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On elementary four-wave interactions in
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The cubic interactions in a discrete system of four weakly nonlinear waves propagating in a
conservative dispersive medium are studied. By reducing the problem to a single ordinary
differential equation governing the motion of a classical particle in a quartic potential, the
complete explicit branches of solutions are presented, either steady, periodic, breather or
pump, thus recovering or generalizing some already published results in hydrodynamics,
nonlinear optics and plasma physics, and presenting some new ones. Various stability
criteria are also formulated for steady equilibria. Theory is applied to deep-water gravity
waves for which models of isolated quartets are described, including bidirectional standing
waves and quadri-directional travelling waves, steady or not, resonant or not.
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1. Introduction

The objective of the present study is to provide an account of the solutions of the system:

i
db1

dt
= (ω1 + T11|b1|2 + 2T12|b2|2 + 2T13|b3|2 + 2T14|b4|2)b1 + 2Tb∗

2b3b4,

i
db2

dt
= (ω2 + 2T21|b1|2 + T22|b2|2 + 2T23|b3|2 + 2T24|b4|2)b2 + 2Tb∗

1b3b4,

i
db3

dt
= (ω3 + 2T31|b1|2 + 2T32|b2|2 + T33|b3|2 + 2T34|b4|2)b3 + 2Tb∗

4b1b2,

i
db4

dt
= (ω4 + 2T41|b1|2 + 2T42|b2|2 + 2T43|b3|2 + T44|b4|2)b4 + 2Tb∗

3b1b2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)
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where bi(t), i = 1, . . . , 4, are complex valued functions of time t, where an asterisk stands
for complex conjugate and where the real-valued coefficients ωi, Tij = Tji and T are
independent of time. System (1.1) is completed by initial conditions:

bi(0) = √
qieiϕi, qi ≥ 0, ϕi ∈ [0, 2π]. (1.2)

The positive qi are the initial wave actions.
Equations similar to (1.1) were first derived by Armstrong et al. (1962) in nonlinear

optics (time being replaced by a spatial direction) and by Benney (1962) in hydrodynamics.
Physically, (1.1) governs the evolution of an isolated quartet of weakly nonlinear waves
with wave vectors (k1,k2,k3,k4) satisfying

k1 + k2 = k3 + k4, ki �= kj, (1.3)

propagating with linear frequency ωi = ω(ki) > 0 in a conservative dispersive medium
with non-decay dispersion law, i.e. where three-wave quadratic interactions are excluded.
The coupling coefficients Tij and T depend on the wave vectors and on the physical
properties of the medium under consideration. Defining the frequency mismatch

�ω = ω1 + ω2 − ω3 − ω4, (1.4)

the interaction (1.3) is said to be resonant if �ω = 0.
Systems similar to (1.1) were also derived by Bretherton (1964) and Inoue (1975)

from scalar model equations, by Boyd & Turner (1978) in plasma physics and by Chen
& Snyder (1989) in nonlinear optics. Stiassnie & Shemer (2005) deduced (1.1) from
the Zakharov equation (Zakharov 1966, 1968; Krasitskii 1990, 1994) that governs the
evolution of discrete or continuous spectra of weakly nonlinear gravity waves, and which
is generally used as the starting point for weak turbulence statistical theory (Yuen & Lake
1982; Zakharov, L’vov & Falkovich 1992; Zakharov 1999; Janssen 2004; Nazarenko &
Lukaschuk 2016), even though Hasselmann (1962) in his pioneering work used primitive
equations.

Complementary to (1.1), an isolated wave triad (k1,k2,k3) satisfying

k1 + k2 = 2k3, ki �= kj, (1.5)

also interacts nonlinearly at third order and is governed by

i
dc1

dt
= (ω1 + T11|c1|2 + 2T12|c2|2 + 2T13|c3|2)c1 + Tc∗

2c2
3,

i
dc2

dt
= (ω2 + 2T21|c1|2 + T22|c2|2 + 2T23|c3|2)c2 + Tc∗

1c2
3,

i
dc3

dt
= (ω3 + 2T31|c1|2 + 2T32|c2|2 + T33|c3|2)c3 + 2Tc∗

3c1c2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.6)

as first derived by Benney (1962) for resonant gravity-wave interactions:

ω1 + ω2 = 2ω3, (1.7)

and deduced by Shemer & Stiassnie (1985) from the Zakharov equation. In nonlinear
optics, a spatial analogue of (1.6) has been derived by Cappellini & Trillo (1991), who
also pointed out that the three-wave system (1.6) cannot be deduced from the four-wave
system (1.1) by simple algebraic relations between the complex amplitudes bi(t) and ci(t).

System (1.1) may be solved following a procedure introduced by Armstrong et al. (1962)
for wave triads in quadratic interaction and extended to quartets in cubic interaction by
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On elementary four-wave interactions in dispersive media

Bretherton (1964): it consists of reducing (1.1) to a single scalar equation governing the
evolution of an auxiliary variable, say q(t). Bretherton proved that q(t) is ‘a periodic
function of [t], with period depending on the initial conditions but which is only in
exceptional cases infinite’, but did not give explicit solutions. This was achieved by Inoue
(1975), Boyd & Turner (1978), Turner (1980), Chen & Snyder (1989) and Stiassnie &
Shemer (2005) using elliptic functions. Some of the ‘exceptional cases’ mentioned by
Bretherton correspond to solutions now called ‘pump’ and ‘breathers’; some of these were
given by Inoue (1975) and Turner (1980), but some others were missing.

Following a similar procedure, periodic solutions of (1.6) involving elliptic functions
were found by Shemer & Stiassnie (1985) and Cappellini & Trillo (1991). These latter
authors, who also found breather solutions, proved that the problem may be recast to an
elegant one-degree integrable Hamiltonian system; see also Trillo & Wabnitz (1991). This
approach allows one to plot phase portraits representing level-lines of the Hamiltonian
from which interesting qualitative and quantitative results can be deduced: isolated points
surrounded by closed orbits in phase space correspond respectively to stable equilibria
and to periodic solutions, while saddle points connected by separatrices correspond
respectively to unstable equilibria and to non-periodic solutions (Cappellini & Trillo 1991;
Trillo & Wabnitz 1991; Andrade & Stuhlmeier 2023b). A similar Hamiltonian formulation
is used in the present study, but phase portraits are not necessary for our purpose.

Steady equilibria of (1.1) or of (1.6) are of fundamental importance. By steady equilibria,
we mean solutions with steady amplitudes |bi(t)|2 = |bi(0)|2. Benney (1962) noticed that
the simplest of these is the finite-amplitude travelling wave discovered by Stokes in 1847.
The existence of finite-amplitude bichromatic wavetrains (k1,k2) was first proved by
Phillips (1960), Longuet-Higgins & Phillips (1962) and Benney (1962). These steady
bichromatic waves were one of the essential ingredients for the development of the theory
of weakly nonlinear wave interactions (see also the historical survey by Phillips (1981)):
in a few words, we recall that Phillips (1960) and Longuet-Higgins (1962) proved that
the propagation of a finite-amplitude bichromatic gravity wavetrain, say (k1,k3), leads
initially by cubic (or ‘tertiary’) nonlinear resonant interaction to the spontaneous linear
growth of a third wave k2 satisfying (1.5) and (1.7). As noticed by Phillips (1967), this
behaviour may be deduced from (1.6) considering |c2| � |c1|, |c3|.

The previous mechanism has to be distinguished from quadratic (or ‘secondary’)
nonlinear interactions inside wave triads for which it has been proved by Galeev &
Karpman (1963) and Hasselmann (1967) that a finite-amplitude wave k3 is exponentially
unstable to a couple of infinitesimal disturbances (k1,k2) if (see also Craik 1985, p. 131)

k1 + k2 = k3, ω1 + ω2 = ω3. (1.8)

Sometimes called ‘decay instability’, this mechanism cannot, however, operate in gravity
waves, as proved by Phillips (1960) and Hasselmann (1962).

Back to cubic resonant interactions between three waves satisfying (1.5), (1.6) and
(1.7), the continuous energy transfer from (k1,k3) to k2 discovered by Phillips excludes
therefore the possibility of steady states at resonance. However, the existence of
non-resonant steady states in a system of three waves (k1,k2,k3) with finite constant
amplitudes |bi| has been established near resonance by Cappellini & Trillo (1991), Liao,
Xu & Stiassnie (2016) and Andrade & Stuhlmeier (2023b).

In the case of ‘non-degenerate’ quartets satisfying (1.1) and (1.3), the existence of
steady equilibria has been established at resonance in numerical simulations by Liu &
Liao (2014), observed experimentally by Liu et al. (2015) and identified off-resonance by
Andrade & Stuhlmeier (2023a) using a Hamiltonian approach. The bidirectional standing
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wave of Okamura (1985) is also a particular case of such steady quartets. It was clear from
these studies that the existence of steady equilibria is conditioned by certain constraints
between the finite amplitudes |bi|, but a general explicit formulation of these compatibility
conditions was missing.

Concerning stability, it has been known since Zakharov (1966) and Phillips (1967) that
the modulational instability discovered by Benjamin & Feir (1967) may be interpreted
as the cubic interaction between a Stokes wave k3 with constant finite amplitude |b3|
disturbed by a couple of ‘satellites’ with infinitesimal amplitudes |b1|, |b2| � |b3| and
wave vectors (k1,k2) satisfying (1.5), slightly off resonance (see reviews in Yuen & Lake
1982; Shemer & Stiassnie 1991; Janssen 2004; Zakharov & Ostrovsky 2009). It has also
been known since Okamura (1984) and Ioualalen & Kharif (1994) that a standing wave
or a bichromatic wavetrain (k1,k2) with constant finite amplitudes |b1|, |b2| may also be
destabilized by a couple of infinitesimal satellites with wave vectors (k3,k4) satisfying
(1.3), at resonance or slightly off. A theory for this kind of modulational instability has
been presented in Leblanc (2009).

The present study focuses only on four-wave interactions (1.3) inside a single quartet
governed by (1.1). Motivated by the recent work of Andrade & Stuhlmeier (2023a) who
established some interesting links between various aspects mentioned above, but who
restricted their analysis to quartets with symmetric initial conditions |b1(0)| = |b2(0)| and
|b3(0)| = |b4(0)|, the present study aims at answering the questions that remain open,
putting the various pieces of the puzzle together and finding the missing ones. In some
sense, our work may be viewed as the extension to non-degenerate quartets (1.3) of
the analyses of Shemer & Stiassnie (1985), Cappellini & Trillo (1991) and Andrade &
Stuhlmeier (2023b) for the ‘degenerate’ case (1.5).

The paper is organized in two parts: the first one is generic to dispersive media (§§ 2–4),
the second specific to deep-water gravity waves (§§ 5–7). More precisely: reduction to a
single equation is carried out in § 2; steady equilibria and their stability are investigated
in § 3; unsteady solutions are presented in § 4; models of steady and periodic solutions on
deep water are described in § 5; examples of pump and breathers are elaborated in §§ 6
and 7. Results are summarized in § 8 and complements are given in the appendices.

