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Abstract Let η be a closed real 1-form on a closed Riemannian n-manifold (M,g). Let dz , δz and Δz be
the induced Witten’s type perturbations of the de Rham derivative and coderivative and the Laplacian,
parametrized by z = μ+ iν ∈ C (μ,ν ∈ R, i =

√
−1). Let ζ(s,z) be the zeta function of s ∈ C, defined as

the meromorphic extension of the function ζ(s,z) = Str(η∧δzΔ
−s
z ) for �s � 0. We prove that ζ(s,z) is

smooth at s= 1 and establish a formula for ζ(1,z) in terms of the associated heat semigroup. For a class
of Morse forms, ζ(1,z) converges to some z ∈ R as μ→ +∞, uniformly on ν. We describe z in terms of
the instantons of an auxiliary Smale gradient-like vector field X and the Mathai–Quillen current on TM
defined by g. Any real 1-cohomology class has a representative η satisfying the hypothesis. If n is even, we
can prescribe any real value for z by perturbing g, η and X and achieve the same limit as μ→−∞. This
is used to define and describe certain tempered distributions induced by g and η. These distributions
appear in another publication as contributions from the preserved leaves in a trace formula for simple
foliated flows, giving a solution to a problem stated by C. Deninger.

1. Introduction

1.1. Witten’s perturbed operators

Let M be a closed n-manifold. For any smooth function h on M, Witten [74] introduced

a perturbed de Rham differential operator dμ = d+μdh∧, depending on a parameter
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2 J.A. Álvarez López et al.

μ ∈ R. Endowing M with a Riemannian metric g, we have a corresponding perturbed
codifferential operator δμ = δ−μdh�, and a perturbed Laplacian Δμ = dμδμ+δμdμ. Since

dμ = e−μh deμh, it defines the same Betti numbers as d. However, Δμ and the usual

Laplacian Δ have different spectrum in general. In fact, if h is a Morse function and g is
Euclidean with respect to Morse coordinates around the critical points, then the spectrum

of Δμ develops a long gap as μ → +∞, giving rise to the small and large spectrum.

The eigenforms of the small/large eigenvalues generate the small/large subcomplex,

(Eμ,sm/la,dμ). When h is a Morse function, Witten gave a beautiful analytic proof of the
Morse inequalities by analyzing the small spectrum. This was refined by subsequent work

of Helffer and Sjöstrand [35] and Bismut and Zhang [10, 11], showing that, if moreover

X := −gradh is a Smale vector field, then the Morse complex (C•,d) of X can be
considered as the limit of (Eμ,sm,dμ). More precisely, for certain perturbed Morse complex

(C•,dμ), isomorphic to (C•,d), there is a quasi-isomorphism Φμ : (Ez,sm,dμ)→ (C•,dμ),

defined by integration on the unstable cells of the zero points of X, which becomes an
isomorphism for μ� 0 and almost isometric as μ→+∞ (after rescaling at every degree).

We can replace dh with any closed real 1-form η, obtaining a generalization of the

Witten’s perturbations, dμ, δμ and Δμ. Now, dμ need not be gauge equivalent to d,

obtaining new twisted Betti numbers βk
μ. However, the numbers βk

μ have well-defined
ground values βk

No, called the Novikov numbers, which depend upon the de Rham

cohomology class [η] ∈H1(M,R). Assume that:

(a) η is a Morse form (it has Morse-type zeros), and g is Euclidean with respect to

Morse coordinates around the zero points of η.

(Some concepts used in this section are recalled in Sections 4.1 and 6.1.) Then Δμ also

develops a long gap separating a small spectrum and a large spectrum, and the analysis of

the small spectrum gives Morse inequalities for the Novikov numbers. Take any auxiliary
vector field X such that:

(b) X has Morse-type zeros and is gradient-like and Smale; and

(c) η is Lyapunov for X, and η and g are in standard form with respect to X.

Then the small complex approaches a perturbed Morse complex of X. We refer to work
by Novikov [55, 56], Pajitnov [58], Braverman and Farber [14], Burghelea and Haller [17,

18, 20] and Harvey and Minervini [34, 52].

We can similarly define the perturbation dz = d+ z η∧ with parameter z = μ+ iν ∈ C

(μ,ν ∈R and i=
√
−1). Its adjoint is δz = δ− z̄ η�, and we have a corresponding perturbed

Laplacian Δz = dzδz+δzdz. As a first step in our study, we prove extensions of the above

results to this case, taking limits as |μ| → +∞, uniformly on ν. First, assuming (a),
we get the long gap in the spectrum of Δz separating the small and large spectrum,

which depends only on μ (Theorem 4.10). Second, assuming (a)–(c), we show that the

quasi-isomorphism Φz : (Ez,sm,dz) → (C•,dz) becomes an isomorphism for |μ| � 0 and

almost isometric as |μ| →+∞ (Theorem 6.3). To get that the convergence is uniform on
ν, the key ingredient is a version of a Sobolev inequality for integers m>n/2: on smooth

complex differential forms,

‖ ‖L∞ ≤ Cm‖ ‖m,iν , (1.1)
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Zeta invariants of Morse forms 3

where Cm > 0 is independent of ν and ‖α‖m,iν =
∑m

k=0〈Δk
iνα,α〉1/2 (Proposition 2.2).

(The analogous property for Δμ is wrong.) Then we adapt the arguments of Bismut and

Zhang [10, 11] (see also [75]).

The indicated properties of Δz, holding uniformly on μ, depend on remarkable

differences between Δiν and Δμ. For instance, if η is exact, all operators Δiν are gauge
equivalent, whereas this is not true for the operators Δμ when η �= 0. If η is not exact, the

operators Δiν are not gauge equivalent either. Moreover, Δiν −Δ is of order one when

ν �= 0, whereas Δμ−Δ is of order zero.

1.2. Zeta invariants of Morse forms

To begin with, η is only assumed to be an arbitrary closed real 1-form. Let Π⊥
z and Π1

z be

the orthogonal projections to the images of Δz and dz. We consider a zeta function ζ(s,z)

associated with η and the parameter z ∈C. As a function of s ∈C, it is the meromorphic
extension of the holomorphic function

ζ(s,z) = Str(η∧δzΔ
−s
z Π⊥

z ) = Str(η∧d−1
z Δ−s+1

z Π1
z)

defined for s � 0, where Str stands for the supertrace. We are interested in the

zeta invariant ζ(1,z) that can be interpreted as a renormalization of the supertrace of

η∧d−1
z Π1

z, which is not of trace class by the Weyl’s law. According to the general theory
of zeta functions of elliptic operators, ζ(s,z) might have a simple pole at s= 1. However,

our first main theorem states that ζ(s,z) is smooth at s= 1 and gives a formula for ζ(1,z)

in terms of the associated heat semigroup.

Theorem 1.1. Let M ≡ (M,g) be a closed Riemannian n-manifold, and let η be a closed
real 1-form on M. If n is even (resp., odd), then, for any z ∈ C, s �→ ζ(s,z) is smooth on

the half-plane s > 0 (resp., s > 1/2). Furthermore,

ζ(1,z) = lim
t↓0

Str
(
η∧d−1

z e−tΔzΠ1
z

)
.

The existence of the limit of Theorem 1.1 is surprising because η∧d−1
z e−tΔzΠ1

z is

weakly convergent to η∧d−1
z Π1

z. An expression similar to Str(η∧d−1
z e−tΔzΠ1

z) was used

by Mrowka, Ruberman and Saveliev to define a cyclic eta invariant [53].
Next, we additionally assume that η is a Morse form and use the results described in

the previous section. The zeta-function decomposes as the sum of terms defined by the

contributions from the small/large spectrum, ζsm/la(s,z) = ζsm/la(s,z,η), where ζsm(s,z)

is an entire function of s. Our second main theorem describes the asymptotic behavior of
ζ(1,z) as μ→±∞, uniformly on ν. In fact, since

ζ(s,z,η) =−ζ(s,− z,−η) , ζsm/la(s,z,η) =−ζsm/la(s,− z,−η) , (1.2)

it is enough to consider the case where μ� 0 and take the limit as μ→+∞.

We use the current ψ(M,∇M ) of degree n− 1 on TM constructed by Mathai and
Quillen in [44], depending on the Levi–Civita connection ∇M . This current is smooth on

the complement of the zero section, where it is given by the solid angle. It is also locally

integrable, and its wave front set is contained in the conormal bundle in T ∗TM of the zero
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4 J.A. Álvarez López et al.

section of TM . Since this set does not meet the conormal bundle of the map X :M → TM
(assuming (b)), (−X)∗ψ(M,∇M ) is well defined as a current on M. Assuming also (a)–(c),

consider the real number

zla = zla(M,g,η) =

∫
M

η∧ (−X)∗ψ(M,∇M ) ,

which is known to be independent of X [10, Proposition 6.1].

Now, suppose also that:

(d) for every zero point p of X with Morse index k, the maximum value of the integrals

of η along the instantons of X with α-limit p only depends on k.

This maximum value is denoted by −ak for some ak > 0. Let m1
k = dimdz(E

k−1
z,sm) for

μ� 0, which is independent of z. Consider also the real number

zsm = zsm(M,g,η,X) =

n∑
k=1

(−1)k
(
1− eak

)
m1

k ,

and let z= z(M,g,η,X) = zsm+zla.

Recall that we write z = μ+ iν.

Theorem 1.2. Let M ≡ (M,g) be a closed Riemannian n-manifold, let η be a closed real

1-form on M satisfying (a) and let X be a vector field on M satisfying (b)–(c).

(i) We have

ζla(1,z) = zla+O(μ−1)

as μ→+∞, uniformly on ν.

(ii) If moreover (d) holds, then

ζsm(1,z) = zsm+O(μ−1)

as μ→+∞, uniformly on ν.

Theorem 1.2 (ii) shows that zsm and z are also independent of X. Thus, X will be

omitted in their notation. In the notation of zsm/la and z, we may also omit M or g if
they are fixed.

By Equation (1.2), if we take μ → −∞ in Theorem 1.2, we have to replace zsm/la(η)

with −zsm/la(−η). Descriptions of −zsm/la(−η) are given in Equations (7.9) and (8.1).

Our third main theorem is about the prescription of z = z(M,g,η) without changing
the cohomology class of η.

Theorem 1.3. Let M be a smooth closed n-manifold. If n is even (resp., odd), for all

ξ ∈H1(M,R) and τ ∈ R (resp., τ � 0), there is some η ∈ ξ, a Riemannian metric g and
a vector field X satisfying (a)–(d) such that ±z(M,g,±η) = τ (resp., z(M,g,η) = τ).

1.3. A distribution associated to some Morse forms

A trace formula for simple foliated flows on closed foliated manifolds was conjectured by

C. Deninger (see, e.g., [24]). He was motivated by analogies with Weil’s explicit formulas
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in arithmetics and previous work of Guillemin and Sternberg [32]. This trace formula is

an expression for a Lefschetz distribution in terms of infinitesimal data of the flow at

the fixed points and closed orbits. This Lefschetz distribution should be an analogue of
the Lefschetz number for the action induced by the flow on some leafwise cohomology,

whose value is a distribution on R—the precise definition of these notions is part of the

problem. In [4, 5], the first two authors proved such a trace formula when the flow has no
preserved leaves; see also the contributions [42, 43] by the third author. The general case

is considerably more involved. In [6], we propose a solution to this problem using a few

additional ingredients. One of them is the b-trace introduced by Melrose [46]. Since the
b-trace is not really a trace, it produces an extra term, denoted by Z, in the same way

as the eta invariant shows up in Index Theory on manifolds with boundary. In our trace

formula, the term Z is a contribution from the compact leaves preserved by the flow,

which depends on the choice of a form defining the foliation and a metric on the ambient
manifold. But Z may not be well defined in general; it will be proved that appropriate

choices of the form and the metric guarantee its existence.

Precisely, we would like to define

Z = Z(M,g,η) = lim
μ→+∞

Zμ , (1.3)

in the space of tempered distributions on R, where Zμ = Zμ(M,g,η) (μ� 0) should be a
tempered distribution defined by

〈Zμ,f〉=− 1

2π

∫ ∞

0

∫ ∞

−∞
Str
(
η∧δze

−uΔz
)
f̂(ν)dν du , (1.4)

for any Schwartz function f, where f̂ stands for the Fourier transform of f.

Let δ0 denote the Dirac distribution at 0 on R. The problem about the definition of Z

is solved in our fourth main theorem for the same class of Morse forms as before.

Theorem 1.4. Let M ≡ (M,g) be a closed Riemannian n-manifold. Let η be a closed 1-

form on M satisfying (a), (c) and (d) with some vector field satisfying (b). Then Equations

(1.3) and (1.4) define the tempered distribution Z = zδ0.

According to Theorems 1.3 and 1.4, we can choose η and g in the trace formula for

foliated flows so that Z(M,g,± η) = 0 if n is even, achieving the original expression of
Deninger’s conjecture.

It looks clear that extensions of Theorems 1.1 to 1.4 with coefficients in flat vector

bundles could be similarly proved. We only consider complex coefficients for the sake of

simplicity since this is enough for our application.

1.4. Some ideas of the proofs of Theorems 1.1 to 1.4

As mentioned before, the inequality (1.1) is essential to obtain the uniformity on ν of our

estimates. To prove it, we can take ν = 1 by considering an arbitrary closed real 1-form
η (Proposition 2.2). Let ‖ ‖m,iη be the mth Sobolev norm defined with the perturbed

Laplacian Δiη induced by iη as above. By ellipticity, ‖ ‖L∞ ≤ Cm,iη‖ ‖m,iη for some

Cm,iη > 0 depending on η, which can be chosen to be optimal. For two such forms,
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η and η′, the cohomology class [η− η′] is in the lattice 2πH1(M,Z) of H1(M,R) just

when η− η′ = h∗dθ for some smooth map h :M → S
1, where θ is the multivalued angle

function on the circle S
1. This gives the gauge equivalence Δiη′ = e−ih∗θΔiη e

ih∗θ, where

e±ih∗θ is well defined on M. It follows that η �→ Cm,iη induces a function on the torus

H1(M,R)/2πH1(M,Z). On the other hand, every Cm,iη can be estimated in terms of the

Cm norm of η (Proposition 2.1). Hence, by compactness of H1(M,R)/2πH1(M,Z), the
values Cm,iη have an upper bound Cm, which satisfies the desired inequality ‖ ‖L∞ ≤
Cm‖ ‖m,iη.

For an arbitrary closed real 1-form η and for all t > 0 and z ∈ C, a supersymmetric
argument shows that (Proposition 3.7)

∂z Str
(
Ne−tΔz

)
=−tStr

(
η∧Dze

−tΔz
)
, (1.5)

where N is the number operator on Ω(M) (Section 2.1.1). Then we apply that the
coefficients of the asymptotic expansion of Str(Ne−tΔz ) as t ↓ 0 (the derived heat trace

invariants) are independent of z up to order n [10, Theorem 7.10] (see also [3]). Thus, by

Equation (1.5), the coefficients of the asymptotic expansion of Str(η∧Dze
−tΔz ) as t ↓ 0

vanish up to order n. Now, Theorem 1.1 follows by the general theory of zeta functions
of operators (Section 3.6).

The theta function θ(s,z) is defined like ζ(s,z) by using −Str(NΔ−s
z Π⊥

z ) instead of

Str(η∧δzΔ
−s
z Π⊥

z ). Assuming the hypotheses of Theorem 1.2, write θ(s,z) as the sum of
contributions from the small/large spectrum, θsm/la(s,z), as before. Thus, e

θ′(0,z)/2 is the

factor used to define the Ray–Singer metric on detH•
z (M) [10], where the prime denotes

∂s. We obtain (Corollary 5.10)

ζla(1,z) = ∂zθ
′
la(0,z). (1.6)

This equality allows us to use the deep relation between the Ray–Singer metric and

the Milnor metric on detH•
z (M), proved by Bismut and Zhang [10, 11]. To apply this

result, we have to make involved computations concerning derivatives with respect to z of
the orthogonal projection to Ez,sm and of other operators related with the isomorphism

Φz : Ez,sm → C•, as well as estimates of the asymptotic behavior as μ → +∞ of these

operators and their derivatives (Sections 4.4, 4.5, 6.3, 6.4 and 7.2). In this way, we obtain
that ζla(1,z) is asymptotic to zla as μ→+∞ (Section 7.2). This proves Theorem 1.2 (i).

When η is exact, we show this asymptotic expression of ζla(1,z) assuming only (a)

(Section 5.5), without using Equation (1.6) and the indicated strong result of Bismut and

Zhang. Instead, we apply that the index density of Δz is independent of z, also proved
by Bismut and Zhang [10, Theorem 13.4]; see also [1, Theorem 1.5] and [6].

On the other hand, given any ξ ∈ H1(M,R) and a vector field X satisfying (b), we

prove that there is some η ∈ ξ and a metric g satisfying (a), (c) and (d) (Theorem 8.1).
This can be considered as an extension of a theorem of Smale stating the existence of

nice Morse functions [69, Theorem B] (the case where ξ = 0). Its proof is relegated to

Appendix A because of its different nature.
The properties (a)–(d) are used to give an asymptotic description of dz as μ → +∞

(Section 8.2). From this asymptotic description and using that Φz : Ez,sm → C• is an

isomorphism for μ � 0, we get upper and lower bounds of the nonzero small spectrum
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of Δz (Theorem 8.4), which are independent of ν. This is a partial extension of accurate

descriptions of the nonzero small eigenvalues achieved in the case where η is exact and the

parameter is real [41, 48]. With the same procedure and using the bounds of the nonzero
small spectrum, it also follows that ζsm(1,z) = zsm+O(μ−1) as μ → +∞ (Section 8.4),

showing Theorem 1.2 (ii).

Next, by modifying η and X around its zero points of index 0 and n, without changing
the cohomology class of η, we can achieve any real number as ±z(±η) if n is even, or any

large enough real number as z(η) if n is odd (Section 9). This shows Theorem 1.3.

If it is possible to switch the order of integration in Equation (1.4),

〈Zμ,f〉=− 1

2π

∫ ∞

−∞

∫ ∞

0

Str
(
η∧δze

−uΔz
)
f̂(ν)dudν

=
1

2π

∫ ∞

−∞
lim
t↓0

Str
(
η∧d−1

z e−tΔzΠ1
z

)
f̂(ν)dν , (1.7)

then Theorem 1.4 is an easy consequence of Theorem 1.1. Thus, it only remains to
prove that both Equations (1.4) and (1.7) define the same tempered distribution Zμ.

This follows from the Lebesgue’s dominated convergence theorem and Fubini’s theorem

(Section 10). The verification of the hypothesis of the Fubini’s theorem requires the above

lower estimate of the nonzero spectrum.
For the readers convenience, we recall the needed preliminaries about the many topics

involved: Witten’s perturbations, Morse forms, asymptotic expansions of heat kernels,

zeta functions of operators, Morse and Smale vector fields, the Morse complex and Quillen
metrics (Reidemeister, Milnor and Ray–Singer metrics).

