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A Ck-seeley-extension-theorem for
Bastiani’s differential calculus

Maximilian Hanusch

Abstract. We generalize a classical extension result by Seeley in the context of Bastiani’s differ-
ential calculus to infinite dimensions. The construction follows Seeley’s original approach, but is
significantly more involved as not only C*¥-maps (for k € N U {co}) on (subsets of) half spaces are
extended, but also continuous extensions of their differentials to some given piece of boundary of the
domains under consideration. A further feature of the generalization is that we construct families of
extension operators (instead of only one single extension operator) that fulfill certain compatibility
(and continuity) conditions. Various applications are discussed as well.

1 Introduction

The extension problem for differentiable maps naturally arises in the context of
manifolds with boundary or corners. In the finite-dimensional context, Whitney’s
extension theorem [20] guarantees more generally the extendability of Whitney jets
(families of continuous functions that define formal Taylor expansions) on closed
subsets of euclidean spaces. A characterization of closed subsets that admit continuous
linear extension operators on C* - Whitney jets was given by Tidten in [18] (see [2]
for further investigations). Recent research into Whitney-type extension operators [11,
16] is concerned with generalizations to maps on closed subsets of finite-dimensional
manifolds (Whitney germs in [11], and in [16], subsets that satisfy the so-called cusp
condition) with values in vector bundles or (infinite-dimensional) manifolds. In [11],
the smooth category in the context of the convenient calculus [7] is considered, and in
[16], the smooth category within Bastiani’s differential calculus [3]. Throughout this
paper, we work in Bastiani’s setting that is recalled in Section 2.1. We refer to [4, 15]
for self-contained introductions into Bastiani’s calculus.

Besides Whitney’s approach, there is an alternative (significantly simpler) exten-
sion construction available that works for maps defined on half spaces. This approach
is due to Seeley [17]. He constructs a continuous linear map that extends such
smooth maps (—o0,0) x R" - R (n € N) to R x R"”, whose partial derivatives extend
continuously to (—o0, 0] x R”. In this paper, we generalize Seeley’s result into several
directions:

Let E,F be Hausdorft locally convex vector spaces, and denote the system of
continuous seminorms on F by Sem(F). For k €e Nu {c0} and U ¢ E nonempty open,
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let CK(U, F) denote the set of all k-times continuously differentiable maps U — F.
Let Q(E) denote the set of all pairs (V,0) such that V ¢ E is nonempty open, and
0 C E is contained in the closure of V in E with V €. For —co <a < b < oo, let
€k ((a,b) x V, F) denote the set of all f € C¥((a,b) x V, F), such that for each £ € N
with ¢ < k, the ¢th differential of f extends to a continuous map

Ext(f,£): (a,b] x U x (R x E)* > F,

(we set (a,b] := (a,00) if b = 0o holds). Our main result Theorem 3.1 (stated to the
full extent in Section 3.1) inter alia implies that, for —co < a < 7 < 0 fixed, there exists
a linear (extension) map

&:C&((a,0) x V,F) - €k ((a,00) x V,F),
such that for f € €% ((a,0) x V,F) and 0 < £ < k, we have

EXt(g(f)’€)|(a,0]><m><(R><E)"' = EXt(f,f),
EXt(g(f))£)|[|T\,oo)><mx(R><E)e =0.

For E =R", F =R, and a = —oo, this implies Seeley’s original theorem from [17]. We
mention, but do not present the details at this point, that Theorem 3.1 is formu-
lated more generally in terms of families of extension operators indexed by triples
(E, V,9), where E runs over the class of Hausdorff locally convex vector spaces and
(V,20) € Q(E) holds (a and 7 are thus fixed parameters). Theorem 3.1 additionally
contains continuity estimates, as well as compatibility conditions that can be used, e.g.,
to construct extensions of maps by gluing together local extensions. This is demon-
strated in Example 3.10 for the unit ball in a real pre-Hilbert space. In Application 3.6 in
Section 3.2, we carry over the extension result (in the form stated above) to quadrants,
which is of relevance in the context of (infinite-dimensional) manifolds with corners
[8]. Specifically, given k € Nand (V,0) € Q(E), we construct an extension operator
for C*-maps (a;,0) x -+ x (a,,0) x V - F (with o0 < aj,...,a, <0) whose (th
differential, for 0 < £ < k, extends continuously to (a;,0] x -+ x (a,, 0] x U x (R" x
E)*. We remark that in the convenient setting (for k = co and V =0 = E = {0}) the
existence of a continuous extension operator was already shown in Proposition 24.10
in [7]. The proof given there also works in Bastiani’s setting, but still only for k = co as
the exponential law for smooth mappings is explicitly applied.'

We finally want to emphasize that our extension result can also be used to extend
C¥-maps on subsets in infinite dimensions that admit a certain kind of geometry.
Indeed, we have already mentioned that Example 3.10 covers the (real) pre-Hilbert
unit ball. In Application 3.8 in Section 3.3, we consider subsets of Hausdorff locally
convex vector spaces that are defined by a particular kind of distance function (e.g.,
nonzero C*-seminorms). The (real) pre-Hilbert unit ball is an example for this, but
the construction in Example 3.10 differs from the construction in Application 3.8 that
gets along without explicit use of the compatibility property admitted by the extension
operators.

1We refer to [1] for subtleties concerning the exponential law in the nonsmooth category.

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

172 M. Hanusch

A brief outline of the paper is as follows. In Section 2, we fix the notations, recall
Bastiani’s differential calculus, and provide some elementary facts and definitions
concerning locally convex vector spaces (and maps) that we shall need in the main text.
In Section 3, we state our main result, Theorem 3.1, and discuss various applications
to it. Section 4 is dedicated to the proof of Theorem 3.1.

2 Preliminaries

Let hlcVect denote the class of Hausdorft locally convex vector spaces, and let E €
hlcVect be given. We denote the completion of E by comp(E) € hlcVect. The system
of continuous seminorms on E is denoted by Sem(E). For p € Sem(E), welet f denote
the continuous extension of p to comp(E). For a subset V C E, we let clos(V) C E
denote the closure of V in E. A subset B € E is said to be bounded if sup{p(X) | X €
B} < oo holds for each p € Sem(E). Let —o0 < a < b < oo be given:

« Fora=—oo, we set [a,b] := (—o0,b] and [a,b):=(-o00,b).

e Forb= oo, weset [a,b]:=[a,00) and (a,b]:=(a,).

e Fora=—o0,b =00, weset [a,b] := (—o0, 00).

Let k e Nu {o0} be given. We write 0 < £ < k,

e forkeN ifN>/<k holds,
e fork=o00 iffeN holds.

2.1 Bastiani’s differential calculus

In this section, we recall Bastiani’s differential calculus, see also [3, 4,12-15]. Let E, F €
hlcVect be given. A map f: U — F, with U € E open, is said to be differentiable if

(Dyf)(x) :=limeo1/t- (f(x+t-v) - f(x))eF
exists for each x € U and v € E. The map f is said to be k-times differentiable for k > 1
if
Duprinf = Duy(Duy (-(Du (1)) U~ F

is defined for all vy, ..., v, € E. Implicitly, this means that f is p-times differentiable
for each 1< p < k, and we set

A f(vi,...,vp) =dP f(x,v1,...,vp) := Dy, f () VxeU, vy,...,vp €E

for p=1,..., k. We furthermore define df := d' f,as well as d, f := d., f for each x € U.
The map f: U — F is said to be

« of class C° if it is continuous. In this case, we define d’ f := f.
« of class C* for k > 1if it is k-times differentiable, such that

d?f:U x E? - F, (X, v1,..05Vp) = Dy, f (%)

is continuous for p = 0, ..., k. In this case, d? f is symmetric and p-multilinear for
eachxeUandp=1,...,k,see[3].
o of class C* if it is of class C* for each k € N.
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Remark 2.1 Let E, F be normed spaces. We define L°(E, F) := F, and let L*(E, F),
for £ > 1, denote the space of all continuous /-multilinear maps E* — F equipped with
the operator topology.” For k € N and U € E non-empty open, we denote the set of
all k-times Fréchet differentiable maps U — F by FC*(U, F). Given f € FC*(U, F),
we denote its /th Fréchet differential, for 0 < ¢ < k, by DY) f: U — L*(E, F). We recall
that CK*1(U, F) ¢ FC*(U, F) c C*(U, F) holds [13, 20], with
DWf(x)=d'f VxeU,0<l<k.
In particular, we have C* (U, F) = FC* (U, F).
We have the following differentiation rules [3].
Proposition 2.2 (a) Amap f:E 2 U — F is of class C* for k > 1 if and only if df is of
class C*~! when considered as a map Ex E2 U x E — F.
(b) Let f:E — F be linear and continuous. Then, f is smooth, with d.f = f for each
x € E, aswell as d” f = 0 for each p > 2.
(c) Let Fi, ..., Fy be Hausdor{f locally convex vector spaces, and let f;: E 2 U — F, be
of class Ckfork >landq=1,...,m. Then,
=i fut U= Frxceex By X0 ()05 fin (%))

is of class C*, with d’ f = dP fy x -+ x d” fu for p=1,..., k. )
(d) Let F,F, F e hlcVect, 1 < k < oo, as wellas f:F 2 U — UcFand f{F2U—-Uc
F be of class C¥. Then, fof:U — F is of class C*, with
di(fof)=dpeyfodsef VxeU.

