V , F) ⊆ C∞
V
((a, b) × V , F)holds for each

(V ,V) ∈ Ω(E), i.e., in particular for V = V .
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Corollary 3.5 Let E ∈ hlcVect, (V ,V) ∈ Ω(E), −∞ ≤ a < c < d ≤ b < ∞,
f ∈ Ck

V
((a, b) × V , F), p ∈ Sem(F), 1 ≤ � ⪯ k, and K ⊆ V be compact. There exist

C̃� ≥ 1, q ∈ Sem(E), and U ⊆ E open with K ⊆ U, such that10

(p ○ Ext( f , �))(z, w) ≤ C̃� ⋅ max[∣ ⋅ ∣, q](w1)⋅⋯⋅max[∣ ⋅ ∣, q](w�)

holds for all z ∈ [c, d] × (U ∩ V) and w = (w1 , . . . , w�) ∈ H[E]�.

Proof According to11 Lemma 2.4 and Remark 2.8, there exist C̃� ≥ 1, q ∈ Sem(E), as
well as O ⊆ H[E] open with [c, d] × K ⊆ O, such that

(p ○ Ext( f , �))(z, w) ≤ C̃� ⋅ max[∣ ⋅ ∣, q](w1)⋅⋯⋅max[∣ ⋅ ∣, q](w�)(3.3)

holds for all z ∈ O ∩ ((a, b] × V) and w = (w1 , . . . , w�) ∈ H[E]�. By compactness,
there exists U ⊆ E open with K ⊆ U , such that [c, d] × U ⊆ O holds. Then, (3.3)
holds for each z ∈ [c, d] × (U ∩ V) and w = (w1 , . . . , w�) ∈ H[E]�, which proves
the claim. ∎

3.2 Multiple variables

Let F ∈ hlcVect and k ∈ N ∪ {∞} be fixed. For n ≥ 1 and E ∈ hlcVect, we define
H[E , n] ∶= R

n × E. Given a = (a1 , . . . , an), τ = (τ1 , . . . , τn), b = (b1 , . . . , bn) with
−∞ ≤ a i < τ i < b i ≤ ∞ for i = 1, . . . , n, we set

Q(a, b) ∶= (a1 , b1) × ⋯ × (an , bn)
and Q̆(a, b) ∶= (a1 , b1] × ⋯ × (an , bn].

If b1 , . . . , bn = ∞ holds, we also denote b = ∞, and observe that then Q(a, b) =
Q̆(a, b) holds according to our conventions concerning intervals. For each (V ,V) ∈
Ω(E), we set

Ck
V(Q(a, b) × V , F) ∶= Ck

Q̆(a ,b)×V(Q(a, b) × V , F).

Theorem 3.1 provides the following statement.

Application 3.6 Let n ≥ 1, E ∈ hlcVect, and (V ,V) ∈ Ω(E). Let a = (a1 , . . . , an),
τ = (τ1 , . . . , τn), b = (b1 , . . . , bn) be given with −∞ ≤ a i < τ i < b i < ∞ for i =
1, . . . , n. There exists a linear (extension) map

Ea ,τ ,b(E , V ,V)∶Ck
V(Q(a, b) × V , F) → Ck

V(Q(a, ∞) × V , F),

that admits the following two properties:
(a) For f ∈ Ck

V
(Q(a, b) × V , F) and 0 ≤ � ⪯ k, we have

Ext(Ea ,τ ,b(E , V ,V)( f ), �)∣Q̆(a ,b)×V×H[E ,n]� = Ext( f , �).

10See (2.1) for the Definition of the seminorms on the right side.
11Additionally observe that for each (continuous) seminorm h on R, we have h(x) = ∣x∣ ⋅ h(1) ≤

max(1, h(x)) ⋅ ∣x∣ for all x ∈ R.
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(b) Let y = (y1 , . . . , yn) ∈ Q(a, ∞) be given, with y i ≥ 2b i − τ i for some 1 ≤ i ≤ n.
Then,

Ext(Ea ,τ ,b(E , V ,V)( f ), �)∣{y}×V×H[E ,n]� = 0

holds for each f ∈ Ck
V

(Q(a, b) × V , F) and 0 ≤ � ⪯ k.

Proof According to Theorem 3.1, we can assume that the claim holds for some n ≥
1. Let thus −∞ ≤ a0 , . . . , an , τ0 , . . . , τn , b0 , . . . , bn < ∞ be given with a i < τ i < b i for
i = 0, . . . , n, and define

a ∶= (a1 , . . . , an), a0 ∶= (a0 , . . . , an),
τ ∶= (τ1 , . . . , τn), τ0 ∶= (τ0 , . . . , τn),
b ∶= (b1 , . . . , bn), b0 ∶= (b0 , . . . , bn).

Let E ∈ hlcVect and (V ,V) ∈ Ω(E) be given. We set Ẽ ∶= R × E, Ê ∶= R
n × E, as well

as

(Ṽ , Ṽ) ∶= ((a0 , b0) × V , (a0 , b0] × V) ∈ Ω(Ẽ),

(V̂ , V̂) ∶= (Q(a, ∞) × V ,Q(a, ∞) × V) ∈ Ω(Ê).

The induction hypotheses provides the extension operator

Ea ,τ ,b(Ẽ , Ṽ , Ṽ)∶Ck
Ṽ

(Q(a, b) × Ṽ , F)
≅Ck

V
(Q(a0 ,b0)×V ,F)

→ Ck
Ṽ

(Q(a, ∞) × Ṽ , F)

≅ Ck
V̂

((a0 , b0) × V̂ , F).(3.4)

Theorem 3.1 provides the extension operator

Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)∶Ck
V̂

((a0 , b0) × V̂ , F) → Ck
V̂

((a0 , ∞) × V̂ , F)
≅ Ck

V(Q(a0 , ∞) × V , F).(3.5)

We consider the linear map

Ea0 ,τ0 ,b0
(E , V ,V) ∶= Ea0 ,τ0 ,b0 (Ê , V̂ , V̂) ○ Ea ,τ ,b(Ẽ , Ṽ , Ṽ),

so that under the identifications made we have

Ea0 ,τ0 ,b0
(E , V ,V)∶Ck

V(Q(a0 , b0) × V , F) → Ck
V(Q(a0 , ∞) × V , F).

Let now f ∈ Ck
V

(Q(a0 , b0) × V , F) and y = (y0 , . . . , yn) ∈ Q(a0 , b0) be given. The
induction hypotheses provides the following statements:
• Up to the identifications in (3.4), we have

Ext(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f ), �)∣(a0 ,b0]×(Q̆(a ,b)×V)×H[Ê ,1]� = Ext( f , �) ∀ 0 ≤ � ⪯ k.

• Let y i ≥ 2b i − τ i for some 1 ≤ i ≤ n, as well as y0 ∈ (a0 , b0). Then, up to the
identifications in (3.4), we have

Ext(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f ), �)((y0 , ((y1 , . . . , yn), ⋅)), ⋅) = 0 ∀ 0 ≤ � ⪯ k.
(3.6)
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Theorem 3.1.(1) (for Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)), provides the following statements:
• For 0 ≤ � ⪯ k, we have (under the identification in (3.4))

Ext(Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f )), �)∣(a0 ,b0]×V̂×H[Ê ,1]�

= Ext(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f ), �).