2. Bretherton equation

Multiplying each equation of (1.1) respectively by b∗
1, . . . , b∗

4 and adding the complex
conjugate equations yields (Bretherton 1964; Stiassnie & Shemer 2005)

d
dt

|b1|2 = d
dt

|b2|2 = − d
dt

|b3|2 = − d
dt

|b4|2 = −4T|b1| |b2| |b3| |b4| sin p, (2.1)

where the relative phase p(t) is defined as

p(t) = p1(t)+ p2(t)− p3(t)− p4(t), pi(t) = arg bi(t). (2.2)

Individual phases pi(t) are governed by (Inoue 1975; Andrade & Stuhlmeier 2023a)

dpi

dt
= −ωi + Tii|bi|2 − 2

4∑
j=1

Tij|bj|2 − 2T
|bi|2 |b1| |b2||b3| |b4| cos p. (2.3)

The first three equalities in (2.1) yield integrals of motions known as the Manley–Rowe
relations (Manley & Rowe 1956) that may be written, following Bretherton (1964) and
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Stiassnie & Shemer (2005), as

|b1(t)|2 − q1 = |b2(t)|2 − q2 = q3 − |b3(t)|2 = q4 − |b4(t)|2 ≡ q(t), (2.4)

where, by construction, the (positive or negative) relative action q(t) satisfies initially

q(0) = 0. (2.5)

Furthermore, four-wave interactions governed by (1.1) are bounded since from (2.4)
(conditions for ‘explosive’ four-wave interactions are detailed in Turner (1980), Verheest
(1982) and Safdi & Segur (2007); none of these are fulfilled here)

− min(q1, q2) ≤ q(t) ≤ min(q3, q4). (2.6)

From (2.1) and (2.4) we get also (here and below, q̇(t) = dq/dt)

q̇ = −4T
√
(q1 + q)(q2 + q)(q3 − q)(q4 − q) sin p, (2.7)

while, from (2.2) and (2.3),

ṗ = −(2Aq + B)− 2TF(q) cos p, (2.8)

where

A = 1
2 (T11 + T22 + T33 + T44)+ 2(T12 − T13 − T14 − T23 − T24 + T34),

B = �ω + B1q1 + B2q2 − B3q3 − B4q4, �ω = ω1 + ω2 − ω3 − ω4,

B1 = T11 + 2(T12 − T13 − T14), B2 = T22 + 2(T12 − T23 − T24),

B3 = T33 + 2(T34 − T13 − T23), B4 = T44 + 2(T34 − T14 − T24)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

and

F(q) =
(

1
q1 + q

+ 1
q2 + q

− 1
q3 − q

− 1
q4 − q

)√
(q1 + q)(q2 + q)(q3 − q)(q4 − q).

(2.10)

If T = 0, (2.7) and (2.8) yield, together with (2.5)

q(t) = 0, p(t) = (�ω + B1q1 + B2q2 − B3q3 − B4q4)t + p0. (2.11)

We shall therefore consider T �= 0 from now on. The initial phase mismatch p0 = p(0)
introduced above reads also, from (1.2)

p0 = arg b1(0)+ arg b2(0)− arg b3(0)− arg b4(0) = ϕ1 + ϕ2 − ϕ3 − ϕ4. (2.12)

Equations (2.7) and (2.8) may be written in canonical form:

ṗ = −∂H/∂q, q̇ = ∂H/∂p, (2.13)

where the Hamiltonian H( p, q), defined up to an additive constant, may be written as

H( p, q) = G(q)− G(0)+ 4T
√
(q1 + q)(q2 + q)(q3 − q)(q4 − q) cos p, (2.14)

with

G(q) = q�ω + 1
2 (T11(q1 + q)2 + T22(q2 + q)2 + T33(q3 − q)2 + T44(q4 − q)2)

+ 2T12(q1 + q)(q2 + q)+ 2T13(q1 + q)(q3 − q)+ 2T14(q1 + q)(q4 − q)

+ 2T23(q2 + q)(q3 − q)+ 2T24(q2 + q)(q4 − q)+ 2T34(q3 − q)(q4 − q).
(2.15)
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The degree of the Hamiltonian system (2.13) is one so that it is integrable. Since H( p, q)
is conserved along the flow of ( p, q), we have, using (2.5) and (2.14)

H( p(t), q(t)) = H( p(0), 0) = 4T
√

q1q2q3q4 cos p0. (2.16)

Since p0 intervenes through its cosine, we shall consider p0 ∈ [0,π] from now on. (The
Hamiltonian derived by Andrade & Stuhlmeier (2023a) is a particular case of (2.14) in
which, with the present notations, q1 = q2 and q3 = q4.)

Squaring (2.7) and taking (2.14) and (2.16) into account leads to

q̇2 = 16T2(q1 + q)(q2 + q)(q3 − q)(q4 − q)− (G(q)− G(0)− H( p0, 0))2, (2.17)

or equivalently to the Bretherton equation:

q̇2 = f (q), f (q) = 16T2(q1 + q)(q2 + q)(q3 − q)(q4 − q)− (Aq2 + Bq + C)2,
(2.18)

where A and B are defined in (2.9) and where

C = −4T
√

q1q2q3q4 cos p0. (2.19)

Equations similar to (2.18) have been derived by Inoue (1975), Boyd & Turner (1978),
Chen (1989) and Stiassnie & Shemer (2005). (Substituting q(t) = 4TZ(t) in (2.18) yields
equation (3.9) in Stiassnie & Shemer (2005).) Expanding f (q) gives

f (q) = aq4 + bq3 + cq2 + dq + e, (2.20)

with
a = 16T2 − A2,

b = 16T2(q1 + q2 − q3 − q4)− 2AB,

c = 16T2(q1q2 + q3q4 − (q1 + q2)(q3 + q4))− B2 − 2AC,

d = 16T2((q1 + q2)q3q4 − q1q2(q3 + q4))− 2BC,

e = 16T2q1q2q3q4 sin2 p0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

According to Jeffreys & Jeffreys (1956, p. 667), Pars (1965, p. 4) or Craik (1985, p. 138),
(2.18) may therefore be interpreted as the energy conservation equation of a unit-mass
Newtonian particle q(t) initially at q(0) = 0 moving rectilinearly in a quartic potential
U(q) defined by

U(q) = −1
2 f (q). (2.22)

3. Steady solutions and their stability

3.1. Steady equilibria
From the definition adopted in § 1, a steady equilibrium is a solution of (1.1) with constant
amplitudes |bi|. From the Manley–Rowe relations (2.1), it corresponds to a solution of
(2.18) such that q̇(t) = 0 for all time. Since q(0) = 0, a steady equilibrium therefore
corresponds in our problem to the null solution q(t) = 0, ∀t ≥ 0, for which (2.18) implies
f (0) = 0. But since (2.18) is equivalent to ‘Newton’s second law’:

q̈ = 1
2 f ′(q) = −U′(q), (3.1)

steady equilibria also satisfy U′(0) = 0 (here and below, f ′(q) = df /dq), i.e. they are
critical points of the potential energy (Arnold 1989, p. 99). For (2.20), conditions f (0) = 0
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and f ′(0) = 0 are respectively equivalent to e = 0 and d = 0. Since we now consider
T �= 0, condition e = 0 yields either q1q2q3q4 = 0, or p0 = 0 or π, while condition d = 0
becomes

2T((q1 + q2)q3q4 − q1q2(q3 + q4))+ B
√

q1q2q3q4 cos p0 = 0. (3.2)

Suppose first q1q2q3q4 = 0 and choose, without lost of generality, q4 = 0. Condition
(3.2) implies q1q2q3 = 0. Therefore, a second wave must have a zero initial wave action,
say q3 = 0. From system (1.1) with |bi|2 = qi, i = 1, 2, we get the steady bichromatic
wave first considered by Phillips (1960) and Longuet-Higgins & Phillips (1962) (see also
Zakharov 1967; Hogan, Gruman & Stiassnie 1988; Leblanc 2009):

b1(t) = √
q1eiϕ1e−iΩ1t, Ω1 = ω1 + T11q1 + 2T12q2,

b2(t) = √
q2eiϕ2e−iΩ2t, Ω2 = ω2 + T22q2 + 2T21q1,

}
(3.3)

where we recall that ϕi = pi(0). These solutions were given by Benney (1962) who also
noticed that if in addition q2 = 0 one recovers the Stokes wave:

b1(t) = √
q1eiϕ1e−iΩ1t, Ω1 = ω1 + T11q1. (3.4)

Turning now to the case q1q2q3q4 �= 0 and p0 = 0 or π, we get from (3.2):

�ω + B1q1 + B2q2 − B3q3 − B4q4 = 2T
q1q2(q3 + q4)− (q1 + q2)q3q4√

q1q2q3q4 cos p0
. (3.5)

Since from (2.7) p(t) = p0 at equilibrium, we conclude that:

THEOREM 3.1. The wave quartet defined by

bi(t) = √
qieiϕie−iΩit, qi > 0, i = 1, . . . , 4,

Ωi = ωi − Tiiqi + 2
4∑

j=1

Tijqj + 2T
qi

√
q1q2q3q4 cos p0,

p0 = ϕ1 + ϕ2 − ϕ3 − ϕ4 = 0 or π,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

and satisfying the compatibility condition (3.5) is a steady solution of (1.1) with (1.2).

3.2. Linear stability
Analogy with Newtonian dynamics allows us to formulate a simple criterion for linear
stability of steady equilibria. Indeed, (3.1) yields, after linearization around q = 0,

q̈ − γ 2q = 0, γ 2 = 1
2 f ′′(0) = −U′′(0), (3.7)

where from (2.20) with (2.21) and (2.22), we have γ 2 = c. Therefore, the null solution is
linearly stable if c < 0 and unstable otherwise; growth is exponential if c > 0 or algebraic
if c = 0.

Consider first the linear stability of the bichromatic solution (3.3) for which q3 = q4 =
0. In that case, c = 16T2q1q2 − B2, where B is defined in (2.9). Therefore, the bichromatic
wavetrain (3.3) is exponentially unstable if

16T2q1q2 > (�ω + B1q1 + B2q2)
2. (3.8)

Recalling that qi = |bi|2 and that Bi are defined in (2.9), we recover the criterion derived in
Leblanc (2009, equation (15)) and recovered by Andrade & Stuhlmeier (2023a). We also
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recall that (3.8) characterizes respectively ‘type B’ and ‘class-Ia’ instabilities following
the respective classifications of Okamura (1984) for one-dimensional standing waves and
of Ioualalen & Kharif (1994) for steady bichromatic wavetrains.

Turning now to the stability of steady wave quartets with non-zero initial wave actions
(q1, q2, q3, q4) satisfying (3.5) and cos p0 = ±1, the linear stability criterion becomes,
after replacing B by the right-hand side of (3.5) and C by (2.19) onto the expression of c
in (2.21):

THEOREM 3.2. The steady wave quartet (3.6) satisfying (3.5) is exponentially unstable if

A
2T

cos p0√
q1q2q3q4

>
1
4

(
1
q1

+ 1
q2

− 1
q3

− 1
q4

)2

+ (q1 + q2)(q3 + q4)− q1q2 − q3q4

q1q2q3q4
,

(3.9)

algebraically unstable if equality holds, otherwise linearly stable.

3.3. The particular case of equal wave actions
Consider the particular case of the steady wave quartet with equal wave actions q1 = q2 =
q3 = q4 ≡ q0 > 0 and initial phase mismatch p0 = 0 or π. We recall that the existence of
such steady interactions is conditioned by (3.5) which reduces in the present case to

�ω + q0�B = 0, (3.10)

where �B = B1 + B2 − B3 − B4, i.e. from (2.9):

�B = T11 + T22 − T33 − T44 + 4(T12 − T34). (3.11)

At resonance, (3.10) implies �B = 0, while off resonance we get q0 = −�ω/�B. Since
q0 > 0, �ω and �B must have opposite signs for the quartet to exist. The corresponding
instability criterion may be easily deduced from (3.9). Therefore:

CRITERION 3.1. Steady wave quartets (3.6) with q1 = q2 = q3 = q4 ≡ q0 exist if q0 =
−�ω/�B > 0. At resonance, they exist for any q0 > 0 if �B = 0. In both cases, they are
exponentially unstable if

(A/T) cos p0 > 4 ( p0 = 0 or π). (3.12)

3.4. Lagrange theorem and Lyapunov stability
In his treatise on analytical mechanics published in 1788, Lagrange presented his famous
principle on the stability of equilibrium positions, which was rigorously proved by
Lejeune–Dirichlet in 1846 and generalized by Lyapunov in 1892 (see Loria & Panteley
2017). Lagrange theorem may be stated as (Gantmacher 1975, pp. 166–173; Arnold 1989,
p. 99):

LAGRANGE THEOREM. If U(0) = 0 is a strict local minimum of the potential U(q), then
the null solution of (2.18) is Lyapunov stable.

