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ABSTRACT. A theory is developed for evaluating the vertical refraction 
angle from the variance of the angle-of-arrival fluctuations, assuming 
a horizontally homogeneous turbulent atmospheric surface layer. The 
vertical refraction angle is mainly a function of the vertical 
temperature gradient, and the variance of the angle-of-arrival is related 
to the temperature structure parameter Cp 2. However, surface layer 
similarity theory states that both the mean vertical temperature gradient 
and C T 2 are functions of the same scaling temperature T^ and a thermal 
stability parameter. This therefore provides an indirect method of 
determining the vertical refraction angle from a measurement of the 
variance of the angle-of-arrival and an estimate of the thermal stability 
parameter. Advantages of this method over other techniques of evaluating 
vertical refraction are discussed. 

1. INTRODUCTION 

The precise determination of the atmospheric effect on vertical angle 
measurements must still be considered a primary research topic in 
geodesy. An improvement of precision in determining the vertical 
refraction angle would greatly benefit many geodetic operations. 

Considering the present state-of-the-art in determination of the vertical 
refraction angle, two different approaches can be distinguished 
(Prilepin, 1 9 7 * 0 : the meteorological and the instrumental solution. 
The meteorological solution is based either on the selection of favourable 
observation times when refraction effect prediction is more reliable, or 
on design of a realistic atmospheric model for which meteorological 
parameters may be determined from measurements such as temperature 
gradients or heat fluxes (Brunner, 1 9 7 8 ) . Much of the present 
understanding of the nature of atmospheric refraction must be attributed 
to the meteorological approach. It seems unlikely, however, that it will 
generally yield an accuracy of 0.5" for the vertical refraction angle. 

The underlying principle of the instrumental solution is the dispersion 
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effect of light waves propagating through the atmosphere. Several 
technical solutions have been proposed (Prilepin, 197M , and a few have 
resulted in actual prototypes (Tengstrom, 1978; Glissmann, 1976; 
Williams, 1978). It is not unrealistic to predict that these 
instruments will yield an accuracy of 0.5" for the vertical refraction 
angle in the near future. However, test measurements have shown that 
atmospheric turbulence causes considerable problems in measuring the 
small dispersion angle, and precise measurements are only possible 
during favourable observation times. 

The theory of a new approach to the determination of the vertical 
refraction will be presented here. In principle, it utilizes exactly 
that effect of the turbulent medium on light wave propagation, which has 
caused difficulty for the instrumental solution. A single vertical 
angle observation of a remote target through the telescope of a 
theodolite can be considered as the sum of the mean value and the 
momentary deviation from this mean value caused by turbulence in the 
atmosphere. For all derivations in this paper the ergodic hypothesis 
is invoked, replacing ensemble averages by time averages (denoted by 
overbars). The angle-of-arrival fluctuations are defined as the 
fluctuations of the normal on to the arriving wave front at the telescope 
(Lawrence and Strohbehn, 1970). The variance of the vertical component 
of the angle-of-arrival fluctuations is denoted by c a

2 . 

It has been shown (e.g., Brunner, 1978) that the mean angle of refraction 
is related to the mean vertical refractive index gradient, and (Appendix) 
that the variance of the angle-of-arrival fluctuations is related to the 
refractive index structure parameter C n

2 , characterising the structure 
of the atmospheric turbulence along the line of sight. Atmospheric 
surface layer theory (Appendix) states that statistics of the mean and 
the turbulent flow fields are functions of scaling and a stability 
parameter. For dry air it follows that the mean gradient and the 
structure parameter of the refractive index can both be expressed as 
functions of the scaling temperature T# and an atmospheric stability 
parameter. Eliminating T^ in these expressions, it is possible to 
calculate the mean angle of refraction from a measurement of the variance 
of the angle-of-arrival and an estimate of the atmospheric stability 
parameter. 

The remainder of this paper explains the principal features of the theory, 
treating the simple case of a horizontal line of sight in a horizontally 
homogeneous turbulent medium. Humidity effects have also been neglected 
in the present derivations. The possible extension of this theory to 
more realistic cases (inclined line of sight, general topography, 
humidity effects for water crossings) is briefly discussed. In 
anticipation of this extension the theory is based on the height-
independent scaling temperature T^, rather than on the mean temperature 
gradient which is a function of height. 
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2. THEORY 

2 . 1 Mean angle of refraction 

The curvature of an optical ray is related to the vertical gradient of 
refractivity (3N/3z). The time average of the refraction angle, "6, 
observed at A for a horizontal line of sight from A to B, can then 
be derived as (Brunner, 1978) 

-io"6 

s _ 
3N 

where (3N/3z) is the mean vertical refractivity gradient, S is the 
path length, and x is an integration variable, see Figure 1 . The 
second term of the integral of equation (l) represents a weighting 
function for the refractivity gradients. 
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Figure 1. Geometry of the observation set-up. 