• If y0 ≥ 2b0 − τ0 holds, then for 0 ≤ � ⪯ k, we have

Ext(Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f )), �)((y0 , ((y1 , . . . , yn), ⋅)), ⋅) = 0.
(3.7)

We obtain for 0 ≤ � ⪯ k (under the identification in (3.5) in the first step) that

Ext(Ea0 ,τ0 ,b0
(E , V ,V)( f ), �)∣Q̆(a0 ,b0)×V×H[E ,n+1]�

= Ext(Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f )), �)∣(a0 ,b0]×(Q̆(a ,b)×V)×H[Ê ,1]�

= Ext(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f ), �)∣(a0 ,b0]×(Q̆(a ,b)×V)×H[Ê ,1]�

= Ext( f , �)
holds, which proves Part (a). Finally, assume that y i ≥ 2b i − τ i holds for some
1 ≤ i ≤ n. Then, Theorem 3.1.(2) together with (3.6) shows

p(Ext(Ea0 ,τ0 ,b0 (Ê , V̂ , V̂)(Ea ,τ ,b(Ẽ , Ṽ , Ṽ)( f )), �)((y0 , ((y1 , . . . , yn), ⋅)), ⋅) ≤ 0

for each p ∈ Sem(F) and 0 ≤ � ⪯ k. Together with (3.7), this proves Part (b). ∎
Remark 3.7 Domains as considered in Application 3.6 occur, e.g., in the context of
manifolds with corners as (open subsets of) quadrants in Hausdorff locally convex
vector spaces. Specifically, let H ∈ hlcVect, and L1 , . . . ,Ln ∶ H → R with n ≥ 1 be
linearly independent continuous linear maps. Consider the closed subspace E ∶=
ker(L1) ∩ ⋅ ⋅ ⋅ ∩ ker(Ln) ⊆ H, and let a ∶= (−∞, . . . , −∞), b ∶= (0, . . . , 0) (both n-
times). Then, we have H ≅ R

n × E, and the corresponding open and closed quadrants
Q ⊆ H and Q̆ ⊆ H, respectively, are given by

Q ∶= {X ∈ H ∣ Lp(X) < 0 for p = 1, . . . , n} ≅ Q(a, b) × E ,
Q̆ ∶= {X ∈ H ∣ Lp(X) ≤ 0 for p = 1, . . . , n} ≅ Q̆(a, b) × E .

Proof Let e1 , . . . , en ∈ H be linearly independent with Li(e j) = δ i j for 1 ≤ i , j ≤ n,
and set H ⊇ W ∶= ⟨e1 , . . . , en⟩ ≅ R

n . Then,

P∶ H ∋ X ↦ ∑n
p=1 Lp(X) ⋅ ep ∈ W

is a continuous projection operator, with P(H) ≅ R
n , P(Q) ≅ Q(a, b), P(Q̆) ≅

Q̆(a, b) as topological spaces. Moreover, the following maps are continuous, linear,
and inverse to each other:

Ξ∶ H → W × E , X ↦ (P(X), X − P(X)),
Ξ−1∶W × E → H, (Z , Y) ↦ Z + Y .

Since Ξ(H) ≅ R
n × E, Ξ(Q) ≅ Q(a, b) × E, and Ξ(Q̆) ≅ Q̆(a, b) × E are homeomor-

phic, the claim follows. ∎
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3.3 Particular subsets in infinite dimensions

Let P, E ∈ hlcVect, (V ,V) ∈ Ω(E), 0 < τ < 1, k ∈ N ∪ {∞} be fixed, and set H ∶= P ×
E. Let ξ∶ P → [0, ∞) be a continuous map that admits the following properties:
(1) ξ is of class Ck on W ∶= ξ−1((0, ∞)),
(2) ξ(Z) ≠ 0 for some Z ∈ P,
(3) ξ(λ ⋅ Z) = λ ⋅ ξ(Z) for each λ ∈ [0, ∞) and Z ∈ P, and
(4) A ∶= ξ−1(1) ⊆ W is harmonic.

We consider the sets:
• O ∶= ξ−1((0, 1)),
• Ŏ ∶= ξ−1((0, 1]),
• U ∶= ξ−1((1, ∞)),
• T ∶= ξ−1([2 − τ, ∞)),
• V ∶= ξ−1((2 − τ, ∞)),
• J ∶= W/A, and
• A ∶= A × V .

These sets are nonempty by (2) and (3); and, by continuity of ξ, the sets
W,O,U,V, J are open. Moreover, A ⊆ W × V is harmonic by Example 2.6.(iii), and
the condition (3) implies:

− Ŏ ⊆ clos(O), hence (O, Ŏ) ∈ Ω(P) and (O × V , Ŏ × V) ∈ Ω(H),
− T ⊆ clos(V), and
− J ⊆ clos(W), hence (J,W) ∈ Ω(P) and (J × V ,W × V) ∈ Ω(H).
We define

Ck
V(O × V , F) ∶= Ck

Ŏ×V
(O × V , F),

Ck
V(W × V , F) ∶= Ck

W×V(W × V , F).

In this section, we prove the following statement.

Application 3.8 There exists a linear (extension) map

E∶Ck
V(O × V , F) → Ck

V(W × V , F),

such that for all f ∈ Ck
V

(O × V , F) and 0 ≤ � ⪯ k, we have

Ext(E( f ), �)∣Ŏ×V×H� = Ext( f , �) and Ext(E( f ), �)∣T×V×H� = 0.
(3.8)

Remark 3.9 Application 3.8 holds in the same form if O is replaced by S ∶=
ξ−1([0, 1)), Ŏ is replaced by S̆ ∶= ξ−1([0, 1]), and W is replaced by P.

Proof We have (S, S̆) ∈ Ω(P) by continuity of ξ as well as by (2) and (3). Let now f ∈
Ck
V

(S × V , F) be given. Then, f ∣O×V ∈ Ck
V

(O × V , F) holds by Lemma 2.10 (with O ≡
P and ψ ≡ idP). Hence, we have E( f ∣O×V ) ∈ Ck

V
(W × V , F), with E as in Application

3.8. We define

Ẽ( f )∶ P × V → F , (Z , x) ↦
⎧⎪⎪⎨⎪⎪⎩

E( f ∣O×V )(Z , x) for Z ≠ 0,
f (Z , x) for Z = 0.
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• By construction, we have Ẽ( f )∣W×V = E( f ∣O×V )∣W×V , as well as Ẽ( f )∣S×V = f

by Ẽ( f )∣O×V = E( f ∣O×V )∣O×V
(3.8)= f ∣O×V and Ẽ( f )∣{0}×V = f ∣{0}×V .

Since W × V , S × V are open with (W × V) ∪ (S × V) = P × V , the map Ẽ( f ) is of
class Ck with

(d�
Ẽ( f ))∣W×V×H� = d�

E( f ∣O×V ) = Ext(E( f ∣O×V ), �)∣W×V×H� ∀ 0 ≤ � ⪯ k,

(d�
Ẽ( f ))∣S×V×H� = d� f = Ext( f , �)∣S×V×H� ∀ 0 ≤ � ⪯ k.

Then, continuity implies Ẽ( f ) ∈ Ck
V

(P × V , F), with (observe ξ−1(0) ⊆ S̆)

Ext(Ẽ( f ), �)∣W×V×H� = Ext(E( f ∣O×V ), �) and
Ext(Ẽ( f ), �)∣S̆×V×H� = Ext( f , �),

for 0 ≤ � ⪯ k. We thus have the linear (extension) map

Ẽ∶Ck
V(S × V , F) → Ck

V(P × V , F), f ↦ Ẽ( f ).