2. Witten’s perturbations

2.1. Preliminaries on the Witten’s perturbations

2.1.1. Basic notation. Let M ≡ (M,g) be a closed Riemannian n-manifold. For
any smooth Euclidean/Hermitian vector bundle E over M, let Cm(M ;E), C∞(M ;E),

L2(M ;E), L∞(M ;E) and Hm(M ;E) denote the spaces of distributional sections that

are Cm, C∞, L2, L∞ and of Sobolev order m, respectively; as usual, E is removed from
this notation if it is the trivial line bundle. Consider the induced scalar product 〈 , 〉
and norm ‖ ‖ on L2(M ;E), and the induced norm ‖ ‖L∞ on L∞(M ;E). Fix also norms,

‖ ‖m on every Hm(M ;E) and ‖ ‖Cm on Cm(M ;E). If P is the orthogonal projection of

L2(M ;E) to some closed subspace V, then P⊥ denotes the orthogonal projection to V ⊥.
Let o(E) denote the flat real orientation line bundle of E. It is said that E is orientable

when o(E) is trivial. In this case, an orientation of E is described by a (necessarily smooth)

nonvanishing flat section OE of o(E); for simplicity, it will be said that OE itself is an
orientation. In particular, an orientation of M is described using o(M) := o(TM). The

flat line bundle o(E)⊗o(E) is always trivial.

Let TCM = TM ⊗C and T ∗
C
M = T ∗M ⊗C. The exterior bundle with coefficients

in K = R,C is denoted by ΛK = ΛKM , and let Ω(M,K) = C∞(M ;ΛK); in particular,

C∞(M,K) = Ω0(M,K). The Levi–Civita connection is denoted by ∇ = ∇M . As usual,

d and δ denote the de Rham derivative and coderivative, and let D = d+ δ and
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Δ = D2 = dδ+ δd (the Laplacian). Let Z(M,K) and B(M,K) denote the kernel and

image of d in Ω(M,K). Thus, H•(M,K) =Z(M,K)/B(M,K) is the de Rham cohomology
with coefficients in K. We typically consider complex coefficients, so we will omit K from

all of the above notation just when K= C. Take ‖ ‖m and ‖ ‖Cm given on Ω(M) by

‖α‖m =

m∑
k=0

‖Dkα‖ , ‖α‖Cm =

m∑
k=0

‖∇kα‖L∞ .

In particular, we take ‖ ‖= ‖ ‖0 and ‖ ‖C0 = ‖ ‖L∞ |C0(M ;E).
On any graded vector space V •, let w and N be the degree involution and number

operator; that is, w = (−1)k and N = k on V k. For any homogeneous linear operator

between graded vector spaces, T : V • →W •, the notation Tk means its precomposition
with the canonical projection of V • to V k. If T is of degree l (T (V k)⊂W k+l for all k),

then

wT = (−1)lTw , NT = T (N+ l). (2.1)

For any η ∈Ω1(M,R) with η� =X ∈X(M) :=C∞(M ;TM) (η = g(X,·)), let LX and ιX
denote the Lie derivative and interior product with respect to X, and let η�=−(η∧)∗ =
−ιX . Using the identity Cl(T ∗M) ≡ ΛRM defined by the symbol of filtered algebras,

the left Clifford multiplication by η is c(η) = η∧+ η�, and the composition of w with
the right Clifford multiplication by η is ĉ(η) = η∧−η�; in particular, c(η)∗ = −c(η) and

ĉ(η)∗ = ĉ(η). Recall that, for any h ∈ C∞(M,R),

[D,h] = ĉ(dh). (2.2)

In the whole paper, unless otherwise indicated, we will use the following notation
without further comment. We use constants C,c > 0 without even mentioning their

existence, and their precise values may change from line to line. We may add subindices

or primes to these constants if needed. We also use a complex parameter z = μ+ iν ∈ C

(μ,ν ∈ R and i=
√
−1). Recall that ∂z = (∂μ− i∂ν)/2 and ∂z̄ = (∂μ+ i∂ν)/2.

2.1.2. Perturbations defined by a closed real 1-form. For any ω ∈ Z1(M), we
have the Witten’s type perturbations dω, δω, Dω and Δω of d, δ, D and Δ. Given η ∈
Z1(M,R) and z ∈C, we write dz = dzη, δz = δzη,Dz =Dzη and Δz =Δzη. These operators

have the following expressions:

dz = d+ z η∧ , δz = d∗z = δ− z̄ η� ,
Dz = dz + δz =D+μĉ(η)+ iνc(η) =Diν +μĉ(η) ,

Δz =D2
z = dzδz + δzdz =Δ+μHη + iνJη + |z|2|η|2

=Δiν +μHη +μ2|η|2 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)

where, for X = η�,

Hη =Dĉ(η)+ ĉ(η)D = L∗
X +LX , Jη =Dc(η)+ c(η)D = L∗

X −LX .

Note that Hη is of order zero and Jη of order one.
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As families of operators, dz and δz are holomorphic and antiholomorphic functions of
z, respectively. More precisely, it follows from Equation (2.3) that

∂zdz = η∧ , ∂zδz = 0 , ∂zΔz = η∧δz + δz η∧ ,

∂z̄dz = 0 , ∂z̄δz =−η� , ∂z̄Δz =−η�dz −dz η�.

}
(2.4)

The operator dz defines an elliptic complex on Ω(M), whose cohomology is denoted by

H•
z (M). Since dz has the same principal symbol as d, it is a generalized Dirac complex

and Δz a self-adjoint generalized Laplacian [7, Definition 2.2]. If θ = η+ dh for some
h ∈ C∞(M,R), then the multiplication operator

ezh : (Ω(M),dzθ)→ (Ω(M),dzη) (2.5)

is an isomorphism of differential complexes, and therefore it induces an isomorphism
H•

zθ(M) ∼= H•
zη(M). Thus, the isomorphism class of H•

z (M) only depends on ξ := [η] ∈
H1(M,R) and z ∈ C. By ellipticity, Dz and Δz have a discrete spectrum, and there is a

decomposition, equalities and isomorphism of Hodge type,

Ω(M) = kerΔz ⊕ imdz ⊕ imδz ,

kerΔz = kerDz = kerdz ∩kerδz , imΔz = imDz = imdz ⊕ imδz ,

H•
z (M)∼= kerΔz ,

⎫⎪⎬⎪⎭ (2.6)

as topological vector spaces. The orthogonal projections of Ω(M) to kerΔz, imdz and
imδz are denoted by Πz = Π0

z, Π1
z and Π2

z, respectively; thus, Π⊥
z = Π1

z +Π2
z. The

restrictions dz : imδz → imdz, δz : imdz → imδz and Dz : imDz → imDz are topological

isomorphisms, and therefore the compositions d−1
z Π1

z, δ
−1
z Π2

z and D−1
z Π⊥

z are defined and
continuous on Ω(M). For every degree k, the diagram

imδz,k+1
dz,k−−−−→ imdz,k

Δz,k

⏐⏐ ⏐⏐Δz,k+1

imδz,k+1
dz,k−−−−→ imdz,k

(2.7)

is commutative. The twisted Betti numbers βk
z = βk

z (M,ξ) = dimHk
z (M) give rise to the

usual Euler characteristic [28, Proposition 1.40],∑
k

(−1)kβk
z = χ(M). (2.8)

(This is also a consequence of the index theorem.) For every degree k, βk
z is independent

of z outside a discrete subset of C, where βk
z jumps (Mityagin and Novikov [57, Theorem

1]). This ground value of βk
z is called the k -th Novikov Betti number, denoted by βk

No =
βk
No(M,ξ). It will be shown in Section 6.2.4 that

βk
z = βk

No for |μ| � 0. (2.9)

(When z is real, this is proved in [27, Theorem 2.8], [14, Lemma 1.3], [18, Proposition

4].) Thus, the discrete set of parameters z ∈C with βk
z (M,ξ)> βk

No(M,ξ) for some degree

k is contained in a strip |μ| ≤ C.
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By Equation (2.3) and since η is real, for all α ∈ Ω(M),

dzα= dz̄ᾱ , δzα= δz̄ᾱ , Dzα=Dz̄ᾱ , Δzα=Δz̄ᾱ. (2.10)

So conjugation induces C-antilinear isomorphisms

Hk
z (M)∼=Hk

z̄ (M) , kerΔz,k
∼= kerΔz̄,k ,

yielding βk
z = βk

z̄ .

2.1.3. Case of an exact form. When η = dh for some h ∈ C∞(M,R), we have the

original Witten’s perturbations, which satisfy

dz = e−zh dezh = e−iνh dμ e
iνh , δz = ez̄h δ e−z̄h = e−iνh δμ e

iνh ,

Dz = e−iνhDμ e
iνh , Δz = e−iνhΔμ e

iνh.

}
(2.11)

Thus, the multiplication operator

ezh : (Ω(M),dz)→ (Ω(M),d) (2.12)

is an isomorphism of differential complexes. Therefore, H•
z (M) ∼=H•(M), yielding βk

z =

βk = βk(M) (the kth Betti number) in this case. Moreover multiplication by eiνh defines
a unitary isomorphism kerΔz

∼= kerΔμ.

2.1.4. Interpretation of the closed form as a flat connection. There is a unique

flat connection ∇M×C on the trivial complex line bundle M×C so that ∇M×C1 = η. The

corresponding flat complex line bundle is denoted by L = Lη. Note that Lzη = Lz. Let
(Ω(M,Lz) = (Ω(M),dL

z

) be the de Rham complex with coefficients in Lz. It is well known

that dz = dL
z

on Ω(M) = Ω(M,Lz), and therefore H•(M,Lz) =H•
z (M). Since every Lz

is canonically trivial as a line bundle, it has a canonical Hermitian structure gL
z

. An easy

local computation shows that (see the example given in [10, pp. 11–12])

∇Lz

gL
z

=−2μη⊗gL
z

. (2.13)

2.1.5. Perturbed operators on oriented manifolds. The mappings (α,β) �→α∧β
and (α,β) �→ α∧ β̄ induce respective bilinear and sesquilinear maps,

Hk
z (M)×H l

−z(M)→Hk+l(M) , Hk
z (M)×H l

−z̄(M)→Hk+l(M) ,

as follows from the interpretation of dz given in Section 2.1.4, or by a direct check.

Now, assume M is oriented. Then the above maps and integration on M define

respective nondegenerate bilinear and sesquilinear pairings

Hk
z (M)×Hn−k

−z (M)→ C , Hk
z (M)×Hn−k

−z̄ (M)→ C.

Thus

βk
z = βn−k

−z = βn−k
−z̄ = βk

z̄ . (2.14)
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Let � and �̄ denote the C-linear and C-antilinear extensions to ΛM of the Hodge
operator � on ΛRM , respectively. These operators are determined by the conditions

α∧�β = g(α,β) dvol = α∧ �̄β

for α,β ∈ Ω(M), where dvol = �1 is the volume form. The following equalities on Ωk(M)
follow from Equation (2.3) and the usual equalities relating �, d, δ, η∧ and η� (see, e.g.,

[63, Chapters 1 and 3], [31, Section 1.5.2], [7, Section 3.6]):

dz �= (−1)k � δ−z̄ , δz �= (−1)k+1 � d−z̄ , Δz �= �Δ−z̄ ,

dz �̄= (−1)k �̄ δ−z , δz �̄= (−1)k+1 �̄ d−z , Δz �̄= �̄Δ−z.

}
(2.15)

Then we get a linear isomorphism � : kerΔz → kerΔ−z̄ and an antilinear isomorphism

�̄ : kerΔz → kerΔ−z, inducing a linear isomorphismHk
z (M)∼=Hn−k

−z̄ (M) and an antilinear
isomorphism Hk

z (M)∼=Hn−k
−z (M) by Equation (2.6).

2.2. Perturbation of the Sobolev norms

For m ∈ N0 and ω ∈ Z1(M), define the norm ‖ ‖m,ω on Hm(M ;Λ) by

‖α‖m,ω =
m∑

k=0

∥∥Dk
ωα
∥∥.

Proposition 2.1. For all ω ∈ Z1(M) and α ∈Hm(M ;Λ),

‖α‖m,ω ≤ Cm

m∑
k=0

‖ω‖m−k
Ck ‖α‖k , ‖α‖m ≤ Cm

m∑
k=0

‖ω‖m−k
Ck ‖α‖k,ω.

Proof. We proceed by induction on m. We have ‖ ‖0,ω = ‖ ‖. Now, take m> 0 and assume

these inequalities hold for m−1. For η ∈ Z1(M,R) and α ∈ Ω(M), we have

‖ĉ(η)α‖m,‖c(η)α‖m ≤ C ′
m‖η‖Cm‖α‖m. (2.16)

Applying these inequalities to the real and imaginary parts of ω and using the induction

hypothesis and Equation (2.3), we get

‖α‖m,ω = ‖α‖+‖Dωα‖m−1,ω ≤ ‖α‖+Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck ‖Dωα‖k

≤ ‖α‖+Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck

(
‖Dα‖k+C ′

k‖ω‖Ck‖α‖k
)

≤ ‖α‖+Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck

(
‖α‖k+1+C ′

k‖ω‖Ck‖α‖k
)

≤ Cm

m∑
l=0

‖ω‖m−l
Cl ‖α‖l ,
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‖α‖m = ‖α‖+‖Dα‖m−1 ≤ ‖α‖+‖Dωα‖m−1+C ′
m−1‖ω‖Cm−1‖α‖m−1

≤ ‖α‖+Cm−1

m−1∑
k=0

(
‖ω‖m−1−k

Ck ‖Dωα‖k,ω +C ′
m−1‖ω‖m−k

Ck ‖α‖k,ω
)

≤ ‖α‖+Cm−1

m−1∑
k=0

(
‖ω‖m−1−k

Ck ‖α‖k+1,ω +C ′
m−1‖ω‖m−k

Ck ‖α‖k,ω
)

≤ Cm

m∑
l=0

‖ω‖m−l
Cl ‖α‖l,ω.

Let Z(M,Z) ⊂ Z(M,R) denote the graded additive subgroup of forms that represent

cohomology classes in the image of the canonical homomorphism H•(M,Z)→H•(M,R).

Recall that we can consider H1(M,Z) as a lattice in H1(M,R) by the universal coefficient
theorem for cohomology. Let θ be the multivalued angle function on S

1. Then dθ

is the angular form on S
1 with

∫
S1
dθ = 2π. For η ∈ Z1(M,R), we have η ∈ 2πZ1(M,Z)

if and only if there is some smooth map h : M → S
1 such that η = h∗dθ (see, e.g., [28,

Lemma 2.1]).

In Proposition 2.1, the dependence of the constants on ω cannot be avoided. For

instance, for M = S
1 with the standard metric g = (dθ)2, we have ‖1‖m =

√
2π, whereas

‖1‖m,iη =
√
2π
∑m

k=0 |ν|k for η = ν dθ (ν ∈R). However, the following version of a Sobolev

inequality for ‖ ‖m,iη involves a constant independent of η.

Proposition 2.2. If m> n/2, for all η ∈ Z1(M,R) and α ∈Hm(M ;Λ),

‖α‖L∞ ≤ Cm‖α‖m,iη.

Proof. By the Sobolev embedding theorem, we have

Cm,iη := sup
0 �=α∈Ω(M)

‖α‖L∞

‖α‖m,iη
> 0.

Take any η ∈Z1(M,R) and ω ∈ 2πZ1(M,Z), and let η′ = η+ω. Then ω= h∗dθ for some
smooth function h :M → S

1. Since the difference between the multiple values of θ at every

point of S1 are in 2πZ, the functions e±ih∗θ are well defined and smooth on M. Moreover,

applying Equation (2.11) locally, we get Diη′ = e−ih∗θDiη e
ih∗θ. So, for 0 �= α ∈ Ω(M),

‖α‖L∞ = ‖eih∗θα‖L∞ ≤ Cm,iη‖eih
∗θα‖m,iη

= Cm,iη

m∑
k=0

‖Dk
iη e

ih∗θα‖= Cm,iη

m∑
k=0

‖e−ih∗θDk
iη e

ih∗θα‖

= Cm,iη

m∑
k=0

‖Dk
iη′α‖= Cm,iη‖α‖m,iη′ .

This shows that

η−η′ ∈ 2πZ1(M,Z)⇒ Cm,iη = Cm,iη′ . (2.17)
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Since 2πH1(M,Z) is a lattice in H1(M,R), there is a compact subset K ⊂ H1(M,R)

such that

K+2πH1(M,Z) =H1(M,R). (2.18)

Take a linear subspace V ⊂ Z1(M,R) such that the canonical projection V →H1(M,R)

is an isomorphism, and let L ⊂ V be the compact subset that corresponds to K. By
Equation (2.18),

L+2πZ1(M,Z) = Z1(M,R). (2.19)

Moreover, L is bounded with respect to ‖ ‖Cm . Therefore, by Proposition 2.1, for all η ∈L

and α ∈ Ω(M),

‖α‖L∞ ≤ Cm,0‖α‖m ≤ Cm‖α‖m,iη ,

yielding

sup
η∈L

Cm,iη ≤ Cm. (2.20)

The result follows from Equations (2.17), (2.19) and (2.20).

Given η ∈Z1(M,R), we write ‖ ‖m,z = ‖ ‖m,zη. Proposition 2.1 has the following direct
consequence.

Corollary 2.3. For all α ∈Hm(M ;Λ) and z ∈ C,

‖α‖m,z ≤ Cm

m∑
k=0

|z|m−k‖α‖k , ‖α‖m ≤ Cm

m∑
k=0

|z|m−k‖α‖k,z.

Proposition 2.4. For all α ∈H1(M ;Λ) and z ∈ C,

‖α‖1,z ≤ C
(
‖α‖1,iν + |μ|‖α‖

)
, ‖α‖1,iν ≤ C

(
‖α‖1,z + |μ|‖α‖

)
.

Proof. By Equations (2.3) and (2.16),

‖α‖1,z = ‖α‖+‖Dzα‖ ≤ ‖α‖+‖Diνα‖+C ′|μ|‖α‖ ≤ C
(
‖α‖1,iν + |μ|‖α‖

)
,

‖α‖1,iν = ‖α‖+‖Diνα‖ ≤ ‖α‖+‖Dzα‖+C ′|μ|‖α‖ ≤ C
(
‖α‖1,z + |μ|‖α‖

)
.