(e) Let Fy,...,Fy, E €hlcVect, and f:Fy x -+ x F,, 2 U — E be of class C°. Then, f is
of class C' if and only if for each p = 1,..., m, the partial derivative

Opf:UxFp3((X15-.5%m)sVp)
P limyo 1/t (f (oo Xp + - Vpso s Xm) = f(X15 05 Xm))s
exists in E and is continuous. In this case, we have
df (X1, %m ), Vi Vi) = Xpty Op f (%15 Xm )5 ),
(=25 df((x15--5%m) (0,...,0,75,0,...,0)) ),
foreach (x1,...,xy) € U,andv, € F, forp=1,...,m.
We observe the following.

Corollary 2.3 Let F,F,F e hlcVect, 1<k < oo, as well as fiF2U—>UCF and
f:E2U — U C F be of class C*. Then, for1< { < k we have

d'(fof)(xvi,...,ve) =d F(f(x),df (x,m), ..o df(x,v0)) + Ap(x, v,y ve),

2The notations here are adapted to the notations used (Appendices A.2 and A.3) in [20], where the
relationships between Bastiani’s differentiability concept and Fréchet differentiability are presented in
detail.
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where As: U x F' > Fis given as a linear combination of maps of the form
UxF" (%,v1,...,v¢)

e dUf(f(x),d" f(x, Voo sV )o@ f (X, Ve i1s -5 VE)) € F,
such that the following conditions are fulfilled:

o Wehavel< q</t, aswellas py,...,pg 21with py+ -+ py = L.
o If > 2 holds, then we have p; > 2 for some1<i < q.

Proof For ¢ =1, the claim is clear from (d) in Proposition 2.2. Moreover, we obtain
from the differentiation rules in Proposition 2.2 that

&(fo /(e vi,v) = F(f(x),d' f(x0),d f(x,2)) + d f(f(x), & f(x,v1,v2))

holds, which proves the claim for ¢ = 2. The rest now follows by induction from
Proposition 2.2. u

Let us finally consider the situation, where f = y: U = I — F holds for a nonempty
open interval I € R (hence, E = R). It is then not hard to see that y is of class C* for
k € Ns; U {co} if and only if y(?), inductively defined by y(®) := y as well as®

YO (8) = limyg L - (y D (£+ h) -y (1)) Viel, p=1,...,k

exists and is continuous for 0 < p < k. If D € R is an arbitrary interval (connected,
nonempty and nonsingleton), we let C¥(D, F) (k e Nu {co}) denote the set of all
maps p: D — F, such that y = J|p holds for some J € C*¥(I, F) with I <R an open
interval such that D ¢ I. In this case, we set y(?) := 3(?)|; for each 0 < p < k.

2.2 Locally convex vector spaces

In this section, we collect some elementary statements concerning locally convex
vector spaces.

2.2.1 Product spaces and continuous maps

Given Fy, ..., F,, F € hlcVect, the Tychonoff topology on E := F; x --- x F,, equals the
Hausdorff locally convex topology that is generated by the seminorms

(2.1) max[qs,....q,:E 3 (X1,..., X)) = max(qi(X1),...,q.(X,)),
with q, € Sem(F,) for p = 1,..., n. We recall the following statements.

Lemma 2.4 Foreach q € Sem(E), there exist q, € Sem(F,) forp =1,...,n, withq <
max[qi, - ->qn]-

Proof Since the seminorms (2.1) form a fundamental system, the claim is clear from
Proposition 22.6 in [9], when applied to the identity idg.* [ ]

3Wehavey(1’)(t)=dfy(1,...,1) fortelandp=1,...,k.
Observe ¢-max[qi,...,qs] = max[c-qi,...,cqu] with c-qp € Sem(F,) for p=1,...,n, for
each ¢ > 0.

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

A CF_seeley-extension-theorem for Bastiani’s differential calculus 175

Lemma 2.5 Let X be a topological space, and let ®: X x F; x --- x F,, > F be contin-
uous, such that ®(x,-) is n-multilinear for each x € X. Then, for each compact K ¢ X
and each p € Sem(F), there exist seminorms q, € Sem(F,) for p=1,...,n, as well as
O ¢ X open with K ¢ O, such that

(p o (D)(X,Xl,. ..,Xn) < ql(Xl)qn(Xn) VxeO, X eF,...,X,€F,.

Proof See, e.g., Corollary1in [5]. [ ]

2.2.2 The Riemann integral

Let y € C°([r,7'], F) be given. We denote the Riemann integral® of y by [ y(s) ds €

comp(F), and define
fub y(s)ds = [ ylia,p1(s) ds Vr<a<bgr,
The Riemann integral is linear, with
ﬁ(fab y(s) ds) < /abp(y(s)) ds VpeSem(F), r<a<bsr.
It follows that the Riemann integral is C°-continuous, i.e., continuous w.r.t. the
seminorms
Poo(y) = sup{p(y(1)) | t € [a, D]} ¥ peSem(F), y e C°([a,b], F), a <b.
For y € C'(I,F) (I SR an open interval) and a < b with [a, b] € I, we have by [3]
that
22) y(b) —y(a) = [ yD(s) ds.

It is furthermore not hard to see that given y € C°(I, F), then for a < b with [a,b] € I
and I:[a,b] > t = [ y(s) ds € comp(F), we have

(2.3) I e C'([a, b],comp(F)) with T® = pla s

2.2.3 Harmonic subsets and extensions

Let {0} # H € hlcVect, U ¢ H nonempty open, and @ # A € U closed in U w.r.t. the
subspace topology on U. Then, A is said to be harmonic if for each (x,v) € Ax
(H\{0}), there exists § > 0 as well as y,:[0,1) - H continuous at 0 with y,(0) =0,
such that®

(2.4) (x+79:((0,1)) £(0,8)-v) c U\A.

Example 2.6 (Harmonic Subsets)
(i) If A € U is harmonic and & # B € A closed in U, then B € U is harmonic.

>The Riemann integral can be defined exactly as in the finite-dimensional case; namely, as a limit
over Riemann sums. Details can be found, e.g., in Section 2 in [7].

®More precisely, this means (x + y1((0,1)) + (0,0) - v) ¢ U\Aaswellas (x + y-((0,1)) - (0,9) -
v) ¢ U\A

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

176 M. Hanusch

(ii) Each nonempty finite subset of U is harmonic.
Proof If @ + A ¢ U isfinite, then A is closed in U. For x € A fixed, there exists h €
Sem(H) withBy(x) := {y € H| h(y — x) <1} € U, such that A n (B;(x)\{x}) =
@ holds. For 0 # v € H fixed, we set § := and define y.:[0,1) 5 t —
0 € H. Then, we have

1
2max(1,h(v))

X+ysxA-v =xxd-vEx,
hlx—(x+yxA-v)) = A-h(v)<d-h(v) <,
forall A € (0, 8), hence (x +y.((0,1)) £ (0,8) - v) € By(x)\{x} c U\A. |

(iii) Let H := H x F with F € hlcVect, @ # W ¢ Fopen,and U := U x W.IfAc U is
harmonic, then A := A x W ¢ U is harmonic.
Proof Let% = (x,z) € Aand ¥ = (v,u) € H\{(0,0)} be given.
o Let v # 0. We choose & >0 and y. as in (2.4). Shrinking & > 0 if necessary,
we can assume z+ (=8,0) - uC W (as W is open). We set 7.:[0,1) 3 t
(y+(t),0) € H, and obtain

5c+)7i(/1)i‘u~17:(x+yi(/1)i‘u~v,zi/,t-u)e(U\A)><W:U\A,

forall A € (0,1) and p € (0,8), hence & + 7. ((0,1)) + (0,8) - # < U\A.

o Letv =0. Wefix0 + w € H, and choose § > 0 and y.. asin (2.4) for v = w there.
Shrinking & > 0 if necessary, we can assume z + (=8, 8) - u € W (as W is open).
We set $,:[0,1) 3 t = (po(t) £t-8-w,0) € H, and obtain (observe y-v =0
and A-8 € (0,0) for A € (0,1))

F+9M)xp-F=(x+yps(V) 218wz p-u)e(U\A) x W=0U\A4,
for all A € (0,1) and € (0,8). Hence, we have % +7.((0,1)) + (0,8) -7 <
U\A. |
(iv) Let H =R x Efor E € hlcVect, p e R,aswellas U = R x V with@ # V ¢ E open.
Then, {p} x V ¢ U is harmonic.

Proof A:={p}cR is harmonic by (ii). The claim thus follows
from (iii) (with HLU =R, F=Eand W= V). [

(v) If pe (0,00) and 0 # h € Sem(H), then U nh™!(p) ¢ U is harmonic.

Proof B:=h7!(p) is closed in H as h is continuous, as well as nonempty as
b + 0. Hence, A := U n Bis closed in U. For z € Band w € H, the reverse triangle
inequality yields

(2.5)
(z-A-(z£w)) =b(FA-w)[<h(z-1-2) = (1-1)-b(2) = (1-1) - p,

forall A € (0,1). Let now x € Aand 0 # v € H be given:
o Leth(v) = 0. Then, (2.5) applied to z = x and w = y - v for y € (0, o0) yields

hx—A-(xxp-v))<(1-A)-p<p V1€ (0,1), ue(0,00),
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hence (x -(0,1)-x +(0,1)-v) € H\B. Since U is open with x € U, there
exists € > 0 with (x — (0,¢) -x = (0,¢) -v) € U, hence (x — (0,¢) - x + (0, ¢) -
v) € U\B = U\A. The condition (2.4) thus holds for § := ¢ and y, = y:[0,1) 5
t—(t-€)-xeH.

o Let h(v) > 0. Since h(x) = p > 0 holds, there exists (by continuity) 0 < ¢ <
min (1, ﬁ) with

Au-h(v) <b(x=A-(xxpu-v)) VO<Au<o.
Then, given A, p € (0, 0), (2.5) applied to z = x and w = p - v yields

blx-A-(x£p-v))<A-u-h(v)+(1-A)-p=p=-A-(p-p-b(v)) <p.