For our purpose, stability in the sense of Lyapunov is defined by:

LYAPUNOV STABILITY. The null solution is Lyapunov stable if for each ε > 0 there exists
δ > 0 such that, if |q̇(0)| < δ initially, then sup(|q(t)|, |q̇(t)|) < ε for all t ≥ 0.

In the present case, U(q) = −1
2 (aq4 + bq3 + cq2 + dq + e). But, as stated previously,

q = 0 is a steady equilibrium if U(0) = 0 and U′(0) = 0, or equivalently d = e = 0.
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Therefore, at equilibrium, U(q) = −1
2 q2(aq2 + bq + c). But since in that case U′′(0) =

−c, then U(q) admits a strict local minimum at q = 0 if c < 0. Therefore in our case,
a linearly stable equilibrium is also Lyapunov stable. This means that if c < 0, any
sufficiently small disturbance will remain bounded.

Of course it would be necessary to be precise about what is meant by ‘sufficiently small’
but we shall not pursue that direction for at least two reasons: firstly, because my study is
restricted to the interactions inside a single quartet while interactions with other waves may
be destabilizing (see e.g. Okamura 1985); secondly, because higher-order interactions are
not taken into account (see e.g. Andrade & Stuhlmeier 2023a). As a consequence, we have
to keep in mind that stability is only indicative because limited to the discrete four-wave
interactions considered in the present study.

By contrast, linear instability criteria are meaningful in the nonlinear regime as it is
known that the existence of an exponentially growing solution of the linearized equation
(3.7) implies instability of the null solution in the nonlinear equation (3.1) (see Verhulst
1996, p. 88). Furthermore, if other interactions were taken into account, various instability
mechanisms would compete without mutual cancellation.

Therefore, the various instability criteria presented in the present study have to be
considered as sufficient conditions for instability.

4. Exact unsteady solutions for a quartic potential

4.1. General properties
We have seen in § 2 that solutions of (2.18) with (2.5) are bounded. Furthermore, following
Inoue (1975), we get from (2.18) the following inequalities:

f (0) = 16T2q1q2q3q4 sin2 p0 ≥ 0,

f (−q1) ≤ 0, f (−q2) ≤ 0, f (q3) ≤ 0, f (q4) ≤ 0.

}
(4.1)

Therefore we can conclude that, by continuity, f admits at least two real roots, say ξ− and
ξ+, verifying ξ− ≤ 0 ≤ ξ+; f is therefore a polynomial function of degree at least equal to
two: either quartic, cubic or quadratic.

Excluding the case ξ− = ξ+ = 0 corresponding to root 0 with multiplicity at least
equal to 2 corresponding to a steady solution since d = 0 and e = 0 as explained in
§ 3.1, we restrict from now on our discussion to the cases where either ξ− ≤ 0 < ξ+ or
ξ− < 0 ≤ ξ+. Without lost of generality, suppose that ξ− and ξ+ are the closest roots
from 0. Equation (2.18) shows that unsteady solutions exist if f (q) ≥ 0; since q(0) = 0
and f (0) ≥ 0, Jeffreys & Jeffreys (1956, pp. 667–668), Bretherton (1964) and Pars (1965,
pp. 4–6) showed that ξ− ≤ q(t) ≤ ξ+, ∀t ≥ 0, and that the particle ‘velocity’ vanishes on
the boundaries of this interval: q̇(ξ±) = 0. If ξ− and ξ+ are both simple roots, they are
turning points, i.e. the sign of q̇(t) changes on turning points and the direction of the
particle is reversed; therefore q(t) is periodic. If the multiplicity of either ξ− or ξ+, say ξ−,
is strictly greater than one, then limt→±∞ q(t) = ξ− and the solution is a breather. Finally
if ξ− and ξ+ are both double roots, then either limt→±∞ q(t) = ξ± or limt→±∞ q(t) = ξ∓
and the solution is a pump. Finally, from (2.6), we have also

− min(q1, q2) ≤ ξ− ≤ q(t) ≤ ξ+ ≤ min(q3, q4). (4.2)

Equation (2.18) with (2.5) may be integrated (see e.g. Craik 1985, p. 138):

t ≡ t(q) = ±
∫ q

0

dξ√
f (ξ)

= ±
∫ q

0

dξ√−2U(ξ)
, (4.3)
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from which q ≡ q(t) may formally be obtained by inversion. The sign indeterminacy
above shows that for each fixed values of the parameters, (2.18) admits two solutions,
say {Q−(t), Q+(t)}, such that Q−(t) = Q+(−t). Now, let Q+ be the solution such that at
the initial time Q̇+(0) ≥ 0. Therefore, Q̇−(0) = −Q̇+(0) ≤ 0. The solution to choose is
determined because of (2.7) from which we get

q̇(0) = −4T
√

q1q2q3q4 sin p0. (4.4)

Thus, if −4T
√

q1q2q3q4 sin p0 ≥ 0, then q(t) = Q+(t). Else q(t) = Q−(t) = Q+(−t).
Finally, if q(t) is periodic, the period τ is

τ = 2
∫ ξ+

ξ−

dξ√
f (ξ)

= 2
∫ ξ+

ξ−

dξ√−2U(ξ)
. (4.5)

In the quartic case, f in (2.20) with a �= 0 may be factorized as

f (q) = a(q − ξ1)(q − ξ2)(q − ξ3)(q − ξ4), (4.6)

where ξ1, ξ2, ξ3 and ξ4 are the four roots of f . (The labelling of the roots ξi is independent
of the labelling of the initial wave actions qi.) Since f is real-valued, roots are either real or
complex conjugate by pairs. The roots of a quartic polynomial may formally be obtained
by quadrature with Ferrari’s method (published by Cardan in 1545) but formulae, which
are too lengthy to be reported here, are implemented in computer algebra systems. Simple
expressions are given in Appendix A in the case q1 = q2 = q3 = q4.

The nature of the solutions of the Bretherton equation (2.18) depends on the sign of a
and on the nature of the roots, as illustrated in figure 1 (see also Turner 1980). If a = 0,
the potential is either cubic or quadratic and the solutions are postponed to Appendix B.

4.2. The case a > 0

4.2.1. Periodic solution
If f admits four distinct real roots ξ1, . . . , ξ4 such that (figure 1a)

ξ1 < ξ2 ≤ 0 < ξ3 < ξ4 or ξ1 < ξ2 < 0 ≤ ξ3 < ξ4, (4.7)

then (2.18) with (2.5) has the pair of periodic solutions {QI(t),QI(−t)} with

QI(t) = ξ2(ξ3 − ξ1)− ξ1(ξ3 − ξ2) sn2(u(t), k)
(ξ3 − ξ1)− (ξ3 − ξ2) sn2(u(t), k)

, u(t) = γ t
2

+ sn−1(l, k),

γ =
√

a(ξ4 − ξ2)(ξ3 − ξ1), k =
√
(ξ3 − ξ2)(ξ4 − ξ1)

(ξ4 − ξ2)(ξ3 − ξ1)
, l =

√
ξ2(ξ3 − ξ1)

ξ1(ξ3 − ξ2)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.8)

where sn and sn−1 are Jacobi elliptic functions defined here by (see e.g. Byrd & Friedman
(1971, p. 18))

x = sn−1( y, k) =
∫ y

0

dξ√
(1 − ξ2)(1 − k2ξ2)

, y = sn(x, k). (4.9)

Period is

τ = 4
γ

K(k), K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

, (4.10)

where K is the complete elliptic integral of the first kind. (Different conventions exist
for the arguments of elliptic functions; we follow here the notations of Byrd & Friedman
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ξ1 ξ2

ξ12 ξ12 ξ34

ξ3 ξ4 ξ3 ξ40 0 0q

ξ1 ξ1

ξ23

ξ234

ξ23

ξ3ξ2 ξ4 ξ40 0 ξ1 0q

ξ1 ξ20 q ξ1 ξ1ξ2 ξ30 0q q

q q

q q

U(q)

U(q)

U(q) U(q) U(q)

U(q) U(q)

U(q) U(q)
(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 1. The possible configurations for bounded unsteady solutions of (2.18) satisfying (2.5). Motion occurs
in the potential well defined by q ∈ [ξ−, ξ+], where ξ± such that ξ− ≤ 0 < ξ+ or ξ− < 0 ≤ ξ+ are the nearest
roots around zero between which U(q) = − 1

2 f (q) ≤ 0. Quartic potential (4.6) with a > 0: (a) periodic solution
(4.8); (b) breather solution (4.14); (c) pump solution (4.16). Quartic potential (4.6) with a < 0: (d) periodic
solution (4.21); (e) breather solution (4.23); ( f ) rational breather solution (4.25); (g) periodic solution (4.27).
Cubic potential (B1) with b > 0: (h) periodic solution (B2); (i) breather solution (B4). Any other possibility
may be deduced by symmetry with respect to the vertical axis. The case of quadratic potential with periodic
solution (B6) has been omitted.

(1971). By contrast, in Wolfram Mathematica the entry for sn(x, k) as defined in (4.9) is
JacobiSN[x,m], where m = k2; similarly for K(k) defined in (4.10) for which the entry is
EllipticK[m].)

Note that at the initial time

Q̇I(0) = γ ξ1ξ2

l(ξ2 − ξ1)
cn(sn−1(l, k), k) dn(sn−1(l, k), k), (4.11)

where at fixed modulus k: cn(x) =
√

1 − sn2(x) and dn(x) =
√

1 − k2 sn2(x) (Byrd &
Friedman 1971, p. 19). Therefore, at fixed k:

cn(sn−1( y)) dn(sn−1( y)) =
√

1 − y2
√

1 − k2y2. (4.12)

Then

Q̇I(0) = γ ξ1ξ2

l(ξ2 − ξ1)

√
1 − l2

√
1 − k2l2 ≥ 0. (4.13)

Formula (254.00) in Byrd & Friedman (1971, p. 112) has been used to get (4.8), plotted in
figure 2(a). Similar solutions were found by Inoue (1975), Boyd & Turner (1978), Shemer
& Stiassnie (1985), Chen & Snyder (1989), Cappellini & Trillo (1991) and Stiassnie &
Shemer (2005).
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–4 –2 –2–4–62 4
t

–1 –1

1

2

(a) (b)
q(t) q(t)

2 4 6
t

1

2

Figure 2. Unsteady solutions q(t) in a quartic potential (4.6) with a = 1 (a) or a = −1 (b). (a) Periodic
solution (4.8) with ξ1 = −1.2, ξ2 = −1, ξ3 = 2, ξ4 = 2.4 (solid line); breather solution (4.14) with ξ12 = −1,
ξ3 = 2, ξ4 = 2.4 (dotted line); pump solution (4.16) with ξ12 = −1, ξ34 = 2 (dashed line). (b) Periodic solution
(4.21) with ξ1 = −1, ξ2 = 2, ξ3 = 2.1, ξ4 = 2.2 (solid line); breather solution (4.23) with ξ1 = −1, ξ23 = 2,
ξ4 = 2.2 (dotted line); rational breather solution (4.25) with ξ1 = −1, ξ234 = 2 (dashed line).