Using the formula of Barrel and Sears, equation (A12), the gradient of 
refractivity can be derived as 

3N = N / T 3P _ _BT N , , 

8z T P 3z 3z ; { } 

where T is the temperature in degrees Kelvin, 3P/3z is the vertical 
pressure gradient, and 3T/3z is the vertical temperature gradient. 
The small effect of the water vapour pressure gradient has been 
neglected in equation (2). Substituting the hydrostatic equation 

— = - ( 3 ) 

3z R T K D J 

and the relationship (sufficiently accurate in the present context) for 
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the potential temperature gradient 

az 9z 

in equation (2) yields 

3z T R 3z 

where r is the adiabatic lapse rate ( 0 . 0 0 9 8 K 1 ) , and g/R is the 
ratio of gravity to the gas constant ( 0 . 0 3 ^ 2 K m " " ) . Transition of 
equation (5) to the average values of the involved parameters, and 
substitution of the flux-profile relationship (A5) for the mean 
potential temperature gradient (30/3z) yields 

M = _ . J L ( 0 . 0 2 U U + 5JL * ) (6) 
dZ rp k Z n 

where T # is the scaling temperature, k is the von Karman constant, 
z is the path height above the ground (see -Figure l ) , and <|> is the 
flux-profile function. 

For a light ray parallel to the ground in a horizontally homogeneous 
surface layer, all the terms in equation (6) are constant. Therefore 
the integration of equation (6 ) according to equation (l) yields the 
final result 

6 = l ( f 6 - ^ ( 0 . 0 2 k k + (T) 
2T kz h 

In this equation for 6, the first part represents the effect of the 
atmosphere for neutral conditions (Appendix), and the second part, 
through Tfl̂ k accounts for deviations from neutral conditions, the 
diabatic effect. The sign of this second term is determined by the 
sign of the sensible heat flux in equation (A2) for the scaling 
temperature T*, which will be negative for unstable (clear day) 
conditions, and positive for stable (clear night) conditions. 

2.2 Variance of the angle-of-arrival 

Much of the theory of wave propagation in a turbulent atmosphere has 
been given by Tatarskii ( 1 9 7 1 ) . The papers by Lawrence and Strohbehn 
( 1 9 7 0 ) and de Wolf ( 1 9 7 M also have been found very useful. When an 
electromagnetic wave propagates in a turbulent medium, it experiences 
random fluctuations of amplitude, intensity, phase and angle-of-arrival 
due to the refractive index fluctuations. 

It can be shown that the variance of the angle-of-arrival, a a
2 , is a 

function of the phase structure function, D(j)(b), of the electromagnetic 
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wave propagation 

- 4 -a 2 = 4r3r (8) 
where b is the interferometer separation and K is the wave number 
K = 2 T T / X , with A being the wave length. Equation (8) is derived 
under the assumption that the geometrical optics approximation is 
valid (Tatarskii, 1 9 7 1 ) . 

The phase structure function has been derived by Tatarskii ( 1 9 7 1 ) for a 
spherical wave propagating through a distance S in a homogeneous and 
locally isotropic turbulent medium with 

o o 5 / / 3 

D x(b) = 1 .09 K 2 C 2 S b (9) (j) n 

where C n

2 is the refractive index structure parameter. Equation (9) 
is applicable when 

1 « ( AS) 2 << L (10) o o 
where ( A S ) 2 is the radius of the first Fresnel zone, 1 0 is the inner 
scale of the turbulence (in the order of a few millimetres), and L 0 is 
the outer scale of the turbulence (about twice the path height above 
the ground). 