• By construction, we have Ẽ( f )∣T×V = E( f ∣O×V )∣T×V
(3.8)= 0. Since T × V is open,

we obtain

(d�
Ẽ( f ))∣T×V×H� = 0

continuity
%⇒ Ext(Ẽ( f ), �)∣T×V×H� = 0

for 0 ≤ � ⪯ k. ∎
Example 3.10 Let 0 ≠ ξ ∈ Sem(P) be of class Ck on W. Then, (1)–(3) are evident,
and (4) holds by Example 2.6.(v). For instance.
(a) Let P = R

2 and ξ∶R2 ∋ (x , y) ↦ ∣x∣ ∈ [0, ∞). Then, ξ is smooth on W = {(x , y) ∈
R

2 ∣ x ≠ 0}.
(b) Let (H , ⟨⋅, ⋅⟩) be a real or complex12 pre-Hilbert space, and set P ∶= H as well as

ξ(⋅) ∶=
√

⟨⋅, ⋅⟩. Then, ξ is smooth on W = P/{0} by Proposition 2.2. We mention
that in the real case, an extension operator can also be obtained by explicit
application of Theorem 3.1.(3). More details are provided in Appendix A. ∎

Let ρ ∈ C∞(R,R) be given with13

id(0,1) < ρ∣(0,1) < 1, ρ(1) = 1, id(1,∞) < ρ∣(1,∞) .(3.9)

• We consider the smooth map η∶R × H ∋ (t, Z , x) ↦ (t ⋅ Z , x) ∈ H. Lemma 2.10 and
(3) imply

N∶Ck
Ŏ×V

(O × V , F) → Ck
(0,1]×Ŏ×V((0, 1) × O × V , F), f ↦ f ○ η∣(0,1)×O×V .

• Theorem 3.1 provides the extension operator Ê ≡ E0,τ ,1(H,O × V , Ŏ × V), hence

Ê∶Ck
(0,1]×Ŏ×V((0, 1) × O × V , F) → Ck

(0,∞)×Ŏ×V((0, ∞) × O × V , F).

12Also in the complex case, differentiability is meant w.r.t. the real structure on H , i.e., we do not
consider complex differentiability (holomorphicity) at this point.

13For instance, choose ρ∶R ∋ x ↦ x + (x − 1)2 ∈ R.
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• We consider the Ck-map (recall (1), (3) and (3.9))

μ∶W × E → R × H, (Z , x) ↦ ((ρ ○ ξ)(Z), (ρ ○ ξ)(Z)−1 ⋅ Z , x).

By construction, we have η○μ = idW×E , and furthermore for Y ⊆ E:
– μ(W × Y) ⊆ (0, ∞) × Ŏ × Y ,
– μ(O × Y) ⊆ (0, 1) × O × Y , and
– μ(U × Y) ⊆ (1, ∞) × O × Y .

Let now f ∈ Ck
Ŏ×V

(O × V , F) be given. We set

χ ∶= (Ê ○ N)( f ) = Ê( f ○ η) ∈ Ck
(0,∞)×Ŏ×V((0, ∞) × O × V , F),

and
α ∶= χ ○ μ∣J×V .

• We have α ∈ Ck
W×V(J × V , F) by Lemma 2.10, because

μ(J × V) ⊆ (0, ∞) × O × V and μ(W × V) ⊆ (0, ∞) × Ŏ × V holds.

• Since μ(O × V) ⊆ (0, 1) × O × V holds, we have by Theorem 3.1.(1)

α∣O×V = (Ê ○ N)( f ) ○ μ∣O×V = N( f ) ○ μ∣O×V = ( f ○ η ○ μ)∣O×V = f .(3.10)

We consider the continuous maps

Φ� ∶= Ext(α, �)∶W × V × H� → F ∀ 0 ≤ � ⪯ k,

and proceed as follows:
• By construction, we have

Φ�∣J×V×H� = Ext(α, �)∣J×V×H� = d�α ∀ 0 ≤ � ⪯ k.(3.11)

Corollary 2.9 (with f ≡ α, A ≡ A × V , U ≡ W × V , U ≡ W × V, i.e., U/A = J × V)
thus shows

f̃ ∶= Φ0∣W×V ∈ Ck
W×V(W × V , F)

with Ext( f̃ , �) = Φ� for all 0 ≤ � ⪯ k.

• We obtain from (3.10) and (3.11) that

f̃ ∣O×V = (Φ0∣W×V )∣O×V
(3.11)= Ext(α, 0)∣O×V = α∣O×V

(3.10)= f

holds. Since O × V is open, we obtain

d� f̃ ∣O×V×H� = d�( f̃ ∣O×V ) = d� f = Ext( f , �)∣O×V×H� ∀ 0 ≤ � ⪯ k,

so that continuity yields

Ext( f̃ , �)∣Ŏ×V×H� = Ext( f , �) ∀ 0 ≤ � ⪯ k.(3.12)

https://doi.org/10.4153/S0008414X21000596 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000596


A Ck-seeley-extension-theorem for Bastiani’s differential calculus 189

• We obtain from (3.11)

f̃ ∣V×V = (Φ0∣W×V )∣V×V
(3.11)= Ext(α, 0)∣V×V = α∣V×V = χ ○ μ∣V×V

= Ê(N( f )) ○ μ∣V×V .

Since ρ∣(1,∞) > id(1,∞) holds, Theorem 3.1.(1) yields

f̃ (Z , x) = Ê(N( f ))((ρ ○ ξ)(Z), (ρ ○ ξ)(Z)−1 ⋅ Z , x) = 0 ∀ Z ∈ V, x ∈ V .

Since V × V is open, this implies d� f̃ ∣V×V×H� = 0 for all 0 ≤ � ⪯ k, so that continuity
implies

Ext( f̃ , �)∣T×V×H� = 0 ∀ 0 ≤ � ⪯ k.(3.13)

We are ready for the proof of Application 3.8:

Proof of Application 3.8 Obviously, the assignment

E∶Ck
V(O × V , F) ∋ f ↦ f̃ ∈ Ck

W×V(W × V , F)
is linear; and the rest is clear from (3.12) and (3.13). ∎

3.4 Partially constant maps and parametrizations

Let E , F ∈ hlcVect, k ∈ N ∪ {∞}, and S ≡ {Sα}α∈I be a family of disjoint subsets of E
with E = ⋃α∈I Sα . For −∞ ≤ a < b ≤ ∞, we define

Ck(a, b, S) ∶= { f ∈ Ck((a, b) × E , F) ∣ f ∣{t}×Sα is constant for each
t ∈ (a, b) and α ∈ I}

Ck(a, b, S) ∶= Ck(a, b, S) ∩ Ck
(a ,b]×E((a, b) × E , F).

Let now −∞ ≤ a < τ < b < ∞ be fixed. Theorem 3.1 provides the extension operator

E ≡ Ea ,τ ,b(E , E , E)∶Ck
(a ,b]×E((a, b) × E , F) → Ck((a, ∞) × E , F).

Theorem 3.1.(3) (for s ≡ 0) implies

ES ∶= E∣Ck(a ,b ,S)∶Ck(a, b, S) → Ck(a, ∞, S).(3.14)

We can apply this in the following way. Let H ∈ hlcVect, and ψ ∈ Ck((a, ∞) × E , H)
an open map, such that the following conditions are fulfilled:
(a) ψ∣{t}×Sα is constant for each t ∈ (a, ∞) and α ∈ I.
(b) For each z ∈ im[ψ], we have ψ−1(z) = {t(z)} × Sα(z), for certain t(z) ∈ (a, ∞)

and α(z) ∈ I.
(c) For each z ∈ im[ψ], there exist Uz ⊆ (a, ∞) × E and Wz ⊆ im[ψ] open with z ∈

Wz , such that ψ∣Uz ∶ Uz → Wz is a Ck-diffeomorphism, i.e., we have (ψ∣Uz )−1 ∈
Ck(Wz , Uz).