3. Zeta invariants of closed real 1-forms

3.1. Preliminaries on asymptotic expansions of heat kernels

Let A be a positive semidefinite symmetric elliptic differential operator of order a, and B a

differential operator of order b; both of them are defined in C∞(M ;E) for some Hermitian
vector bundle E over M. Then Be−tA is a smoothing operator with Schwartz kernel

Kt(x,y) in C∞(M2;E �E∗) (omitting the Riemannian density dvol(y) of the second

factor). On the diagonal, there is an asymptotic expansion (as t ↓ 0) with respect to the
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seminorms ‖ ‖Cm (m ∈ N0) on C∞(M ;E ⊗E∗) [31, Lemma 1.9.1], [7, Theorem 2.30,

Proposition 2.46 and the paragraph that follows],

Kt(x,x)∼
∞∑
l=0

el(x)t
(l−n−b)/a , (3.1)

with el ∈ C∞(M ;E ⊗ E∗). Moreover, using a local system of coordinates, a local

trivialization of E and standard multi-index notation, if B =
∑

α bα(x)D
α
x , then el(x) =∑

α bα(x)el,α(x), where the el,α(x) are smooth local invariants of the symbol of A which

are homogeneous of degree l+ |α|−b. They vanish if l+b is odd or if l+ |α|−b < 0. Hence,
the function

h(t) = Tr
(
Be−tA

)
=

∫
M

trKt(x,x) dvol(x)

has an asymptotic expansion

h(t)∼
∞∑
l=0

alt
(l−n−b)/a , (3.2)

where

al =

∫
M

trel(x) dvol(x) , (3.3)

which vanishes if l+ b is odd.
The case of truncated heat kernels, in the following sense, is also needed. Given any

λ ≥ 0, let PA,λ be the spectral projection of A corresponding to [0,λ]; thus, P⊥
A,λ is

the spectral projection corresponding to (λ,∞). By ellipticity, PA,λ is of finite rank,
and Be−tAPA,λ is a smoothing operator defined for all t ∈ R. Take any orthonormal

frame φ1, . . . ,φκ of imPA,λ, consisting of eigensections with corresponding eigenvalues

0≤ λ1 ≤ ·· · ≤ λκ ≤ λ. Then the Schwartz kernel Ht(x,y) of Be−tAPA,λ (t≥ 0) is given by

Ht(x,y) =
κ∑

j=1

e−tλj (Bφj)(x)⊗φj(y) ,

using the isomorphism E ∼=E∗ given by the Hermitian structure. Thus, Ht(x,y) is defined
for all t ∈ R and smooth. So

Tr(Be−tAPA,λ) =

∫
M

trHt(x,x) dvol(x).

In particular, for t= 0, we have

H0(x,x) =

κ∑
j=1

(Bφj)(x)⊗φj(x) , (3.4)

Tr(BPA,λ) =

∫
M

trH0(x,x) dvol(x). (3.5)
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The Schwartz kernel of Be−tAP⊥
A,λ is K̃t(x,y) =Kt(x,y)−Ht(x,y) (t > 0), which has an

asymptotic expansion

K̃t(x,x)∼
∞∑
l=0

ẽl(x)t
(l−n−b)/a , (3.6)

where the first n+ b sections ẽl are given by

ẽl(x) =

{
el(x) if l < n+ b

el(x)−H0(x,x) if l = n+ b.

Then the function

h̃λ(t) = Tr
(
Be−tAP⊥

A,λ

)
=Tr
(
Be−tA

)
−Tr(Be−tAPA,λ) (3.7)

has an asymptotic expansion

h̃λ(t) =

∫
M

K̃t(x,x) dvol(x)∼
∞∑
l=0

ãlt
(l−n−b)/a , (3.8)

where the first n+ b coefficients ãl are given by

ãl =

{
al if l < n+ b

al−Tr(BPA,λ) if l = n+ b.
(3.9)

Consider also smooth families of such operators, {Aε} and {Bε}, for ε in some parameter

space. Then Tr(Bεe
−tAε) is smooth in (t,ε), and we add ε to the above notation, writing for

instance Kt(x,y,ε), el(x,ε), h(t,ε), al(ε), K̃t(x,y,ε), ẽl(x,ε), h̃(t,ε) and ãl(ε) in Equations
(3.1), (3.2), (3.6) and (3.8). The operator BεPAε,λ may not be smooth in ε when some

nonconstant spectral branch of {Aε} reaches the value λ. If the values of all nonconstant

spectral branches of {Aε} stay away from some neighborhood of λ, then h̃λ(t,ε) is smooth
in (t,ε).

3.2. Preliminaries on zeta functions of operators

Proposition 3.1 (See [31, Theorems 1.12.2 and 1.12.5], [7, Propositions 9.35–9.37]). The

following holds:

(i) For every λ ∈ R, there is a meromorphic function ζ(s,A,B,λ) on C such that, for
s� 0,

ζ(s,A,B,λ) = Tr
(
BA−sP⊥

A,λ

)
=

1

Γ(s)

∫ ∞

0

ts−1h̃λ(t)dt. (3.10)

(ii) The meromorphic function Γ(s)ζ(s,A,B,λ) has simple poles at the points s= (n+

b− l)/a, for l ∈N0 with ãl �= 0. The corresponding residues are ãl, and ζ(s,A,B,λ)
is smooth away from these exceptional values of s.

(iii) For μ > λ ≥ 0, let λ1 ≤ ·· · ≤ λk denote the eigenvalues of A in (λ,μ], tak-

ing multiplicities into account, and let ψ1, . . . ,ψk be corresponding orthonormal
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eigensections. Then, for all s,

ζ(s,A,B,μ)− ζ(s,A,B,λ) =

k∑
j=1

λ−s
k 〈Bψj,ψj〉.

(iv) For smooth families {Aε} and {Bε} of such operators, if the values of all

nonconstant branches of eigenvalues of {Aε} stay away from some neighborhood
of λ, then ζ(s,Aε,Bε,λ) is smooth in (s,ε) away from the exceptional values of s

given in (ii).

(v) Consider the conditions of (iv) for ε in some open neighborhood of 0 in R. If A0

and B0 commute, then

∂εζ(s,Aε,Bε,λ)
∣∣
ε=0

= ζ(s,A0,Ḃ0,λ)−sζ(s+1,A0,Ȧ0B0,λ) ,

where the dot denotes ∂ε.

The last expression of Equation (3.10) is the Mellin transform of the function h̃λ(t)

divided by Γ(s). This function ζ(s,A,B,λ) is called the zeta function of (A,B,λ). If B = 1
or λ= 0, they may be omitted from the notation.

We will also use ζ(s,A,B,λ) when B is not a differential operator, with the same defi-

nition. Then the asymptotic expansion (3.8) and the properties stated in Proposition 3.1

need to be checked. With this generality, we can write

ζ(s,A,B,λ) = ζ(s,A,BP⊥
A,λ) = ζ(s,A,P⊥

A,λB) ,

ζ(s,A,B) = ζ(s,A,BPA,λ)+ ζ(s,A,B,λ).

Since PA,λ is of finite rank, ζ(s,A,BPA,λ) is always defined and holomorphic on C.

3.3. Zeta invariants of closed real 1-forms

According to Proposition 3.1 (i), let

ζ(s,z) = ζ(s,z,η) = ζ(s,Δz,η∧Dzw) ,

which is a meromorphic function of s ∈ C. For s� 0,

ζ(s,z) = Str
(
η∧DzΔ

−s
z Π⊥

z

)
= Str

(
η∧δzΔ

−s
z Π1

z

)
= Str

(
η∧D−1

z Δ−s+1
z Π⊥

z

)
= Str

(
η∧d−1

z Δ−s+1
z Π1

z

)
,

using that η∧dz and η∧δ−1
z change the degree of homogeneous forms. So, when ζ(s,z) is

regular at s= 1, the value ζ(1,z) is a renormalized version of the super-trace of η∧d−1
z Π1

z,

which is called the zeta invariant of (M,g,η,z) for the scope of this paper. According to
Proposition 3.1 (ii) and since Γ(s) is regular at s= 1, ζ(s,z) might have a simple pole at

s= 1. But it will be shown that ζ(s,z) is regular at s= 1 for all η ∈ Z1(M,R) and z ∈ C

(Corollary 3.9).
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3.4. Heat invariants of perturbed operators

Consider the notation of Section 2.1.2. For k=0, . . . ,n, letKz,k,t(x,y) denote the Schwartz

kernel of e−tΔz,k . By Equation (3.1), its restriction to the diagonal has an asymptotic

expansion (as t ↓ 0),

Kz,k,t(x,x)∼
∞∑
l=0

ek,l(x,z)t
(l−n)/2 ,

where every ek,l(x,z) is a smooth local invariant of z and the jets of the local coefficients
of g and η, which is homogeneous of degree l, and vanishes if l is odd. According to

Equations (3.2) and (3.3),

hk(t,z) := Tr
(
e−tΔz,k

)
∼

∞∑
l=0

ak,l(z)t
(l−n)/2 ,

where

ak,l(z) =

∫
M

strek,l(x,z) dvol(x).

The Schwartz kernel of e−tΔzw is

Kz,t(x,y) =
n∑

k=0

(−1)kKz,k,t(x,y).

We have induced asymptotic expansions,

Kz,t(x,x)∼
∞∑
l=0

el(x,z)t
(l−n)/2 ,

h(t,z) := Str
(
e−tΔz

)
∼

∞∑
l=0

al(z)t
(l−n)/2 ,

where

el(x,z) =

n∑
k=0

(−1)kek,l(x,z) , al(z) =

n∑
k=0

(−1)kak,l(z).

Theorem 3.2 ([10, Theorem 13.4]; see also [1, Theorem 1.5] and [6]). We have:

(i) el(x,z) = 0 for l < n; and,

(ii) if n is even, then en(x,z) = e(M,∇M )(x).

Remark 3.3. The analog of Theorem 3.2 fails for Witten’s type perturbations of the

Dolbeault complex on Kähler manifolds [2].
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3.5. Derived heat invariants of perturbed operators

The following are sometimes called the derived heat density and derived heat invariant of

order l of dz or Δz [33], [61], [31, page 181], [3]:

el(x,z) =

n∑
k=0

(−1)kkek,l(x,z) ,

al(z) =

n∑
k=0

(−1)kkak,l(z) =

∫
M

strel(x,z) dvol(x).

We have

Str
(
Ne−tΔz

)
∼

∞∑
l=0

al(z)t
(l−n)/2. (3.11)

Theorem 3.4 [10, Theorem 7.10]. For l ≤ n, al(z) is independent of z.

Remark 3.5. [10, Theorem 7.10] gives Theorem 3.4 for real z. But, since the functions
el(x,z) have local expressions, we can assume η is exact. Then the result can be extended

to nonreal z using Equation (2.11). The exactness of η in [10, Theorem 7.10] is irrelevant

because a general flat vector bundle is considered. Moreover, [10, Theorem 7.10] gives an
explicit expression of al(z) for l ≤ n.

Remark 3.6. A refinement of Theorem 3.4 is given in [3, Theorem 1.3 (1b)], where

el(x,z) is described for l ≤ n, showing its independence of z.

3.6. Regularity

By Equations (3.2) and (3.3), we have an asymptotic expansion of the form

Str
(
η∧Dze

−tΔz
)
∼

∞∑
l=0

bl(z)t
(l−n−1)/2 , (3.12)

where bl(z) = 0 if l is even.

Proposition 3.7. For all t > 0 and z ∈ C, the equality (1.5) is true.

Proof. For all k, we have [7, Corollary 2.50]

∂zTr
(
e−tΔz,k

)
=−tTr

(
(∂zΔz,k)e

−tΔz,k
)
.

So, by Equations (2.1) and (2.4),

∂z Str
(
Ne−tΔz

)
=−tStr

(
N(∂zΔz)e

−tΔz
)

=−tStr
(
Nη∧δze

−tΔz
)
− tStr

(
Nδz η∧e−tΔz

)
=−tStr

(
Nη∧δze

−tΔz
)
− tStr

(
δz(N−1)η∧e−tΔz

)
=−tStr

(
Nη∧δze

−tΔz
)
+ tStr

(
(N−1)η∧δze

−tΔz
)

=−tStr
(
η∧Dze

−tΔz
)
.
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Corollary 3.8. For l ≤ n−1, bl(z) = 0.

Proof. By Equations (3.11) and (3.12); Theorem 3.4; and Proposition 3.7, for l ≤ n−1,

bl(z) =−∂zal+1(z) = 0.

Corollary 3.9. If n is even and s > 0, or n is odd and s > 1/2, then

ζ(s,z) =
1

Γ(s)

∫ ∞

0

ts−1Str
(
η∧Dze

−tΔz
)
dt ,

where the integral is absolutely convergent, and therefore ζ(s,z) is smooth in this half-

plane.

Proof. By Equation (3.12) and Corollary 3.8,

Str
(
η∧Dze

−tΔz
)
=

{
O(1) if n is even

O
(
t−1/2

)
if n is odd

(t ↓ 0). (3.13)

On the other hand, there is some c > 0 such that

Str
(
η∧Dze

−tΔz
)
=O(e−ct) (t ↑+∞). (3.14)

So the stated integral is absolutely convergent for s > 0 if n is even, or for s > 1/2 if n

is odd, defining a holomorphic function of s on this half-plane. Then the stated equality

is true because it holds for s� 0.

Remark 3.10. From Proposition 3.1 (ii) and Corollary 3.8, it also follows that, if n
is even (resp., odd), then ζ(s,z) is smooth on C (resp., on C \ ((1−N0)/2)). But this

additional regularity is not needed in this work.

Corollary 3.11. For all z ∈ C,

ζ(1,z) = lim
t↓0

Str
(
η∧D−1

z e−tΔzΠ⊥
z

)
.

Proof. By Corollary 3.9, Equation (3.13) and Equation (3.14), and since

Str
(
η∧D−1

z e−tΔzΠ⊥
z

)
=O(e−ct) (t ↑+∞) ,

we get

ζ(1,z) =

∫ ∞

0

Str
(
η∧Dze

−uΔzΠ⊥
z

)
du= lim

t↓0

∫ ∞

t

Str
(
η∧Dze

−uΔzΠ⊥
z

)
du

= lim
t↓0

Str
(
η∧D−1

z e−tΔzΠ⊥
z

)
.

Corollaries 3.9 and 3.11 give Theorem 1.1.

https://doi.org/10.1017/S1474748024000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000343


20 J.A. Álvarez López et al.

3.7. The case of the differential of a function

Let us consider the special case where η = dh for a smooth real-valued function h.

Lemma 3.12. We have

Str
(
η∧d−1

z e−tΔzΠ1
z

)
=−Str

(
he−tΔzΠ⊥

z

)
.

Proof. Since η∧= [d,h],

Str
(
η∧d−1

z e−tΔzΠ1
z

)
= Str

(
[dz,h]d

−1
z e−tΔzΠ1

z

)
= Str

(
dz hd

−1
z e−tΔzΠ1

z

)
−Str

(
hdzd

−1
z e−tΔzΠ1

z

)
=−Str

(
hd−1

z e−tΔzΠ1
zdz
)
−Str

(
he−tΔzΠ1

z

)
=−Str

(
hd−1

z dze
−tΔzΠ2

z

)
−Str

(
he−tΔzΠ1

z

)
=−Str

(
he−tΔzΠ2

z

)
−Str

(
he−tΔzΠ1

z

)
=−Str

(
he−tΔzΠ⊥

z

)
.

Corollary 3.13. We have

ζ(1,z) =− lim
t↓0

Str
(
he−tΔzΠ⊥

z

)
.

Proof. Apply Corollary 3.11 and Lemma 3.12.

Corollary 3.14. We have ζ(1,z) ∈ R.

Proof. By Corollary 3.13, it is enough to prove that Str(he−tΔzΠ⊥
z ) ∈ R. But, taking

adjoints,

Str
(
he−tΔzΠ⊥

z

)
= Str

(
Π⊥

z e
−tΔz h

)
= Str

(
hΠ⊥

z e
−tΔz
)
= Str

(
he−tΔzΠ⊥

z

)
.

Corollary 3.15. If M is oriented, then

ζ(1,z) = ζ(1,− z̄) = ζ(1,− z) = ζ(1,z̄).

Proof. By Equation (2.15),

Str
(
he−tΔzΠ⊥

z

)
= Str

(
��−1he−tΔzΠ⊥

z

)
= Str

(
�−1 he−tΔzΠ⊥

z �
)

= Str
(
�−1 �he−tΔ−z̄Π⊥

−z̄

)
= Str

(
he−tΔ−z̄Π⊥

−z̄

)
.

Thus, the first equality of the statement holds by Corollary 3.13. The second equality

follows with a similar argument, using �̄ instead of �. The third equality is equivalent to

the first one.
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4. Small and large complexes of Morse forms

4.1. Preliminaries on Morse forms

Recall that a critical point p of any h∈C∞(M,R) is called nondegenerate if the symmetric
bilinear form Hessph on TpM is nondegenerate; then the index of Hessph is denoted by

ind(p). By the Morse lemma [49, Lemma 2.2], this means that

h−h(p) =
1

2

n∑
j=1

εp,j(x
j
p)

2 =
1

2

(
|x+

p |2−|x−
p |2
)
, (4.1)

where

εp,j =

{
−1 if j ≤ ind(p)

1 if j > ind(p) ,
(4.2)

on some chart (Up,xp = (x1
p, . . . ,x

n
p )) (centered) at p (Morse coordinates), where x−

p =

(x1
p, . . . ,x

ind(p)
p ) and x+

p = (x
ind(p)+1
p , . . . ,xn

p ).
Recall that h is called a Morse function when all of its critical points are nondegenerate.

Then its critical points form a finite set denoted by Crit(h). The Morse functions form

an open and dense subset of C∞(M,R) [36, Theorem 6.1.2]. On every Up, we can assume
the metric is Euclidean with respect to Morse coordinates:

g =

n∑
j=1

(dxj
p)

2. (4.3)

Now, take any η ∈ Z1(M,R). We can show that if p is a zero of η, then (∇η)p is

independent of the choice of the connection ∇, and is symmetric. The zero p is called
nondegenerate of index k if (∇η)p is nondegenerate of index k. In this case, any local

primitive hη,p of η near p is a Morse function, and we can choose it so that hη,p(p) = 0.

On a domain Up of Morse coordinates xp = (x1
p, . . . ,x

n
p ) for hη,p at p, also called Morse

coordinates for η at p, hη,p is given by the center and right-hand side of Equation (4.1),
and

η =
n∑

j=1

εp,jx
j
p dx

j
p. (4.4)

If all zeros are nondegenerate, then η is called a Morse form. In this case, its zeros form

a finite set, X = Zero(η); subsets of X defined by conditions on the index are denoted

by writing the conditions as subscripts; for instance, Xk, X+ and X<k are the subsets of
zeros of index k, of positive index and of index < k, respectively. For any ξ ∈H1(M,R),

the Morse representatives of ξ form a dense open subset of ξ, considering ξ ⊂ Ω1(M,R)

with the C∞ topology (see, e.g., [59, Theorem 2.1.25]). If ξ = 0, this is just the classical
property of Morse functions mentioned before.

From now on, unless otherwise stated, we will use some η ∈Z1(M,R) and a Riemannian

metric g on M satisfying (a) (Section 1.1).
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The Hopf index of η� at any p ∈ Xk is (−1)k (Section 6.1.1). Thus, by the Hopf index
theorem,

n∑
k=0

(−1)k|Xk|= χ(M). (4.5)

4.2. The small and large spectrum

Consider the perturbed operators (2.3) defined by η and g. We can suppose the closures Up

(p ∈X ) are disjoint from each other, and xp(Up) = (−4r,4r)n for some r > 0 independent

of p with 4r < 1. Let U =
⋃

p∈X Up.