We obtain (x - (0,0?)-x + (0,02)-v) € H\B. Since U is open with x € U,
there exists 0 < & < 0% with (x — (0,¢) - x + (0,¢) - v) € U, hence (x — (0,¢) -
x £ (0,¢) -v) € U\B = U\A. The condition (2.4) thus holds for § := eand y,. =
y:[0,1) 2t —(t-€)-x € H. ]

(vi) If0 # h € Sem(H), then U nh7*(0) c U is harmonic.

Proof B:=h7'(0)isclosed in H as  is continuous. Hence, A := U n B is closed
in U. The reverse triangle inequality yields (observe [h(z + w) — h(w)| < h(z) for
all z,w € H)

(2.6) h(z+w)=h(w) VzeB, weH.

Since h # 0 holds, there exists some u € H\B. Let now x € A and 0 + v € H be

given:

o Leth(v) > 0. Then, (x + (0,00) - v) € H\B holds, by (2.6) applied to z = x and
w==zxp-vfor ye(0,00). Since U is open with x € U, there exists ¢ > 0 with
(x+(0,¢)-v) € U,hence (x + (0,¢)-v) € U\B = U\A. Condition (2.4) thus
holds for § := e and y,:[0,1) 5t — 0 € H.

o Let h(v) = 0. We obtain for t, y € (0, 00) that

b+t (2v+u-1)) 2 pt (v +p-u)

=ty peu) B b (uu) = topb(u) >0

holds, hence (x + (0,00) - u = (0,00) - v) € H\B. Since U is open with x € U,
there exists ¢ > 0 with (x + (0,¢)-u+ (0,¢)-v) € U\B = U\A, so that (2.4)
holds for § := eand y, = y:[0,1) 3t (t-€)-u € H. ]

Notably, the statement in (iv) also follows from (i), (v), and (vi):

Proof Leth:H > (x,v) ~ |x|€[0,00) for H=R x E. Then, 0 # j € Sem(H) holds,
with h71(p) = {-p, p} x E. Hence, we have A:={-p,p} x V=Unh™(p) for U =
R x V, so that (v) (p # 0) and (vi) (p = 0) show that A € U is harmonic. By (i), then
also B := {p} x V ¢ A is harmonic, as nonempty and closed in U. [ ]

We have the following statement.
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Lemma 2.7 Let H,F € hlcVect, U ¢ H nonempty open, A € U harmonic, and S € H
a subset with U € S. Let f € CK(U\A, F) for k e Nu { oo} be given. For each 0 < { < k,
let ®*:S x H® — F be continuous with

q)e'(U\A)tz = dzf~
Then, we have f := ®°|y € CK(U, F), with d* f = ®| e forall 0 < £ < k.
Proof By definition, we have fe C°(U,F) with d°f = f = ®°|y. We thus can

assume that there exists 0 < g < k, such that f is of class C4 with d*f = ®¢|yy, e for
all 0 < ¢ < q. The claim then follows by induction once we have shown that”

(2.7)
limpg - (QU(x+h-v,vi,...,vq) = @I(x,v1,...,vq)) = DT (x,v1,..., v, 7)

holdsforallx € Aandvy,...,v4, v € H.Toshow (2.7), we choose § > 0 and y.: [0,1) —
H as in (2.4), and consider the maps

a.:[0,1) x [0,8] 3 (A,5) > @I (x + yo(A) £5-v,v1,...,vq,+v) € F.
« By assumption, we have

ae(hs) =d™ f(x +pe(A) 25 v, 01,000, 2V) Vv Ae(0,1), s€(0,0).

« By compactness and continuity, we have lim,_o poo (@ (A,+) — a4 (0,-)) = 0 for
each p € Sem(F).

Since the Riemann integral is C°-continuous (used in the second step), and since
@1 is continuous (used in the last step), we obtain for 0 < & < § that (in the fourth
step, we apply (2.2) as well as Proposition 2.2.(d))

+ foh QM (x£s-v,v1,...,v4,v)ds
= foh a.(0,s)ds
= limp<x-o joh ‘xi(l’s) ds
= limg<) o foh AT f(x +p(A) £5-v, 01,0, v, £v) ds

=limpcano AU f(x +p.(A) £ h-v,v1,...,v4)
—limocyoo d2f(x +y.(A),v1, ..., vg)

=limgcino PUx+p.(A) £ h-v,vi,...,vg)
—limpcino PUx +yL(A),v1,...,vq)
=QUxxh-v,vi,...,vq) = PI(x,v1,...,vq)
holds. Together with (2.3) this implies (2.7). [ |

2.3 Particular mapping spaces

Let H,F € hlcVect and k e NuU {oo} be given. Let Q(H) denote the set of all pairs
(U, 41) that consist of a nonempty open subset U € H, and a subset { ¢ clos(U) with

’Due to the assumptions, (2.7) holds for all x € U\ A.
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U c 8. Let €F (U, F) denote the set of all f € C¥(U, F), such that d‘f extends for
0 < £ < k to a continuous map Ext( f,¢):4 x H® - F.

Remark2.8 Letl</{ <k, (U,4) e Q(H),and f € C{ (U, F) be given. By continuity,
the map Ext(f,¢)(z,-): H* - F is necessarily /-multilinear and symmetric for each
fixed z € 4l. Thus, given p € Sem(F) and K ¢ 4l compact, Lemma 2.5 provides § €
Sem(H) as well as O € H open with K € O, such that

(p o Ext(f,0))(z, w) < b(wi)---b(wr)
holds forallze Ontland w = (wy, ..., wy) € H-. ]
We have the following corollary to Lemma 2.7.

Corollary 2.9 Let H,F<hlcVect, (U,U) e Q(H), AcU harmonic, and f €
CK(U\A,F) for ke Nu {co} be given. For each 0 <<k, let ®*: 8 x H" — F be
continuous with

q>e|(U\A)xH’Z = dzf'
Then, we have f := ®°|y € CK (U, F), with Ext(f,£) = @ forall 0 < £ < k.
Proof SetS=$linLemma?2.7. [ ]

Corollary 2.3 provides the following statement.

Lemma 2.10 Let H,H, F e hlcVect, O ¢ H, O € H both nonempty open, and y €
C*(0, O) be fixed. Let (U,Y) € Q(H) with { € O be given, as well as (U, 4l) € Q(H)
with w(U) € U and y(U) € $L. Then, for f € GE(U,F) we have foyly € CK (U, F).
Specifically, the following assertions hold:
(i) We have Ext(foy|y,0) = Ext(f,0)oyy.
(ii) For1<{ <k, we have

Ext(f oy, £)(x,v1,...,vp)

= Ext(f,€)(y(x),dy(x,v1),...,dy(x,ve)) + Ay (X, v1,...,v0),

where Ay: U x H' — F is given as a linear combination of maps of the form
(%, V15005 vp)
= Ext(f, ) ((x), d™y(x,vi, .. .ovp,)s o dP09 (%, vep 1155 v0)),s

such that the following conditions are fulfilled:
o Wehavel< q</{,aswellas py,...,pg 21 with py+ -+ pg = L.
o If{ > 2 holds, then we have p; > 2 for some1<i < gq.

Proof Part (i) is clear from the continuity properties of the involved maps. Now,
we have foy € C¥(U, F), as y is of class C*. Moreover, v is defined on 4 € O with
w () € 4L Part (ii) is thus clear from Corollary 2.3, as well as from continuity of the
occurring differentials and their extensions. [ ]

For K ¢ $l compact, Z ¢ H bounded, p € Sem(F), f € €& (U, F), we define
Pk = p[0]kxzz (f) = sup{p(Ext(f,0)(2)) | z €K},
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ol (f) = sup{p(Bxt(f, ) (zw)) [ 2€ K, we B} V1s<i<k,
2.8)  Pke(f) =max (0 <l <s|p[llxxz(f)) VO<s<k.
Finally assume H = P x E with P, E € hlcVect. Then,
(U, U) :=(WxV,20x0) e Q(H) holds for all
(W, 28) e Q(P) and (V,9) e Q(E).
In the following, we will rather denote
CA (W x V,F) := Ck(W x V, F),

as it will be clear from the context, which 20 ¢ clos( W) has to be assigned to some
given W ¢ P.

3 Statement of the results

In this section, we state our main result Theorem 3.1, and discuss several applications.
Theorem 3.1 is proven in Section 4.