4.2.2. Breather solution
If f admits a double real root ξ12 and two distinct real roots ξ3 and ξ4 such that
ξ12 < 0 ≤ ξ3 < ξ4 (figure 1b), then (2.18) with (2.5) has the pair of breather solutions
{QII(t),QII(−t)} with

QII(t) = ξ12
v4(t)+ 4n2v3(t)− 2sv2(t)+ 4n2rv(t)+ r2

v4(t)− 2(8ξ2
12n2 + r)v2(t)+ r2

,

v(t) = (ξ12(ξ3 + ξ4)− 2(ξ3ξ4 − n
√
ξ3ξ4)) exp(

√
ant),

n =
√
(ξ3 − ξ12)(ξ4 − ξ12), r = ξ2

12(ξ4 − ξ3)
2,

s = 4ξ12(ξ
2
12 + ξ3ξ4)(ξ3 + ξ4)− ξ2

12(3ξ3 + ξ4)(ξ3 + 3ξ4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

At the initial time: Q̇II(0) = −√
aξ3ξ4ξ12 ≥ 0. Note that from (4.1): ξ12 = −q1 = −q2.

Derived with the assistance of a computer algebra system and plotted in figure 2(a),
solution (4.14) has not been found in the literature in this general form. However, if ξ3 = 0,
we get

QII(t) = ξ12 − 2n2

2ξ12 − ξ4(1 + cosh(
√

ant))
, n =

√
−ξ12(ξ4 − ξ12), (4.15)

corresponding to expression (22a) in Inoue (1975). The ‘pump-depletion’ solutions (A6)
and (A7) in Cappellini & Trillo (1991) are similar to (4.14), but correspond in their
formulation to specific values of the roots ξi. Finally, connection between (4.14) and the
‘discrete Akhmediev breathers’ (5.4) and (5.15) in Andrade & Stuhlmeier (2023b) remains
to be clarified since their solutions are given in implicit form, contrary to (4.14).

4.2.3. Pump solution
If f admits two double real roots ξ12 and ξ34 such that ξ12 < 0 < ξ34 (figure 1c), then (2.18)
with (2.5) has the pair of pump solutions {QIII(t), QIII(−t)} with

QIII(t) = ξ34
eμt − 1
eμt − m

, μ = √
a(ξ34 − ξ12), m = ξ34

ξ12
. (4.16)
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On elementary four-wave interactions in dispersive media

At the initial time: Q̇III(0) = −√
aξ12ξ34 > 0. The ‘shock-like’ solutions of Inoue (1975)

and the ‘multibreather’ solution of Andrade & Stuhlmeier (2023a,b) are equivalent to
(4.16), plotted in figure 2(a).

From (4.1): ξ12 = −q1 = −q2 = −q12 and ξ34 = q3 = q4 = q34; from (4.6):

f (q) = a(q − ξ12)
2(q − ξ34)

2 = (16T2 − A2)(q + q12)
2(q − q34)

2. (4.17)

Identification with (2.18) yields, excluding the case A = 0, the following two compatibility
conditions (Andrade & Stuhlmeier 2023a):

cos p0 = A
4T

∈ [−1, 1], �ω + (B1 + B2 − A)q12 − (B3 + B4 − A)q34 = 0. (4.18)

Finally, if q12 = q34 = q0 > 0, the second condition in (4.18) gives �ω + (�B)q0 = 0,
and (4.16) with −ξ12 = ξ34 = q0 becomes simply

QIII(t) = q0 tanh(
√

aq0t). (4.19)

4.3. The case a < 0

4.3.1. Periodic solution (four real roots)
If f admits four distinct real roots ξ1, . . . , ξ4 such that (figure 1d)

ξ1 ≤ 0 < ξ2 < ξ3 ≤ ξ4 or ξ1 < 0 ≤ ξ2 < ξ3 ≤ ξ4, (4.20)

then (2.18) with (2.5) has the pair of periodic solutions {QIV(t), QIV(−t)} with

QIV(t) = ξ1(ξ4 − ξ2)+ ξ4(ξ2 − ξ1) sn2(u(t), k)
(ξ4 − ξ2)+ (ξ2 − ξ1) sn2(u(t), k)

, u(t) = γ t
2

+ sn−1(l, k),

γ =
√

−a(ξ4 − ξ2)(ξ3 − ξ1), k =
√
(ξ4 − ξ3)(ξ2 − ξ1)

(ξ4 − ξ2)(ξ3 − ξ1)
, l =

√
−ξ1(ξ4 − ξ2)

ξ4(ξ2 − ξ1)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.21)

Period is τ = 4γ−1K(k). At the initial time:

Q̇IV(0) = γ l(ξ2 − ξ1)ξ
2
4

(ξ4 − ξ1)(ξ4 − ξ2)

√
1 − l2

√
1 − k2l2 ≥ 0. (4.22)

Formula (252.00) in Byrd & Friedman (1971, p. 103) has been used to get (4.21), plotted
in figure 2(b). A similar solution is given by Chen (1989).

4.3.2. Breather solution
If f admits a double real root ξ23 and two distinct real roots ξ1 and ξ4 such that
ξ1 ≤ 0 < ξ23 < ξ4 (figure 1e), then (2.18) with (2.5) has the pair of breather solutions
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{QV(t),QV(−t)} with

QV(t) = ξ23
v4(t)+ 4n2v3(t)− 2sv2(t)+ 4n2rv(t)+ r2

v4(t)+ 2(8ξ2
23n2 − r)v2(t)+ r2

,

v(t) = −(n2 + 2n
√

−ξ1ξ4 + ξ2
23 − ξ1ξ4) exp(

√−ant),

n =
√
(ξ23 − ξ1)(ξ4 − ξ23), r = ξ2

23(ξ4 − ξ1)
2,

s = 4ξ23(ξ
2
23 + ξ1ξ4)(ξ1 + ξ4)− ξ2

23(3ξ1 + ξ4)(ξ1 + 3ξ4).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.23)

At the initial time: Q̇V(0) = √
aξ1ξ4ξ23 ≥ 0. Plotted in figure 2(b), solution (4.23) has not

been found in the literature. If ξ1 = 0, we get

QV(t) = ξ23 + 2n2

2ξ23 − ξ4(1 + cosh(
√−ant))

, n =
√
ξ23(ξ4 − ξ23). (4.24)

4.3.3. Rational breather solution
If f admits a triple real root ξ234 and a single real root ξ1 such that ξ1 ≤ 0 <
ξ234 (figure 1 f ), then (2.18) with (2.5) has the pair of rational breather solutions
{QVI(t), QVI(−t)} with

QVI(t) = ξ234μt(μt + 4 m)
μt(μt + 4m)+ 4(1 + m2)

, μ = √−a(ξ234 − ξ1), m =
√

−ξ1/ξ234.

(4.25)

At the initial time: Q̇VI(0) =
√

aξ1ξ
3
234 ≥ 0. Plotted in figure 2(b), a solution equivalent to

(4.25) is given by Turner (1980).
Finally, if ξ1 = 0, (4.25) may be written as

QVI(t) = ξ234Q̃(t̃), Q̃(t̃) = t̃2/(t̃2 + 4), t̃ = √−aξ234t. (4.26)

4.3.4. Periodic solution (two real roots and two complex conjugate roots)
Finally, if f admits two distinct real roots ξ1 and ξ2 such that ξ1 ≤ 0 < ξ2 or ξ1 < 0 ≤ ξ2,
and two complex conjugate roots ξ3 and ξ4 = ξ∗

3 (figure 1g), then (2.18) with (2.5) has the
pair of periodic solutions {QVII(t), QVII(−t)} with

QVII(t) = (β1ξ2 + β2ξ1)− (β1ξ2 − β2ξ1) cn(w(t), k)
(β1 + β2)− (β1 − β2) cn(w(t), k)

, w(t) = γ t + cn−1(l, k),

γ =
√

−aβ1β2, k =
√
(ξ2 − ξ1)2 − (β2 − β1)2

4β1β2
, l = β1ξ2 + β2ξ1

β1ξ2 − β2ξ1
,

β1 =
√
(ξ1 − x3)2 + y2

3, β2 =
√
(ξ2 − x3)2 + y2

3, x3 = Re(ξ3), y3 = Im(ξ3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.27)

Period is τ = 4γ−1K(k). At the initial time:

Q̇VII(0) = −a(β1ξ2 − β2ξ1)
2

2γ (ξ2 − ξ1)

√
1 − l2

√
1 + k2(l2 − 1) ≥ 0, (4.28)

since at fixed k, sn(cn−1( y)) dn(cn−1( y)) =
√

1 − y2
√

1 + k2( y2 − 1).

983 A27-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.126


On elementary four-wave interactions in dispersive media

Equation (259.00) in Byrd & Friedman (1971, p. 133) has been used to get (4.27).
A similar solution is given by Turner (1980).

5. Deep-water gravity waves

5.1. The truncated quartet model
Deep-water irrotational gravity waves propagating in an inviscid incompressible fluid are
governed in spectral space at third order in amplitude by the Zakharov equation (Zakharov
1966, 1968; Krasitskii 1990, 1994):

i
∂B(k)
∂t

= ω(k)B(k)+
∫

R6
T(k, p, q, r)B∗( p)B(q)B(r)δ(k + p − q − r) dp dq dr,

(5.1)

where k ∈ R
2, ω(k) = √

g|k|, δ(k) is Dirac delta function and the real-valued function
T(k, p, q, r) is Krasitskii’s kernel given in Appendix C. At leading order, B(k, t) is related
to the free-surface elevation z = η(x, t), x ∈ R

2, by (we follow Janssen’s (2004, p. 132)
convention for the Fourier transform, so that expressions given here for T (and Tij) must
be divided by (2π)2 to recover those given in Krasitskii (1994))

η(x, t) =
∫

R2
η̂(k, t)eik·xdk, η̂(k, t) =

√
|k|

2ω(k)
(B(k, t)+ B∗(−k, t)). (5.2)

According to Zakharov (1966, 1968), an exact solution of (5.1) is the Stokes wave:

B(k, t) = b(t)δ(k − k0), b(t) = b0e−iΩ0t, Ω0 = ω(k0)+ T(k0,k0,k0,k0)|b0|2.
(5.3)

If we now consider a linear combination of waves B(k, t) = ∑N
i=1 bi(t)δ(k − ki)with N >

1, the Zakharov equation (5.1) yields a system of ordinary differential equations which
is not closed, as noticed by Okamura (1985); it leads indeed to the generation of higher
harmonics on time scales of order (|T||b|2)−1. The mathematical validity of such an ansatz
is therefore an open question. (This was pointed to me out by an anonymous reviewer even
for N = 2; see also discussion in Badulin et al. (1995). Zakharov (1967) already noticed
that the bichromatic wave (3.3) is an approximate solution.)