Let U ∶= ψ((a, b) × E) and U ∶= ψ((a, b] × E).
• Since ψ is continuous and open, we have (U ,U) ∈ Ω(H).
• Let f ∈ Ck

U
(U , F) be fixed. By Lemma 2.10 and (a), we have g ∶= f ○ψ∣(a ,b)×E ∈

Ck(a, b, S), hence g̃ ∶= ES(g) ∈ Ck(a, ∞, S) by (3.14).
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• We fix ι∶ im[ψ] → (a, ∞) × E with ι(z) ∈ ψ−1(z) for each z ∈ im[ψ], and set

f̃ ∶ im[ψ] → F , z ↦ g̃(ι(z)).

This is defined by (b) and g̃ ∈ Ck(a, ∞, S). In particular, for each z ∈ im[ψ], we have
f̃ ∣Wz = g̃○(ψ∣Uz )−1, which shows that f̃ is of class Ck .
We obtain the linear extension map

Ẽ∶Ck
U(U , F) → Ck(im[ψ], F), f ↦ f̃ .(3.15)

We consider the following example.

Example 3.11 Let E = R, H ∶= R
2, a = 0, b = 1, I ∶= [0, 2π), Sα ∶= {α + 2π ⋅ Z} for α ∈

I, and

ψ∶ (0, ∞) × R → R
2/{0}, (t, φ) ↦ (t ⋅ cos(φ), t ⋅ sin(φ)).

According to the above definitions, we have (∥ ⋅ ∥ denotes the euclidean norm on R
2)

U = {x ∈ R2 ∣ 0 < ∥x∥ < 1}, U = {x ∈ R2 ∣ 0 < ∥x∥ ≤ 1}, im[ψ] = R
2/{0}.

Then, (3.15) provides the linear extension map Ẽ∶Ck
U

(U , F) → Ck(R2/{0}, F). Let

D ∶= {x ∈ R2 ∣ ∥x∥ < 1} and D̆ ∶= {x ∈ R2 ∣ ∥x∥ ≤ 1}.

We obtain a linear extension map Ê∶Ck
D̆

(D , F) → Ck(R2 , F) if we set

Ê( f )∶R2 → F , z ↦
⎧⎪⎪⎨⎪⎪⎩

Ẽ( f ∣U )(z) for z ≠ 0,
f (z) for z = 0,

for each f ∈ Ck
D̆

(D , F). ∎

4 The proof of Theorem 3.1

In this section, we prove Theorem 3.1. For this, we let F ∈ hlcVect and k ∈ N ∪ {∞}
be fixed, and recall the definitions made in the beginning of Section 3.1. We make the
following simplifications to our argumentation:
• It suffices to prove Theorem 3.1 for the case a = −∞, as the general case then follows

by cutoff arguments. Specifically, let −∞ < a < τ < b < ∞ be given, and fix a < κ <
κ′ < τ as well as ρ ∈ C∞(R,R) with

ρ∣(−∞,κ] = 0 and ρ∣[κ′ ,∞) = 1.

For each E ∈ hlcVect and (V ,V) ∈ Ω(E), we define the linear map
ξ(E , V ,V)∶Ck

V
((a, b) × V , F) → Ck

V
((−∞, b) × V , F) by

ξ(E , V ,V)( f )(t, x) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 for (t, x) ∈ (−∞, a] × V ,
ρ(t) ⋅ f (t, x) for (t, x) ∈ (a, b) × V ,
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for f ∈ Ck
V

((a, b) × V , F). We obtain extension operators as in Theorem 3.1 if for
E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck

V
((a, b) × V , F), we set

Ea ,τ ,b(E , V ,V)( f )(t, x)

∶=
⎧⎪⎪⎨⎪⎪⎩

f (t, x) for (t, x) ∈ (a, b) × V ,
E−∞,τ ,b(E , V ,V)(ξ(E , V ,V)( f ))(t, x) for (t, x) ∈ [b, ∞) × V .

• To simplify the notations, in the following we restrict to the case b = 0. The case
b ≠ 0 follows in the same way, and can alternatively be obtained from the statement
for b = 0 via application of translations.
For the rest of this section, let thus τ ∈ (−∞, 0) be fixed (i.e., we have a = −∞ and

b = 0). We choose τ < υ < 0 and ρ ∈ C∞(R,R), such that

∣ρ∣ ≤ 1, ρ∣(−∞,τ] = 0, ρ∣[υ ,0] = 1

holds, hence ρ( j)∣[υ ,0] = 0 for j ≥ 1,(4.1)

and define the constants

Mp ∶= sup {∣ ρ( j)(t)∣ ∣ t ∈ [τ, 0], 0 ≤ j ≤ p } ≥ 1 ∀ p ∈ N.(4.2)

According to [17], there exists a sequence {cn}n∈N ⊆ R with

(i) ∑∞j=0 c j ⋅ (−2 j)q = 1 for each q ∈ N and
(ii) ∑∞j=0 ∣c j ∣ ⋅ (2 j)q < ∞ for each q ∈ N.

Given some f ∈ Ck
V

((−∞, 0) × V , F), its extension will be defined (see (4.12) in
Section 4.2) in analogy to [17] by

f̃ (t, x) ∶=
⎧⎪⎪⎨⎪⎪⎩

Ext( f , 0)(t, x) for (t, x) ∈ (−∞, 0] × V ,
∑∞j=0 c j ⋅ ρ(−2 j ⋅ t) ⋅ f (−2 j ⋅ t, x) for (t, x) ∈ (0, ∞) × V .

(4.3)

The sum in the second line is locally finite as ρ is zero on (−∞, τ], hence f̃ is defined
and of class Ck on (R/{0}) × V . We basically will have to show that f̃ is of class Ck on
whole R × V , and that its �th differential extends continuously to R × V × H[E]� for
each 0 ≤ � ⪯ k. For this, we need to construct these extensions explicitly, which will
be done in analogy to the definition of f̃ . For our argumentation, we shall need the
following corollary to Lemma 2.7 (Corollary 2.9) and Example 2.6.(iv).

Corollary 4.1 Let E ∈ hlcVect, (V ,V) ∈ Ω(E), as well as f− ∈ Ck((−∞, 0) × V , F)
and f+ ∈ Ck((0, ∞) × V , F) be given. Assume furthermore that for each 0 ≤ � ⪯ k, there
exists a continuous map Φ�∶R × V × H[E]� → F that restricts to d� f±. Then, we have

Ck
V(R × V , F) ∋ f̃ ∶= Φ0∣R×V .

d� f̃ = Φ� ∣R×V×H[E]� ∀ 0 ≤ � ⪯ k.

Ext( f̃ , �) = Φ� ∀ 0 ≤ � ⪯ k.