3.1 Statement of the main result

Let F € hlcVect and k € Nu {oo} be fixed. For each E € hlcVect, we set H[E] := R x
E, and define®

(31)  Cy((a,b)x V,F):=Cf, jum((a,b) x V, F) V —co<a<bs oo,
for each (V,0) € Q(E). For a bounded subset B ¢ E, we set
(32) 2(B) = {(1,0)} U (0 x B) < H[E].
Let R € R be a subset, and W ¢ E a linear subset.
o Foreach x € E and £ € N, we define
W(R, x,0):R x (R x W)* - H[E] x H[E]’, (t,w) ~ ((t,x),w),

hence W(R,x,0):R >t~ (t,x) € H[E].
« Given E € hlcVect, & € E, ¢ € N, and a linear map Y: W — E, we define

Wy (R, %,€): R x (R x W)¢ - H[E] x H[E]",
(tw) = (%), (idr x )" (),
hence Wy (R, %,0):R >t~ (t,%) € H[E].
Our main result states the following.
Theorem 3.1 Let —oco < a < 1< b < oo befixed. There exist linear (extension) maps
Earrp(E, V,0):C5 ((a,b) x V, F) > €& ((a,00) x V, F),
for E € hlcVect and (V,0) € Q(E), such that the following conditions are fulfilled:

8 Observe that, according to our conventions concerning intervals, we have (a,b] = (a,b) if b = oo
holds.
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(1) For E € hicVect, (V, ) € Q(E), f € €& ((a,b) x V,F), 0 < £ < k, we have

Ext(€a,2,6(E, V., V) (f), Ol(apixoxueye = Ext(f,0),
Ext(€4,,6(E, V,0)(f)> £)|[26-7,00)xwxH[E]* = O-

(2) There exist constants {Cs}ocs<k S [1, 00), such that the following assertions hold
for each E € hlcVect, (V,0) € Q(E), te (b,), x €U, peSem(F), and f €
@%((a,b) x V,F):

o We have p(Ext(E4,r5(E, V,0)(f),0)(t,x)) < Co -p([)r,b]x{x}(f).
« For1<{<s<k, BCE bounded, and w = (A1, X1),..., (1e» Xp)) € (R x B)*
we have

p(Ext(Ea,7,6(E, V,V)(f), O)((£,x), w))
< Cs-max(L b, [Ae]) Pleb]x(xyxzs) ()
(3) Let E,E € h!CVeCt, W C E a linear subspace, Y:W — E a linear map, (V,) ¢
Q(E), (V,) € Q(E), as well as
feek((a,b)xV,F), feCk((ab)xV,F),
xeY, xeY, 0<s=k.
Then, the first line implies the second line:
Ext(f,€) o W([7,b],x,£)
= Ext(f,£) o Wy ([, b],%,€) VO</i<s,
Ext(E4,0,5(E, V,B)(f),s5) o W([1,0),x,5)
= Ext(&4,0,5(E, V, D) (f),5) e Wy ([1, 00), %,5).
Remark 3.2 'The extension operator in Theorem 3.1 and the constants {C; }g<s<x in
Part (2), only depend on the choice of some fixed p € C*° (R, R) with
lpl<L Pl =0,  pllus=1

for some 7 < v < b. Specifically, see (4.1) for the case a = —co and b =0 as well as
(4.3) for an ad hoc definition of the extension f € €k ((~00,00) x V, F) of some given
f € Ch((-00,0) x V, F). See also (4.27) and (4.29) for the definition of the constants
{Cs }o<s<k via the constants (4.2), i.e.,

Mp:sup{|p(j)(t)|‘tE[T,O],OSjSp} VpeN.

Remark 3.3 Let E, F be normed spaces, and recall the definitions made in Remark
2.1. Given (V,9) € Q(E), a <b and k € N, let FC%((a,b) x V, F) denote the set
of all f e FC*((a,b) x V,F), such that D) f extends for 0 < £ < k to a continuous
map FExt(f,£):(a,b] x ¥ — L(E, F). Seeley already mentioned in [17] that his
construction also works for smooth R-valued functions defined on half Banach
spaces. Expectably, the same holds true for the construction made in Section 4, then
leading to extension operators

FEurp(E, V,0):FCh ((a,b) x V,F) > FC&((a,0) x V, F),
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fora<t<b, (V,9) e Q(E), k € N that admit properties analogous to that in The-
orem 3.1. We will not provide the details in this paper, but mention that Theorem 3.1
together with Remark 2.1 already provides the extension operators’

€a,rb (B V, V)|Fes ((a,p)xv,r): FCY ((a,b) x V,F) > C*((a,00) x V, F)
=FC>”((a,00) x V,F)
for V ¢ E non-empty open and a < 7 < b. ]

Remark 3.4 The second point in Theorem 3.1 shows that the extension opera-
tors constructed admit considerable continuity properties. Seeley already mentioned
in [17] that his extension operator is continuous in many functional topologies.
Expectably, the same holds true for their infinite-dimensional counterparts. However,
it would go far beyond the scope of this article to investigate all possible continuity
properties of the extension operators provided here—they have to be extracted on
demand from the explicit construction performed in Section 4. At this point, we only
want to emphasize the following:

+ The second estimate in Theorem 3.1.(2) can be sharpened if A; = 0 holds for j =
1,...,¢. Specifically, on the right side of this estimate, the set (B) then can just
be replaced by {0} x B.

e Let0<s<k,x e, f eCh((a,b)x V,F) be given. Then, Theorem 3.1.(2) shows

EXt(f’€)|[‘r,b]><{x}><H[E]e =0 VO</l<s,
— EXt(Ea,T’b(E, V,m)(f),f)h.r’m)x{x}xH[E]z =0 VO</l<s.

o Let f,g € €% ((a,b) x V, F) be given, such that
C:=clos({z € (a,b) x U | Ext(f,0)(z) + Ext(g,0)(2z)})

is compact. Then, C ¢ [¢,b] x K holds for certain —co <c < b as well as K€U
compact. Then, C := Cu ([b,2b — 7] x K) is compact, and the parts (1) and (3) of
Theorem 3.1 imply
clos({z e (a,b) x V| Ext(€4,.5(E, V,V)(f),0)(2)
# Ext(€4,1,4(E, V,9)(£),0)(2)}) < C.

This might be of relevance, e.g., in the context of spaces of smooth mappings
f:M — N between manifolds M, N (N possibly infinite-dimensional), where the
Z-topology [10] (called very strong topology in [6]) is refined to the .# Z-topology

[11] (called fine very strong topology in [6]) by additionally considering the classes
defined by the equivalence relation

f~g — clos({x e M| f(x)+g(x)})cM iscompact
with f, g€ C*(M,N). ]

We close this section with the following summarizing corollary to Lemma 2.4 and
Remark 2.8 that we shall need for our estimates in Section 4.3.

Itis straightforward from Remark 2.1that FCF ((a, b) x V, F) < C3; ((a, b) x V, F) holds for each
(V,) € Q(E), i.e., in particular for ¥ = V.
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Corollary 3.5 Let EchlcVect, (V,90)eQ(E), -oo<a<c<d<b<oo,
feCh((a,b)x V,F), peSem(F), 1<{ =<k, and K<U be compact. There exist
Cr21,q¢€Sem(E), and U < E open with K € U, such that'’

(p o Ext(f,£))(z.w) < Co - max(] -], a] (w1)--~max[| - | q] (we)
holds forall z € [¢c,d] x (UnY) andw = (wy,...,w,) € H[E]".

Proof According to'' Lemma 2.4 and Remark 2.8, there exist Cy > 1, q € Sem(E), as
well as O ¢ H[E] open with [¢,d] x K € O, such that

(33)  (poExt(f.0))(z.w) < Cp-max[|-|,q](wr)--max]|- |, a) (w)

holds for all ze O N ((a,b] x V) and w = (w,...,w) € H[E]". By compactness,
there exists U ¢ E open with K¢ U, such that [¢,d] x U € O holds. Then, (3.3)
holds for each z € [c,d] x (UNY) and w = (wy,...,ws) € H[E]®, which proves
the claim. [ ]

3.2 Multiple variables

Let FehlcVect and ke Nu {oo} be fixed. For n>1 and E € hlcVect, we define
H[E,n]:=R" xE. Given a = (ay,...,a,), T=(11,...,7s), b= (b1,...,b,) with
—00<a;<Ti<b;j<oofori=1,...,n, weset

9(a, b) = (a1, by) x -+ x (an, bu)
and Q(Q)é) = (ala bl] X X (ana bn]

If by,...,b, = 0o holds, we also denote b = co, and observe that then Q(a,b) =
Q(a, b) holds according to our conventions concerning intervals. For each (V,) ¢
Q(E), we set

Cy(2ab) x V,F) := eg(g,g)xm(g(ﬁ’é) x V,F).
Theorem 3.1 provides the following statement.

Application 3.6 Let n>1, E € hlcVect, and (V,0) € Q(E). Let a = (ay, ..., an),
7=(11,...,Tn), b=(b1,...,b,) be given with -oco<a; <71;<b; <00 for i=
1,..., n. There exists a linear (extension) map

Eq.n(E: V. 0): €5 (Q(a,b) x V., F) > €(Q(a 00) x V., F),

that admits the following two properties:
(a) For f € C&(Q(a,b) x V,F) and 0 < £ < k, we have

Ext(€4,2,6(E, V. B)()> Oloa,p)xwxnpe, e = Ex(f>6).

10gee (2.1) for the Definition of the seminorms on the right side.
11Additionally observe that for each (continuous) seminorm h on R, we have h(x) = |x|- h(1) <
max(1,h(x)) - |x| forall x € R.
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(b) Let y=(y1,...,¥n) € Q(a, ) be given, with y; >2b; — 7; for some 1< i < n.
Then,

EXt((C:u)T)b(E, v, ‘B)(f),é)hz}xwa[E)n]g =0

holds for each f € C5(Q(a,b) x V,F)and 0 < £ < k.

Proof According to Theorem 3.1, we can assume that the claim holds for some n >
1. Let thus —oco < ag,...,d4, 70> ... Tn> bos ..., by < 00 be given with a; < 7; < b; for
i=0,...,n, and define

a:= (al,...,an), a, = (a0>--->an)a
T:= (11,5 Th)s T = (705> Tn)>
Q:Z (bl,...,bn), QO = (b(),...,bn).

Let E € hicVectand (V,2) € Q(E) be given. We set E := R x E, E := R” x E, as well
as

(V,9) = ((ag,bo) x V, (ao, bo] x V) € Q(E),
(V.3) = (Q(a, 00) x V,9(a, 00) x T) € O(E).
The induction hypotheses provides the extension operator
€arp(E, V,2):C5(Q(a, b) x V,F) - €& (Q(a, 00) x V, F)
= €4 (Q(a,,b,) %V, F)

(3.4) = C5 (a0, bo) x V, F).