Denoting also the coordinates of Rn by (x1
p, . . . ,x

n
p ), consider the function hp ∈C∞(Rn)

defined by the center and right-hand side of Equation (4.1). Let d′p,z, δ
′
p,z, D′

p,z and
Δ′

p,z (z ∈ C) denote the corresponding Witten’s operators on R
n, whose restrictions to

(−4r,4r)n agree via xp with dz, δz, Dz and Δz on Up.

Proposition 4.1 (See, e.g., [63, Chapters 9 and 14], [75, Sections 4.5 and 4.7]). The

following holds for μ ∈ R:

(i) We have

Δ′
p,μ =

n∑
j=1

(
−
( ∂

∂xj
p

)2
+μ2(xj

p)
2+μεp,j [dx

j
p�,dxj

p∧]
)
. (4.6)

Here, [·,·] stands for the commutator of operators. Using multi-index notation, we

can write

[dxj
p�,dxj

p∧]dxJ
p =

{
dxJ

p if j ∈ J

−dxJ
p if j /∈ J.

(ii) Δ′
p,μ is a nonnegative selfadjoint operator in L2(Rn;Λ) with a discrete spectrum,

which consists of the eigenvalues

μ
n∑

j=1

(1+2uj + εp,jvj) , (4.7)

where uj ∈ N0 and vj = ±1. For the restriction of Δ′
p,μ to k-forms, the spectrum

has the additional requirement that exactly k of the numbers vj are equal to 1.
In particular, 0 is an eigenvalue of Δ′

p,μ with multiplicity 1 (choosing uj = 0 and

vj =−εp,j for all j), and the nonzero eigenvalues are of order μ as μ→+∞. D′
p,μ

is also a self-adjoint operator in L2(Rn;Λ) with a discrete spectrum, which consists
of the positive and negative square roots of Equation (4.7).

(iii) The kernel of D′
p,μ and Δ′

p,μ is generated by the normalized form

e′p,μ =
(μ
π

)n/4
e−μ|xp|2/2 dx1

p∧·· ·∧dxind(p)
p .

For any z ∈C with μ > 0, let Δ′
p,z = e−iνhpΔ′

p,μe
iνhp . Since the operator of multiplica-

tion by e−iνhp is unitary, Δ′
p,z is also selfadjoint and nonnegative in L2(Rn;Λ), it has a
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discrete spectrum with the same eigenvalues and multiplicities as Δ′
p,μ, and its kernel is

generated by the normalized form e′p,z := e−iνhpe′p,μ. We will also use the notation

e′p,z = x∗
pe

′
p,z ∈ C∞(Up;Λ

ind(p)
)
.

The function x∗
php ∈C∞(Up) agrees with hη,p, which is also denoted by hp in this section.

Fix an even C∞ function ρ :R→ [0,1] such that ρ= 1 on [−r,r] and suppρ⊂ [−2r,2r].

For every p ∈ X , let

ρp = ρ(x1
p) · · ·ρ(xn

p ) ∈ C∞
c (Up) , (4.8)

ep,μ =
ρp
aμ

e′p,μ ∈ C∞
c

(
Up;Λ

ind(p)
)
, (4.9)

ep,z = e−iνhpep,μ =
ρp
aμ

e′p,z ∈ C∞
c

(
Up;Λ

ind(p)
)
, (4.10)

where

aμ =

(∫ 2r

−2r

ρ(x)2e−μx2

dx

)n
2

=
(π
μ

)n
4

+O(e−cμ) , (4.11)

as μ→+∞. The extensions by zero of the forms ep,z to M are also denoted by ep,z. They

form an orthonormal basis of a graded subspace Ez ⊂ Ω(M) with dimEz = |X |. Observe

that dz does not preserve Ez so that Ez is not a subcomplex of (Ω(M),dz). Let Pz be the
orthogonal projection of L2(M ;Λ) to Ez.

Remark 4.2. For the sake of simplicity, most of our results are stated for μ � 0 or
as μ → +∞, but they have obvious versions for μ � 0 or as μ → −∞, as follows by

considering −η and using that Xk(−η) = Xn−k(η).

Proposition 4.3. If μ� 0 and β ∈H1(M ;Λ) with suppβ ⊂M \U , then

‖Dzβ‖ ≥ Cμ‖β‖.

Proof. This follows like [75, Proposition 4.7], using that Hη is of order zero in Equation
(2.3). Actually, according to the statement of [75, Proposition 4.7], this inequality would

hold with
√
μ instead of μ, but its proof clearly shows that using μ is fine.

Proposition 4.4. The following properties hold:

(i) PzDzPz = 0.

(ii) If μ� 0, α ∈ Ez and β ∈ E⊥
z ∩H1(M ;Λ), then

‖P⊥
z Dzα‖ ≤ e−cμ‖α‖ , ‖PzDzβ‖ ≤ e−cμ‖β‖.

(iii) If μ� 0 and β ∈ E⊥
z ∩H1(M ;Λ), then

‖P⊥
z Dzβ‖ ≥ C

√
μ‖β‖.

Proof. This follows like [75, Propositions 4.11, 4.12 and 5.6]. Property (i) is true because

every Dzep,z is supported in Up and has homogeneous components of degree different
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from ind(p); therefore, it is orthogonal to kerΔz. The other properties are consequences

of Propositions 4.1 and 4.3 and Equations (4.8)–(4.11). According to [75, Proposition

4.11], the inequalities of (ii) hold with 1/μ instead of e−cμ, but its proof shows that
indeed e−cμ can be achieved.

Proposition 4.5. For all m ∈ N0, if μ� 0, then

‖Dzep,z‖m ≤ |ν|me−cmμ , ‖Dzep,z‖m,iν ≤ e−cmμ.

Proof. From Proposition 4.1 (iii) and Equations (2.2), (4.9) and (4.10), we get

Dzep,z =Dz

( ρp
aμ

e′p,z

)
= e−iνhp

1

aμ

(π
4

)n/4
ĉ(dρp)e

′
p,μ. (4.12)

Thus, the stated estimate of ‖Dzep,z‖m is true by Equations (4.9) and (4.11), since dρp =0
around p, and using the definition of hp and the condition 4r < 1. (When ν = 0, this is

indicated in [75, Eq. (6.17)].)

By Equation (2.11), for all k ∈ N0 and p ∈ X , the form Dk
iνDzep,z is the extension by

zero of the form e−iνhpDkDμep,μ on Up. Then the stated estimate of ‖Dzep,z‖m,iν follows
from the case ν = 0.

Proposition 4.6. If μ� 0, then

‖Dzep,z‖L∞ ≤ e−cμ.

Proof. Apply Equations (4.9) and (4.11) in Equation (4.12), and use that dρp =0 around
p.

Consider the partition of specΔz into its intersections with [0,1] and (1,∞), called
the small and large spectrum; the term small/large eigenvalues may be also used. Let

Ez,sm ⊂Ω(M) denote the graded finite-dimensional subspace generated by the eigenforms

of the small eigenvalues, let Ez,la =E⊥
z,sm in L2(M ;Λ), and let Pz,sm/la be the orthogonal

projection to Ez,sm/la, called small/large projection. Moreover, (Ω(M),dz) splits into a

topological direct sum of the subcomplexes Ez,sm and Ez,la∩Ω(M), called the small and

large complexes, and Equation (2.6) gives

H•(Ez,sm,dz)∼=H•
z (M) , H•(Ez,la∩Ω(M),dz) = 0. (4.13)

For any operator B defined on Ω(M) or L2(M ;Λ), let Bz,sm/la =BPz,sm/la.

Proposition 4.7. For all m ∈ N0, μ� 0 and α ∈ Ez,

‖α−Pz,smα‖m,iν ≤ e−cmμ‖α‖.

Proof. This follows like [75, Lemma 5.8 and Theorem 6.7], using ‖ ‖m,iν instead of ‖ ‖m.
The following are the main steps of the proof.

Let S
1 = {ω ∈ C | |ω| = 1}. With the argument of the proof of [75, Eq. (5.27)], using

Proposition 4.4, we get that, for all α ∈H1(M ;Λ), w ∈ S
1 and μ� 0,

‖(w−Dz)α‖ ≥ C‖α‖.
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Thus, w−Dz :H
1(M ;Λ)→ L2(M ;Λ) is bijective, and, for all β ∈ L2(M ;Λ), w ∈ S

1 and

μ� 0, ∥∥(w−Dz)
−1β
∥∥≤ C−1‖β‖. (4.14)

On the other hand, arguing like in the proof of [75, Eq. (6.18)], it follows that, for all

γ ∈Hm(M ;Λ), w ∈ S
1 and μ� 0,

‖γ‖m,iν ≤ Cm

(
‖(w−Dz)γ

∥∥
m−1,iν

+μ‖γ‖m−1,iν +‖γ‖
)
.

Continuing by induction on m ∈ N0, we obtain

‖γ‖m,iν ≤ Cm

(
μm‖γ‖+

m∑
k=1

μk−1‖(w−Dz)γ
∥∥
m−k,iν

)
.

In other words, for all β ∈Hm−1(M ;Λ),∥∥(w−Dz)
−1β
∥∥
m,iν

≤ Cm

(
μm
∥∥(w−Dz)

−1β
∥∥+ m∑

k=1

μk−1‖β‖m−k,iν

)
.

Applying Equation (4.14) to this inequality, we get, for m≥ 1,∥∥(w−Dz)
−1β
∥∥
m,iν

≤ Cmμm‖β‖m−1,iν . (4.15)

From Equations (4.14) and (4.15) and Proposition 4.5, it follows that, for m ∈ N0,∥∥(w−Dz)
−1Dzep,z

∥∥
m,iν

=O
(
e−cmμ

)
(4.16)

as μ→+∞, uniformly on w ∈ S
1. But, endowing S1 with the counterclockwise orientation,

basic spectral theory gives (see, e.g., [25, Section VII.3])

Pz,smep,z − ep,z =
1

2πi

∫
S1

(
(w−Dz)

−1−w−1
)
ep,z dw

=
1

2πi

∫
S1

w−1(w−Dz)
−1Dzep,z dw. (4.17)

The result follows using Equation (4.16) in Equation (4.17).

Corollary 4.8. For μ� 0 and α ∈ Ez,

‖α−Pz,smα‖L∞ ≤ e−cμ‖α‖.

Proof. Apply Propositions 2.2 and 4.7.

Alternatively, the proof of Proposition 4.7 can be modified as follows to get this result
(some step of this alternative argument will be used later). Iterating Equation (4.15), we

get ∥∥(w−Dz)
−1β
∥∥
m,iν

≤ C ′
mμ(m+1)m/2‖β‖ ,

for all β ∈ L2(M ;Λ). Then, by Proposition 2.2,∥∥(w−Dz)
−1β
∥∥
L∞ ≤ Cμ(m+1)m/2‖β‖. (4.18)
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Thus, by Proposition 4.5, ∥∥(w−Dz)
−1Dzep,z

∥∥
L∞ =O

(
e−cmμ

)
as μ→+∞. Finally, apply this expression in Equation (4.17).

Corollary 4.9. If μ � 0, then Pz,sm : Ez → Ez,sm is an isomorphism; in particular,
dimEz,sm = |X | and dimEk

z,sm = |Xk|.

Proof. This follows from Propositions 4.4 and 4.7 for m=0 like [75, Proposition 5.5].

When μ� 0, Equation (4.5) also follows from Corollary 4.9 and Equations (2.8) and

(4.13).

Theorem 4.10 (Cf. [17, Theorem 3]). We have

specΔz ⊂
[
0,e−c|μ|]∪ [C|μ|,∞

)
.

Proof. First, we establish the theorem for |μ|� 0, and then the constants will be changed

to cover all μ.
We can assume μ ≥ 0 according to Remark 4.2. By Propositions 4.4, 4.7 and 2.4, for

all α ∈ Ez,

‖DzPz,smα‖ ≤ ‖Dzα‖+‖Dz(α−Pz,smα)‖ ≤ ‖Dzα‖+‖α−Pz,smα‖1,z
≤ ‖P⊥

z Dzα‖+C(μ‖α−Pz,smα‖+‖α−Pz,smα‖1,iν)
≤
(
e−cμ+C

(
μe−c0μ+ e−c1μ

))
‖α‖.

Hence, by Corollary 4.9, for all β ∈ Ez,sm,

0≤ 〈Δzβ,β〉= ‖Dzβ‖2 ≤ e−cμ ‖β‖2.

This shows that

specΔz ∩ [0,1]⊂
[
0,e−cμ

]
. (4.19)

Now, let φ ∈Ez,la∩H1(M ;Λ), and write α= Pzφ ∈Ez and β = P⊥
z φ ∈E⊥

z ∩H1(M ;Λ).

By Proposition 4.7,

‖α‖2 = 〈α,φ〉= 〈α−Pz,smα,φ〉 ≤ ‖α−Pz,smα‖‖φ‖ ≤ e−c0μ‖α‖‖φ‖ ,

yielding

‖α‖ ≤ e−c0μ‖φ‖.

So

‖β‖= ‖φ−α‖ ≥ ‖φ‖−‖α‖ ≥
(
1− e−c0μ

)
‖φ‖.

Then, by Proposition 4.4,

‖Dzφ‖ ≥ ‖Dzβ‖−‖Dzα‖ ≥ ‖P⊥
z Dzβ‖− e−cμ‖α‖

≥ C
√
μ‖β‖− e−cμ‖φ‖ ≥

(
C
√
μ
(
1− e−c0μ

)
− e−cμ

)
‖φ‖.
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Therefore, for all φ ∈ Ez,la∩H1(M ;Λ),

〈Δzφ,φ〉= ‖Dzφ‖2 ≥ Cμ‖φ‖2.

This proves that

specΔz ∩ (1,∞)⊂ [Cμ,∞). (4.20)

The inclusions (4.19) and (4.20) give the result for μ � 0. But, in those inclusions,
we can take c and C so small that, if one of them is not true for some μ ≥ 0, then

Cμ≤ e−cμ.

4.3. Ranks of some projections in the small complex

Recall that (Π⊥
z )sm,k, Π1

z,sm,k and Π2
z,sm,k denote the orthogonal projections to the

images of Δz,sm,k, dz,sm,k−1 and δz,sm,k+1, respectively. Let mz,k, m1
z,k and m2

z,k be
the corresponding ranks (or traces) of these projections. They satisfy

mz,k =m1
z,k+m2

z,k , m1
z,0 =m2

z,n = 0 , m2
z,k =m1

z,k+1 , (4.21)

where the last equality is true because dz : imδz → imdz is an isomorphism. For μ� 0,

we have mz,k,m
j
z,k ≤ |Xk| by Corollary 4.9 and Equation (4.21).

Lemma 4.11. The numbers mj
z,k are determined by the numbers mz,k:

m1
z,k+1 =m2

z,k =

k∑
p=0

(−1)k−pmz,p =

n∑
q=k+1

(−1)q−k−1mz,q.

Proof. This follows from Equation (4.21) with an easy induction argument on k.

Lemma 4.12. For μ� 0, we have mz,k = |Xk|−βk
z .

Proof. This is a consequence of Equations (2.6) and (4.13) and Corollary 4.9.

Corollary 4.13. Str((Π⊥
z )sm) = 0.

Proof. By Equations (2.8) and (4.5) and Lemma 4.12,

Str
(
(Π⊥

z )sm
)
=
∑
k

(−1)k|Xk|−
∑
k

(−1)kβk
z = χ(M)−χ(M) = 0.

Lemma 4.14. If M is oriented, then, for k = 0, . . . ,n,

mz,k =m−z̄,n−k =m−z,n−k , m1
z,k =m2

−z̄,n−k =m2
−z,n−k.

Proof. This is true because, by Equation (2.15),

(Π⊥
z )sm,k �= �(Π⊥

−z̄)sm,n−k , Π1
z,sm,k �= �Π2

−z̄,sm,n−k ,

(Π⊥
z )sm,k �̄= �̄(Π⊥

−z)sm,n−k , Π1
z,sm,k �̄= �̄Π2

−z,sm,n−k.
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Corollary 4.15. For μ� 0, mz,k and mj
z,k only depend on |Xk| and the class ξ = [η] ∈

H1(M,R).

Proof. Apply Equation (2.9) and Lemmas 4.11 and 4.12.

By Corollary 4.15, we write mk =mk(η) =mz,k and mj
k =mj

k(η) =mj
z,k for μ� 0.

Corollary 4.16. If M is oriented, then, for k = 0, . . . ,n,

mk(η) =mn−k(−η) , m1
k(η) =m2

n−k(−η) =m1
n−k+1(−η).

Proof. Apply Equation (4.21), Lemma 4.14 and Corollary 4.15. Alternatively, we can

apply Equations (2.9), (2.14) and (4.21); Remark 4.2; and Lemma 4.12.

Corollary 4.17. For μ� 0,

Str(Π1
z,sm) =−Str(Π2

z,sm) =

n∑
k=0

(−1)kkmk.

If moreover M is oriented and n is even, then

n∑
k=0

(−1)kkmk =

n∑
k=0

(−1)kk|Xk|−
n

2
χ(M).

Proof. Corollary 4.13 gives the first equality. By Lemma 4.11 and Corollary 4.13,

Str(Π1
z,sm) =

n∑
k=0

(−1)k
n∑

q=k

(−1)q−kmq =
n∑

q=0

(−1)q(q+1)mq =
n∑

q=0

(−1)qqmq.

Now, assume M is oriented and n is even. Then, by Equations (2.8), (2.9) and (2.14),

n∑
k=0

(−1)kkβk
No =

n∑
l=0

(−1)n−l(n− l)βn−l
No =

n∑
l=0

(−1)l(n− l)βl
No

= nχ(M)−
n∑

l=0

(−1)llβl
No.

Hence, the last equality of the statement follows from Lemma 4.12.

4.4. Asymptotic properties of the small projection

Notation 4.18. Consider a function f(x) > 0 (x > 0). When referring to vectors in

Banach spaces, the order notation O(f(|μ|)) (μ → ±∞) will be used for a family of

vectors v = v(z) (z ∈ C) with ‖v(z)‖ = O(f(|μ|)). This notation applies, for example, to
bounded operators between Banach spaces. We may also consider this notation when the

Banach spaces depend on z.

Proposition 4.19. For every τ ∈ R, on L2(M ;Λ), as μ→+∞,

Pz,sm = Pz +O
(
e−cμ
)
= Pz,smPz+τ,smPz,sm+O

(
μ−2
)
= Pz+τ,sm+O

(
μ−1
)
.
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Proof. By Corollary 4.9, for μ� 0, the elements Pz,smep,z (p ∈ X ) form a base of Ez,sm.

Applying the Gram–Schmidt process to this base, we get an orthonormal base ẽp,z. By

Proposition 4.7,

ẽp,z = ep,z +O
(
e−cμ
)
. (4.22)

This gives the first equality of the statement: for any α ∈ L2(M ;Λ),

Pzα=
∑
p∈X

〈α,ep,z〉ep,z =
∑
p∈X

〈α,ẽp,z〉ẽp,z +O
(
e−cμ
)
‖α‖= Pz,smα+O

(
e−cμ
)
‖α‖.