(the third line implies the second line).
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Proof Let U ∶= R × V ⊆ H ∶= H[E], A ∶= {0} × V ⊆ U , U ∶= R × V ⊆ H,

f ∶ U/A → F , (t, x) ↦
⎧⎪⎪⎨⎪⎪⎩

f−(t, x) for (t, x) ∈ (−∞, 0) × V ,
f+(t, x) for (t, x) ∈ (0, ∞) × V ,

observe that A is harmonic by Example 2.6.(iv) and apply Corollary 2.9. ∎

4.1 Elementary facts and definitions

For E ∈ hlcVect, we define 1 ∶= (1, 0) ∈ H[E] as well as 1p ∶= (1, . . . , 1) ∈ H[E]p for
p ≥ 1, and consider the maps

λ ∶= pr1∶ H[E] → R, (λ, X) ↦ λ,
χ ∶= pr1 × 0∶ H[E] → H[E], (λ, X) ↦ (λ, 0),
ω ∶= 0 × pr2∶ H[E] → H[E], (λ, X) ↦ (0, X).

We furthermore define the following:
• For 1 ≤ � ⪯ k and 1 ≤ j ≤ �, we set

λ�, j ∶H[E]� → R, (w1 , . . . , w�) ↦ λ(w j),
χ�, j ∶H[E]� → H[E], (w1 , . . . , w�) ↦ χ(w j),

ω�, j ∶H[E]� → H[E], (w1 , . . . , w�) ↦ ω(w j).

• For 1 ≤ � ⪯ k, p ≥ 1, and 1 ≤ z1 , . . . , zp ≤ �, we set
Λ�,z1 , . . . ,zp (w) ∶= λ�,z1 (w) ⋅ ⋯ ⋅ λ�,zp (w) ∀ w ∈ H[E]� .

It helps to simplify the notations, in the following just to denote Λ�,z1 , . . . ,zp (w) ∶= 1
for the case that p = 0 holds.

• For 1 ≤ � ⪯ k and 0 ≤ p ≤ �, we let I�, p denote the set of all
σ = (z1 , . . . , zp , o1 , . . . , o�−p) ∈ {1, . . . , �}� ,

such that the following conditions are fulfilled:14

– z i < z i+1 for 1 ≤ i ≤ p − 1,
– o j < o j+1 for 1 ≤ j ≤ � − p − 1, and
– z i ≠ o j for 1 ≤ i ≤ p and 1 ≤ j ≤ � − p.

Let V ⊆ E be nonempty open, Γ ∈ Ck((0, ∞) × V , F), and 1 ≤ � ⪯ k. By symmetry
(and multilinearity) of the �th differential, we have

d�Γ((t, x), w)
= ∑�

p=0 ∑σ∈I�, p
d�Γ((t, x), ω�,o1 (w), . . . , ω�,o�−p (w), χ�,z1

(w), . . . , χ�,zp
(w))

= ∑�
p=0 ∑σ∈I�, p

Dχ�,z1
(w), . . . , χ�,z p

(w) d�−pΓ((t, x), ω�,o1 (w), . . . , ω�,o�−p (w))

= ∑�
p=0 ∑σ∈I�, p

λ�,z1 (w) ⋅ . . . ⋅ λ�,zp (w)
= Λ�,z1 ,. . . ,z p (w)

⋅ ∂p
t (d�−pΓ((t, x), ω�,o1 (w), . . . , ω�,o�−p (w))),(4.4)

14We thus have I�,0 = (o1 , . . . , o�) = (1, . . . , �) and I�,� = (z1 , . . . , z�) = (1, . . . , �).
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for each t ∈ (0, ∞), x ∈ V , w ∈ H[E]�.
Similarly, if f ∈ Ck

V
((−∞, 0) × V , F) holds, we obtain for q = 0, . . . , � (recall

Remark 2.8)

Ext( f , �)((t, x), w)
= ∑�

p=0 ∑σ∈I�, p
Λ�,z1 , . . . ,zp (w) ⋅ Ext( f , �)((t, x), ω�,o1 (w), . . . , ω�,o�−p (w), 1p),(4.5)

for each t ∈ (−∞, 0), x ∈ V, w ∈ H[E]�.

4.2 Construction of the extension operators

Let E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F), and ς ≤ −1 be given.
• We define the Ck-map and its C0-extension:

Γ[ f , ς](t, x) ∶= ρ(ς ⋅ t) ⋅ f (ς ⋅ t, x) ∀ (t, x) ∈ (0, ∞) × V ,(4.6)

Ψ0[ f , ς](t, x) ∶= ρ(ς ⋅ t) ⋅ Ext( f , 0)(ς ⋅ t, x) ∀ (t, x) ∈ (0, ∞) × V.(4.7)

• For 1 ≤ � ⪯ k, we obtain from (4.4) that

d�Γ[ f , ς]((t, x), w)
= ∑�

p=0 ∑σ∈I�, p
Λ�,z1 , . . . ,zp (w)

⋅ ∂p
t (ρ(ς ⋅ t) ⋅ d�−p f ((ς ⋅ t, x), ω�,o1 (w), . . . , ω�,o�−p (w)))

= ∑�
p=0 ∑σ∈I�, p ∑p

q=0 (p
q) ⋅ ςp ⋅ Λ�,z1 , . . . ,zp (w) ⋅ ρ(q)(ς ⋅ t)

⋅ d�−q f ((ς ⋅ t, x), ω�,o1 (w), . . . , ω�,o�−p (w), 1p−q)(4.8)

holds for all t ∈ (0, ∞), x ∈ V , w ∈ H[E]�.
• For 1 ≤ � ⪯ k and q = 0, . . . , �, we define the continuous map

Θ�,q[ f , ς]((t, x), w)
∶= ∑�

p=q ∑σ∈I�, p
(p

q) ⋅ ςp ⋅ Λ�,z1 , . . . ,zp (w) ⋅ ρ(q)(ς ⋅ t)
⋅ Ext( f , � − q)((ς ⋅ t, x), ω�,o1 (w), . . . , ω�,o�−p (w), 1p−q),(4.9)

for all t ∈ (0, ∞), x ∈ V, and w ∈ H[E]�. Then by (4.8), the map

Ψ�[ f , ς] ∶= ∑�
q=0 Θ�,q[ f , ς] ∈ C0((0, ∞) × V × H[E]� , F)(4.10)

continuously extends d�Γ[ f , ς] for 1 ≤ � ⪯ k, i.e.,

Ψ�[ f , ς]∣(0,∞)×V×H[E]� = d�Γ[ f , ς] ∀ 1 ≤ � ⪯ k.(4.11)

For E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F), we define the maps

f− ∶= f ,
f+ ∶= ∑∞j=0 c j ⋅ Γ[ f , −2 j],

Φ[ f ]�+ ∶= ∑∞j=0 c j ⋅ Ψ�[ f , −2 j] ∀ 0 ≤ � ⪯ k.

https://doi.org/10.4153/S0008414X21000596 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000596


194 M. Hanusch

We have the following statement.

Lemma 4.2 Let E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F) be given.
Then, f+ ∈ Ck((0, ∞) × V , F) holds, as well as

Φ[ f ]�+ ∈ C0((0, ∞) × V × H[E]� , F) ∀ 0 ≤ � ⪯ k.

Moreover, Φ[ f ]�+ restricts to d� f+ for 0 ≤ � ⪯ k, with Φ[ f ]�+∣[−τ ,∞)×V×H[E]� = 0.