Theorem 3.1 provides the extension operator
Eaprnbe (B> V,0): €5 (a0, bo) x V, F) - C&((ao, ) x V, F)
(3.5) > €A (Q(ay, ) x V, F).

We consider the linear map

Eﬂo»lo’éo(E’ V’ S;U) = eao,To,bo (Ex V: ﬁ) o SE’I’Q(E’ V, %),
so that under the identifications made we have

b, (E» V’m):eka(Q(ﬂo’Qo) xV,F) ~ e‘kB(Q(ﬁo’@) x V,F).

Zo

Let now f € €& (Q(ay,b,) x V,F) and y = (yo,..., yn) € Q(a,y, b,) be given. The
induction hypotheses provides the following statements:

€a,.1,,

o Up to the identifications in (3.4), we have
Bxt(€4,5,5 (B> Vo ) () Ol (a9 o] (0a,0) )i Eaye = EXE(f50) VO</<k.

o Let y; >2b; — 1; for some 1<i<n, as well as yg € (ag,bp). Then, up to the
identifications in (3.4), we have

(3.6)
Ext(€4,0(E, V.B) (), ) (Yo (712 ¥n)1))57) =0 Vo<i<k.
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Theorem 3.1.(1) (for €, 7.6, (f, v, "1\7)), provides the following statements:
o For 0 </ < k, we have (under the identification in (3.4))
EXt(E g, 0,60 (B V>, B) (€0, (Es Vo B) (> Ol 1B Er1)¢
= Ext(€q,r,(E, V,T)(f), £).
o If yo > 2by — 74 holds, then for 0 < £ < k, we have
(3.7)
Ext(€ ay, 0,00 (B> Vo B) (€, (B V. B) (), ) (o, (D152 ¥ )5 ) = 0.
We obtain for 0 < ¢ < k (under the identification in (3.5) in the first step) that
Ext(€a,,7,,5, (B> Vs 0)()> O)lo(a, b, )xwx HIE 1)
= Ext(&ay,r0.60 (B V, ) (E0,2.6 (B, V, %)(f))’g)|(ao,bo]X(Q(g,g)xm)xH[El]"'
= Ext(&4,14(E, V, %)(f)’g)|(ao,ho]x(Q(g,Q)x%)xH[El]e

= Ext(f,{)

holds, which proves Part (a). Finally, assume that y; > 2b; — 7; holds for some
1 < i < n. Then, Theorem 3.1.(2) together with (3.6) shows

PEX(E gy 0,00 (B> V. B) (€0, (B, V. B) ()5 ) (Yo (3155 Ym)s))5+) <0
for each p € Sem(F) and 0 < ¢ < k. Together with (3.7), this proves Part (b). ]

Remark 3.7 Domains as considered in Application 3.6 occur, e.g., in the context of
manifolds with corners as (open subsets of) quadrants in Hausdorft locally convex
vector spaces. Specifically, let H € hlcVect, and £4,...,£,:H - R with n>1 be
linearly independent continuous linear maps. Consider the closed subspace E :=
ker(£y)n---nker(£,) € H, and let g := (-o0,...,-0), b:=(0,...,0) (both n-
times). Then, we have H = R" x E, and the corresponding open and closed quadrants
Q < H and Q ¢ H, respectively, are given by

Q:={XeH|L,(X)<0 for p=1,...,n} 2Q(a,b) xE,

Q:={XeH|L,(X)<0 for p=1,...,n} 2Q(a,b) x E.
Proof Lete,,...,e, € H be linearly independent with £;(e;j) = &;j for 1< i, j<n,
and set H2 W := (ey, ..., e,) 2 R". Then,

PH> X 30, Lp(X) epeW

is a continuous projection operator, with P(H) = R", P(Q) = Q(a,b), P(Q) =
Q(a, b) as topological spaces. Moreover, the following maps are continuous, linear,
and inverse to each other:

B H- WxE, X = (P(X), X - P(X)),
EWxE - H, (Z,Y) = Z+Y.

Since E(H) 2 R" x E, 8(Q) = Q(a,b) x E, and E(Q) = Q(a, b) x E are homeomor-
phic, the claim follows. ]
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3.3 Particular subsets in infinite dimensions

Let P, E € hlcVect, (V,0) € Q(E),0< 7<1, k e Nu {oo} be fixed, and set H := P x
E.Let &P — [0, o) be a continuous map that admits the following properties:
(1) &is of class C* on W := £71((0, 00)),
(2) &(Z) 0 for some Z € P,
(3) &(A-Z)=21-&(Z) foreach A € [0,00) and Z € P, and
(4) A:=&(1) € W is harmonic.
We consider the sets:

C 0= E1((0,1)),
0= £1((0,1]),

C U= E((Loo)),

« T (2= 1,00)),

« V= EY(2- 7, 00))

o J:=W\A, and

e Ai=AxV.

These sets are nonempty by (2) and (3); and, by continuity of &, the sets
W,0,U,V,J are open. Moreover, A € W x V is harmonic by Example 2.6.(iii), and
the condition (3) implies:

-0 cclos(0), hence (0,0) € Q(P) and (O x V, 0 x V) € Q(H),

- T cclos(V), and

—J cclos(W), hence (J, W) € Q(P) and (d x V, W x0) € Q(H).

We define

>

CH(Ox V,F) :=Cf (OxV,F),

CH(Wx V,F) = €Y (W x V,F).
In this section, we prove the following statement.
Application 3.8 There exists a linear (extension) map

&:CE (O x V,F) - € (Wx V,F),
such that for all f € €% (O x V, F) and 0 < ¢ < k, we have

(3.8)

Ext(E(f) Ol wspune = Ext(f, ) and Ext(E(f), O)lgxagxmre = 0.
Remark 3.9  Application 3.8 holds in the same form if O is replaced by 8 :=
£71([0,1)), O is replaced by § := £€71([0,1]), and W is replaced by P.

Proof Wehave (8,8) € Q(P) by continuity of & as well as by (2) and (3). Let now f €
CX (8 x V, F) be given. Then, f|oxv € C% (O x V, F) holds by Lemma 2.10 (with O =
P and y = idp). Hence, we have &(f|oxv) € C5 (W x V, F), with € as in Application
3.8. We define

E(floxv)(Z,x) for Z =0,

g(f):PxV—>F, (Z’x)'_){f(z x) for Z=0.

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

A CK-secley-extension-theorem for Bastiani’s differential calculus 187
« By construction, we have &(f)[wxv = E(floxv)|wxv, as well as E(f)|sxv = f

~ (3.8) ~
by 8(f)|oxV:€(f|0xv)\0xV = f|(f)><V and 8(f)‘{o}xv:ﬂ{o}xv-

Since W x V, 8 x V are open with (W x V) U (8 x V) = P x V, the map &(f) is of
class C* with

(dE)) wxvsne = dE(Ffloxv) = Ext(E(Floxv), O) v VO<l=k,
(dEf))lswvurre = d°f = Ext(f, 0)[suvxr Vo</l=k
Then, continuity implies £( f) € C& (P x V, F), with (observe £7(0) ¢ §)
Ext(Z(f), Olwaamerrt = EX(E(floxv) £)  and
Ext(E(f), )3z = Ext(f, ),
for 0 < ¢ < k. We thus have the linear (extension) map

ECk(SxV,F) > Ch(PxV,F),  frE(f).

« By construction, we have &(f)|rxv = E(floxv)|oxv G5 0. Since Tx V is open,
we obtain
P continuity ~
@E v =0 =" Ext(E(/)O)lyemane = 0
for0< /¢ =<k. [ ]

Example 3.10 Let 0 # £ € Sem(P) be of class C¥ on W. Then, (1)-(3) are evident,
and (4) holds by Example 2.6.(v). For instance.

(a) Let P=R*and &R? > (x, y) = |x| € [0, 00). Then, & is smooth on W = {(x, y) €
R? | x # 0}.
(b) Let (47, (-,-)) be areal or complex'? pre-Hilbert space, and set P := .7 as well as

E(-) :=+/(~")- Then, & is smooth on W = P\{0} by Proposition 2.2. We mention
that in the real case, an extension operator can also be obtained by explicit
application of Theorem 3.1.(3). More details are provided in Appendix A. [ ]

Let p € C* (R, R) be given with"’
(3.9) id(O,l) < p|(0)1) <1, p(l) =1, id(l,oo) < P|(1,<>o)-

+ We consider the smoothmap n:R x H> (¢,Z,x) ~ (¢-Z,x) € H.Lemma 2.10 and
(3) imply

N: €5 (0 X Vo F) = € 1oy (1) x Ox VL F), f fonlonycony-
 Theorem 3.1 provides the extension operator &= Eo.r1(H, O x V,0 x ), hence
€€y 1o ((0:1) x O X VL F) > € o 0 ((0,00) x O x V, F).

12 Als0 in the complex case, differentiability is meant w.r.t. the real structure on .77, i.e., we do not
consider complex differentiability (holomorphicity) at this point.
For instance, choose p:R 3 x — x + (x —1)2 € R.
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o We consider the Ck-map (recall (1), (3) and (3.9))
wWxE->RxH, (Z,x) = ((po &)(2),(po&)(2)- Z,x).

By construction, we have you = idwg, and furthermore for Y C E:
- y(WxY)E(O,oo)xéxY,
- u(OxY)c (0,1)xOxY,and
- p(UxY)c(l,00)xOxY.