The angle-of-arrival variance for a telescope can be obtained from the 
above equations, if the interferometer separation b is replaced by 
the diameter D of the receiving objective 

Q a = 1 .09 C 2 S D ( 1 1 ) n 
\ , 

and is valid for (AS) 2<< 2D (Lawrence and Strohbehn, 1 9 7 0 ) . In the 
Appendix the relationship between C n

2 and the temperature structure 
parameter Crp2 is given, and subsequently an expression is derived for 
C I J, 2 as a function of the scaling temperature T*, the stability 
parameter (z/L) and the height above the ground z. Substituting 
(A13) and ( A 1 7 ) into equation (ll) yields 

- 1 2 -l /3 2 - 2 / 3 2 
a 2 = 1.09*10 S D (N/T) Z T* f(z/L) ( 1 2 ) a 

where N is the refractivity of air, T is the temperature in degrees 
Kelvin, z is the height of the optical path above the ground, T* is 
the scaling temperature, and f(z/L) is a function given by equation 
(Al8). Equation (12) represents an expression for the magnitude of 
T* only. 
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2.3 Method 

It has been shown in the previous derivations that the mean angle of 
refraction 6 and the variance of the angle-of-arrival a a

2 are both 
functions of |T*| which can therefore be eliminated in equation (7) 
using (12). In order to retain the sign of T* in equation (7), which 
equals also the sign of the stability parameter, sign (z/L) is 
incorporated in the final equation for 5 

_ -8 1/6 -2/3 ^ 
6 = 1.22-10 SN/T + sign(z/L) 0.1*79 D z S 2a ap(z/L) (13) 

where the stability function p(z/L) is given as 

p(z/L) = * h [ k 2 f ( z / L ) ] ^ 
i< 1/6 

= V ^ r n - z / L ) ( I M 

In equation (13) the first term once again accounts for adiabatic 
conditions in the atmosphere, and the second term represents the 
diabatic correction. The discontinuity of this second term at z/L = 0 
is caused by the change of the sign of z/L. This will not be very 
critical, however, as for neutral conditions the value of the whole 
second term in (13) tends towards zero. The stability function p(z/L) 
should be evaluated for 2, using the formulae for ^ and <t>m given 
in the Appendix. The form of the stability function p(z/L) versus 
z/L is shown in Figure 2. 

p(z/L) 

3 . j 1 1 1 

0 I I I I 1 
-1.5 - 1 . 0 -0.5 0 +0.5 

unstable (z/L) stable 

Figure 2. Stability function p(z/L) versus z/L. 

The theory developed above expresses the mean angle of refraction 6 
as a function of the length of the line of sight, average value of 
refractivity and temperature, the telescope diameter, height above the 
ground of the line of sight, the standard deviation of the angle-of-
arrival fluctuations a a , and a stability function p(z/L). If the 
standard deviation of 3" should not exceed ±0.5", then an error analysis 
of equation (13) shows that the determination of those parameters is 
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uncritical with the exception of a a and p(z/L). oa should be 
determined with a relative precision of 10 to 20% which is certainly not 
an impossible task, even for visual observations through the theodolite 
telescope. Excellent reviews of the experimental determination of a a

2 

have been given by Lee ( 1 9 6 9 ) , Lawrence and Strohbehn ( 1 9 7 0 ) , and 
Tatarskii ( 1 9 7 1 ) . For the practical evaluation of p(z/L), the value of 
the Obukhov length L can be calculated using equation (A3) when wind 
speed and sensible heat flux are measured or estimated from empirical 
formula (Webb, 196U; Brunner and Fraser, 1 9 7 7 ) . Figure 2 indicates that 
for daylight observations, when z/L is negative, the determination of 
p(z/L) is not too critical. For night observations, the stability 
function p(z/L) is not extended in Figure 2 beyond z/L = + 0 . 5 , because 
the atmosphere shows generally insufficient thermal fluctuations during 
strong stability conditions (Okamoto and Webb, 1 9 7 0 ) , and consequently 
the proposed method will not be applicable for such conditions. 

3. DISCUSSION 

A new approach for determining the mean angle of refraction, 6, has 
been developed. For dry air 6 is mainly a function of the mean 
temperature gradient which is generated by the turbulent processes in the 
atmosphere. The mean temperature gradient can be obtained from a 
measurement of the variance of the angle-of-arrival, a a

2 , using the 
temperature structure parameter Crji2 . The theory is developed for a 
horizontal line of sight parallel to the ground. Horizontally 
homogeneous turbulence is assumed for the derivations. 