Proof Let s ∈ (0, ∞) as well as 0 < ε < s be given, and set I ∶= (s − ε, s + ε). There
exists N ∈ N, such that −2 j ⋅ I ⊆ (−∞, τ) holds for each j ≥ N . Since ρ∣(−∞,τ] = 0, we
have (the first line implies the second line)

f+∣I×V = ∑N
j=0 c j ⋅ Γ[ f , −2 j]∣I×V ,

d� f+∣I×V×H[E]� = ∑N
j=0 c j ⋅ d�Γ[ f , −2 j]∣I×V×H[E]� ,

Φ[ f ]�+∣I×V×H[E]� = ∑N
j=0 c j ⋅ Ψ�[ f , −2 j]∣I×V×H[E]� ,

for 0 ≤ � ⪯ k. Thus, Φ[ f ]�+ is defined and continuous for 0 ≤ � ⪯ k, f+ is defined and
of class Ck , and Φ[ f ]�+ restricts to d� f+ for 0 ≤ � ⪯ k by (4.11). Since −2 j ⋅ [−τ, ∞) ⊆
(−∞, τ] holds for each j ∈ N (with ρ∣(−∞,τ] = 0), we have Φ[ f ]�+∣[τ ,∞)×V×H[E]� = 0
for 0 ≤ � ⪯ k. ∎

For E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F), and 0 ≤ � ⪯ k, we
define the map Φ[ f ]�∶R × V × H[E]� → F by

Φ[ f ]�∣(−∞,0]×V×H[E]� ∶= Ext( f , �) as well as

Φ[ f ]�∣(0,∞)×V×H[E]� ∶= Φ[ f ]�+ .

In Section 4.3, we prove the following statement.

Lemma 4.3 Let E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F) be given.
Then, Φ[ f ]� is continuous for each 0 ≤ � ⪯ k.

Together with Lemma 4.2 and Corollary 4.1, Lemma 4.3 implies15

Ck
V(R × V , F) ∋ f̃ ∶= Φ[ f ]0∣R×V ,

d� f̃ = Φ[ f ]� ∣R×V×H[E]� 0 ≤ � ⪯ k,(4.12)

Ext( f̃ , �) = Φ[ f ]� 0 ≤ � ⪯ k.

For E ∈ hlcVect and (V ,V) ∈ Ω(E), we define the map

E−∞,τ ,0(E , V ,V)∶Ck
V((−∞, 0) × V , F) → Ck

V(R × V , F), f ↦ f̃ .(4.13)

We observe the following:
• It is clear from the construction that (4.13) is a linear map, with

Ext(E−∞,τ ,0(E , V ,V)( f ), �)∣(−∞,0]×V×H[E]� = Ext( f , �),
Ext(E−∞,τ ,0(E , V ,V)( f ), �)∣[−τ ,∞)×V×H[E]� = 0,

15Notably, this coincides with f̃ as defined in (4.3).
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for each f ∈ Ck
V

((−∞, 0) × V , F) and 0 ≤ � ⪯ k (for the second line use the last
statement in Lemma 4.2).

• Let E , Ē ∈ hlcVect, W ⊆ E a linear subspace and Υ∶W → Ē a linear map. Let
(V ,V) ∈ Ω(E), (V̄ , V̄) ∈ Ω(Ē), x ∈ V, x̄ ∈ V̄, f ∈ Ck

V
(R × V , F), f̄ ∈ Ck

V̄
(R ×

V̄ , F), and 0 ≤ s ⪯ k be given with

Ext( f , �) ○ W([τ, 0], x , �) = Ext( f̄ , �) ○ WΥ([τ, 0], x̄ , �) ∀ 0 ≤ � ≤ s.

Then, it is clear from the construction that

Ψs[ f , −2 j] ○ W((0, ∞), x , s) = Ψs[ f̄ , −2 j] ○ WΥ((0, ∞), x̄ , s)

holds for each j ∈ N, hence

Ext(E−∞,τ ,0(E , V ,V)( f ), s) ○ W([τ, ∞), x , s)
= Ext(E−∞,τ ,0(Ē , V̄ , V̄)( f̄ ), s) ○ WΥ([τ, ∞), x̄ , s).

To establish Theorem 3.1, it thus remains to prove Lemma 4.3 (see Section 4.3), as
well as the continuity estimates in Part (2) of Theorem 3.1 (see Section 4.4).

4.3 The proof of Lemma 4.3

Let E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F), x ∈ V, p ∈ Sem(F) be
given. The following estimates hold for each ς ≤ −1:
(a) Since Ext( f , 0) is continuous, and since [τ, 0] is compact, there exists C0 ≥ 1 and

a neighbourhood Ux ⊆ V of x, with

p(Ext( f , 0)(t, x′)) ≤ C0 ∀ t ∈ [τ, 0], x′ ∈ Ux .(4.14)

We obtain from (4.1), (4.7), and (4.14) that

p(Ψ0[ f , ς](t, x′)) ≤ C0 ∀ t ∈ (0, ∞), x′ ∈ Ux .(4.15)

(b) Let 1 ≤ � ⪯ k and w = (w1 , . . . , w�) ∈ H[E]� be given.
○ According to Point (a) and Corollary 3.5, there exists a neighborhood Ux ⊆ V

of x, C̃� ≥ 1, and q ∈ Sem(E), such that we have

p(Ext( f , 0)(t, x′)) ≤ C̃� ∀ t ∈ [τ, 0], x′ ∈ Ux ,(4.16)

as well as

p(Ext( f , q)((t, x′), w′)) ≤ C̃� ⋅ max[∣ ⋅ ∣, q](w′1) ⋅ ⋯ ⋅ max[∣ ⋅ ∣, q](w′q),
(4.17)

for each t ∈ [τ, 0], x′ ∈ Ux , 1 ≤ q ≤ �, and w′ = (w′1 , . . . , w′q) ∈ H[E]q .
○ We obtain for 0 ≤ q ≤ � from (4.1), (4.2), (4.9), (4.16), (4.17) that

p(Θ�,q[ f , ς]((t, x′), w′))
≤ ∣ς∣� ⋅ (� + 1)! ⋅ max(∣I�,0∣, . . . , ∣I�,�∣)

⋅ M� ⋅ C̃� ⋅ max(1, max[∣ ⋅ ∣, q](w′1), . . ., max[∣ ⋅ ∣, q](w′�))�
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holds for each t ∈ (0, ∞), x′ ∈ Ux , and w′ = (w′1 , . . . , w′�) ∈ H[E]�. We define

Q� ∶= (� + 1) ⋅ (� + 1)! ⋅ max(∣I�,0∣, . . . , ∣I�,�∣) ⋅ M� ⋅ C̃� ≥ C̃� ,(4.18)

and obtain for t ∈ (0, ∞), x′ ∈ Ux , w′ = (w′1 , . . . , w′�) ∈ H[E]� from (4.10) that

p(Ψ�[ f , ς]((t, x′), w′))
≤ ∣ς∣� ⋅ Q� ⋅ max(1, max[∣ ⋅ ∣, q](w′1), . . ., max[∣ ⋅ ∣, q](w′�))� .(4.19)

○ We define C� ∶= Q� ⋅ max(1, max[∣ ⋅ ∣, q](w1) + 1, . . ., max[∣ ⋅ ∣, q](w�) + 1)�, as
well as

Ow ∶= {(w′1 , . . . , w′�) ∈ H[E]� ∣ max[∣ ⋅ ∣, q](w′p − w p) < 1 for p = 1, . . . , �}.

We have by (4.17), (4.18) (used for the first line), and (4.19) (used for the second
line) that

p(Ext( f , �)((0, x), w)) ≤ C� ,
p(Ψ�[ f , ς]((t, x′), w′)) ≤ C� ⋅ ∣ς∣� ∀ t ∈ (0, ∞), x′ ∈ Ux , w′ ∈ Ow .

(4.20)

We are ready for the proof of Lemma 4.3.