Letnow f € egm(o x V, F) be given. We set
X:= (EoN)(f) = E&(fon) € €, ), 6. ((0:00) x O x V. F),
and
&= X0 plgxv

« We have a € CX,_,(d x V, F) by Lemma 2.10, because

u(@xV)c(0,00)xOxV  and  pu(WxY)c(0,00)xOxY  holds.
o Since (O x V) € (0,1) x O x V holds, we have by Theorem 3.1.(1)

(310)  afoxv = (EoN)(f) o uloxy = N(f) o loxv = (f oo wloxv = f.

We consider the continuous maps

O == Ext(a, /):Wx U x H* > F Vo</l<k,

and proceed as follows:
« By construction, we have

(3.11) Oyt = Ext(a, 0)|gyxpe = d e VO</<k.

Corollary 2.9 (with f=a, A=AxV, U=Wx V,U=WxDQ,ie, UA=JxV)
thus shows

]; = q)0|W/\7><V € eﬁ/\?x‘ﬂ(w X V’F)
with  Ext(f,0)=®°  forall 0</<k.
o We obtain from (3.10) and (3.11) that

(3.11) (3.10)

Floxv = (@°hwxv)|oxv Ext(a,0)|oxv = aloxv = f

holds. Since O x V is open, we obtain

df.ﬂOxVxH‘Z = dé(.ﬂOXV) = def = EXt(f’£)|O><V><H"' VO</l<k,

so that continuity yields

(312) Ext(f,0)| ¢ warerre = EXt(f, ) VO</l<k.

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

A CK-secley-extension-theorem for Bastiani’s differential calculus 189

« We obtain from (3.11)

3.11)

f~|v><V = (D% wxv)|vxv ( Ext(a,0)|vxv = afvxv = x o flvxv

= E(N()) o plvx-
Since p|(1,°°) > id(1,00) holds, Theorem 3.1.(1) yields
F(Zox) = ENUN((po (2 (po O)(2) 1 Z,x) =0 VZeV,xeV.
Since V x V is open, this implies d* Flvsvxae = 0forall 0 < £ < k, so that continuity
implies
(3.13) Ext(f,€)|gxxme = 0 VO</<k.

We are ready for the proof of Application 3.8:
Proof of Application 3.8 Obviously, the assignment
€:Cy(0x V,F) 5 f = f € Cuq(Wx V, F)

is linear; and the rest is clear from (3.12) and (3.13). [ ]
3.4 Partially constant maps and parametrizations

Let E, F € hlcVect, k e NU {oo}, and S = {S, } 4c1 be a family of disjoint subsets of E
with E = Uger Sa. For —oo < a < b < oo, we define
C*(a,b,8) := {f e C*((a,b) x E, F) | flieyxs, is constant for each
te(a,b)andw e I}
e*(a,b,8):= C*(a,b,8)n G”(‘u’b]xE((a, b) xE, F).
Let now —oo < a < 7 < b < oo be fixed. Theorem 3.1 provides the extension operator
€ = €4,rp(E, E, E): Cf, 11,5 ((a,b) x E, F) > C*((a, 00) x E, F).
Theorem 3.1.(3) (for s = 0) implies
(3.14) €s = Eler(aps): C*(a,b,8) - C*(a,0,8).
We can apply this in the following way. Let H € hlcVect, and v € C¥((a, o) x E, H)
an open map, such that the following conditions are fulfilled:

(@) ¥l{rxs, is constant for each t € (a,00) and aw € I.

(b) For each z € im[y], we have y~'(z) = {t(2)} x Sq(z), for certain #(z) € (a,0)
and a(z) € I.

(c) For each z € im[y/], there exist U, € (a,00) x E and W, € im[y] open with z €
W,, such that y|y,: U, —» W, is a C*-diffeomorphism, i.e., we have (y|y,)! €
CH(W,, Uy).

Let U:=y((a,b) x E) and 4 := y((a, b] x E).

« Since v is continuous and open, we have (U, 4l) € Q(H).

o Let f € C{(U,F) be fixed. By Lemma 2.10 and (a), we have g:= foy|(, p)xk €
Ck(a,b,8), hence § = E5(g) € C*(a, 0, S) by (3.14).

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

190 M. Hanusch

o« We fix zim[y] — (a, 00) x E with 1(z) € y~'(z) for each z € im[y], and set

frimly] > F, 2 2((2)).

This is defined by (b) and g € Ck(a, o0 , §). In particular, for each z € im[y ], we have
flw, = go(w|u,) ", which shows that f is of class C*.

We obtain the linear extension map

(3.15) &:CK(U,F) - C*(im[y], F),  fw~ f.
We consider the following example.

Example3.11 LetE=R,H:=R*a=0,b=11:=[0,27),S, = {a+27n-Z} fora €
I,and

y:(0,00) xR > R*\{0},  (t,9) = (£-cos(p), t-sin(p)).
According to the above definitions, we have (| - | denotes the euclidean norm on R?)
U={xeR*|0< |x] <1}, U={xeR*|0<|x]| <1}, im[y] = R*\{0}.
Then, (3.15) provides the linear extension map &: CX (U, F) - C*¥(R?\{0}, F). Let

2= {x eR?||x| <1} and 9= {x eR*||x| <1}.
We obtain a linear extension map &: C%(Q, F) — C*(R2, F) if we set

E(flu)(z) for z#0,

(R~ F, Z’—){f(z) for z=0,

for each f ¢ C’k@v(@,F). ]

4 The proof of Theorem 3.1

In this section, we prove Theorem 3.1. For this, we let F € hlcVect and k €e Nu {0}
be fixed, and recall the definitions made in the beginning of Section 3.1. We make the
following simplifications to our argumentation:

« It suffices to prove Theorem 3.1 for the case a = —oo, as the general case then follows
by cutoft arguments. Specifically, let —oo < a < 7 < b < oo be given, and fix a < k <
k' < Taswellas p € C*(R,R) with

Pl(=o0] =0 and Plirr,00) = 1.
For each EcehlcVect and (V,U)e Q(E), we define the linear map
&(E,V,0):€k ((a,b) x V,F) — C&((~00,b) x V,F) by
0 for (t,x)e(-00,a]xV,

f(E> V,Q])(f)(t,x) = {p(t).f(t,x) for (t,x)E (a,b)x &
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for f € C& ((a,b) x V, F). We obtain extension operators as in Theorem 3.1 if for
E ehlcVect, (V, D) € Q(E), f € C&((a,b) x V, F), we set

Earp(E, V. ) (f)(1 %)

= f(t.x) for (t,x)e (a,b)xV,
& orn(E,V,V)(E(E, V,V)(f))(t,x) for (t,x)e[b,oo)xV.

« To simplify the notations, in the following we restrict to the case b = 0. The case
b # 0 follows in the same way, and can alternatively be obtained from the statement
for b = 0 via application of translations.

For the rest of this section, let thus 7 € (-0, 0) be fixed (i.e., we have a = —co0 and
b =0). We choose 7 < v < 0 and p € C* (R, R), such that
|P| <1, P|(—<>0,r] =0, P|[v,0] =1
(41) holds, hence p(j)|[,,,0] =0 for j>1,

and define the constants
(4.2) Mp::sup{|p(j)(t)|‘te[T,O],OSjSp}ZI VpeN.

According to [17], there exists a sequence {c, } ey € R with
() XZo¢i- (-27)% =1for each q € N and
(i) $320l¢jl- (27)7 < oo for each g € N.

Given some f € €k ((~00,0) x V,F), its extension will be defined (see (4.12) in
Section 4.2) in analogy to [17] by

Ext(f,0)(t, x) for (t,x)e€(-00,0]xV,

(4.3) f(t,X) = {2700 cj-p(—Zj-f)'f(—Zj'f,X) for (t,x) c ((),oo)x V.

The sum in the second line is locally finite as p is zero on (—co, 7], hence f is defined
and of class C* on (R\{0}) x V. We basically will have to show that f is of class C* on
whole R x V, and that its ¢th differential extends continuously to R x 0 x H[E]* for
each 0 < ¢ < k. For this, we need to construct these extensions explicitly, which will
be done in analogy to the definition of f. For our argumentation, we shall need the
following corollary to Lemma 2.7 (Corollary 2.9) and Example 2.6.(iv).

Corollary 4.1 Let E € hlcVect, (V,0) € Q(E), as well as f- € C¥((~00,0) x V, F)
and f, € CK((0,00) x V, F) be given. Assume furthermore that for each 0 < £ < k, there
exists a continuous map ®*:R x 0 x H[E]* — F that restricts to défi. Then, we have

GQ(R x V,F) 9f = q)0|]va-
dé]; = (De|]R><V><H[E]Z VO<{<k.
Ext(f, () = ®* Vo<l<k.

(the third line implies the second line).
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Proof LetU:=RxVcH:=H[E],A:={0} xVcUU:=RxVCcH,

_ f-(t,x) for (t,x)e(-00,0)xV,
f:U\A—F, (t,x)»{ﬂ(t,x) for (tx)e (0,00)x V.

observe that A is harmonic by Example 2.6.(iv) and apply Corollary 2.9. m
Elementary facts and definitions

For E € hlcVect, we define 1:= (1,0) € H[E] as well as 1, := (1,...,1) € H[E]? for
P 21, and consider the maps

A:=pr;: H[E]- R, (LX)~ A,
x:=pr, x0:H[E] - H[E], (4, X) ~ (1,0),
w:=0xpr,:H[E] - H[E], (A, X) ~ (0, X).
We furthermore define the following:
o For1</=<kand1<j</ weset

/\g,j:H[E]e - R, (Wi ... we) = A(wj),
xe’j:H[E]z - H[E], (W5 .swe) = x(wj),
a)g’j!H[E]Z%H[E], (W5 ..oy we) = @(wj).
o For1</l<k,p>land1<z,...,z, </, weset
Atyyzy (W) 1= Az (W) - Agyg, (w) ¥ w e H[E]".