If the terms corresponding to higher harmonics are neglected, one gets a truncated
model consisting of a closed system of ordinary differential equations considered in
various textbooks and review articles (e.g. Yuen & Lake 1982; Craik 1985; Shemer &
Stiassnie 1991; Janssen 2004; Kartashova 2010) and implicitly or explicitly used in a
number of articles, including those by Saffman & Yuen (1980), Caponi, Saffman & Yuen
(1982), Okamura (1984, 1985), Shemer & Stiassnie (1985), Hogan et al. (1988), Badulin
et al. (1995), Stiassnie & Shemer (2005), Leblanc (2009) and Andrade & Stuhlmeier
(2023a,b):

i
dbi

dt
= ωibi +

N∑
j,m,n=1

T̂ijmnb∗
j bmbn, i = 1, . . . ,N, (5.4)

where ωi = √
g|ki| and T̂ijmn = T(ki,kj,km,kn) if ki + kj = km + kn and 0 otherwise. In

the case of four waves satisfying (1.3), (5.4) reduces to (1.1) where T ≡ T(k1,k2,k3,k4)
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S. Leblanc

and Tij = T(ki,kj,ki,kj). The ‘free-surface elevation’ of this truncated low-order model
corresponding to an ‘isolated’ quartet would be

ηquartet(x, t) =
4∑

i=1

√
|ki|
2ωi

(
bi(t)eiki·x + b∗

i (t)e
−iki·x

)
. (5.5)

Although the formal validity of such a model with respect to actual solutions of the
Zakharov equation (5.1) is an open question, numerical and experimental results support
its usefulness (Liu & Liao 2014; Liu et al. 2015; Liao et al. 2016). If the quartet is resonant,
Benney’s equations (1.1) obtained with the method of multiple scales are recovered.

5.2. Bidirectional standing waves and their stability
A particular case of interaction (1.3) concerns bidirectional standing waves for which

(k1,k2,k3,k4) = (k1,−k1,k3,−k3), k1 �= k3. (5.6)
For simplicity, we consider the case where initially q1 = q2 = q3 = q4 ≡ q0 > 0. From
criterion 3.1 (§ 3.3), the wave quartet is steady providing that q0 = −�ω/�B > 0, where
�B is given in (3.11). For deep water, we have (see Appendix C)

T11 = T22 = k3
1, T33 = T44 = k3

3, T12 = −k3
1, T34 = −k3

3, (5.7)

so that�B = −2(k3
1 − k3

3) and −�ω/�B = (ω1/k3
1)ρ(k3/k1), where the function ρ(κ) =

(1 − √
κ)/(1 − κ3) is strictly positive for any κ > 0 (the discontinuity at κ = 1 may be

removed since ρ(κ) → 1/6 when κ → 1). Therefore q0 = (ω1 − ω3)/(k3
1 − k3

3) is defined
and strictly positive if k1 �= k3. If k1 = k3, then both �ω = 0 and �B = 0 so that, from
criterion 3.1, q0 > 0 may be chosen arbitrarily.

Now, from (3.6):

Ω1 = Ω2 = ω1 + (2T̄ − k3
1)q0, Ω3 = Ω4 = ω3 + (2T̄ − k3

3)q0,

T̄ = T(k1,k3,k1,k3)+ T(k1,−k3,k1,−k3)+ T(k1,−k1,k3,−k3) cos p0,

}
(5.8)

where T̄ may be evaluated explicitly thanks to the expressions given in Appendix C.
Choosing ϕ1 = ϕ2 = 0 and ϕ3 = ϕ4 = −p0/2, it may be shown from (5.5) that the
free-surface elevation is, at leading order,

ηquartet(x, t) = 2A1 cos(k1 · x) cos(Ω1t)+ 2A3 cos(k3 · x) cos
(
Ω3t + p0

2

)
,

Ai =
√

2kiq0

ωi
, i = 1, 3, q0 = ω1 − ω3

k3
1 − k3

3
, p0 = 0 or π.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.9)

Free surface (5.9) is periodic ifΩ1 andΩ3 are commensurate. If k1 = k3 ≡ k0 and p0 = 0,
we recover the bidirectional standing waves studied by Okamura (1985), since in that case
Ω1 = Ω3 = ω0 + (2T̄ − k3

0)q0, where q0 > 0.
Let us now apply the instability criterion 3.1 (§ 3.3). Using homogeneity property (C4),

we can define, without lost of generality, a function χ(κ, ψ) such that
A(k1,−k1,k3,−k3)

T(k1,−k1,k3,−k3)
= A(i,−i, κ,−κ)

T(i,−i, κ,−κ)
≡ 4χ(κ, ψ),

i = (1, 0), κ = (κ cosψ, κ sinψ), κ = k3/k1.

⎫⎬
⎭ (5.10)

Since ψ = angle(i, κ) = angle(k1,k3), it is sufficient to consider ψ ∈ [0,π/2]. Function
χ(κ, ψ) is plotted on figure 3; since χ(κ, ψ) > 0, there is no instability according to
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On elementary four-wave interactions in dispersive media

0.5 1.0 1.5

κ

χ
(κ

, 
ψ

)

2.0 2.50

0.5

1.0

1.5

2.0

Figure 3. Graph of χ(κ,ψ) defined in (5.10) for ψ = 0 (solid line); ψ = π/8 (dotted line); ψ = π/2 (dashed
line). Steady bidirectional standing waves (5.9) with p0 = 0 are exponentially unstable if χ(κ,ψ) > 1, where
κ = k3/k1 and ψ = angle(k1,k3).

20 40 60 800

0.02

|b
1
(t)

|2 0.04

0.06

t
Figure 4. Numerical integration of system (1.1) with g = 1, k1 = −k2 = (1, 0), k3 = −k4 = (0, 2), qi =
q0(1 + ε) with q0 = (ω1 − ω3)/(k3

1 − k3
3) and ϕ1 = ϕ2 = 0, ϕ3 = ϕ4 = −p0/2. Dotted line (ε = 0, p0 = π):

steady bidirectional standing waves (5.9). Dashed line (ε = 0.01, p0 = 0): unstable disturbance. Solid line
(ε = 0.01, p0 = π): stable disturbance.

(3.12) for p0 = π. On the contrary, if p0 = 0, standing waves are unstable in regions where
χ(κ, ψ) > 1, that is, when 0 < κ < 1/κc or κ > κc, where κc ≡ κc(ψ) > 1 is such that
χ(κc(ψ), ψ) = 1. It is found numerically that 1.730 < κc(ψ) < 1.861, ∀ψ ∈ [0,π/2].
Therefore, our results support the following statement:

PROPOSITION. On deep water, bidirectional standing waves (5.9) with (5.8) and
p0 = 0 are exponentially unstable when k3/k1 (or k1/k3) ≥ 1.861.

Theoretical predictions have been compared with numerical integration of (1.1) and
results are in excellent agreement. A representative example is plotted in figure 4. Of
course, the unsteady perturbed solutions that appear on this plot may be expressed with
one of the explicit formulas given in § 4. To this aim, we first determine in each case
the function f in (2.20). From the data given in the caption of figure 4, we get a < 0
so that f may be factorized as (4.6), where the four roots ξi, i = 1, . . . , 4, may be
explicitly evaluated thanks to the expressions given in Appendix A since in both cases
q1 = q2 = q3 = q4 = q0(1 + ε); their numerical values are reported in table 1. Therefore,
because of the Manley–Rowe relations (2.4), the unsteady periodic solutions plotted in
figure 4 are |b1(t)|2 = q1 + q(t), where the functions q(t) are given by (4.21) for p0 = 0
(dashed line) and by (4.27) for p0 = π (solid line). Their respective periods are given in
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p0 ξ1 ξ2 ξ3 ξ4 τ

0 −0.05696 0 0.005644 0.05743 30.43
π 0 0.0004755 0.002822 + 0.1970i 0.002822 − 0.1970i 6.306

Table 1. Truncated values of the roots ξi of the quartic function (4.6) with a = −25.57 corresponding to
the parameters of the unsteady periodic solutions represented in figure 4 for ε = 0.01. Their respective exact
solutions q(t) are (4.21) for p0 = 0 and (4.27) for p0 = π; their crest–trough amplitude is ξ2 − ξ1 and their
period is τ .

0

η0(t)

100 200 300

(a) (b)
3/2

–3/2

0

3/2

–3/2

0

t
0 100 200 300

t
Figure 5. Free-surface elevation (5.11) at x = (0, 0) for ε = 0.01. Stable disturbance p0 = π (a); unstable

disturbance p0 = 0 (b). Data are those of figure 4 and table 1.

table 1. Their graphs cannot be distinguished from their numerical counterparts, as the
relative errors between numerical and exact solutions is of the order of 0.1 % at the final
time of the computations.

Finally, the free-surface elevation of these bifurcated solutions may be written as

ηquartet(x, t) = 2A1η1(t) cos(k1 · x) cos p1(t)+ 2A3η3(t) cos(k3 · x) cos p3(t),

η1(t) =
√

1 + ε + q(t)/q0, η3(t) =
√

1 + ε − q(t)/q0,

}
(5.11)

where Ai and q0 are defined in (5.9) and where the phases pi(t) are integrated numerically
from (2.3). Results are plotted in figure 5: they show in the unstable case (figure 5b) five
large-scale beats over ten periods τ of the corresponding function q(t). This is due to the
fact that the amplitudes |bi(t)| involve the square root of q(t); see (2.4).

5.3. Steady wave quartets and their stability
We now turn to the general case (1.3), on or off resonance. Consider first Kartashova’s
resonant quartet (Lvov, Nazarenko & Pokorni 2006; Kartashova 2010, p. 78):

K1 = (495, 90), K2 = (64, 128), K3 = (359, 118), K4 = (200, 100), (5.12)

useful for symbolic computation. Since �ω = 0 and �B �= 0 in that case, criterion 3.1
(§ 3.3) is of no use to construct a steady solution; we need another strategy. Testing q1 =
q2 ≡ q12 and q3 = q4 ≡ q34, the compatibility condition (3.5) with �ω = 0 becomes

q34

q12
= 4T − (B1 + B2) cos p0

4T − (B3 + B4) cos p0
≈
{

0.8546, if p0 = 0,
0.5857, if p0 = π.

(5.13)
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10 20 300

1

2
(a) (b)

t
10 20 300

1

2

t

|b
1
(t)

|2

Figure 6. Wave action of steady Kartashova’s resonant quartet (λK1, λK2, λK3, λK4) given by (5.12), λ =
1/300 and p0 = π (dotted lines) versus unstable solutions according to criterion 5.1 (solid lines). Initial wave
actions are in each case q12 ≈ 1.380 and q34 ≈ 0.8084. (a) Resonant solution with perturbed initial phase
mismatch p0 = 1.05π and same wave vectors. (b) Non-resonant solution with same phase mismatch p0 = π

and perturbed wave vectors (λk1, λk2, λk3, λk4) given by (5.15) and λ = 1/300. Solutions are |b1(t)|2 = q1 +
q(t) with q(t) given by (a) (4.27) and (b) (4.21).

Since q34/q12 > 0 in both cases, steady states exist. It may be checked that the instability
condition (3.9) becomes also (3.12) when q1 = q2 ≡ q12 and q3 = q4 ≡ q34. Since A/T ≈
−7.430 < −4 for Kartashova’s resonant quartet (5.12) or for any rescaled non-trivial
resonant quartet (λK1, λK2, λK3, λK4) according to (C4), we conclude immediately that
the corresponding steady wave quartet is stable if p0 = 0 and unstable if p0 = π. This
method may be employed for any other resonant quartet provided that the ratio q34/q12 is
positive. Therefore in summary, we have proved:

CRITERION 5.1. Steady resonant wave quartets (3.6) with q1 = q2 ≡ q12 and q3 = q4 ≡
q34 exist if

q34

q12
= 4T − (B1 + B2) cos p0

4T − (B3 + B4) cos p0
> 0 ( p0 = 0 or π). (5.14)

They are exponentially unstable if (A/T) cos p0 > 4.