Since the sets Up (p ∈ X ) are disjoint one another, for p �= q in X ,

〈ep,z,eq,z+τ 〉= 0. (4.23)

On the other hand, by Equations (4.8)–(4.11), we can also assume

〈ep,z,ep,z+τ 〉= 〈e−iνhpep,μ,e
−iνhpep,μ+τ 〉= 〈ep,μ,ep,μ+τ 〉

=
(μ(μ+ τ))n/4

πn/2

〈
ρpe

−μ|xp|2/2,ρpe
−(μ+τ)|xp|2/2〉+O

(
e−cμ
)

=
(μ(μ+ τ))n/4

πn/2

∫
Rn

e−(μ+τ/2)|xp|2 dxp+O
(
e−cμ
)

=
(μ(μ+ τ))n/4

(μ+ τ/2)n/2
+O
(
e−cμ
)
= 1+O

(
μ−2
)
, (4.24)

where dxp = dx1
p . . . dx

n
p = dvol(xp). Combining Equation (4.22) for z and z + τ with

Equations (4.23) and (4.24), we obtain

Pz+τ,smẽp,z =
∑
q∈X

〈ẽp,z,ẽq,z+τ 〉ẽq,z+τ =
∑
q∈X

〈ep,z,eq,z+τ 〉eq,z+τ +O
(
e−cμ
)

= ep,z+τ +O
(
μ−2
)
= ẽp,z+τ +O

(
μ−2
)
. (4.25)

Repeating Equation (4.25) interchanging the roles of z and z+ τ , we get

Pz,smPz+τ,smẽp,z = Pz,smẽp,z+τ +O
(
μ−2
)
= ẽp,z +O

(
μ−2
)
.

This gives the second equality of the statement: For any α ∈ L2(M ;Λ),

Pz,smα=
∑
p∈X

〈α,ẽp,z〉ẽp,z = Pz,smPz+τ,sm

∑
p∈X

〈α,ẽp,z〉ẽp,z +O
(
μ−2
)
‖α‖

= Pz,smPz+τ,smPz,smα+O
(
μ−2
)
‖α‖.

By Equation (4.25),

‖ẽp,z − ẽp,z+τ

∥∥2 = ‖ẽp,z‖2−2〈ẽp,z,ẽp,z+τ 〉+‖ẽp,z+τ‖2 = 2−2〈Pz+τ,smẽp,z,ẽp,z+τ 〉
= 2−2〈ẽp,z+τ ,ẽp,z+τ 〉+O

(
μ−2
)
=O
(
μ−2
)
,
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which means

ẽp,z = ẽp,z+τ +O
(
μ−1
)
. (4.26)

The last stated equality follows from Equations (4.25) and (4.26): For any α ∈ L2(M ;Λ),

Pz,smα=
∑
p∈X

〈α,ẽp,z〉ẽp,z =
∑
p∈X

〈α,ẽp,z+τ 〉ẽp,z+τ +O
(
μ−1
)
α

= Pz+τ,smα+O
(
μ−1
)
α.

Corollary 4.20. For every τ ∈ R, on L2(M ;Λ),

dz+τ,sm−dz+τPz,sm =O
(
μ−1
)

(μ→+∞).

Proof. Since dz+τ = dz + τ η∧, it follows from Theorem 4.10 that dz+τ is bounded on

Ez,sm+Ez+τ,sm, uniformly on μ� 0. Hence, by Proposition 4.19,

dz+τ,sm−dz+τPz,sm = dz+τ (Pz+τ,sm−Pz,sm) =O
(
μ−1
)
.

Proposition 4.21. On L2(M ;Λ),

Pz,sm η∧,η∧Pz,sm =O
(
μ−1
)

(μ→+∞).

Proof. By Theorem 4.10, for all α ∈ Ω(M),

‖dzPz,smα‖2 = 〈δzdzPz,smα,Pz,smα〉 ≤ 〈ΔzPz,smα,Pz,smα〉 ≤O
(
e−cμ
)
,

yielding dzPz,sm =O
(
e−cμ
)
. This is also true with the parameter z+1. So, by Corollary

4.20,

η∧Pz,sm = (dz+1−dz)Pz,sm = dz+1Pz+1,sm−dzPz,sm+O
(
μ−1
)
=O
(
μ−1
)
.

4.5. Derivatives of the small projection

Remark 4.22. For reasons of brevity, most of the results about derivatives are stated

for ∂z, which may be simply denoted with a dot. But there are obvious versions of those

results for ∂z̄ with analogous proofs.

Proposition 4.23. We have

rank∂zPz,sm ≤ 2|X | (μ� 0) , ∂zPz,sm =O
(
μ−1
)

(μ→+∞).

Proof. By Equation (2.4) and Theorem 4.10, for μ � 0 and every ω ∈ S
1, a standard

computation gives

∂z
(
(w−Dz)

−1
)
= (w−Dz)

−1 η∧(w−Dz)
−1. (4.27)
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Then, by Equation (4.14), ∂z
(
(w−Dz)

−1
)
defines an operator on L2(M ;Λ), bounded

uniformly on w ∈ S
1 and z ∈ C. By Equation (4.14) and Proposition 4.21, we also get

Pz,la/sm∂z
(
(w−Dz)

−1
)
Pz,sm/la

= (w−Dz)
−1Pz,la/sm η∧Pz,sm/la(w−Dz)

−1 =O
(
μ−1
)
,

uniformly on w ∈ S
1.

On the other hand, applying again basic spectral theory, we obtain

Pz,sm =
1

2πi

∫
S1

(w−Dz)
−1 dw

for μ� 0, yielding

Ṗz,sm =
1

2πi

∫
S1

∂z
(
(w−Dz)

−1
)
dw , (4.28)

which defines an operator on L2(M ;Λ), bounded uniformly on z.

Using that Pz,sm is an orthogonal projection, the argument of the proof of
[7, Proposition 9.37] shows that

Ṗz,sm = Pz,laṖz,smPz,sm+Pz,smṖz,smPz,la. (4.29)

So rank Ṗz,sm ≤ 2rankPz,sm ≤ 2|X | by Corollary 4.9, and

Ṗz,sm =
1

2πi

∫
S1

Pz,la∂z
(
(w−Dz)

−1
)
Pz,sm dw

+
1

2πi

∫
S1

Pz,sm∂z
(
(w−Dz)

−1
)
Pz,la dw =O

(
μ−1
)
.

Lemma 4.24. For all p ∈ X ,

∂zep,z =

(
n

8μ
−

|x+
p |2
2

+O(e−cμ)

)
ep,z (μ→+∞).

Proof. Using integration by parts, and since ρ is an even function and ρ′ vanishes on

[−r,r], we obtain∫ 2r

−2r

ρ(x)2x2e−μx2

dx=
1

2μ

∫ 2r

−2r

(2ρ(x)ρ′(x)x+ρ(x)2)e−μx2

dx

=
1

2μ

(π
μ

) 1
2

+O(e−cμ). (4.30)
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So

∂μaμ = ∂μ

((∫ 2r

−2r

ρ(x)2e−μx2

dx

)n
2
)

=−n

2

(∫ 2r

−2r

ρ(x)2e−μx2

dx

)n
2 −1∫ 2r

−2r

ρ(x)2x2e−μx2

dx

=−n

2

(π
μ

)n
4 − 1

2 1

2μ

(π
μ

) 1
2

+O(e−cμ) =− n

4μ

(π
μ

)n
4

+O(e−cμ).

Hence, by Equation (4.11),

∂μ

( 1

aμ

)
=−∂μaμ

a2μ
=

n

4μ

(π
μ

)n
4
(μ
π

)n
2

+O(e−cμ) =
n

4μ

(μ
π

)n
4

+O(e−cμ). (4.31)

It also follows from Proposition 4.1 (iii) and Equations (4.9), (4.11) and (4.31) that

∂μep,μ = ∂μ

( ρp
aμ

e−μ|xp|2/2 dx1
p∧·· ·∧dxind(p)

p

)
=

(
∂μ

( 1

aμ

)
aμ−

|xp|2
2

)
ep,μ =

(
n

4μ
− |xp|2

2
+O(e−cμ)

)
ep,μ. (4.32)

So, by Equation (4.10),

∂μep,z =

(
n

4μ
− |xp|2

2
+O(e−cμ)

)
ep,z , ∂νep,z =−ihpep,z. (4.33)

Then the result follows using the right-hand side of Equation (4.1).

Proposition 4.25. For all p ∈ X ,

‖∂z(Dzep,z)‖L∞ =O(e−cμ) (μ→+∞).

Proof. From Equation (4.12), we get

∂z(Dzep,z) =
1

2

(
e−iνhp∂μ

( 1

aμ

(π
μ

)n
4
)
ĉ(dρp)ep,μ

+ e−iνhp
1

aμ

(π
μ

)n
4

ĉ(dρp)∂μep,μ−hpe
−iνhp

1

aμ

(π
μ

)n
4

ĉ(dρp)ep,μ

)
. (4.34)

By Equations (4.11) and (4.31),

∂μ

( 1

aμ

(π
μ

)n
4
)
= ∂μ

( 1

aμ

)(π
μ

)n
4 − nπ

4aμμ2

(π
μ

)n
4 −1

=
n

4μ

(μ
π

)n
4
(π
μ

)n
4 − nπ

4μ2

(π
μ

)n
4 −1(μ

π

)n
4

+O(e−cμ) =O(e−cμ). (4.35)

The result follows applying Proposition 4.1 (iii) and Equations (4.9), (4.11), (4.32) and

(4.35) to Equation (4.34), and using that dρp = 0 around p.

Proposition 4.26. For every p ∈ X ,

‖∂z(Pz,smep,z − ep,z)‖L∞ =O(e−cμ) (μ→+∞).
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Proof. By Equation (4.17),

∂z(Pz,smep,z − ep,z) =
1

2πi

∫
S1

w−1∂z
(
(w−Dz)

−1
)
Dzep,z dw

+
1

2πi

∫
S1

w−1(w−Dz)
−1∂z(Dzep,z)dw.

Now, apply Equations (4.18) and (4.27) and Propositions 4.6 and 4.25.

5. Small and large zeta invariants of Morse forms

5.1. Small and large zeta invariants

According to Sections 3.2 and 4.2, if B is an operator in L2(M ;Λ) so that ζ(s,Δz,B) is

defined, we have

ζ(s,Δz,B) = ζsm(s,Δz,B)+ ζla(s,Δz,B) ,

where

ζsm/la(s,Δz,B) = ζ(s,Δz,Bz,sm/la).

These are the contributions from the small/large spectrum to ζ(s,Δz,B), which are called

the small/large zeta functions of (Δz,B). In particular, we can write

ζ(s,z) = ζsm(s,z)+ ζla(s,z) ,

where ζsm/la(s,z) = ζsm/la(s,z,η) is the small/large zeta function of (Δz,η∧Dzw). Since
ζsm(s,z) is an entire function, ζla(s,z) has the same poles as ζ(s,z) (Remark 3.10), with

the same residues. The value ζsm/la(1,z) will be called the small/large zeta invariant of
(M,g,η,z). The following results follow like Corollaries 3.9 and 3.11.

Corollary 5.1. If s > 1/2, then

ζla(s,z) =
1

Γ(s)

∫ ∞

0

ts−1Str
(
η∧Dze

−tΔzPz,la

)
dt ,

where the integral is absolutely convergent.

Corollary 5.2. We have

ζsm(1,z) = Str(η∧D−1
z (Π⊥

z )sm) ,

ζla(1,z) = lim
t↓0

Str
(
η∧D−1

z e−tΔzPz,la

)
.

5.2. Truncated heat invariants of perturbed operators

For k = 0, . . . ,n, let K ′
z,k,t(x,y) and K̃z,k,t(x,y) denote the Schwartz kernels of e−tΔz,kΠ⊥

z

and e−tΔz,kPz,la,k, respectively. According to Section 3.1, their restrictions to the diagonal
have asymptotic expansions (as t ↓ 0),

K ′
z,k,t(x,x)∼

∞∑
l=0

e′k,l(x,z)t
(l−n)/2 , K̃z,k,t(x,x)∼

∞∑
l=0

ẽk,l(x,z)t
(l−n)/2. (5.1)
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We have

e′k,l(x,z) =

{
ek,l(x,z) if l < n

ek,n(x,z)−βk
z if l = n ,

ẽk,l(x,z) =

{
ek,l(x,z) if l < n

ek,n(x,z)−Hz,k,0(x,x) if l = n ,
(5.2)

where Hz,k,t(x,y) is the Schwartz kernel of e−tΔz,kPz,sm,k, which is defined for all t ∈ R

and is smooth. We also have asymptotic expansions

h′
k(t,z) := Tr

(
e−tΔz,kΠ⊥

z

)
∼

∞∑
l=0

a′k,l(z)t
(l−n)/2, (5.3)

h̃k(t,z) := Tr
(
e−tΔz,kPz,la,k

)
∼

∞∑
l=0

ãk,l(z)t
(l−n)/2. (5.4)

By Equations (3.4), (3.5) and (3.9),

a′k,l(z) =

∫
M

stre′k,l(x,z) dvol(x) =

{
ak,l(z) if l < n

ak,l(z)−βk
z if l = n.

(5.5)

ãk,l(z) =

∫
M

str ẽk,l(x,z) dvol(x) =

{
ak,l(z) if l < n

ak,l(z)−dimEk
z,sm if l = n.

(5.6)

The operators e−tΔzΠ⊥
z w and e−tΔzPz,law have Schwartz kernels

K ′
z,t(x,y) =

n∑
k=0

(−1)kK ′
z,k,t(x,y) , K̃z,t(x,y) =

n∑
k=0

(−1)kK̃z,k,t(x,y) ,

with induced asymptotic expansions

K ′
z,t(x,x)∼

∞∑
l=0

e′l(x,z)t
(l−n)/2 , K̃z,t(x,x)∼

∞∑
l=0

ẽl(x,z)t
(l−n)/2 ,

where

e′l(x,z) =
n∑

k=0

(−1)ke′k,l(x,z) , ẽl(x,z) =
n∑

k=0

(−1)kẽk,l(x,z).

We also have induced asymptotic expansions,

h′(t,z) := Str
(
e−tΔzΠ⊥

z

)
∼

∞∑
l=0

a′l(z)t
(l−n)/2 ,

h̃(t,z) := Str
(
e−tΔzPz,la

)
∼

∞∑
l=0

ãl(z)t
(l−n)/2 ,
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where

a′l(z) =
n∑

k=0

(−1)ka′k,l(z) , ãl(z) =
n∑

k=0

(−1)kãk,l(z).

If μ � 0, by Equation (2.9), Corollary 4.9 and Theorem 4.10, e′k,l(x,z) and ẽk,l(x,z)

depend smoothly on z (Section 3.1), and therefore so do h′
k(t,z), h̃k(t,z), a

′
k,l(z), ãk,l(z),

e′l(x,z), ẽl(x,z), h
′(t,z), h̃(t,z), a′l(z) and ãl(z).

5.3. Truncated derived heat invariants of perturbed operators

For k = 0, . . . ,n and j = 1,2, let

hj
k(t,z) = Tr

(
e−tΔz,kΠj

z,k

)
, h̃j

k(t,z) = Tr
(
e−tΔz,kΠj

z,la,k

)
.

Lemma 5.3. We have

h1
k+1(t,z) = h2

k(t,z) =

k∑
p=0

(−1)k−ph′
p(t,z) =

n∑
q=k+1

(−1)q−k−1h′
q(t,z).

Proof. This follows by induction on k, using that

h1
0(t,z) = h2

n(t,z) = 0 , h′
k(t,z) = h1

k(t,z)+h2
k(t,z) , h2

k(t,z) = h1
k+1(t,z).

The last equality holds because the diagram of Equation (2.7) is commutative.

Let

hj(t,z) = Str
(
e−tΔzΠj

z

)
=

n∑
k=0

(−1)khj
k(t,z) ,

h̃j(t,z) = Str
(
e−tΔzΠj

z,la

)
=

n∑
k=0

(−1)kh̃j
k(t,z).

Thus,

h′(t,z) = h1(t,z)+h2(t,z) , h̃(t,z) = h̃1(t,z)+ h̃2(t,z). (5.7)

Corollary 5.4. We have h′(t,z) = 0.

Proof. This is a direct consequence of Lemma 5.3 and Equation (5.7).

Corollary 5.5. We have

h1(t,z) =−h2(t,z) =

n∑
k=0

(−1)kkh′
k(t,z) = Str

(
Ne−tΔzΠ⊥

z

)
.
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Proof. Corollary 5.4 and Equation (5.7) give the first equality. By Lemma 5.3 and

Corollary 5.4,

h1(t,z) =
n∑

k=0

(−1)k
n∑

q=k

(−1)q−kh′
q(t,z) =

n∑
q=0

(−1)q(q+1)h′
q(t,z)

= h′(t,z)+
n∑

q=0

(−1)qqh′
q(t,z) =

n∑
q=0

(−1)qqh′
q(t,z).

Remark 5.6. Note the similarity between Corollaries 4.17 and 5.5.

Applying Equation (5.3) and Lemma 5.3, we get

hj
k(t,z)∼

∞∑
l=0

ajk,l(z)t
(l−n)/2 , hj(t,z)∼

∞∑
l=0

ajl (z)t
(l−n)/2 , (5.8)

where

a1k+1,l(z) = a2k,l(z) =

k∑
p=0

(−1)k−pa′p,l(t,z) =
n∑

q=k+1

(−1)q−k−1a′q,l(t,z) ,

a1l (z) =−a2l (z) =
n∑

k=0

(−1)kka′k,l(z).

Lemma 5.3, Corollary 5.4 and Equation (5.8) have obvious versions for h̃j
k(t,z) and

h̃j(t,z), with similar proofs. The coefficients of the corresponding asymptotic expansions

are denoted by ãjk,l(z) and ãjl (z).

Corollary 5.7. For all l ≤ n and μ� 0, a1l (z) and ã1l (z) are independent of z.

Proof. Apply Equations (2.9), (5.5) and (5.6); Corollary 4.9; and Theorems 3.4 and
4.10.

5.4. Zeta function versus theta function

Consider also the meromorphic function

θ(s,z) = θ(s,z,η) =−ζ(s,Δz,Nw) , (5.9)

called theta function of Δz, and write

θ(s,z) = θsm(s,z)+θla(s,z) ,

where

θsm/la(s,z) = θsm/la(s,z,η) =−ζsm/la(s,Δz,Nw). (5.10)
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By Corollary 5.5,

−ζ(s,Δz,Π
1
zw) = ζ(s,Δz,Π

2
zw) = θ(s,z) ,

−ζsm/la(s,Δz,Π
1
zw) = ζsm/la(s,Δz,Π

2
zw) = θsm/la(s,z). (5.11)

Recall that ζ(s,z) is smooth at s = 1 (Corollary 3.9). Moreover, θ(s,z) is smooth at

s= 0 [66]. The same is true for ζla(s,z) and θla(s,z).