It helps to simplify the notations, in the following just to denote Az, ., (w) := 1
for the case that p = 0 holds.
» For1</<kand0< p<¥, weletly, denote the set of all
0=(21,...,2ps015...,00_p) € {1,...,€}€,

such that the following conditions are fulfilled:'*
- Z; <Ziy1 fOflSiSp_la
- 0j<o0jfor1<j<l-p-1,and
-zi#0; forl<i<pandl<j<i-p.

Let V ¢ E be nonempty open, T' € C*((0, 00) x V, F), and 1 < £ < k. By symmetry
(and multilinearity) of the /th differential, we have

d'T((1,x), w)
= Y0 Tty AT((6), @0, (W), @10, (W), Xy, (W) o, ()

= Zf7=0 del[,p |AZ’Z1 (ﬂ) Teeet /\Z»Zp (ﬂ)l
= Al,zl ,,,,, zp (ﬂ)

(4.4) P (dPT((1 %), we0, (W), - s @0, (W),

14w thus have Ipo=(01,...,00) =(L,...;€)and Ip ¢ = (21,...,2¢) = (1,...,€).
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for each t € (0, 00), x € V, w € H[E]".
Similarly, if f e Ck((~00,0)x V,F) holds, we obtain for ¢=0,...,¢ (recall
Remark 2.8)

Ext(f,£)((t,x), w)
(45) = Spoo Taetr, Arzrzy () - EXt(f,0) (£ %), @00, (W), .. @0, (W), 1p),

for each t € (—00,0), x € W, w € H[E]".
4.2 Construction of the extension operators

Let E € hlcVect, (V, D) € Q(E), f € €& ((=00,0) x V,F), and ¢ < —1 be given.

« We define the C¥-map and its C°-extension:

(4.6) T[f.¢](t,x):=p(¢-t)- f(g-t,x) V (t,x) € (0,00)x V,
4.7) Y°[f.¢](t.x) = p(g-t)-Ext(f,0)(s-t,x) V (t,x) € (0,00) x .
e For1</ < k, we obtain from (4.4) that
dT[f,6]((t,x), w)

= Yoo Zoety, Atznnz, (W)
2 (pls-1)- AP f((61,x), @00, (W), ., @0, , (W)
= Yoo Loet, Lo ()67 Arzryozy () - p 0 (- 1)
(4.8) AT (6t x), @i, (W), ... W00, (W), 15 q)

holds for all t € (0, 00), x € V, w € H[E]".
e« For1</<kandg=0,...,/ we define the continuous map

O0gLf.s1(( ), w)
= Zf’“j ZEGIM (Z) ’ cp ’ Af’zl ----- Zp (ﬂ) ’ p(q)(c ’ t)
(4.9) Ext(f, 0= q)((6- £,X), @r,0,(w)s . > @0, (W), 1pg)
forall t € (0,00), x € U, and w € H[E]". Then by (4.8), the map
(4.10) Y[ f, 6] = Tiso Ouglf>6] € CO((0,00) x B x H[E]", F)
continuously extends d‘T[f, ¢] for1 < £ < k, i.e.,
(4.11) V£, 6]l 0,00y v ey = dTLf6] Vi<l<k.
For E € hlcVect, (V,2) € Q(E), f € & ((~00,0) x V, F), we define the maps
o f,
fei= Z;o cj- I[f,-2],
Of]S = T¢I f,-2] VO</l<k.
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We have the following statement.

Lemma 4.2 Let E e hlcVect, (V, ) € Q(E), feCk((-00,0)x V,F) be given.
Then, f, € C*((0,0) x V, F) holds, as well as

®[f]; € C°((0,00) x Wx H[E],F)  VO0<lxk.
Moreover, ®[ f1° restricts to d' f, for 0 < £ < k, with CD[f]ﬂ[_T,oo)ngxH[E]z =0.

Proof Letsce (0,00) as well as 0 < & < s be given, and set I := (s —¢,s + ¢). There
exists N € N, such that =2/ - I ¢ (—o0, 7) holds for each j > N. Since p|(_o,,] = 0, We
have (the first line implies the second line)

f+|IxV:Z§'\]:on' r[f,_zj“IxV,
déf+|1><V><H[E]Z = Z;\]:o Cj d'r[f, ~2 ) xvxmiE]s
O[f 1 lxowxreye = ieo €5+ YL 2l xwxmgeges

for 0 < £ < k. Thus, ®[f]% is defined and continuous for 0 < £ < k, f, is defined and
of class C*, and @[ f]% restricts to d* f, for 0 < £ < k by (4.11). Since ~2/ - [~7, 00) C
(—00, 7] holds for each j € N (with p|(_co -] = 0), we have ®[ £ |11 co)xwxme)e =0
for0<l=<k. ]

For E ehlcVect, (V,) € Q(E), feCk((-00,0)x V,F), and 0< ¢ <k, we
define the map ®[f]“R x U x H[E]* - F by

d)[f]e|(_oo)0]xmxH[E]z = Ext(f,4) as well as
CD[f]q(o,oo)mxH[}s]Z = 0[f].
In Section 4.3, we prove the following statement.

Lemma 4.3 Let E € hlcVect, (V, D) € Q(E), feC&((~00,0)x V,F) be given.
Then, ®[f]* is continuous for each 0 < £ < k.

Together with Lemma 4.2 and Corollary 4.1, Lemma 4.3 implies'
Co(Rx V.F)> f = [f1|rev,
(4.12) d°f = O[f1 [ruv ey 0<l<k,
Ext(f,¢) = ®[f]° 0<
For E € hlcVectand (V,0) € Q(E), we define the map
(413)  Eocoro(E,V,0):Cq((~00,0) x V,F) > C(Rx V,F),  fof.

We observe the following:

o Itis clear from the construction that (4.13) is a linear map, with

EXt(e—oo,r,O(E’ v, m)(f)’e)k—omo]x%xH[E]‘ = EXt(f’é)’
EXt((g_oo,T,o(E, v, SU)(f),E)“,LM)meH[E]z =0,

15Notably, this coincides with f as defined in (4.3).

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

A CK-secley-extension-theorem for Bastiani’s differential calculus 195

for each f € Ck((~00,0) x V,F) and 0 < £ < k (for the second line use the last
statement in Lemma 4.2).

o Let E,E ehlcVect, WCE a linear subspace and Y:W — E a linear map. Let
(V,9) € Q(E), (V,V)eQ(E), xeD, 2D, feCH(RxV,F), feCk(Rx
V,F),and 0 < s < k be given with

Ext(f,¢) o W([7,0],x, ) = Ext(f,£) o Wy([r,0], %,¢) Vo</<s.
Then, it is clear from the construction that
Y[ f, -2/ 0 W((0,00),x,5) = Y[ f,~2/] o Wy ((0, ), %,5)
holds for each j € N, hence
Ext(&_co,r,0(E, V,V)(f),s) o W([T, 20),x,5)
= Ext(& _oo,1,0(E, V., V) (f),s) o Wy ([1,00),%,5).

To establish Theorem 3.1, it thus remains to prove Lemma 4.3 (see Section 4.3), as
well as the continuity estimates in Part (2) of Theorem 3.1 (see Section 4.4).

4.3 The proof of Lemma 4.3

Let E € hlcVect, (V,9) € Q(E), f € C&((-0,0) x V,F), x €, peSem(F) be
given. The following estimates hold for each ¢ < -1:

(a) Since Ext(f,0) is continuous, and since [, 0] is compact, there exists Cy > 1and
a neighbourhood U, ¢ U of x, with

(4.14) p(Ext(£,0)(t,x")) < Co Vte[r,0], x" €Us.
We obtain from (4.1), (4.7), and (4.14) that
(4.15) p(¥°[f.6](t,x")) < Co Vte(0,00), x" € U,.

(b) Let1</<kandw = (w,...,w,) € H[E]* be given.
o According to Point (a) and Corollary 3.5, there exists a neighborhood U, € U
of x, Cy > 1, and q € Sem(E), such that we have

(4.16) p(Ext(f,0)(t,x")) < C¢ Vte[r,0], x' €Uy,
as well as
(4.17)
p(Ext(f,q)((t,x"),w')) < Co-max[|-[,q)(w)) ----- max[| - |, q](w}),

foreacht € [7,0], x" € Uy,1< g <{and w' = (wy,...,w,) € H[E]’.
o We obtain for 0 < g < ¢ from (4.1), (4.2), (4.9), (4.16), (4.17) that

P(®cqLf>61((1x"), w"))

< gl* - (£+1)!- max(|Lgol, .. ., [Te,el)

- M¢ - Cy - max(1, max[| -, q](w}), ..., max[| - |, q] (w}))*
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holds for each t € (0, 00), x’ € Uy, and w' = (w}, ..., w}) € H[E]*. We define
(4.18) Qpi=(£+1)-(£+1)!-max([lol,. .., [Iee]) - My - Cp > Cp,
and obtain for ¢ € (0,00), x" € Uy, w' = (w,...,w)}) € H[E]" from (4.10) that

p(YLfr6]((6x"),w")

(4.19) <sl* Q¢ - max(L,max[| -, a] (w)), ..., max[| - |, a] (w}))".
o We define C; := Q; - max(1, max[| - |, q](w1) +1,...,max[|-|,q](w¢) +1)*, as
well as

Oy = {(W....w}) € HIE) [max[|-|.a)(w) - w,) <1 for p=1L....0}.

We have by (4.17), (4.18) (used for the first line), and (4.19) (used for the second
line) that

(4.20)
p(Ext(f,£)((0,x),w)) < Co,
p(PELf,s]((tx"), W) < Co- gl Vite(0,00), x" €Uy, w e O,.
We are ready for the proof of Lemma 4.3.