Proof of Lemma 4.3 Let E ∈ hlcVect, (V ,V) ∈ Ω(E), f ∈ Ck
V

((−∞, 0) × V , F),
x ∈ V, p ∈ Sem(F), and ε > 0 be given. We discuss the cases � = 0 and 1 ≤ � ⪯ k
separately:
• Let � = 0. We choose C0 ≥ 1 and Ux ⊆ V as in (a). By Property (ii), there exists N ∈ N

with ∑∞j=N+1 ∣c j ∣ < ε
4C0

. We obtain from (4.14), (4.15) and the triangle inequality that

∑∞j=N+1 ∣c j ∣ ⋅ p(Ψ0[ f , −2 j](t, x′) − Ext( f , 0)(0, x)) < ε
2 ∀ t ∈ (0, ∞), x′ ∈ Ux .

Since ∑∞j=0 c j = 1 holds by Property (i), the triangle inequality yields

p( ∑∞j=0 c j ⋅ Ψ0[ f , −2 j](t, x′) − Ext( f , 0)(0, x))
= p( ∑∞j=0 c j ⋅ Ψ0[ f , −2 j](t, x′) − ∑∞j=0 c j ⋅ Ext( f , 0)(0, x))
≤ p( ∑N

j=0 c j ⋅ Ψ0[ f , −2 j](t, x′) − ∑N
j=0 c j ⋅ Ext( f , 0)(0, x))

+ ∑∞j=N+1 ∣c j ∣ ⋅ p(Ψ0[ f , −2 j](t, x′) − Ext( f , 0)(0, x))
< ∑N

j=0 ∣c j ∣ ⋅ p(Ψ0[ f , −2 j](t, x′) − Ext( f , 0)(0, x)) + ε
2 ,(4.21)

for t ∈ (0, ∞) and x′ ∈ Ux . We observe the following:
○ By (4.1) and (4.7), we have for 0 ≤ j ≤ N :

Ψ0[ f , −2 j](t, x′) = Ext( f , 0)(−2 j ⋅ t, x′) ∀ t ∈ (0, ∣υ∣/2N ), x′ ∈ V.

○ Since Ext( f , 0) is continuous, we can shrink Ux ⊆ V around x and fix 0 < δ <
∣υ∣/2N , such that

p(Ext( f , 0)(−2 j ⋅ t, x′) − Ext( f , 0)(0, x)) < ε
2⋅(N+1)⋅max(1,∣c0 ∣, . . . ,∣cN ∣)

holds for j = 0, . . . , N , for all t ∈ (0, δ) and x′ ∈ Ux .

https://doi.org/10.4153/S0008414X21000596 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000596


A Ck-seeley-extension-theorem for Bastiani’s differential calculus 197

Combining both points with (4.21), we obtain

p( ∑∞j=0 c j ⋅ Ψ0[ f , −2 j](t, x′) − Ext( f , 0)(0, x)) < ε ∀ t ∈ (0, δ), x′ ∈ Ux .

• Let 1 ≤ � ⪯ k and w ∈ H[E]� be fixed. We choose C� ≥ 1, Ux ⊆ V, and Ow ⊆ H[E]�
as in (b), and define

Ξ[ j] ∶=
�

∑
p=0

∑
σ∈I�, p

(−2 j)p

⋅ Λ�,z1 , . . . ,zp (w) ⋅ Ext( f , �)((0, x), ω�,o1 (w), . . . , ω�,o�−p (w), 1p),

for each j ∈ N. We observe the following:
○ Given Δ > 0, Property (i) provides some NΔ ∈ N with

∣ ∑N
j=0 c j ⋅ ((−2 j)p − 1)∣ < Δ ∀ N ≥ NΔ , p = 0, . . . , �.

By (4.5), there thus exists some Ñ ∈ N with

p( ∑N
j=0 c j ⋅ Ξ[ j] − ∑N

j=0 c j ⋅ Ext( f , �)((0, x), w)) < ε
3 ∀ N ≥ Ñ .(4.22)

○ By Property (ii), there exists some N ≥ Ñ with

∑∞j=N+1 ∣c j ∣ ⋅ (2 j)q < ε
6C�

∀ q = 0, . . . , �.

We obtain from (4.20) and the triangle inequality that

∑∞j=N+1 ∣c j ∣ ⋅ p(Ψ�[ f , −2 j]((t, x′), w′) − Ext( f , �)((0, x), w))
≤ C� ⋅ ∑∞j=N+1 ∣c j ∣ ⋅ ((2 j)� + 1) < ε

3(4.23)

holds for all t ∈ (0, ∞), x′ ∈ Ux , w′ ∈ Ow .
○ By (4.1), (4.9), (4.10), for 0 ≤ j ≤ N , t ∈ (0, ∣υ∣/2N ), x′ ∈ V, and w′ ∈ H[E]� we

have

Ψ�[ f , −2 j]((t, x′), w′)
= Θ�,0[ f , −2 j]((−2 j ⋅ t, x′), w′)
= ∑�

p=0 ∑σ∈I�, p
(−2 j)p ⋅ Λ�,z1 , . . . ,zp (w′)

⋅ Ext( f , �)((−2 j ⋅ t, x′), ω�,o1 (w′), . . . , ω�,o�−p (w′), 1p).

Since Ext( f , �) is continuous, we can shrink Ux ⊆ V around x as well as Ow
around w, and furthermore fix 0 < δ < ∣υ∣/2N , such that

p(Ψ�[ f , −2 j]((2 j ⋅ t, x′), w′) − Ξ[ j]) < ε
3(N+1)⋅max(1,∣c0 ∣, . . . ,∣cN ∣)

holds for t ∈ (0, δ), x′ ∈ Ux , w′ ∈ Ow , and j = 0, . . . , N . We obtain

p( ∑N
j=0 c j ⋅ Ψ�[ f , −2 j]((t, x′), w′) − ∑N

j=0 c j ⋅ Ξ[ j])
≤ ∑N

j=0 ∣c j ∣ ⋅ p(Ψ�[ f , −2 j]((t, x′), w′) − Ξ[ j]) < ε
3 ,(4.24)

for all t ∈ (0, δ), x′ ∈ Ux , w′ ∈ Ow .
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Since ∑∞j=0 c j = 1 holds by Property (i), the triangle inequality together with
(4.22)–(4.24) yields

p( ∑∞j=0 c j ⋅ Ψ�[ f , −2 j]((t, x′), w′) − Ext( f , �)((0, x), w))

= p( ∑∞j=0 c j ⋅ Ψ�[ f , −2 j]((t, x′), w′) − ∑∞j=0 c j ⋅ Ext( f , �)((0, x), w))

≤ p( ∑N
j=0 c j ⋅ Ψ�[ f , −2 j]((t, x′), w′) − ∑N

j=0 c j ⋅ Ext( f , �)((0, x), w))

+ ∑∞j=N+1 ∣c j ∣ ⋅ p(Ψ�[ f , −2 j]((t, x′), w′) − Ext( f , �)((0, x), w))

≤ p( ∑N
j=0 c j ⋅ Ψ�[ f , −2 j]((t, x′), w′) − ∑N

j=0 c j ⋅ Ξ[ j])

+ p( ∑N
j=0 c j ⋅ Ξ[ j] − ∑N

j=0 c j ⋅ Ext( f , �)((0, x), w))