An obvious advantage of this-- method is that the effects of the turbulent 
medium on wave propagation which have been found adverse to other 
techniques are utiJised here to advantage. Several pointings through 
the telescope of a theodolite are usually carried out to obtain a 
representative value for a vertical angle. During this time period the 
variance of the angle-of-arrival can be evaluated using the same telescope 
and along the same line of sight. It is beyond the scope of the present 
paper to give conclusive recommendations about the measuring technique 
of a a

2 . However, without employing additional instruments, a a
2 could 

be inferred from the blurring of a target (Wesely and Derzko, 1975) or 
from the spread of the image dancing (Kukkamaki, 1 9 5 0 ) , estimated by 
visual observations through the telescope. Thus the method will not 
require new instrumental developments. 

In the meteorological solution of the refraction problem point measurements 
generally are used for some atmospheric parameters. Representative values 
of these parameters require long averaging times. These averaging times 
are drastically reduced when path averaged values can be used, such as 
C T

2 derived from a a
2 measurements (Wyngaard and Clifford, 1 9 7 8 ) , 

illustrating a further advantage of the method developed here. 

The method presented here has not as yet been tested in field experiments. 
However, results of two independent experiments may be considered as 
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preliminary verification of the method. Vertical refraction was 
successfully determined from measured sensible heat fluxes (Brunner, 
1 9 7 8 ) , and sensible heat fluxes were determined from image blurring 
(Wesely, 1976). Further proof of the second step may be seen in the 
measurements by Coulman ( 1 9 6 6 ) . 

The theory which has been intentionally derived for telescope 
observations, could easily be recast for laser beam propagation, using 
the appropriate beam equations. For laser beam propagation the 
variance of the log-amplitude, the phase-angle or the vertical 
displacement could be utilized for the determination of C T

2 . 
Appropriate corrections for the humidity effects of light wave 
propagation, significant for water crossings, can be incorporated in the 
present theory without great difficulties. Special attention must be 
given to the weighting functions in the integrals for the refraction 
angle and the variance of the angle-of-arrival, when the extension of 
this theory is considered for a more realistic line of sight with general 
topography. These additional considerations will be treated by the 
author in the future. 
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APPENDIX: MICROMETEOROLOGICAL BACKGROUND 

The surface layer of a horizontally homogeneous atmospheric boundary 
layer can be effectively described by a few ensemble-average statistical 
properties. For a comprehensive treatment, reference should be made to 
Priestley ( 1 9 5 9 ) , Lumley and Panofsky (196U), Webb (196U, 1965), Busch 
( 1 9 7 3 ) , Businger (1973) and Wyngaard ( 1 9 7 3 ) . 

The turbulent structure of the atmospheric surface layer may be expressed 
by simple similarity scaling. Neglecting the humidity effects in the 
atmosphere in the present context, basically three scaling parameters are 
adopted, defined as the friction velocity u#, the scaling temperature 
T^, and the Obukhov length L: 

u* = (x/p) 1^ (Al) 
-1 

T* = - H(pc„ u*) (A2) 

L = u* 2 T(k g T*) (A3) 

where T is the shearing stress (downward flux of horizontal momentum), 
H is the sensible heat flux, p is the air density, c p is the 
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specific heat of air at constant pressure, T is the air temperature, 
g is the acceleration due to gravity, and k is the von Karma'n constant, 
The Obukhov length L is used to form a dimensionless atmospheric 
stability parameter z/L, where z is the height above the ground. The 
atmospheric conditions characterised by negative values of z/L are 
called unstable. Positive values of z/L indicate stable conditions, 
and for z/L equal to zero or nearly zero, neutral conditions prevail. 

In the atmospheric surface layer (a few tens of metres thick) fluxes of 
momentum and heat are considered essentially constant with height. 
Applying scaling to the vertical gradients of mean horizontal windspeed, 
u, and mean potential temperature, "0", the following flux-profile 
relationships are obtained: 

— = — d> dz kz m 

86 T* 
8z kz ^h 

(AM 

(A5) 

where the profile shape functions <|>m and <j>h account for the stability 
effect, and are functions of z/L. The forms of (f>m and ^ have 
recently been reviewed by Dyer ( 1 9 7 M , with the following results: 

Unstable conditions (z/L < 0 ) : 

(J) = ( 1 - 1 6 z / L ) ~ k (A6) 

K * 2 

h Y m 
( A 7 ) 

Stable conditions (z/L > 0 ) : 

4>m = <f>h = 1 + 5 z/L (A8) 

For neutral conditions, where z/L approaches zero, both <j>m and ^ 
tend to go to unity. For the numerical values in the above equations 
the value of the von Karman constant has been assumed to be k = 0 .h . 