Proposition 5.8. If μ� 0, then

∂zθla(s,z) = sζla(s+1,z).

Proof. Recall that a dot may be used to denote ∂z. Like in Equation (4.29),

Π̇1
z =
(
Π1

z

)⊥
Π̇1

zΠ
1
z +Π1

zΠ̇
1
z

(
Π1

z

)⊥
.

Therefore, since Π1
z and (Π1

z)
⊥ commute with Δ−s

z and Pz,la, for s� 0,

ζla(s,Δz,Π̇
1
zw) = Str

(
Π̇1

zΔ
−s
z Pz,la

)
= 0 ,

yielding ζla(s,Δz,Π̇
1
zw) = 0 for all s because this is a meromorphic function. Hence, since

Δz and Π1
z,law commute, Proposition 3.1 (i),(v) gives

∂zζla(s,Δz,Π
1
zw) =−sζla(s+1,Δz,Δ̇zΠ

1
zw) =−sStr

(
Δ̇zΔ

−s−1
z Π1

z,la

)
. (5.12)

Next, by Equation (2.4),

Δ̇zΠ
1
z,la = (η∧δz + δz η∧)Π1

z,la = η∧δzΠ
1
z,la+ δz η∧Π1

z,la. (5.13)

But, since Π1
zδz = 0,

Str
(
δz η∧Δ−s−1

z Π1
z,la

)
=−Str

(
η∧Δ−s−1

z Π1
z,laδz

)
= 0. (5.14)

From Equations (5.11)–(5.14) and Proposition 3.1 (i), we get

∂zθla(s,z) =−∂zζla(s,Δz,Π
1
zw) = sStr

(
η∧δzΔ

−s−1
z Π1

z,la

)
= sStr

(
η∧DzΔ

−s−1
z Π1

z,la

)
= sζla(s+1,z).

Remark 5.9. In the case where η is a Morse form and μ� 0, the regularity of ζ(s,z)
indicated in Remark 3.10 also follows from Corollary 5.7 and Proposition 5.8.

Corollary 5.10. If μ� 0, then Equation (1.6) is true.

Proof. Apply Proposition 5.8 and Corollary 5.1.

5.5. The case of the differential of a Morse function

Let us consider the special case where η = dh for a Morse function h. The following four

results follow like Lemma 3.12 and Corollaries 3.13 to 3.15.
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Lemma 5.11. For μ� 0,

Str
(
η∧d−1

z Π1
z,sm

)
=−Str

(
h(Π⊥

z )sm
)
,

Str
(
η∧d−1

z e−tΔzΠ1
z,la

)
=−Str

(
he−tΔzPz,la

)
.

Corollary 5.12. For μ� 0,

ζsm(1,z) =−Str
(
h(Π⊥

z )sm
)
,

ζla(1,z) =− lim
t↓0

Str
(
he−tΔzPz,la

)
.

Corollary 5.13. If μ� 0, then ζsm/la(1,z) ∈ R.

Corollary 5.14. If M is oriented and |μ| � 0, then

ζsm/la(1,z) = ζsm/la(1,− z̄) = ζsm/la(1,− z) = ζsm/la(1,z̄).

Corollary 5.15. The value ζsm(1,z) is uniformly bounded on z for μ� 0.

Proof. The operator h(Π⊥
z )sm is uniformly bounded and, for μ � 0, has uniformly

bounded rank. So Str(h(Π⊥
z )sm) is uniformly bounded on z for μ � 0, and therefore

the result follows from Corollary 5.12.

Theorem 5.16. The following limit holds uniformly on ν:

lim
μ→+∞

ζla(1,z) =−
∫
M

he(M,∇M ) dvol+

n∑
p∈X

(−1)ind(p)h(p).

Proof. By Equations (5.1) and (5.2), Theorem 3.2 and Corollary 5.12, for μ� 0,

ζla(1,z) =− lim
t↓0

Str
(
he−tΔzPz,la

)
=−
∫
M

h(x) str ẽn(x,z) dvol(x)

=−
∫
M

h(x) stren(x,z) dvol(x)+Str(hPz,sm)

=−
∫
M

he(M,∇M ) dvol+Str(hPz,sm).

According to Corollary 4.9, the elements Pz,smep,z (p ∈ X ) form a base of Ek
z,sm when

μ� 0. Applying the Gram–Schmidt process to this base, we get an orthonormal frame
ẽp,z (p ∈ X ) of Ez,sm. By Proposition 4.7 for m= 0 and Equations (4.8)–(4.11),

lim
μ→+∞

〈hẽp,z,ẽq,z〉= lim
μ→+∞

〈hep,z,eq,z〉= h(p)δpq.

Hence,

lim
μ→+∞

Str(hPz,sm) =

n∑
k=0

(−1)k
∑
p∈Xk

h(p).
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6. The small complex versus the Morse complex

6.1. Preliminaries on Morse and Smale vector fields

6.1.1. Vector fields with Morse-type zeros. Let X be a real smooth vector field
on M with flow φ = {φt}. Let Y = Zero(X) denote the set of zeros of X (or rest points

φ). It is said that a zero p of X is of Morse type with (Morse) index of ind(p) if, using

the notation of Equation (4.2),

X =−
n∑

j=1

εp,jx
j
p

∂

∂xj
p

(6.1)

on the domain Up of some coordinates xp = (x1
p, . . . ,x

n
p ) at p, also calledMorse coordinates.

This condition means that X =−gradg hX,p on Up, where hX,p and g are given on Up by

the center and right-hand side of Equations (4.1) and (4.3). The coordinates xp used in
Equation (6.1) are not unique; that expression is invariant by taking positive multiples

of the coordinates (contrary to the expressions of Equations (4.1), (4.3) and (4.4)). But

ind(p) is independent of xp. Note that the Hopf index of −X at p is (−1)ind(p).
Let us consider η ∈ Z1(M,R) and use the notation of Section 4.1. For p ∈ X ∩Y, if

Equations (4.3), (4.4) and (6.1) hold with the same coordinates, then η and g are said to

be in standard form with respect to X around p. In this case, Cη and Cg (C > 0) are also

in standard form with respect to X around p; indeed, Cη, X and Cg satisfy Equations
(4.3), (4.4) and (6.1) with the coordinates

√
Cxp. If X = Y, and η and g are in standard

form with respect to X around every p ∈X , then η and g are said to be in standard form

with respect to X. This concept is also applied to any Morse function h on M referring
to dh and g. The reference to g may be omitted in this terminology.

Unless otherwise indicated, we assume from now on that X has Morse-type zeros. Then

Y is finite, and the sets Yk, Y+ and Y<k are defined like in Section 4.1.

6.1.2. Stable/unstable manifolds. For k = 0, . . . ,n and p ∈ Yk, the stable/unstable

manifolds of p are smooth injective immersions, ι±p :W±
p →M , where the images ι±p (W

±
p )

consist of the points satisfying φt(x)→ p as t→±∞, and the manifolds W+
p and W−

p are

diffeomorphic to R
n−k and R

k, respectively [70, Theorem 9.1]. In particular, p∈ ι±p (W
±
p ),

and the maps ι+p and ι−p meet transversely at p. Let p± = (ι±p )
−1(p). Assume every Up is

connected, and let U±
p be the connected component of (ι±p )

−1(Up) that contains p
±. The

restriction ι±p : U±
p → (x±

p )
−1(0) is a diffeomorphism, and therefore (U±

p ,x±
p ι

±
p ) is a chart

of W±
p at p±.

6.1.3. Gradient-like vector fields. Given a Morse function h on M in standard

form with respect to X, we have X = −gradg h on M for some Riemannian metric g
if and only if Xh < 0 on M \Y [16, Lemma 2.1], [40, Section 6.1.3]; in this case, X is

said to be gradient-like (with respect to h). If X is gradient-like, then the maps ι±p are

embeddings [68, Lemma 3.8], [16, Lemma 2.2], and their images cover M [69, Theorem B
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and Lemma 1.1], [16, Corollary 2.5]. Thus, in this case, the α- and ω-limits of the orbits of

X are zero points, we can write W±
p = ι±p (W

±
p ) and p± = p, and ι±p becomes the inclusion

map.
Unless otherwise indicated, we also assume in the rest of the paper that X is gradient-

like.

6.1.4. Smale vector fields. X is said to be Smale if W+
p �W−

q for all p,q ∈ Y. Then

M(p,q) :=W+
p ∩W−

q is a φ-saturated smooth submanifold of dimension ind(p)− ind(q).
If p = q, we have M(p,p) = {p}; in this case, define T (p,p) = ∅. If p �= q, the induced

R-action on M(p,q) is free and proper; in this case, define T (p,q) = M(p,q)/R, which

is a smooth manifold of dimension ind(p)− ind(q)− 1. The elements of T (p,q) are the

(unparameterized) trajectories with α-limit p and ω-limit q, which are oriented by X. If
ind(p) ≤ ind(q), then T (p,q) = ∅. If ind(p)− ind(q) = 1, then T (p,q) consists of isolated

points, each of them representing a trajectory in M. Let

T =
⋃

p,q∈X
T (p,q) , T 1

p =
⋃

q∈Xind(p)−1

T (p,q) , T 1
k =

⋃
p∈Xk

T 1
p , T 1 =

n⋃
k=0

T 1
k .

The elements of T 1 are called instantons.1

X can be C∞-approximated by gradient-like Smale vector fields that agree with X

around X [20, Proposition 2.4] (this follows from [69, Theorem A]). A well-known

consequence is that, for any Morse function h, there is a C∞-dense set of Riemannian

metrics g on M such that −gradg h is Smale; this density is also true in the subspace of
metrics that are Euclidean with respect to Morse coordinates on given neighborhoods of

the critical points.

Unless otherwise indicated, besides the above conditions, we assume from now on that
X is Smale; that is, we assume (b) (Section 1.1).

6.1.5. Lyapunov forms. Any η ∈Z1(M,R) is said to be Lyapunov for X if η(X)< 0

on M \Y [20, Definition 2.3]. Note that this condition implies that Zero(η) = Y. By (b),

every class in H1(M,R) has a representative η which is Lyapunov for X and η� =−X for

some Riemannian metric g on M, with η and g in standard form with respect to X [18,
Proposition 16 (i)], [20, Observations 2.5 and 2.6], [34, Lemma 3.7], [40, Section 6.1.3].

6.1.6. Completion of the unstable manifolds.

Proposition 6.1 ([10, Appendix by F. Laudenbach, Proposition 2], [39, Chapter 2],
[15, Theorem 2.1], [17, Theorem 1], [16, Theorem 4.4], [40, Sections A.2 and A.8], [52,

Corollary 2.3.2]). The following holds for every p ∈ Yk (k = 0, . . . ,n):

1In [12], the elements of T are called instantons, and the elements of T 1 proper instantons.
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(i) W−
p is a C1 submanifold with conic singularities2 and a Whitney stratified

subspace3. Its strata are the submanifolds W−
q for q ∈ Y<k with T (p,q) �= ∅. As

a consequence, W−
p has finite volume, and

W−
q ∩W−

p ⊂
⋃

x∈Y<k

W−
x

if q �= p in Yk; in particular, p /∈W−
q .

(ii) There is a compact k-manifold with corners4 Ŵ−
p whose l-corner5 is

∂lŴ
−
p =

⊔
(q0,...,ql)∈{p}×Yl

( l∏
j=1

T (qj−1,qj)

)
×W−

ql
(0≤ l ≤ k).

In particular, the interior of Ŵ−
p is ∂0Ŵ

−
p = W−

p , and the set T (p,q) is finite if

q ∈ Yk−1.

(iii) There is a smooth map ι̂−p : Ŵ−
p → M whose restriction to every component of

∂lŴ
−
p is given by the factor projection to W−

ql
, according to (ii). In particular,

ι̂−p = ι−p on W−
p , and ι̂−p : Ŵ−

p →W−
p is a stratified map.

By Proposition 6.1 (i), we can choose the open sets Up (p ∈ Yk, k = 0, . . . ,n) so small

that Up∩W−
q = ∅ if q �= p in Yk.

For every q ∈Yk−1 and γ ∈T (p,q), the closure γ̄ inM is a compact oriented submanifold

with boundary of dimension one, and ∂γ̄ = {p,q}. We may also consider γ̄ as the closure

of γ in Ŵ−
p .

6.2. Preliminaries on the Morse complex

6.2.1. The Morse complex when M is oriented. For reasons of clarity, assume

first that M is oriented. Fix an orientation O−
p of every unstable manifold W−

p (p ∈ Yk,

k=0, . . . ,n), which can be also considered as an orientation of Ŵ−
p . ThenW−

p ≡ (W−
p ,O−

p )

defines a current of dimension k on M, also denoted by W−
p ; namely, for α ∈ Ωk(M),

〈W−
p ,α〉=

∫
W−

p

α=

∫
̂W−

p

(ι̂−p )
∗α. (6.2)

Let ∂1O−
p be the orientation of ∂1Ŵ

−
p induced by O−

p like in the Stokes’ theorem;

precisely, it is determined by O−
p = ν−p ⊗ ∂1O−

p along ∂1Ŵ
−
p for any outward-pointing

normal vector ν−p . The restriction of ∂1O−
p to every component T (p,q)×W−

q (q ∈ Yk′)

of ∂1Ŵ
−
p is of the form Op,q ⊗O−

q for a unique orientation Op,q of T (p,q). If k′ = k−1,

2In the sense of [10, Appendix by F. Laudenbach, Section a)] and [40, Appendix A.1].
3Introduced by H. Whitney [72, 73], and the definition was simplified by J. Mather [45].
4In the sense of [47, Section 1.1.8].
5The union of the interiors of the boundary faces of codimension l.
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then Op,q can be represented by a unique function εp,q : T (p,q)→{±1}; combining these

functions, we get a map ε : T 1 →{±1}. By the descriptions of ∂1Ŵ
−
p and ι̂−p : ∂1Ŵ

−
p →M ,

and by the Stokes’ theorem for manifolds with corners, we have [10, Appendix by F.

Laudenbach], [34, Remark 1.9], [16, Theorem 3.6 and Proposition 5.3], [40, Section 6.5.3]

∂W−
p =

∑
q∈Yk−1, γ∈T (p,q)

ε(γ)W−
q . (6.3)

Thus, the currents W−
p (p ∈ X ) generate over C a finite-dimensional subcomplex

(C•(X,W−),∂) of the complex (Ω(M)′,∂) of currents on M, called the Morse complex.

The simpler notation C• = C•(X) = C•(X,W−) may be also used. Moreover, C• ↪→
Ω(M)′ is a quasi-isomorphism,6 H•(C•,∂)∼=H•(M,C) [71, 67, 51] (see also [29, 64, 65],

[35, Theorem 0.1], [10, Appendix by F. Laudenbach, Proposition 7], [40, Section 6.6.5]).
Let (C•(X,W+),∂) = (C•(−X,W−),∂), involving the stable Morse cells W+

p . If M is

oriented by OM and the orientation O+
p of every W+

p is chosen so that O+
p ⊗O−

p =OM

at p, then the canonical pairing

〈·,·〉 : C•(X,W−)×Cn−•(X,W+)→K , 〈W−
p ,W+

q 〉= δpq , (6.4)

satisfies [40, Section 6.6.2]

〈∂W−
p ,W+

q 〉= (−1)k 〈W−
p ,∂W+

q 〉 (p ∈ Xk, q ∈ Xk−1). (6.5)

6.2.2. The Morse complex when M may not be oriented. When M is not

assumed to be oriented, the concepts of Section 6.2.1 can be extended as follows. We

fix an orientation NO−
p of every normal bundle NW−

p , which can be also considered as

an orientation of NŴ−
p (the normal bundle of the immersion ι̂−p ). Then we can consider

W−
p ≡ (W−

p ,NO−
p ) ∈ Ωk(M,o(M))′, by using NO−

p ⊗α as integrand in Equation (6.2)

for every α ∈ Ωk(M,o(M)); note that NO−
p ⊗α ∈ Ωk(Ŵ−

p ,o(Ŵ−
p )) = Ωk(Ŵ−

p ). With the

notation of Section 6.2.1, ∂1NO−
p := NO−

p ⊗ ν−p describes an orientation of N∂1Ŵ
−
p ,

and the Stokes theorem has the extension (see [13, Theorem 7.7] for the case without

boundary) ∫
̂W−

p

NO−
p ⊗dβ =

∫
∂1

̂W−
p

∂1NO−
p ⊗β

(
β ∈ Ωk−1(M,o(M))

)
. (6.6)

If M is oriented by OM , then NO−
p and O−

p determine each other by the condition
OM =NO−

p ⊗O−
p . Then ∂1NO−

p and ∂1O−
p determine each other in the same way:

OM =NO−
p ⊗O−

p =NO−
p ⊗ν−p ⊗∂1O−

p = ∂1NO−
p ⊗∂1O−

p .

So Equation (6.6) agrees with the usual Stokes’ theorem in this way.

If M is not oriented, by using local orientations of M, the above argument shows that
Equation (6.6) also agrees with the usual Stokes’ theorem for o(M)-valued forms β with

6Actually, H•(M,Z) is isomorphic to the homology of the complex of free abelian groups
generated by the currents W−

p .
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small enough support. Then, like in Section 6.2.1, we get the same map ε : T 1 → {±1},
and therefore the same definition of (C•,∂).

6.2.3. The dual Morse complex. Let Ck(X,W−) = (Ck)
∗ ≡C

Yk (k = 0, . . . ,n) and

d= ∂∗. The simpler notation C• =C•(X) will be preferred. It is said that (C•,d) is the
dual Morse complex. Boldface notation is also used for elements of C• and other operators

on C•. Let ep (p ∈ Y) denote the elements of the canonical base of C•, determined by
ep(q) = δpq. By Equation (6.3), for q ∈ Yk−1,

deq =
∑

p∈Yk, γ∈T (p,q)

ε(γ)ep. (6.7)

Comparing Equations (6.3) and (6.7), we see that (C•(X,W−),d) ≡ (C•(−X,W+),∂).

Thus, from now on, (C•,d) will be also called a Morse complex. If M is oriented, it also
follows from Equations (6.4) and (6.5) that (C•(X,W−),wd)≡ (Cn−•(X,W+),∂).