Proof of Lemma 4.3 Let E € hlcVect, (V, D) € Q(E), f € C&((-0,0) x V, F),
x €0, peSem(F), and € >0 be given. We discuss the cases /=0 and 1< ¢ <k
separately:

o Let? =0.Wechoose Cyp > 1and U, € Uasin (a). By Property (ii), there exists N ¢ N

with ¥°72 .1 [¢j] < 7¢; - We obtain from (4.14), (4.15) and the triangle inequality that

YEnleil - p(¥OLf,-271(t, %) - Ext(f,0)(0,x)) <5 Vite(0,00), x’ € Uy

Since Y72, ¢j = 1 holds by Property (i), the triangle inequality yields

p( S50 cj- WL, -2](1.x') - Ext(£,0) (0, ))
= P( Z;ZO Cj- ‘{’O[ﬂ —21](t,x’) - Z;ZO Cj ~Ext(f,0)((),x))
<p( X0 YOLf -271(1x") - Tilo ¢ - Ext(£,0)(0, %))
+ 22N leil - p(¥OLf,~2](t ") ~ Ext(£,0)(0,x))
(4.21) < Zj‘\]:o |c;] ~p(‘I’0[f, -27](t,x") - Ext(f,O)(O,x)) +3,

for t € (0,00) and x” € U,. We observe the following:
o By (4.1) and (4.7), we have for 0 < j < N:

YOI f,-2/](t, x") = Ext(f,0) (=2 - t,x) Vte(0,[v]/2Y), x" €.

o Since Ext(f,0) is continuous, we can shrink U, € 2 around x and fix 0 < § <
|v|/2N, such that

,,,,,

holds for j=0,...,N, forall t € (0, ) and x" € Uy.

https://doi.org/10.4153/50008414X21000596 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000596

A CK-secley-extension-theorem for Bastiani’s differential calculus 197

Combining both points with (4.21), we obtain
p( 30 ci- YOS, -21(t,x") - Ext(£,0)(0,x)) < ¢ Vite(0,6), x" € U,.

o Let1< /< k and w € H[E]® be fixed. We choose C; > 1, U, €0, and O,, € H[E]*
asin (b), and define
¢

1= % % (2

p=00¢ly,,
Atz (W) - Ext(f, 0)((0, ), @g,0,(w), ., @00, (W), 1),

for each j € N. We observe the following:
o Given A > 0, Property (i) provides some N € N with

|0 ((-2)P =1)| < A VN2Na, p=0,...,0

By (4.5), there thus exists some N e N with

(422) p(ZXoci Bl - S0 cj-Ext(f,0)((0,x),w)) < £ VN>N
o By Property (ii), there exists some N > N with
Z}.ZN+1|Cj|'(2j)q<é Vg=0,...,0

We obtain from (4.20) and the triangle inequality that
Eiznaleil p(ELfH=271((6x7), w') ~ Ext(£, 0)((0,x), w))
(4.23) <Cr-Xinaleil- () +1) < £

holds for all € (0, 00), x" € Uy, w' € O,.
o By (4.1), (4.9), (4.10), for 0< j< N, t € (0,]v|/2N), x" €W, and w’ € H[E] we
have

YOf-2]((8 %), W)
=00 f,-21((-2 - £,x"),w")
= Yoo Daety, (-2)2 - Mgy, zy (W)
CExt(f, ) (=27 - £,x"), 0g,0,(W), ..., @00, , (W), 1).

Since Ext(f, /) is continuous, we can shrink Uy €0 around x as well as O,,
around w, and furthermore fix 0 < & < [v|/2V, such that

.....

holds for t € (0,8), x" € Uy, w' € Oy, and j = 0,...,N. We obtain

p( 230 ¢ ¥ILf-271((6,x"), w") - £io ¢ - E[)])
(4.24) < Yo lel - p(WILF -27]((6x"), w') ~ E[j]) < 5,
forall t € (0,68), x" € Uy, w' € O,.
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Since }.7%, c; =1 holds by Property (i), the triangle inequality together with
(4.22)-(4.24) yields

P20 ¢ YLF-21((6x"), w') — Ext(f, £)((0,x), w))
=p( S0 ¢ YL -21((6x"), w') = 552 ¢ Ext(f, ) ((0,x), w))
<p( Do ¢ WOLf-271((62"), ') = £ Ng ¢ - Ext(£,0)((0,x), w))
+ S na il p(PLF -27] (8, %), w') = Ext(f, £)((0, x), w))
<p( 2o i WL -27]((6x"),w) - TN ¢ E[f])
+p(Zo ¢ B - T o ¢j - Ext(£,0)((0,x), w))
+ S na el p(PLF ~27] (8, x"), w') = Ext(f, £)((0, x), w))

<e,

forall t € (0,6), x" € Uy, w' € O,,. ]
4.4 The proof of Theorem 3.1.(2)

Let E € hicVect, (V,0) € Q(E), t € (-0,0), x € U, B € E bounded, p € Sem(F),
and f € €& ((~00,0) x V, F). We recall (3.2) as well as the seminorms in (2.8). The
following estimates hold for each ¢ < —I:

o By (4.1) and (4.7), we have

(4.25) p(YOLS61(8,%)) <P opeiny ()

o Let 1<s=<k. Then, for 1< ¢ <s and 0 < g </, we have (recall (4.1), (4.2), (4.9),
(4.25))

P(O0,qf>6]((1x), ) < (L+1)!-[g]" - max([Teols -, [Le,el)
(4.26) - Mg -max(L, A (W), |Aee(w)])”
'Ps[r,o]x{x}xgg(vs)(f))

for each w € (R x B)*. We define

(4.27) Q; := (s+1)~(s+1)!~MS-max(|Ig,p| |1£€£s, OSpSK) >1,
and obtain for 1 < ¢ < s from (4.10) and (4.26) that

p(¥Lf>6]((1x),w)) <l Qg

(4.28) -max(L, Ao (W)l - e e (W) P .09y () ()
holds for each w € (R x B)~.

We are ready for the proof of Theorem 3.1.(2).

Proof of Theorem 3.1.(2) Let E € hlcVect, (V,0) € Q(E), t € (-00,0), x €,
B < E bounded, p € Sem(F), and f € €% ((0,00) x V, F).
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» Lets = 0. By Property (ii) we have Co := X7 [¢)| < co. We obtain from (4.25) and
the triangle inequality that
p(EXt(g—oo,‘r,O(E> v, m)(f)’ 0)(1’,)6)) < CO : p[‘r,O]x{x}(f)'
e Letl<s =< k. Wechoose Qg >1asin (4.27), and define

ii)

(4.29) Cs = Qs - maxiepss (X720 |cj] - (27)7) < oo

Then C; > 1 holds, as we have Q, > 1 as well as Z}’ZO lcj] - (2)¢ > Yigcj=1forl<
£ < s by Property (i). We obtain from (4.28) that

P(EXt(E-co,r0 (B, V. B) (), ) (1, %), w))
< Co-max(L Aoy (W)ls -5 e e (W) P 07 ) ez () ()
holds for each 1< £ < sand w € (R x B)*. ]

Appendix A.1. Some details to Example 3.10.(b)

Let (47, (-,-)) be areal pre-Hilbert space, E € hlcVectand H = J# x E. We set &(-) :=
V() fix 0 < 7 < 1, and define 8 and § as in Remark 3.9. Given Z € A = £71({1}), we

set
Z, = {XeAH|(Z,X) =0},
P(Z)={XeZ.|EX) <1},
C(Z)={XeA|EX)>0 A (Z,X)>0}.

The following maps are smooth and inverse to each other:

vy €(Z) = (0,00) x 2(2), X»(f(x),ﬁ.x—ﬁxx,zyz)
¢2:(0,00) x Z(Z) - €(Z) (LY) ot (Y +/1- &) 2).

Now, given g € ng o (8 x V, F), the same arguments as in Remark 3.9 show that it
suffices to construct

an extension  f € C(Wx V,F)  of the restriction
k
(4.30) f= g|OXV€€©Xm(Ox V,F)

in order to obtain an extension § € G% (S x V,F) of g For this, we proceed as
follows:

o We have by Lemma 2.10
fz:= o (Dzlomyxa(z) ¥ 1dv) € €y 11ea(2yxn ((0,1) x Z(Z) x V. F)

with EXt(fz, 0) = EXt(f, 0)°(¢Z|(0,1]x@(z) X idm).

o First applying the extension operator €y r,1(Z, x E, Z(Z) x V, 2(Z) x¥) from
Theorem 3.1, and then composing with ¥ x idy, we obtain (from Lemma 2.10) an
extension

fz € Gfg(z)xm(%(Z) x V,F) of the restriction fleonezy)xv-
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e GivenZ' e Aand X € € (Z) n € (Z’), then the definitions (and continuity) ensure
that for Y := (pr,oyz)(X) and Y’ := (pr,oyz ) (X), we have

Ext(fz,0)(#, Y, x) = Ext(f, 0)(¢/¢(X), X, x)
= Ext(fz,0)(t,Y', x) Vte[r,1], xeD.

Theorem 3.1.(3) implies fz|((0,w).x)xv = ];Z’|((O,oo)~X)><V> and we conclude

felezynezy = flez)ne -
Since U := € (Z) n 6 (Z') is open, we obtain for 0 < £ < k:

L7 L7
d fZ|UxVxH€ =d fZ’|UxVfoZ

continuity ~ -
= Ext(fz, O)|uxwxne = Ext(fz, O)|yxaxme-
It follows that the maps { f } zc4 glue together to an extension f € Ch(Wx V,F)

of (4.30).
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