+ ∑∞j=N+1 ∣c j ∣ ⋅ p(Ψ�[ f , −2 j]((t, x′), w′) − Ext( f , �)((0, x), w))
< ε,

for all t ∈ (0, δ), x′ ∈ Ux , w′ ∈ Ow . ∎

4.4 The proof of Theorem 3.1.(2)

Let E ∈ hlcVect, (V ,V) ∈ Ω(E), t ∈ (−∞, 0), x ∈ V, B ⊆ E bounded, p ∈ Sem(F),
and f ∈ Ck

V
((−∞, 0) × V , F). We recall (3.2) as well as the seminorms in (2.8). The

following estimates hold for each ς ≤ −1:
• By (4.1) and (4.7), we have

p(Ψ0[ f , ς](t, x)) ≤ p
0
[τ ,0]×{x}( f ).(4.25)

• Let 1 ≤ s ⪯ k. Then, for 1 ≤ � ⪯ s and 0 ≤ q ≤ �, we have (recall (4.1), (4.2), (4.9),
(4.25))

p(Θ�,q[ f , ς]((t, x), w)) ≤ (� + 1)! ⋅ ∣ς∣� ⋅ max(∣I�,0∣, . . . , ∣I�,�∣)
⋅ M� ⋅ max(1, ∣λ�,1(w)∣, . . . , ∣λ�,�(w)∣)�(4.26)
⋅ ps
[τ ,0]×{x}×B(B)( f ),

for each w ∈ (R × B)�. We define

Qs ∶= (s + 1) ⋅ (s + 1)! ⋅ Ms ⋅ max (∣I�, p ∣ ∣ 1 ≤ � ≤ s, 0 ≤ p ≤ �) ≥ 1,(4.27)

and obtain for 1 ≤ � ≤ s from (4.10) and (4.26) that

p(Ψ�[ f , ς]((t, x), w)) ≤ ∣ς∣� ⋅ Qs

⋅ max(1, ∣λ�,1(w)∣, . . . , ∣λ�,�(w)∣)� ⋅ ps
[τ ,0]×{x}×B(B)( f )(4.28)

holds for each w ∈ (R × B)�.
We are ready for the proof of Theorem 3.1.(2).

Proof of Theorem 3.1.(2) Let E ∈ hlcVect, (V ,V) ∈ Ω(E), t ∈ (−∞, 0), x ∈ V,
B ⊆ E bounded, p ∈ Sem(F), and f ∈ Ck

V
((0, ∞) × V , F).
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• Let s = 0. By Property (ii) we have C0 ∶= ∑∞j=0 ∣c j ∣ < ∞. We obtain from (4.25) and
the triangle inequality that

p(Ext(E−∞,τ ,0(E , V ,V)( f ), 0)(t, x)) ≤ C0 ⋅ p[τ ,0]×{x}( f ).

• Let 1 ≤ s ⪯ k. We choose Qs ≥ 1 as in (4.27), and define

Cs ∶= Qs ⋅ max1≤�≤s ( ∑∞j=0 ∣c j ∣ ⋅ (2 j)�) ii)< ∞.(4.29)

Then Cs ≥ 1 holds, as we have Qs ≥ 1 as well as ∑∞j=0 ∣c j ∣ ⋅ (2 j)� ≥ ∑∞j=0 c j = 1 for 1 ≤
� ≤ s by Property (i). We obtain from (4.28) that

p(Ext(E−∞,τ ,0(E , V ,V)( f ), �)((t, x), w))
≤ Cs ⋅ max(1, ∣λ�,1(w)∣, . . . , ∣λ�,�(w)∣)� ⋅ ps

[τ ,0]×{x}×B(B)( f ),

holds for each 1 ≤ � ≤ s and w ∈ (R × B)�. ∎

Appendix A.1. Some details to Example 3.10.(b)

Let (H , ⟨⋅, ⋅⟩) be a real pre-Hilbert space, E ∈ hlcVect and H = H × E. We set ξ(⋅) ∶=√
⟨⋅, ⋅⟩, fix 0 < τ < 1, and define S and S̆ as in Remark 3.9. Given Z ∈ A = ξ−1({1}), we

set

Z� ∶= {X ∈ H ∣ ⟨Z , X⟩ = 0},
D(Z) ∶= {X ∈ Z� ∣ ξ(X) < 1},
C (Z) ∶= {X ∈ H ∣ ξ(X) > 0 ∧ ⟨Z , X⟩ > 0}.

The following maps are smooth and inverse to each other:

ψZ ∶ C (Z) → (0, ∞) × D(Z), X ↦ (ξ(X), 1
ξ(X) ⋅ X − 1

ξ(X) ⋅ ⟨X , Z⟩ ⋅ Z)

ϕZ ∶(0, ∞) × D(Z) → C (Z) (t, Y) ↦ t ⋅ (Y +
√

1 − ξ(Y)2 ⋅ Z).

Now, given g ∈ Ck
S̆×V

(S × V , F), the same arguments as in Remark 3.9 show that it
suffices to construct

an extension f̃ ∈ Ck
V(W × V , F) of the restriction

f ∶= g∣O×V ∈ Ck
Ŏ×V

(O × V , F)(4.30)

in order to obtain an extension g̃ ∈ Ck
V

(H × V , F) of g. For this, we proceed as
follows:
• We have by Lemma 2.10

fZ ∶= f ○ (ϕZ ∣(0,1)×D(Z) × idV ) ∈ Ck
(0,1]×D(Z)×V((0, 1) × D(Z) × V , F)

with Ext( fZ , 0) = Ext( f , 0)○(ϕZ ∣(0,1]×D(Z) × idV).
• First applying the extension operator E0,τ ,1(Z� × E , D(Z) × V , D(Z) × V) from

Theorem 3.1, and then composing with ψZ × idV , we obtain (from Lemma 2.10) an
extension

f̃Z ∈ Ck
C (Z)×V(C (Z) × V , F) of the restriction f ∣(O∩C (Z))×V .
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• Given Z′ ∈ A and X ∈ C (Z) ∩ C (Z′), then the definitions (and continuity) ensure
that for Y ∶= (pr2○ψZ)(X) and Y ′ ∶= (pr2○ψZ′)(X), we have

Ext( fZ , 0)(t, Y , x) = Ext( f , 0)(t/ξ(X), X , x)
= Ext( fZ′ , 0)(t, Y ′ , x) ∀ t ∈ [τ, 1], x ∈ V.

Theorem 3.1.(3) implies f̃Z ∣((0,∞)⋅X)×V = f̃Z′ ∣((0,∞)⋅X)×V , and we conclude

f̃Z ∣C (Z)∩C (Z′) = f̃Z′ ∣C (Z)∩C (Z′).

Since U ∶= C (Z) ∩ C (Z′) is open, we obtain for 0 ≤ � ⪯ k:

d� f̃Z ∣U×V×H� = d� f̃Z′ ∣U×V×H�

continuity
%⇒ Ext( f̃Z , �)∣U×V×H� = Ext( f̃Z′ , �)∣U×V×H� .

It follows that the maps { f̃Z}Z∈A glue together to an extension f̃ ∈ Ck
V

(W × V , F)
of (4.30).

Acknowledgment The author thanks Helge Glöckner for general remarks and
discussions. This research was supported by the Deutsche Forschungsgemeinschaft,
DFG, project number HA 8616/1-1.

References

[1] H. Alzaareer and A. Schmeding, Differentiable mappings on products with different degrees of
differentiability in the two factors. Expo. Math. 33(2015), 184–222.

[2] L. Frerick, Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew.
Math. 602(2007), 123–154.

[3] H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions. In: Aleksander
Strasburger, Joachim Hilgert, Karl-Hermann Neeb and Wojciech Wojtyński (eds.) Geometry and
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