6.2.4. The perturbed Morse complex. Take any η ∈ Z1(M,R) defining a class

ξ ∈H1(M,R) (there is no need of any condition on η or g in Sections 6.2.4 to 6.2.6). For
reasons of brevity, write η(γ) =

∫
γ
η for every γ ∈ T 1. According to [17, 18, 20], (C•,d)

has an analog of the Witten’s perturbation, (C•,dz = dzη) (z ∈ C), where, for q ∈ Yk−1

(k = 1, . . . ,n),

dzeq =
∑

p∈Yk, γ∈T (p,q)

ε(γ)ezη(γ)ep. (6.8)

If η= dh for some h∈C∞(M,R), then dz = e−zhdezh onC• because η(γ) = h(q)−h(p) for

p∈Yk, q ∈Yk−1 and γ ∈ T (p,q); here, e±zh also denotes the operator of multiplication by
the restriction of this function to Y. It will be said that (C•,dz) (z ∈ C) is the perturbed

dual Morse complex defined by X and η. A perturbation (C•,∂
z) is similarly defined,

multiplying by ezη(γ) the terms of the right-hand side of Equation (6.3).
Since W−

p (p ∈ Yk, k = 0, . . . ,n) is diffeomorphic to R
k, there is a unique h−

η,p ∈
C∞(W−

p ,R) such that h−
η,p(p̂

−) = 0 and dh−
η,p = (ι−p )

∗η, where p̂− ∈ W−
p ⊂ Ŵ−

p is

determined by ι−p (p̂
−) = p. Indeed, h−

η,p has a smooth extension ĥ−
η,p to Ŵ−

p because

Ŵ−
p is contractile. By Proposition 6.1 (ii), for all q ∈ Yk−1 and γ ∈ T (p,q), we have

ĥ−
η,p(γ,q̂

−) = η(γ) at (γ,q̂−) ∈ {γ}× Ŵ−
q ⊂ ∂1Ŵ

−
p . Therefore, ĥ−

η,q corresponds to the

restriction of ĥ−
η,p−η(γ) via the canonical diffeomorphism Ŵ−

q ≈ {γ}×Ŵ−
q .

According to [17, Proposition 4], [18, Proposition 10], [20, Propositions 2.15 and 2.16

and Section 6.2], a surjective homomorphism of complexes,

Φz : (Ω(M),dz)→ (C•,dz) ,

is defined by

Φz(ω)(p) =

∫
W−

p

ezh
−
η,pω =

∫
̂W−

p

ezĥ
−
η,p(ι̂−p )

∗ω.
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Moreover, Φz is a quasi-isomorphism for all z ∈ C [10, Proposition 7 in the Appendix by

F. Laudenbach] (see also [10, Theorem 2.9], [11, Theorem 1.6], [20, Proposition 2.17 and

Section 6.2]). If η and g satisfy (a), then, by Equation (4.13),

Φz : (Ez,sm,dz)→ (C•,dz)

is also a quasi-isomorphism. Since a direct adaptation of [18, Appendix A] shows that, for

k = 0, . . . ,n, dimHk(C•,dz) is independent of z ∈ C with |μ| � 0, we get Equation (2.9)

because any ξ ∈H1(M,R) is represented by a Morse form.

6.2.5. Morse complex with coefficients in a flat vector bundle. With more
generality, for a flat vector bundle F, we may consider (C•(X,W−,F ),dF ), where

Ck(X,W−,F ) =
⊕

p∈Yk
Fp, and dFe (e ∈ Fq, q ∈ Yk−1) is defined like in the right-

hand side of Equation (6.7), replacing ep with the parallel transport of e along
γ̄−1 [10, Section 1c)]. This is the dual of the complex (C•(X,W−,F ∗),∂F∗

), where

Ck(X,W−,F ∗) =
⊕

p∈Yk
F ∗
p , and ∂F f (f ∈ F ∗

p , p ∈ Xk) is defined like in the right-hand

side of Equation (6.3), replacing W−
q with the parallel transport of f along γ̄. A quasi-

isomorphism

ΦF =ΦX,F : (Ω(M,F ),d)→
(
C•(X,W−,F ),dF

)
can be defined like Φz [10, Theorem 2.9], using the isomorphism

Ω•(Ŵ−
p ,(ι̂−p )

∗F
)∼=Ω•(Ŵ−

p

)
⊗Fp

given by the parallel transport of (ι̂−p )
∗F . If F = Lz (Section 2.1.4), then(

C•(X,W−,Lz),dLz)≡ (C•,dz) , ΦLz ≡ Φz.

6.2.6. Hodge theory of the Morse complex. Consider the Hermitian scalar
product on C• so that the canonical base ep (p∈Y) is orthonormal. All operators induced

by dz and this Hermitian structure are called perturbed Morse operators. For instance,

besides dz, we have the perturbed Morse operators

δz = d∗
z , Dz = dz +δz , Δz =D2

z = dzδz +δzdz.

In particular, it will be said that Δz is the perturbed Morse Laplacian, and its eigenvalues

will be called perturbed Morse eigenvalues. If z = 0, we omit the subscript ‘z ’ and the

word ‘perturbed’. From Equation (6.8), we easily get

δzep =
∑

q∈Yk−1, γ∈T (p,q)

ez̄η(γ)ε(γ)eq , (6.9)

for p ∈ Yk. We also have

C• = kerΔz ⊕ imdz ⊕ imδz ,

kerΔz = kerDz = kerdz ∩kerδz , imΔz = imDz = imdz ⊕ imδz.

The orthogonal projections of C• to kerΔz, imdz and imδz are denoted by Πz =Π0
z,

Π1
z and Π2

z, respectively. The compositions d−1
z Π1

z, δ
−1
z Π2

z and D−1
z Π⊥

z are defined like
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in Section 2.1.2, and there is an obvious version of the commutative diagram of Equation
(2.7).

6.3. The small complex versus the Morse complex

Our main objects of interest are the form η ∈ Z1(M ;R) and the Riemannian metric g ; X

plays an auxiliary role. As indicated in Section 6.1.5, by (b), we can choose some η ∈ ξ
and g satisfying (a) and (c) (Section 1.1). Thus, unless otherwise indicated, assume from

now on that X, η and g satisfy (c), besides (a) and (b). In particular, Y = Zero(η).

For every p∈ Y, consider the functions hη,p, hX,p, h
−
η,p and ĥ−

η,p defined in Sections 4.1,
6.1.1 and 6.2.4. By (c), we have

hη,p = hX,p on Up ,

h−
η,p = hη,p =−1

2
|x−

p |2 on U−
p , (6.10)

h−
η,p < 0 on W−

p \{p}. (6.11)

From now on, the subscripts X and η will be dropped from the notation of these functions.

Continuing with the notation of Section 6.2.4, let Jz :C
• →Ez be the C-linear isometry

given by Jz(ep) = ep,z, and let Ψz = Pz,smJz :C
• → Ez,sm, which is an isomorphism for

μ� 0 (Corollary 4.9). By Proposition 4.7,

‖Ψze‖=
(
1+O

(
e−cμ
))
‖e‖ (μ→+∞)

for all e∈C•. Using polarization (see, e.g., [37, Section I.6.2]) and conjugation, this means
that, as μ→+∞,

Ψ∗
zΨz = 1+O

(
e−cμ
)
, ΨzΨ

∗
z = 1+O

(
e−cμ
)
. (6.12)

Notation 6.2. Consider functions u(z) and v(z) (z ∈ C) with values in Banach spaces.

The notation u(z)�0 v(z) (μ→±∞) means

u(z) = v(z)+O
(
e−c|μ|) (μ→±∞).

This notation may be used even when the Banach spaces depend on z.

Theorem 6.3 (Cf. [11, Theorem 6.11], [75, Theorem 6.9], [17, Theorem 4]). For every

τ ∈ R, as μ→+∞,

Φz+τΨz �0

( π

μ+ τ/2

)N/2(μ
π

)n/4
.

Proof. We adapt the proof of [75, Theorem 6.9] to the case of complex parameter. For

every p ∈ Yk,

Φz+τΨzep =
∑
q∈Yk

eq

∫
̂W−

q

e(z+τ)ĥ−
q (ι̂−q )

∗Pz,smep,z. (6.13)

Then the result follows by checking the asymptotics of these integrals using the

compactness of Ŵ−
q .
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In the case q = p, by Equation (6.11) and Corollary 4.8,∫
̂W−

p

e(z+τ)ĥ−
p (ι̂−p )

∗(Pz,sm−1)ep,z �0 0.

But, by Proposition 4.1 (iii) and Equations (4.8)–(4.11) and (6.10),∫
̂W−

p

e(z+τ)ĥ−
p (ι̂−p )

∗ep,z =

∫
̂W−

p

e(z+τ)ĥ−
p (ι̂−p )

∗(e−iνhpep,μ
)

=

∫
̂W−

p

e(μ+τ)ĥ−
p (ι̂−p )

∗ep,μ =
1

aμ

(∫ 2r

−2r

ρ(x)e−(2μ+τ)x2/2 dx
)k

=
( π

μ+ τ/2

)k/2(μ
π

)n/4(
1+O

(
e−cμ
))
. (6.14)

(When τ = 0, the last equality is the same as [75, Eq. (6.30)].)

For q �= p in Yk, since ep,z = 0 on W−
q because Up∩W−

q = ∅ (Section 6.1.6), like in the

previous case, we get ∫
̂W−

q

e(z+τ)ĥ−
q (ι̂−q )

∗Pz,smep,z �0 0.

Corollary 6.4. For every τ ∈ R, if μ � 0, then Φz+τ : Ez,sm → C• is a linear7

isomorphism.

Proof. Apply Theorem 6.3 and Corollary 4.9.

Remark 6.5. The argument of the proof of Theorem 6.3 shows that

ΦzJz =
(π
μ

)N/2−n/4

+O
(
e−cμ
)

(μ→+∞).

So Φz : Ez →C• is an isomorphism for μ� 0 (see also [20, Lemma 5.2]).

Let

Ψ̃z =
(μ
π

)N/2−n/4

Ψz :C
• → Ez,sm.

Corollary 6.6. Consider Ψ̃∗
z : Ez,sm →C•. As μ→+∞,

Ψ̃∗
zΨ̃z =

(μ
π

)N−n/2

+O
(
e−cμ
)
, Ψ̃zΨ̃

∗
z =
(μ
π

)N−n/2

+O
(
e−cμ
)
.

Proof. This is a direct consequence of Equation (6.12).

Corollary 6.7. For any τ ∈ R, consider Φz+τ : Ez,sm →C•. As μ→+∞,

Φz+τ Ψ̃z �0

( μ

μ+ τ/2

)N/2
, Ψ̃zΦz+τ �0

( μ

μ+ τ/2

)N/2
.

7It is an isomorphism of complexes if τ = 0.
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Proof. The first relation is a restatement of Theorem 6.3. The second relation follows by
conjugating the first one by Ψ̃z and using Corollary 6.6.

Corollary 6.8. As μ→+∞, Ψ̃−1
z �0 Φz on Ez,sm.

Proof. By Corollaries 6.6 and 6.7, on Ez,sm,

Ψ̃−1
z �0 Ψ̃

−1
z Ψ̃zΦz =Φz.

In the rest of this section, consider Φz : Ez,sm →C• unless otherwise indicated.

Corollary 6.9. As μ→+∞,

Φ∗
zΦz �0

(π
μ

)N−n/2

, ΦzΦ
∗
z �0

(π
μ

)N−n/2

.

Proof. We show the first relation, the other one being similar. By Corollaries 6.6 and
6.8, on Ez,sm,

Φ∗
zΦz �0

(
Ψ̃−1

z

)∗
Ψ̃−1

z =
(
Ψ̃∗

z

)−1
Ψ̃−1

z =
(
Ψ̃zΨ̃

∗
z

)−1 �0

(π
μ

)N−n/2

.

Corollary 6.10. As μ→+∞,

Ψ̃z �0

(μ
π

)N−n/2

Φ∗
z.

Proof. By Corollaries 6.7 and 6.9,

Ψ̃z �0

(μ
π

)N−n/2

Ψ̃zΦzΦ
∗
z �0

(μ
π

)N−n/2

Φ∗
z.

Corollary 6.11. For every τ ∈ R, as μ→+∞,

Φz+τPz+τ,smΨ̃z �0

( μ

μ+ τ/2

)N/2
+O
(
μ−1
)
.

Proof. By Corollaries 6.7, 6.6 and 6.9 and Proposition 4.19,

Φz+τPz+τ,smΨ̃z =Φz+τ (Pz+τ,sm−Pz,sm)Ψ̃z +Φz+τ Ψ̃z

�0 O
(
μ−1
)
+
( μ

μ+ τ/2

)N/2
.

Corollary 6.12. As μ→+∞,

dz,sm �0 Ψ̃zdzΦz , δz,sm �0 Ψ̃zδzΦz.
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Proof. By Theorem 4.10 and Corollary 6.7,

dz,sm �0 Ψ̃zΦzdz,sm = Ψ̃zdzΦz.

Now, taking adjoints and using Corollaries 6.6, 6.9 and 6.10, we obtain

δz,sm =Φ∗
z,smδzΨ̃

∗
z �0 Ψ̃zδzΦz.

Let Π̃z = Π̃
0

z, Π̃
1

z and Π̃
2

z be the orthogonal projections of C• to Φz(kerΔz,sm),

Φz(imdz,sm) and Φz(imδz,sm), respectively. Note that Π̃
1

z = Π̃
1

zΠ
1
z.

Corollary 6.13. For j = 0,1,2, as μ→+∞,

ΦzΠ
j
z,sm �0 Π̃

j

zΦz , Πj
z,sm �0 Ψ̃zΠ̃

j

zΦz , Πj
z,smΨ̃z �0 Ψ̃zΠ̃

j

z,sm.

Proof. We only prove the case of Π̃
2

z, the other cases being similar. Let αz,1, . . . ,αz,pz

be an orthonormal frame of δz(E
k+1
z,sm). So Φzαz,1, . . . ,Φzαz,pz

is a base of Φzδz(E
k+1
z,sm)

for μ� 0 by Corollary 6.4. Applying the Gram–Schmidt process to this base, we get an
orthonormal base fz,1, . . . ,fz,pz

of Φzδz(E
k+1
z,sm). By Corollary 6.9,

〈Φzαz,a,Φzαz,b〉 �0

(π
μ

)k−n/2

δab ,

for 1≤ a,b≤ pz. So

fz,a �0

(μ
π

)k/2−n/4

Φzαz,a.

Hence, by Corollary 6.9, for any β ∈ Ek
z,sm,

Π̃
2

zΦzβ =

pz∑
a=1

〈Φzβ,fz,a〉fz,a �0

(μ
π

)k−n/2
pz∑
a=1

〈Φzβ,Φzαz,a〉Φzαz,a

�0

m∑
a=1

〈β,αz,a〉Φzαz,a =ΦzΠ
2
z,smβ.

This shows the first relation of the statement because dimEk
z,sm < ∞. Then the other

stated relations follow using Corollaries 6.6, 6.7 and 6.9.

According to Corollary 6.4, in the following corollaries, we take μ � 0 so that Φz :

Ez,sm →C• is an isomorphism.

Corollary 6.14. As μ→+∞,

(Φ−1
z )∗Φ−1

z �0

(μ
π

)N−n/2

, Φ−1
z (Φ−1

z )∗ �0

(μ
π

)N−n/2

.
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Proof. By Corollary 6.9, for e ∈Ck with ‖e‖= 1,∥∥Φ−1
z e
∥∥�0

(μ
π

)k/2−n/4∥∥ΦzΦ
−1
z e
∥∥= (μ

π

)k/2−n/4

,

yielding the first stated relation. The second one has a similar proof.

Corollary 6.15. As μ→+∞,

Φ∗
z �0

(π
μ

)N−n/2

Φ−1
z , Ψ̃z �0 Φ

−1
z .

Proof. By Corollaries 6.9 and 6.14,

Φ∗
z =Φ∗

zΦzΦ
−1
z �0

(π
μ

)N−n/2

Φ−1
z , Ψ̃z = Ψ̃zΦzΦ

−1
z �0 Φ

−1
z .

Corollary 6.16. We have Π̃
1

z =Π1
z for μ� 0, and Π̃

2

z �0 Π
2
z as μ→+∞.

Proof. Since Φz(imdz,sm) = imdz for μ� 0, we get Π̃
1

z =Π1
z.

To prove Π̃
2

z �0 Π
2
z as μ→ +∞, consider the notation of the proof of Corollary 6.13.

We have αz,a = δzβz,a (a= 1, . . . ,pz) for some base βz,1, . . . ,βz,pz
of imdz,sm,k. Hence, by

Corollaries 6.7, 6.9 and 6.12,

Φzαz,a =Φzδzβz,a �0 ΦzΨ̃zδzΦzβz,a �0 δzΦzβz,a , (6.15)

and δzΦzβz,1, . . . ,δzΦzβz,pz
is a base of imδz,k+1. Applying the Gram–Schmidt process

to this base, we get an orthonormal base gz,1, . . . ,gz,pz
of imδz,k+1 satisfying gz,a �0 fz,a

by Equation (6.15). Then, for any e ∈Ck with ‖e‖= 1,

Π̃
2

ze=

pz∑
a=1

〈e,gz,a〉gz,a �0

pz∑
a=1

〈e,fz,a〉fz,a =Π2
ze.

Corollary 6.17. We have

dz,sm =Φ−1
z dzΦz , d−1

z,smΠ
1
z,sm =Π2

z,smΦ
−1
z d−1

z ΦzΠ
1
z,sm.

Proof. The first equality follows like the first relation of Corollary 6.12, using Φ−1
z instead

of Ψ̃z. To prove the second one, take any α ∈ imdz,sm. Since

dzΠ
2
z,smΦ

−1
z d−1

z Φzα= dzΦ
−1
z d−1

z Φzα=Φ−1
z dzd

−1
z Φzα= α

with Π2
z,smΦ

−1
z d−1

z Φzα ∈ imδz,sm, we obtain

Π2
z,smΦ

−1
z d−1

z Φzα= d−1
z,smα.
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6.4. Derivatives of some homomorphisms

Theorem 6.18. As μ→+∞,

∂z(ΦzΨz),∂z̄(ΦzΨz)�0

( n

8μ
− N

4μ

)(π
μ

)N/2−n/4

.

Proof. By Equation (6.13),

∂z(ΦzΨzep) =
∑
q∈Yk

eq

(∫
̂W−

q

ĥ−
q e

zĥ−
q (ι̂−q )

∗Pz,smep,z +

∫
̂W−

q

ezĥ
−
q (ι̂−q )

∗∂z(Pz,smep,z)

)
,

(6.16)

for every p ∈ Yk (k = 0, . . . ,n). We estimate each of these integrals.

Like in the proof of Theorem 6.3, we get, for any q �= p in Yk,∫
̂W−

p

ĥ−
p e

zĥ−
p (ι̂−p )

∗(Pz,sm−1)ep,z �0 0 , (6.17)

∫
̂W−

q

ĥ−
q e

zĥ−
q (ι̂−q )

∗Pz,smep,z �0 0. (6.18)

Moreover, by Proposition 4.1 (iii) and Equations (4.8)–(4.11) and (4.30),∫
̂W−

p

ĥ−
p e

zĥ−
p (ι̂−p )

∗ep,z =− k

2aμ

(∫ 2r

−2r

ρ(x)e−μx2/2 dx

)k−1∫ 2r

−2r

ρ(x)x2e−μx2/2 dx

=− k

4μ

(π
μ

) k
2−n

4

+O(e−cμ). (6.19)

On the other hand, by Equation (6.11) and Proposition 4.26,∫
̂W−

q

ezĥ
−
q (ι̂−q )

∗∂z(Pz,smep,z − ep,z)�0 0 ,

for all q ∈ Yk. In the case q = p, by Equation (6.14) and Lemma 4.24,∫
̂W−

p

ezĥ
−
p (ι̂−p )

∗∂zep,z =
( n

8μ
+O(e−cμ)

)∫
̂W−

p

ezĥ
−
p (ι̂−p )

∗ep,z

=
( n

8μ
+O(e−cμ)

)((π
μ

) k
2−n

4

+O(e−cμ)

)
=

n

8μ

(π
μ

) k
2−n

4

+O(e−cμ). (6.20)

In the case q �= p, using Lemma 4.24 and arguing again like in the proof of Theorem 6.3,
we get ∫

̂W−
q

ezĥ
−
q (ι̂−q )

∗∂zep,z �0 0 (μ→+∞). (6.21)

Now, the result for ∂z follows from Equations (6.16)–(6.19), (6.20) and (6.21).
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If we consider ∂z̄, the proof has to be modified as follows. In the analogue of Equation
(6.16), the first term of the right-hand side must be removed. In the analogue of Lemma

4.24, we get |x−
p |2 instead of |x+

p |2 by the right-hand side of Equations (4.1) and (4.33).