(A companion criterion is given in Appendix D for q1 = q3 and q2 = q4.)
Unstable disturbed solutions can lie on the same resonant surface (figure 6a), or not. For

instance, if we consider the following non-resonant (but nearly resonant) quartet:

k1 = (500, 90), k2 = (60, 130), k3 = (360, 120), k4 = (200, 100), (5.15)

the corresponding unsteady solution is plotted in figure 6(b), showing again instability.
Let us now construct a steady solution for the non-resonant quartet (5.15). We first test

criterion 3.1 (§ 3.3), but since in that case �ω/�B > 0, a steady solution with q1 = q2 =
q3 = q4 does not exist; we need one more time another strategy. We are, however, lucky
with (5.15) because all the Bi defined in (2.9) have the same sign: negative. Thus we can
set qi = α/Bi expecting α < 0 for existence. From (3.5) we get

α = −
√

B1B2B3B4�ω

2T�B
cos p0 ( p0 = 0 or π). (5.16)

Since T > 0 for (5.15), we conclude that the only possibility to have α < 0 is p0 = 0.
Concerning stability, condition (3.9) with qi = α/Bi becomes

A
2T

√
B1B2B3B4 cos p0 >

(�B)2

4
+ (B1 + B2)(B3 + B4)− B1B2 − B3B4. (5.17)

Applying this condition for quartet (5.15) and p0 = 0 gives stability.
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The method presented here may be applied to any non-resonant quartet providing that
all the Bi have the same sign:

CRITERION 5.2. Steady non-resonant wave quartets (3.6) with Bi > 0 (respectively < 0)
and qi = α/Bi, i = 1, . . . , 4, where α is defined in (5.16), exist if α > 0 (respectively< 0).
They are exponentially unstable if (5.17) holds.

Other strategies might be used to construct steady non-resonant quartets. For instance
we can choose q1 = q2 and q3 = q4, or q1 = q3 and q2 = q4. In these cases, compatibility
condition (3.5) would yield affine relations between qi, but conditions for exponential
instability resulting from (3.9) would involve qi, contrary to the instability conditions given
in criteria 1 to 4. We shall not pursue this issue here.

6. The X-quartet: pump and beats

After steady and periodic solutions, let us now turn to the ‘exceptional cases’ mentioned
by Bretherton (1964). We start with the pump solution (4.16). Although an example has
already been given by Andrade & Stuhlmeier (2023a), we purpose here another specimen
based on the following orthogonal resonant quartet, the ‘X-quartet’:

k0
1 = (k0, 0), k0

2 = (−k0, 0), k0
3 = (0, k0), k0

4 = (0,−k0), k0 > 0, (6.1)

with initially q1 = q2 = q3 = q4 ≡ q0 > 0. We have, from Appendix C:

T

k3
0

= −3
4
,

[
Tij

k3
0

]
=

⎡
⎢⎣

1 −1 ν ν

−1 1 ν ν

ν ν 1 −1
ν ν −1 1

⎤
⎥⎦ , ν = 4

√
2 − 5
28

, (6.2)

so that, from (2.9) and (2.21):

A

k3
0

= −4
7
(1 + 2

√
2),

A
4T

= 4
21
(1 + 2

√
2) ∈ [−1, 1],

a

k6
0

= 1
49
(297 − 64

√
2) > 0.

(6.3)

Furthermore, since�ω = 0 and�B = 0 in that case, both conditions in (4.18) are fulfilled
for the existence of the pump solution (4.19). It remains to set p0 = P0, where

P0 = arccos
(

A
4T

)
= arccos

(
4
21
(1 + 2

√
2)
)
. (6.4)

Once q(t) is replaced by (4.19), it may be checked, after squaring (2.7), that p(t) = P0.
Furthermore, the individual phases may be integrated since, from (2.3), we have simply
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(a) (b) (c) (d ) (e)

Figure 7. Snapshots of the free-surface elevation (6.6) of the X-pump in the region k0x ∈ [−4π, 4π],
k0y ∈ [−4π, 4π] (g = 1): (a) Ω0t = −2, (b) Ω0t = −1, (c) Ω0t = 0, (d) Ω0t = 1, (e) Ω0t = 2.

dpi/dt = −ω0 + 2k3
0q0, i = 1, . . . , 4. Therefore, the solution of (1.1) is the ‘X-pump’:

b1(t) = b2(t) =
√

q0 + q(t)e−iΩ0t, b3(t) = b4(t) =
√

q0 − q(t)e−i(Ω0t+ 1
2 P0), (6.5)

where q(t) = q0 tanh(
√

aq0t), Ω0 = ω0 − 2k3
0q0 and ω0 = √

gk0. Free surface is

ηquartet(x, t) = 2A0η+(t) cos(k0x) cos(Ω0t)+ 2A0η−(t) cos(k0y) cos
(
Ω0t + P0

2

)
,

A0 =
√

2k0q0

ω0
, η±(t) =

√
1 ± tanh(

√
aq0t), Ω0 = ω0 − 2k3

0q0, q0 > 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.6)

and where a and P0 are given respectively in (6.3) and (6.4). Figure 7 illustrates the fact
that the energy of components (k0

3,k0
4) is pumped and totally transferred to (k0

1,k0
2), that

is, from the y standing wave to the x standing wave.
One might expect that this pump solution could be reproduced experimentally; however,

both standing waves constituting the complete solution (6.6) are linearly unstable with
respect to infinitesimal disturbances constituted by the other couple of waves according to
instability condition (3.8) applied for instance to the bichromatic wave (k0

1,k0
2) with q1 =

q2 disturbed by (k0
3,k0

4) yielding 16T2 > 4(1 + 4ν)2k6
0, true from (6.2). The converse

being true, both instabilities may feed each other.
This is illustrated in figure 8 in which is represented the X-pump (dashed line) and

a perturbed solution where a relative error of 0.1 % has been made on the initial phase
mismatch p0: the perturbed solution is periodic (solid line). In fact, the roots of (4.6) are,
from (A2) with B = 0 and T and A given by (6.2) and (6.3):

ξi

q0
∈
{

±
√

21(1 + cos p0)

25 + 8
√

2
,±
√

21(1 − cos p0)

17 − 8
√

2

}
. (6.7)

They are plotted in figure 9(a). They coincide by pairs for p0 = P0 and are distinct for any
p0 /∈ {0,P0,π}, two being positive, two negative. The solution is in that case periodic and
completely determined by (4.8) together with a in (6.3) and ξi (6.7); their period is (4.10)
(figure 9b), and their crest–trough amplitude at fixed p0 is: 2 min |ξi|, i = 1, . . . , 4. These
are the ‘X-beats’ in which energy is periodically exchanged between components (k0

1,k0
2)

and (k0
3,k0

4). Note finally that 0 is a double root if p0 = 0 or π, corresponding to steady
standing waves discussed in § 5.2.
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0 5 10 15 20

–1

0

1

k0
3q0t

q(
t)/
q 0

Figure 8. Solutions of (2.18) for (6.1) with q1 = q2 = q3 = q4 ≡ q0. X-pump with p0 = P0 (dashed line);
X-beats with p0 = 1.0001P0 (solid line). P0 is given by (6.4).

π/4 π/2 3π/4 π0 π/4 π/2 3π/4 π0

1

2

3
(a) (b)

p0 p0

2

τ̃
ξ̃i

4

6

Figure 9. (a) Dimensionless roots ξ̃i = |ξi/q0| given by (6.7) of the quartic (4.6) for the X-quartet (6.1). The
dashed line corresponds to p0 = P0 (6.4) of the X-pump solution (6.6). (b) If p0 /∈ {0,P0,π}, solutions are
periodic X-beats given by (4.8) with dimensionless period τ̃ = k3

0q0τ given by (4.10).

7. Breathers

7.1. The Ψ -breathers
Looking for breathers is a difficult task because two or three roots of the quartic function
(4.6) have to coincide in a non-symmetric way, as compared with the X-pump solution
(4.19) for which the roots were equal by pairs and opposite.

Fortunately, one branch of such breathers bifurcates from the X-pump solution studied
previously. Indeed, consider the one-parameter family of resonant quartet:

kε1 = (α+, 0), kε2 = (−α−, 0), kε3 = (β, γ ), kε4 = (β,−γ ),

α± = k0

(
1 ± 1

2ε + 1
4ε

2
)2
, β = k0ε

(
1 + 1

4ε
2
)
, γ = k0

(
1 − 1

16ε
4
)
,

⎫⎬
⎭ (7.1)

where ε ≥ 0, with ε �= 2 to avoid kε3 = kε4, is the main parameter (k0 > 0 is just a scaling
parameter). Quartet (7.1) is a member of the ‘tridents’ (D2) proposed by Lvov et al. (2006),
with (m, n) = (1, ε/2). The X-quartet (6.1) is matched for ε = 0.

With (7.1), it is found numerically that T < 0, A < 0 and�B > 0 for any positive ε �= 2.
Furthermore, 4T − A > 0 (then a < 0) for any ε �= 2 such that ε1 < ε < ε2, and 4T − A <
0 (then a > 0) otherwise, where ε1 ≈ 0.4672 and ε2 ≈ 8.562. Therefore, we may expect
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0 300 600

–1

0

1

(a) (b)

t
–300–300 0 300 600

0

t

p(t)

q(
t)/
q 0

π/4

–π/4

Figure 10. The Ψ -breathers corresponding to quartets (7.1) with k0 = 1, q0 = 0.01 and p0 given by (7.4), for
ε = 0.2 (dotted line), ε = 0.1 (dot-dashed line), ε = 0.05 (dashed line) and ε = 0.01 (solid line); the grey line
corresponds to the X-pump (4.19) for which ε = 0. (a) Relative action q(t). (b) Relative phase p(t).

to find breathers of the kind (4.14) for 0 < ε < ε1 (because a > 0), and those of the kind
(4.23) or (4.25) for ε1 < ε < ε2, ε �= 2 (because a < 0). The case ε = ε1 (then a = 0) will
be considered later.

To construct breathers (4.14) bifurcating from the X-pump (6.6), we consider 0 < ε < ε1
(so that a > 0) and choose again initially q1 = q2 = q3 = q4 ≡ q0 > 0. To do so, two
roots have to coincide, so we impose arbitrarily the following constraint for the negative
roots: ξ12 = ξ1 = ξ2 = −q0 < 0, while 0 ≤ ξ3 < ξ4. Since the initial wave actions are
equal, the four roots are given explicitly by (A2), here with

�ω = 0, �B > 0, T < 0, 4T ± A < 0, (7.2)

since 0 < ε < ε1. Roots are therefore real and such that ξ (−)− < 0 < ξ
(+)
− . Since the two

negative roots must coincide with −q0, we get a first compatibility condition:√
(�B)2 + 16T(4T − A)(1 − cos p0) = 2(A − 4T)−�B. (7.3)

Positiveness of the right-hand side is ensured when 0 < ε ≤ ε3, with ε3 ≈ 0.3705. In that
range, on squaring the above equality, we get cos p0 = (A −�B)/(4T) ≥ 0. Furthermore,
it may be checked numerically that the constraint cos p0 ≤ 1 is ensured providing that
0 < ε ≤ ε4, with ε4 ≈ 0.3213. Therefore, in that range, we may choose

p0 = arccos
(

A −�B
4T

)
. (7.4)

With (7.4), the four roots are therefore ξ12 = ξ
(±)
± , ξ3 = ξ

(−)
+ , ξ4 = ξ

(+)
− :

ξ12 = −q0, ξ3 =
(

1 − �B
A − 4T

)
q0, ξ4 =

(
1 − �B

A + 4T

)
q0. (7.5)

Note that p0 = 0, ξ3 = 0 and ξ4/q0 = 8T/(A + 4T) when ε = ε4 ≈ 0.3213, which
corresponds to the end point of this branch of solutions.