The determination of z/L, u* and H from meteorological measurements 
has been discussed in great detail by Webb ( 1965) and the evaluation of 
these parameters in connection with refraction studies has been reported 
recently by the author (Brunner, 1 9 7 8 ; Brunner and Fraser, 1 9 7 7 ) . 

The structure function D(r). is defined as the mean square difference of 
the values of a variable at distance r apart. If the Kolmogorov law 
is applicable, then 

D(r) = C 2 r 2 / / 3 (A9) 
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where C 2 is the structure parameter. If the variable is a scalar, 
the structure parameter C 2 is given (e.g. Panofsky, 1968) by 

a e - 1 / 3 X (A10) 

where a is a constant, e is the rate of dissipation of turbulent 
energy, and x ^ s the rate of dissipation of the fluctuations of the 
scalar. 

The refractive index of air, n, is often conveniently described by the 
refractivity, N, 

N = (n - 1) 1 0 6 (All) 

For the wavelength A = O . 5 6 urn the refractivity of air is given with 
sufficient accuracy as (Barrel and Sears, 1939) 

N = 79 I - 11 I (A12) 

where P is the total air pressure in mb, T is the temperature in 
degrees Kelvin, and e is the water vapour pressure in mb. Using (A12) 
the refractive index structure parameter C n

2 of dry air can be related 
to the temperature structure parameter Cj,2 (Bouricius and Clifford, 1970) 

C 2 = 1 0 - 1 2 (N/T) 2 C 2 (A13) n T 

According to Panofsky (1968) the rate of dissipation of turbulent energy 
£ for dry air can be expressed as the sum of mechanical and thermal 
production rates for turbulent energy, and e may then be expressed as 
(Busch, 1973) 

c = ^ 3 U m - z / D (AIM 

where all parameters used here ha.ve been explained previously. The rate 
of dissipation of temperature fluctuations x c a n ^ e expressed as 
(Lumley and Panofsky, 196U) 

where K^ is the temperature exchange coefficient (K^ = k u* z / ^ ) , 
and (30/3z) is the mean temperature gradient. Substitution of the 
flux-profile relationship yields 

u*T* 2 

T z - 4 (A16) 

The numerical value for a still is the subject of conjecture (Panofsky, 
1968; Wesely and Alcaraz, 1973 ; Wyngaard et al., 1 9 7 1 ) , but the value 
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3.2 is used here. Accordingly, substituting (Alk) and (Al6) into 
equation (A10) yields for C T

2 

C 2 = T* 2 z " 2 / 3 f(z/L) (AIT) 

where 
- 2 / 3 - 1 / 3 

f(z/L) = 3.2 k <|>h(<|>m - z/L) (Al8) 
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DISCUSSION 

J. Milewski: I think it is a very interesting paper and promising idea, 
but practically I suppose that we can use this method only in that case 
if the ratio between the systematic influence, dependent on the atmos­
pheric parameters and the random error of observation is rather large. 
Such conditions are typical for big turbulence of unstable status of 
atmosphere. If, however, we had a very stable condition, we have usually 
a very great value of absolute refraction index, but its variation is 
then very small. Under such a status of atmosphere the ratio between 
the variations of refraction and random errors of observation will be 
rather small, creating unconvenient situations for the use of Brunner 1s 
method. 
P.V. Angus-Leppan: Dr Brunner is proposing the method for unstable con­
ditions, where there is visible shimmer, and it is easy to estimate the 
variations of 6 with some precision from simple telescope observations. 
Under stable conditions you may have to use some method other than esti­
mation, because there are large but slow movements of the image. 

D.G. Currie: One question I might have on that, is in some work of pro­
pagation of laser beams over horizontal paths. There seem to be other 
parameters that come in to make a significant variation, e.g. the way 
in which the turbulence varies above the ground over very smooth fields 
depends quite a bit on the wind. And I think the scaling height, or the 
height at which you get significant changes in the structure, does de­
pend on the wind velocity, and therefore I suspect that the wind velo­
city will have a strong influence on the magnitude as well as the fre­
quency of the variation. 

P.V. Angus-Leppan: In region II under unstable conditions it is independ­
ent of wind. But under other conditions wind certainly is a factor. I 
think that is taken into account in the parameter T + . 

K. Poder: May I add that the people at the University of Hannover have 
made some experiments with laser propagation under wind and turbulence. 

As far as I am recalling they are published in the proceedings from 
the Wageningen symposium. 

D.G. Currie: Is that true? Thank you. 
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