Together with a = (4T + A)(4T − A), roots (7.5) completely determine the solution
(4.14), referred to as the ‘Ψ -breathers’ represented in figure 10 for various values of ε.
Note that �B = 0 for ε = 0, so that (7.4) matches with (6.4) obtained for the X-pump
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Figure 11. Free-surface elevation (5.5) at x = (0, 0) for the Ψ -breathers (7.1) with (7.4) for ε = 0.01 (a), ε =
0.05 (b), ε = 0.1 (c) and ε = 0.2 (d). Computations have been carried out backward and forward from t = 0,
with g = 1, k0 = 1 and q0 = 0.01.

solution. Expansion near ε = 0 gives, up to the second order:

ξ12

q0
= −1,

ξ3

q0
= 1 − 5

46
(17 + 8

√
2)ε2,

ξ4

q0
= 1 + 5

142
(25 − 8

√
2)ε2,

a

k6
0

= 1
49
(297 − 64

√
2)− 8

7
(17 − 8

√
2)ε + 1

9604
(35 017 − 86 052

√
2)ε2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.6)

It is interesting for the Ψ -breathers to reconstruct the free-surface elevation. Since the
relative q(t) is given explicitly by (4.14), the relative phase p(t) defined in (2.2) may
be deduced from (2.7) and plotted in figure 10. Then, the four individual moduli |bi(t)|
are deduced from the Manley–Rowe equation (2.4), while numerical integration of (2.3)
is necessary to obtain the individual phases pi(t) = arg bi(t) in order reconstruct the
free-surface elevation given by (5.5). This is achieved in figure 11 for the Ψ -breathers
defined by (7.1), (7.4) and (7.5) for different values of the parameter ε that quantifies
the departure from the X-pump solution (6.6). Is is clear from figure 11 that the
sole considerations of q(t) and p(t) represented in figure 10 cannot explain the local
behaviour of ηquartet(0, t) and that phase mixing must be invoked to explain such
destructive/constructive interferences (the π/2 relative phase jump is also worth noting).
Whether this kind of behaviour may be related or not to the occurrence of extreme events
is left for future investigation.

Finally, if ε = ε1 or ε = ε2, then A = 4T and a = 0, so that f in (2.18) becomes
cubic and reads as (B1), where here b = −2A(�B)q0 > 0. It may be deduced from the
considerations of Appendix B in that case that if we constrain the positive roots to coincide,
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i.e. ξ23 ≡ ξ2 = ξ3 = q0, then we get the following compatibility conditions:

cos p0 = 1 + �B
A

∈ [−1, 1], ξ1 = −
(

1 + �B
2A

)
q0 ≤ 0. (7.7)

For both ε = ε1 and ε = ε2 we have the same numerical value for�B/A ≈ −0.8487; both
conditions above are fulfilled and the corresponding solution is breather (B4).

7.2. Looking for rational breathers
Since a < 0 when ε �= 2 lies in the range ε1 < ε < ε2, we expect to find rational breathers
(4.25). Suppose that the triple root which characterizes this solution is positive, ξ2 = ξ3 =
ξ4 ≡ ξ234 > 0, so that ξ1 ≤ 0. Now, contrary to the case a > 0 for which the multiple
roots must coincide (in absolute value) with the initial wave actions because of (4.1), roots
satisfy in the present case the following inequalities:

− q0 ≤ ξ1 ≤ 0 < ξ234 ≤ q0. (7.8)

However, no rational breather has been found for the resonant trident (7.1).
Thus, constraints imposed by the coincidence of three roots of the quartic function f

make the search for rational breathers even more difficult than for other breathers. For
reasons that will be made clear later, still for the quartet (7.1), we consider the point in
parameter space where A = 12T . It is found numerically that it corresponds to ε = ε0,
where ε0 ≈ 0.7475. Now, from this point of bifurcation, we consider the following family
of non-resonant quartet:

k1 = kε0
1 + κ, k2 = kε0

2 − κ, k3 = kε0
3 , k4 = kε0

4 , κ = (k0κx, k0κy), (7.9)

where the wave vectors kεi are defined in (7.1) and where (κx, κy) are real numbers.
Now, if we impose on the roots in (7.8) the constraints ξ1 = 0 and ξ234 = q0 > 0, and if

we assume that A = 12T and cos p0 = −1, then it may be deduced from (A2) that q0 must
satisfy the following compatibility condition:

q0 = − �ω

�B + 16T
> 0, (7.10)

where all parameters are to be evaluated on the non-resonant manifold (7.9). In figure 12
is represented in the (κx, κy) plane the curve (Γ ) defined by A = 12T that bifurcates from
the origin O corresponding to κ = 0. This curve passes through points P1, P2 and P3 and
forms a loop which crosses light-grey regions in which condition (7.10) is violated, so that
rational breathers of the kind considered here exist on any point of (Γ ), except in these
shadowed regions.

Truncated values of a = −128T2 (since A = 12T) and q0 in (7.10) are reported in
table 2. Since ξ1 = 0 and ξ234 = q0, the corresponding rational breathers are (4.26). The
values of the frequency mismatch show that for |�ω|/(k3

0q0) to stay of order 1, one must
stay on curve (Γ ) between O and approximately P1 to keep physical insight.

8. Summary and perspectives

The complete solutions of the cubic nonlinear equations (1.1) first derived by Armstrong
et al. (1962) and Benney (1962) have been presented in order to determine, paraphrasing
Phillips (1960), the ‘elementary interactions’ inside an isolated quartet of waves
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(Γ )
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κy

Figure 12. Curve (Γ ) defined by A = 12T in the (κx, κy) plane defined in (7.9). The origin O corresponds to
(κx, κy) = (0, 0) for which (7.9) matches (7.1). The oval (dashed line) crossing (Γ ) in O is the resonant curve
�ω = 0. The dashed curve is defined by �B + 16T = 0. The light-grey region delimited by these two curves
is defined by�ω/(�B + 16T) > 0. The dark-grey regions are defined by a = 16T2 − A2 > 0. The coordinates
of points P1, P2 and P3 are reported in table 2.

Point κx κy a/k6
0 (k3

0/
√

g)q0 |�ω|/√g |�ω|/(k3
0q0)

P1 −0.15 0.2971 −7.010 0.1344 0.08258 0.6145
P2 −1.032 1 −13.96 0.007141 0.03479 4.872
P3 2.013 0 −282.8 0.03019 1.407 46.62

Table 2. Coordinates and values of a, q0 and |�ω| for P1, P2 and P3 of figure 12.

satisfying (1.3). Following the works of Bretherton (1964), Inoue (1975), Turner (1980),
Shemer & Stiassnie (1985), Cappellini & Trillo (1991), Stiassnie & Shemer (2005) and
Andrade & Stuhlmeier (2023a,b), the system has been reduced in § 2 to a single ordinary
differential equation – the Bretherton equation (2.18) – governing the evolution of an
auxiliary variable: the relative action q(t) vanishing initially and related to the modulus
|bi(t)| by the Manley–Rowe relations (2.4).

To summarize, the nature of a given non-degenerate wave quartet with wave vectors
ki satisfying (1.3) and prescribed initial amplitudes bi(0) �= 0, i = 1, . . . , 4, may be
determined through the following steps:

(a) Compute the initial wave actions qi = |bi(0)|2, the initial phase mismatch p0 from
(2.12), the linear frequencies ωi = ω(ki) from the dispersion law of the medium
under consideration and the frequency mismatch �ω from (1.4).
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(b) Compute the nonlinear coupling coefficients Tij and T as given in Appendix C for
deep-water gravity waves, and the coefficients A, B, C and a, b, c, d, e from (2.9),
(2.19) and (2.21). Form the polynomial function f in (2.20).

(c) Nature of the quartet.
(i) If p0 = 0 or p0 = π, and if condition (3.5) holds, then the wave quartet is steady

(theorem 3.1). In that case, the quartet is exponentially unstable if inequality
(3.9) holds (theorem 3.2), algebraically unstable if equality holds, otherwise the
quartet is nonlinearly stable in the sense of Lyapunov (Lagrange theorem).

(ii) If p0 �= 0 and p0 �= π, or if condition (3.5) is violated, then the wave quartet is
unsteady. In that case, we have to compute the roots ξi of f and determine the
corresponding solution q(t) according to the classification of either § 4 if a �= 0,
or Appendix B if a = 0.

As anticipated by Bretherton (1964), periodic solutions q(t) are the rule (the full
field is, however, generally not periodic, as discussed by Stiassnie & Shemer (2005)),
steady or unsteady non-periodic solutions are the exceptions. Indeed, steady solutions
are constrained by the conditions recalled above, while unsteady non-periodic solutions
(breathers or pump) are constrained by the equality of two or three roots ξi of the function f .

The reverse problem which consists of finding a priori steady or non-periodic solutions
is much more delicate, because of the complexity of the coefficients Tij and T of the
dispersive medium under consideration. In the steady case, one has to solve the algebraic
compatibility relation (3.5), while in the unsteady case one has to elaborate strategies to
make two or three roots ξi of f coincide. This reverse problem was the object of § 5 (steady
solutions), and §§ 6 and 7 (pump and breather solutions).

By steady solutions, we mean those for which the relative wave action q(t) vanishes
identically, the corresponding waves of the quartet having therefore constant amplitudes
|bi|2 = qi. In addition to theorems 3.1 and 3.2 giving general conditions for existence and
stability of non-degenerate steady quartets, four criteria have been deduced for particular
choices of the initial amplitudes qi. As pointed out in § 3.4, the various stability criteria
derived through the present paper are also formally valid in the nonlinear regime because
of a famous theorem by Lagrange, stability being defined in the sense of Lyapunov. This
formal result is, however, of restricted utility for reasons explained at the end of § 3.4,
essentially because our study is restricted to a single isolated quartet. However, it might be
useful for experimental purposes to observe the steady stable solutions under controlled
conditions.

Most of the unsteady solutions of the Bretherton equation (2.18) discussed in § 4 and
Appendix B have already been published in the literature, but spread in different fields of
physics including essentially plasma physics, nonlinear optics and hydrodynamics, with
more or less permeability between the various fields. Chronologically, these include the
works by Inoue (1975), Boyd & Turner (1978), Turner (1980), Shemer & Stiassnie (1985),
Chen & Snyder (1989), Chen (1989), Cappellini & Trillo (1991), Stiassnie & Shemer
(2005) and recently Andrade & Stuhlmeier (2023a,b). Some solutions were known only
in particular cases, such as the breathers (4.14) and (4.23), and, to our point of view, a
complete and unified classification was lacking.

Various examples of isolated deep-water gravity wave quartets have then been
elaborated, such as among others, the X-pump and X-beats (§ 6) which are bifurcated
solutions from the bidirectional standing wave built on the X-quartet (6.1), and the
Ψ -breathers (§ 7) built from the trident quartets (7.1) of Lvov et al. (2006). A number
of these solutions have been found to bifurcate to periodic large-amplitude solutions
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(the X-beats for instance) in a way similar to the Fermi–Pasta–Ulam recurrence for the
modulational instability (Yuen & Lake 1982; Shemer & Stiassnie 1985, 1991; Trillo &
Wabnitz 1991; Janssen 2004; Leblanc 2009). This behaviour is also illustrated in the phase
portraits in figure 2 of Andrade & Stuhlmeier (2023a): in this figure, the dots correspond
to steady solutions and are connected by a heteroclinic orbit in phase space which
corresponds to a breather; one sees that any departures from these saddle points or from
heteroclinic orbits bifurcate to closed orbits corresponding to periodic large-amplitude
solutions. Similar observations were made by Cappellini & Trillo (1991) and Andrade &
Stuhlmeier (2023b) for the three-wave cubic interaction.

What was surprising to me is that stability or instability of non-degenerate quartets has
to be understood as structural since no external disturbance is necessary for a solution
to be unstable, in contrast for instance to the decay instability or to the modulational
instability of Stokes wave or bichromatic wavetrains, where disturbances assimilated to
interacting waves with initially infinitesimal amplitudes have to be superimposed to the
initial states. Here, in the unstable case, any small departure from the initial conditions
leads to a solution that diverges initially from the steady state.

I conclude this paper with possible related issues:

(a) Compute the response of the Zakharov equation (5.1) to initial data of the form
B(k, 0) = ∑4

i=1 bi(0)δ(k − ki) and compare with solutions of the truncated model
(1.1), on or off resonance. Alternatively, is the Stokes wave the unique exact solution
of (5.1) in the form B(k, t) = ∑N

i=1 bi(t)δ(k − ki), N ≥ 1?
(b) Can isolated quartet models such as the bidirectional standing wave (5.9) and the

X-pump (6.6), the Ψ -breather or their bifurcated periodic states be reproduced
numerically or experimentally, as for steady states (Liu et al. 2015)?

(c) Is there a connection between the large variations observed in figure 11 and the
occurrence of rogue waves (Onorato et al. 2013)?

(d) Would instabilities grow super-exponentially if a linear forcing term were added
to (1.1) or (1.6), as predicted from cubic forced nonlinear Schrödinger and
Davey–Stewartson equations (Leblanc 2007, 2008)?
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Appendix A. Simple expressions for the roots of the quartic

If a �= 0 and q1 = q2 ≡ q12 and q3 = q4 ≡ q34, then (2.18) is

f (q) = f (−)(q)f (+)(q), f (±)(q) = 4T(q12 + q)(q34 − q)± (Aq2 + Bq + C), (A1)
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from which the roots may be easily deduced. When q1 = q2 = q3 = q4 ≡ q0, they are

ξ
(−)
± =

−�ω − q0�B ±
√
(�ω + q0�B)2 + 16T(4T − A)(1 − cos p0)q2

0

2(A − 4T)
,

ξ
(+)
± =

−�ω − q0�B ±
√
(�ω + q0�B)2 + 16T(4T + A)(1 + cos p0)q2

0

2(A + 4T)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A2)

Appendix B. Exact solutions for cubic or quadratic potentials

If a = 0 and b �= 0, f is a cubic polynomial the factorization of which is

f (q) = b(q − ξ1)(q − ξ2)(q − ξ3). (B1)

Roots ξ1, ξ2, ξ3 are real. Unsteady solutions of (2.18) with (2.5) for b > 0 are given below
(see Craik 1985, pp. 137–139). Those for b < 0 may be deduced by symmetry.

If f admits three distinct roots such that ξ1 ≤ 0 < ξ2 < ξ3 or ξ1 < 0 ≤ ξ2 < ξ3
(figure 1h), then (2.18) with (2.5) admits the pair of periodic solutions {QVIII(t), QVIII(−t)}
with

QVIII(t) = ξ1 + (ξ2 − ξ1) sn2(u(t), k), u(t) = γ t
2

+ sn−1(l, k),

γ =
√

b(ξ3 − ξ1), k =
√
(ξ2 − ξ1)/(ξ3 − ξ1), l =

√
−ξ1/(ξ2 − ξ1).

⎫⎬
⎭ (B2)

Period is τ = 4γ−1K(k). At the initial time:

Q̇VIII(0) = γ l(ξ2 − ξ1)
√

1 − l2
√

1 − k2l2 ≥ 0. (B3)

A solution similar to (B2) was first found by Armstrong et al. (1962).
If f admits a single root ξ1 and a double root ξ23 such that ξ1 ≤ 0 < ξ23 (figure 1i), then

(2.18) with (2.5) has the pair of breather solutions {QIX(t), QIX(−t)} with

QIX(t) = ξ23
cosh(μt)+ 2r sinh(μt)− 1
cosh(μt)+ 2r sinh(μt)+ s

, μ =
√

b(ξ23 − ξ1),

r =
√

−ξ1(ξ23 − ξ1)/(ξ23 − 2ξ1), s = ξ23/(ξ23 − 2ξ1).

⎫⎪⎬
⎪⎭ (B4)

At the initial time: Q̇IX(0) = √−bξ1ξ23 ≥ 0. Solution (B4) is not mentioned by Craik
(1985) and has curiously not been found elsewhere. Note that from (4.1): ξ23 = q3 =
q4 ≡ q34. Therefore, expanding (B1) and (2.18) with 4T = ±A yields the compatibility
conditions ξ1 ≤ 0 and q34 > 0 with

ξ1 = q1q2 sin2 p0

±2
√

q1q2 cos p0 − q1 − q2
, q34 = ±A

√
q1q2 cos p0 −�ω − B1q1 − B2q2

A − B3 − B4
.

(B5a,b)

Finally, if a = b = 0, then f is quadratic with factorization f (q) = c(q − ξ1)(q − ξ2).
Since q(t) is bounded, then necessarily c < 0 and the two roots ξ1 and ξ2 are real and such
that ξ1 ≤ 0 < ξ2 or ξ1 < 0 ≤ ξ2. Therefore, (2.18) with (2.5) has the pair of sinusoidal
solutions {QX(t), QX(−t)} with

QX(t) = 1
2(ξ1 + ξ2)(1 − cos(

√−ct))+
√

−ξ1ξ2 sin(
√−ct). (B6)

Period is τ = 2π/
√−c. At the initial time: Q̇X(0) = √

cξ1ξ2 ≥ 0. An equivalent solution
is given by Chen (1989). The two roots ξ1, ξ2 may be given explicitly.
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Appendix C. Coupling coefficients

Krasitskii’s kernel T ≡ T(k1,k2,k3,k4) as given by Janssen (2004, p. 206) is:

T = U−1,−2,3,4 + U3,4,−1,−2 − U3,−2,−1,4 − U−1,3,−2,4 − U−1,4,3,−2 − U4,−2,3,−1

− V(−)1,3,1−3V(−)4,2,4−2

(
(ω3 + ω1−3 − ω1)

−1 + (ω2 + ω4−2 − ω4)
−1
)

− V(−)2,3,2−3V(−)4,1,4−1

(
(ω3 + ω2−3 − ω2)

−1 + (ω1 + ω4−1 − ω4)
−1
)

− V(−)1,4,1−4V(−)3,2,3−2

(
(ω4 + ω1−4 − ω1)

−1 + (ω2 + ω3−2 − ω3)
−1
)

− V(−)2,4,2−4V(−)3,1,3−1

(
(ω4 + ω2−4 − ω2)

−1 + (ω1 + ω3−1 − ω3)
−1
)

− V(−)1+2,1,2V(−)3+4,3,4

(
(ω1+2 − ω1 − ω2)

−1 + (ω3+4 − ω3 − ω4)
−1
)

− V(+)−1−2,1,2V(+)−3−4,3,4

(
(ω1+2 + ω1 + ω2)

−1 + (ω3+4 + ω3 + ω4)
−1
)
, (C1)

where ωi = ω(ki) = √
gki, ki = |ki| and ωi±j = ω(ki ± kj), and where for instance

U1,2,3,4 = k1k2

16

√
ω3ω4

ω1ω2
(2k1 + 2k2 − k1+3 − k1+4 − k2+3 − k2+4),

V(±)1,2,3 =
√

2g
8

(
X(±)1,2

√
ω3

ω1ω2
+ X(±)1,3

√
ω2

ω1ω3
+ X(+)2,3

√
ω1

ω2ω3

)
, etc.,

X(±)i,j = ki · kj ± kikj, ki±j = |ki ± ki|, i, j = 1, . . . , 4.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(C2)

According to Krasitskii (1990, 1994), T obeys the symmetries

T(k1,k2,k3,k4) = T(k2,k1,k3,k4) = T(k1,k2,k4,k3) = T(k3,k4,k1,k2). (C3)

Another important property of T is positive homogeneity:

T(λk1, λk2, λk3, λk4) = |λ|3T(k1,k2,k3,k4), ∀λ ∈ R. (C4)

In particular, T(−k1,−k2,−k3,−k4) = T(k1,k2,k3,k4). Note also that, on deep water,
T does not depend explicitly on gravity acceleration: ∂T/∂g = 0.

Kernel T is singular for k2 = −k1, or k3 = k1, or k4 = k1, etc., but singularities can
be removed (see Zakharov 1999). For instance, Tij = T(ki,kj,ki,kj) may be written as
(Zakharov 1999; Leblanc 2009)

Tij = (ki + kj)ki · kj −
3k2

i k2
j + (ki · kj)

2

4
√

kikj

− 1
2
√

kikj

(
(ωi − ωj)

2(X(+)i,j )
2

(ωi−j)2 − (ωi − ωj)2
+

(ωi + ωj)
2(X(−)i,j )

2

(ωi+j)2 − (ωi + ωj)2

)
, (C5)

from which can be deduced Tii = T(ki,ki,ki,ki) = k3
i , in agreement with Benney (1962).
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For standing waves with k2 = −k1 and k4 = −k3, T may be written as

T(k1,−k1,k3,−k3) = k2
1 + k2

3
4

√
k1k3 + k1+3 + k1−3

8

(
2k1k3 −

√
k1k3(k1 + k3)

)

− k1 + k3

2
k1k3 − 1

8
√

k1k3

(
Y(−)1,3

(ω1−3)2 − (ω1 − ω3)2
+ Y(+)1,3

(ω1+3)2 − (ω1 − ω3)2

)
,

Y(−)1,3 =
(
ω1−3X(−)1,3

)2 −
(
ω1X(+)1−3,3 − ω3X(+)1,3−1

)2
,

Y(+)1,3 =
(
ω1+3X(+)1,3

)2 −
(
ω1X(−)1+3,3 − ω3X(−)1,3+1

)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C6)

If k1 = k3 ≡ k0, we get T(k1,−k1,k3,−k3) = −1
8 k3

0(7 + cos(2ψ)) with ψ = angle
(k1,k3). In particular, T(k0,−k0,k0,−k0) = −k3

0, in agreement with Okamura (1984).

Appendix D. An alternative criterion for resonant quartets

CRITERION D.1. Steady resonant wave quartets (3.6) with q1 = q3 ≡ q13 and q2 = q4 ≡
q24 exist if q24/q13 = (B3 − B1)/(B2 − B4) > 0. They are exponentially unstable if

A
2T

cos p0 >
B2 − B4

B3 − B1
+ B3 − B1

B2 − B4
( p0 = 0 or π). (D1)

Kartashova’s quartet (5.12) is disqualified since (B3 − B1)/(B2 − B4) < 0. Instead, we
consider the resonant ‘tridents’ proposed by Lvov et al. (2006):

k1 = (α+, 0), k2 = (−α−, 0), k3 = (β, γ ), k4 = (β,−γ ),
α± = (m2 ± mn + n2)2, β = 2mn(m2 + n2), γ = m4 − n4,

}
(D2)

where (m, n) are positive integers (or real numbers) and m �= n to avoid k3 = k4. The first
qualified candidates for criterion D.1 are couples (m, n) = (1, 17) and (2, 33): both exist
for p0 = 0 or π and are stable. No unstable configuration has been found for m = 1 and
n ≥ 17, nor for m = 2 and n ≥ 33.

By contrast, according to criterion 5.1 (§ 5.3), a steady quartet corresponding to (m, n) =
(1, 3) exists for p0 = π but is unstable; (1, 4) and (1, 5) exist for p0 = π and are stable;
(1, 6) to (1, 100) exist for p0 = 0 or π and are stable; (2, 5) to (2, 8) exist for p0 = π but
are unstable; (2, 9) and (2, 10) exist for p0 = π and are stable; (2, 11) to (2, 100) exist for
p0 = 0 or π and are stable.
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