So ∂z̄(ΦzΨz) has the same final expression as ∂z(ΦzΨz) by Equation (6.19).

Theorem 6.19. As μ→+∞,

∂z
(
(Ψ∗

zΨz)
±1
)
,∂z̄
(
(Ψ∗

zΨz)
±1
)
=O
(
μ−1
)
.

Proof. We only show the case of ∂z. Consider Pz,sm : Ez → Ez,sm, whose adjoint is Pz :

Ez,sm → Ez. Then, since Jz :C
• → Ez is an isometry,

Ψ∗
zΨz = (Pz,smJz)

∗Pz,smJz = J−1
z PzPz,smJz.

It follows that, for every p ∈ Yk (k = 0, . . . ,n),

Ψ∗
zΨzep =

∑
q∈Yk

〈Pz,smep,z,eq,z〉eq.

Therefore,

∂z(Ψ
∗
zΨz)ep

=
∑
q∈Yk

(
〈∂z(Pz,sm)ep,z,eq,z〉+ 〈Pz,sm∂z(ep,z),eq,z〉+ 〈Pz,smep,z,∂z̄(eq,z)〉

)
eq.

Then, by Propositions 4.19 and 4.23, Lemma 4.24 and its analogue for ∂z̄,

∂z(Ψ
∗
zΨz)ep =O

(
μ−1
)
+
( n

8μ
− 1

2

〈
|x+

p |2ep,z,ep,z
〉)

ep+O
(
e−cμ
)

=
( n

8μ
− 1

2

〈
|x+

p |2ep,z,ep,z
〉)

ep+O
(
μ−1
)
.

But, by Equations (4.11) and (4.30),〈
|xp|2ep,z,ep,z

〉
=
(∫ 2r

−2r

ρ(x)2e−μx2

dx
)n−1

(n−k)

∫ 2r

−2r

y2ρ(y)2e−μy2

dy

=
n−k

2μ

(π
μ

)n
2

+O
(
e−cμ
)
.

Hence,

∂z(Ψ
∗
zΨz)ep =

( n

8μ
− n−k

4μ

(π
μ

)n
2
)
ep+O

(
μ−1
)
=O
(
μ−1
)
,

yielding the stated expression for ∂z
(
Ψ∗

zΨz).
Now, arguing like in the proof of Equation (4.27) and using Equation (6.12), we get

∂z
(
(Ψ∗

zΨz)
−1
)
=−(Ψ∗

zΨz)
−1∂z(Ψ

∗
zΨz)(Ψ

∗
zΨz)

−1

=−
(
1+O

(
e−cμ
))
O
(
μ−1
)(
1+O

(
e−cμ
))

=O
(
μ−1
)
.
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7. Asymptotics of the large zeta invariant

7.1. Preliminaries on Quillen metrics

7.1.1. Case of a finite-dimensional complex. All vector spaces considered here
are over C. For a line λ, its dual λ∗ is also denoted by λ−1. For a vector space V of finite

dimension, recall that detV =
∧dimV

V . For a graded vector space V • of finite dimension,

let detV • =
⊗

k(detV
k)(−1)k .

Now, consider a finite-dimensional cochain complex (V •,∂), whose cohomology is

denoted by H•(V ). Then there is a canonical isomorphism [38], [8, Section 1 a)]

detV • ∼= detH•(V ). (7.1)

Given a Hermitian metric on V • so that the homogeneous components V k are orthogonal

one another, the corresponding norm ‖ ‖V • on V • induces a metric ‖ ‖detV • on detV •,
which corresponds to a metric ‖ ‖detH•(V ) on detH•(V ) via Equation (7.1).

On the other hand, consider the induced Laplacian, �= (∂+∂∗)2 = ∂∂∗+∂∗∂, whose
kernel is a graded vector subspace H•. Then finite-dimensional Hodge theory gives an

isomorphism H•(V )∼=H•, which induces an isomorphism

detH•(V )∼= detH•. (7.2)

The restriction of ‖ ‖V • to H• induces a metric ‖ ‖detH• on detH•, which corresponds
to another metric | |detH•(V ) on detH•(V ) via Equation (7.2).

Let �′ denote the restriction � : im�→ im�. For s ∈ C, let

θ(s) = θ(s,�) =−Str(N(�′)−s). (7.3)

This defines a holomorphic function on C. Then the above metrics on detH•(V ) satisfy

[8, Proposition 1.5], [10, Theorem 1.1], [11, Theorem 1.4]

‖ ‖detH•(V ) = | |detH•(V )e
θ′(0)/2. (7.4)

If H•(V ) = 0, then detH•(V ) ≡ C is canonically generated by 1, and we have
‖1‖detH•(V ) = eθ

′(0)/2. Using the orthogonal projection Π1 : V → im∂, we can write

Equation (7.3) as

θ(s) =−Str
(
(�′)−sΠ1

)
. (7.5)

Let (Ṽ •,∂̃) be another finite-dimensional cochain complex, endowed with a Hermitian

metric so that the homogeneous components are orthogonal to each other, and let φ :
(V ,∂) → (Ṽ •,∂̃) be an isomorphism of cochain complexes, which may not be unitary.

Then (see the proof of [11, Theorem 6.17])

log

(‖ ‖detH•(˜V )

‖ ‖detH•(V )

)2

= Str(log(φ∗φ)). (7.6)

7.1.2. Case of an elliptic complex. Some of the concepts of Section 7.1.1 extend

to the case where V • =C∞(M ;E•), for some graded Hermitian vector bundle E• over M,

and ∂ is an elliptic differential complex of order one. Then detH•(V ) is defined because
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dimH•(V ) < ∞. Moreover, Hodge theory for the Laplacian � gives the isomorphism

(7.2). Thus, at least the norm | |detH•(V ) is defined in this setting. Now, the expression

(7.3) only defines θ(s) = θ(s,�) when s > n/2, but it has a meromorphic extension to
C, denoted in the same way; indeed, Equation (7.3) becomes

θ(s) = θ(s,�) =−ζ(s,�,Nw) ,

for s > n/2, and therefore this equality also holds for the meromorphic extensions.

Furthermore, θ(s) is smooth at s= 0 [66], and θ′(0) can be considered as a renormalized
version of the supertrace of the operator N log(�′), which is not of trace class. Thus, the

right-hand side of Equation (7.4) is defined in this way and plays the role of an analytic

version of the metric ‖ ‖detH•(V ), which is not directly defined. This kind of metrics were
introduced by D. Quillen [60] for the case of the Dolbeault complex. The expression (7.5)

also holds in this case for s� 0; in fact, it becomes

θ(s) =−ζ
(
s,�,Π1w

)
,

where this zeta function can be shown to define a meromorphic function on C, even though
Π1 is not a differential operator, and this equality holds as meromorphic functions.

7.1.3. Reidemeister, Milnor and Ray–Singer metrics. Let F be a flat vector

bundle over M, defined by a representation ρ of π1M , and let ∇F denote its covariant
derivative. Consider a smooth triangulation K of M and the corresponding cochain

complex C•(K,F ) with coefficients in F, whose cohomology is isomorphic to H•(M,F )

via the quasi-isomorphism

Ω(M ;F )→ C•(K,F ) = C•(K,F ∗)∗

defined by integration of differential forms on smooth simplices. Given a Hermitian

structure gF on F, its restriction to the fibers over the barycenters of the simplices

induces a metric on C•(K,F ), and the concepts of Section 7.1.1 can be applied. In this
case, the left-hand side of Equation (7.4) is called the Reidemeister metric, denoted by

‖ ‖RdetH•(M,F ).

If ∇F gF = 0 (ρ is unitary) and H•(M,F ) = 0, then the Reidemeister torsion τM (ρ) is

defined using K, and it is a topological invariant of M [30, 62, 23]. Moreover, τM (ρ) =

‖1‖RdetH•(M,F ) is the exponential factor of the right-hand side of Equation (7.4) [61,

Proposition 1.7]. If we only assume ∇F gF = 0, then ‖ ‖RdetH•(M,F ) is still a topological
invariant of M.

Next, given a vector field X on M satisfying (b), H•(M,F ) is also isomorphic to the

cohomology of (C•(−X,W−,F ),dF ) via the quasi-isomorphism

Φ−X,F : Ω(M,F )→ C•(−X,W−,F ) = C•(−X,W−,F ∗)∗.

This complex has a metric induced by gF , like in Section 6.2.4, and the concepts of

Section 7.1.1 can be also applied. In this case, the left-hand side of Equation (7.4) is called

the Milnor metric, denoted by ‖ ‖M,−X
detH•(M,F ), and the metric factor of the right-hand
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side of Equation (7.4) is denoted by | |M,−X
detH•(M,F ). If ∇F gF = 0, then ‖ ‖M,−X

detH•(M,F ) =

‖ ‖RdetH•(M,F ) [50, Theorem 9.3].

Finally, the concepts of Section 7.1.2 can be applied to (Ω(M,F ),dF ), whose cohomology

is again H•(M,F ). In this case, the right-hand side of Equation (7.4) is called the Ray–

Singer metric, denoted by ‖ ‖RS
detH•(M,F ), and the metric factor of the right-hand side of

Equation (7.4) is denoted by | |RS
detH•(M,F ). If H

•(M,F ) = 0, then the exponential factor
of the right-hand side of Equation (7.4) is called the analytic torsion or Ray–Singer

torsion, denoted by TM (ρ). These concepts were introduced by Ray and Singer [61], who

conjectured that TM (ρ) = τM (ρ) if ∇F gF = 0 and H•(M,F ) = 0. Independent proofs of

this conjecture were given by Cheeger [21] and Müller [54]. This conjecture still holds true
if the induced Hermitian structure gdetF on detF is flat, as shown at the same time by

Bismut and Zhang [10] and Müller [54]. Actually, in [10], Bismut and Zhang reformulated

the conjecture in the form ‖ ‖RS
detH•(M,F ) = ‖ ‖RdetH•(M,F ). Moreover, they also considered

the case where gdetF is not assumed to be flat [10, 11], extending the above results by

introducing an additional term. The first ingredient of this extra term is the 1-form

θ(F,gF ) = tr
(
(gF )−1∇F gF

)
, (7.7)

which vanishes if and only if gdetF is flat. Moreover, θ(F,gF ) is closed and its cohomology

class of θ(F,gF ) is independent of the choice of gF [10, Proposition 4.6]; this class measures

the obstruction to the existence of a flat Hermitian structure on detF .

Let e(M,∇M ) be the representative of the Euler class of M given by the Chern–
Weil theory using gM ; it belongs to Ωn(M,o(M)) because M may not be oriented. Let

ψ(M,∇M ) be the current of degree n−1 on TM constructed in [44] (see also [9, Section 3],

[10, Section 3], [19, Section 2], [20, Section 4]). Identify the image of the zero section of
TM with M, and identify the conormal bundle of M in TM with T ∗M . Let δM be the

current on TM defined by integration on M, and let π : TM →M be the vector bundle

projection.

Proposition 7.1 (Bismut–Zhang [10, Theorem 3.7]). The following holds:

(i) For any smooth function λ : TM → R
±, under the mapping v �→ λv, ψ(M,∇M ) is

changed into (±1)nψ(M,∇M ).

(ii) The current ψ(M,∇M ) is locally integrable, and its wave front set is contained in

T ∗M . Thus, ψ(M,∇M ) is smooth on TM \M .

(iii) The restriction of −ψ(M,∇M ) to the fibers of TM \M coincides with the solid
angle defined by gM .

(iv) We have

dψ(M,∇M ) = π∗e(M,∇M )− δM .

Remark 7.2. In Proposition 7.1, observe that (i) and (iv) are compatible because
e(M,∇M ) = 0 if n is odd. By (ii)–(iv), the restriction of ψ(M,∇M ) to TM \M is induced

by a smooth differential form on the sphere bundle which transgresses e(M,∇M ) (such a

differential form was already defined and used in [22]).
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Theorem 7.3 (Bismut–Zhang [10, Theorem 0.2], [11, Theorem 0.2]). We have

log

(
‖ ‖RS

detH•(M,F )

‖ ‖M,−X
detH•(M,F )

)2

=−
∫
M

θ(F,gF )∧ (−X)∗ψ(M,∇M ).

Remark 7.4. By (b), X =−gradg′ h for some Morse function h and some Riemannian

metric g′ on M, which may not be the given metric gM . If we fix h, the right-hand side of

the equality in Theorem 7.3 is independent of the choice of X satisfying X = −gradg′ h
for some g′ [10, Proposition 6.1].

Theorem 7.3 will be applied to the case of the flat complex line bundle Lz with a

Hermitian structure gL
z

(Section 2.1.2). By Equations (2.13) and (7.7),

θ(Lz,gL
z

) =−2μη. (7.8)

7.2. Asymptotics of the large zeta invariant

We prove Theorem 1.2 (i) here. With the notation of Section 7.1.2, consider the

meromorphic function θ(s,z) = θ(s,Δz), also defined in Equation (5.9), as well as its
components θsm/la(s,z) defined in Equation (5.10). Consider also the current ψ(M,∇M )

of degree n−1 on TM (Section 7.1.3). By Proposition 7.1 (i),

−zla(−η) = (−1)nzla(η). (7.9)

Notation 7.5. Let �1 be defined like �0 in Notation 6.2, using O(|μ|−1) instead of
O(e−c|μ|).

Take some Morse function h onM such that Xh< 0 onM \Y, and h is in standard form

with respect to X. Then X = −gradg′ h for some Riemannian metric g′ (Section 6.1.3),
which may not be the given metric g. Consider the flat complex line bundle Lzη−dh

with the Hermitian structure gLzη−dh (Section 2.1.2). Note that d
Lzη−dh

dh ≡ dzη on
C•(X,W−,Lzη−dh)≡C•(X). So, by Equation (7.8), Theorem 7.3 and Remark 7.4,

log
‖ ‖RS

detH•
z (M)

‖ ‖M,−X
detH•

z (M)

=

∫
M

(μη−dh)∧ (−X)∗ψ(M,∇M ) , (7.10)

where H•
z (M) =H•

zη(M). With the notation of Section 7.1.3, let

‖ ‖RS,sm
detH•

z (M) = | |RS
detH•

z (M)e
θ′
sm(0,z)/2.

By Equation (7.4),

log
‖ ‖RS

detH•
z (M)

‖ ‖M,−X
detH•

z (M)

= log
‖ ‖RS,sm

detH•
z (M)

‖ ‖M,−X
detH•

z (M)

+
θ′la(0,z)

2
. (7.11)
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By Equation (7.6) and Corollary 6.4, for μ� 0,

log

(
‖ ‖RS,sm

detH•
z (M)

‖ ‖M,−X
detH•

z (M)

)2

=−Str(log(Φ∗
zΦz)) =−Str

(
log
(
Ψ−1

z Φ∗
zΦzΨz

))
=−Str

(
log
(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

))
. (7.12)

From Equation (6.12) and Theorems 6.3, 6.18 and 6.19, we obtain(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

)−1
=
(π
μ

)n
2 −N

+O
(
e−cμ
)
,

∂z
(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

)
= ∂z
(
(Ψ∗

zΨz)
−1
)
(ΦzΨz)

∗ΦzΨz +(Ψ∗
zΨz)

−1(∂z̄(ΦzΨz))
∗ΦzΨz

+(Ψ∗
zΨz)

−1(ΦzΨz)
∗∂z(ΦzΨz)

�0

(
O
(
μ−1
)
+
( n

4μ
− N

2μ

))(π
μ

)N−n
2

.

So

∂z Str
(
log
(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

))
= Str

(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

)−1
∂z
(
(Ψ∗

zΨz)
−1(ΦzΨz)

∗ΦzΨz

)
=O
(
μ−1
)
+Str

( n

4μ
− N

2μ

)
+O
(
e−cμ
)
=O
(
μ−1
)
.

Then, by Equation (7.12),

∂z log
‖ ‖RS,sm

detH•
z (M)

‖ ‖M,−X
detH•

z (M)

=O
(
μ−1
)
. (7.13)

By taking the derivative with respect to z of both sides of Equation (7.10) and using

Equations (7.11) and (7.13) and Corollary 5.10, we get ζla(1,z) �1 zla, as stated in
Theorem 1.2 (i).

Remark 7.6. In the case where η = dh, Theorem 1.2 (i) agrees with Theorem 5.16. In

fact, by Proposition 7.1 (iv), Theorem 1.2 (i) and the Stokes formula,

ζla(1,z)�1 −
∫
M

h(−X)∗dψ(M,∇M ) =−
∫
M

h(−X)∗(π∗e(M,∇M )− δM )

=−
∫
M

he(M,∇M )+
∑
p∈Y

(−1)ind(p)h(p).

8. Asymptotics of the small zeta invariant

8.1. Condition on the integrals along instantons

Let

Mp =Mp(η,X) =−max{η(γ) | γ ∈ T 1
p }

(
p ∈ Y+

)
,

Mk =Mk(η,X) = min
p∈Yk

Mp (k = 1, . . . ,n).
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Thus, (d) means that Mp =Mk for all k = 1, . . . ,n and p ∈ Yk. The following result will

be proved in Appendix A.

Theorem 8.1. For every ξ ∈ H1(M,R) and numbers an ≥ ·· · ≥ a1 � 0 or a1 ≥ ·· · ≥
an � 0, there is some η ∈ ξ, satisfying (a) and (c) with the given X and some metric g,

such that Mp(η,X) = ak for all k = 1, . . . ,n and p ∈ Yk.

Remark 8.2. If ξ �= 0, for p∈Yk, q ∈Yk−1 and γ,δ ∈ T (p,q)⊂T 1
p , the period 〈ξ,γ̄δ̄−1〉=

η(γ)− η(δ) may not be zero. Hence, it may not be possible to get η(γ) = −ak for all
γ ∈ T 1

p , contrary to the case where ξ = 0.

From now on, we assume η satisfies (d), besides (a) and (c). By Theorem 8.1, this is

possible for any prescription of the class ξ = [η] ∈ H1(M,R). Let ak = Mk(η,X) (k =

1, . . . ,n). Then −η also satisfies (a), (c) and (d) with −X and g, and Mk(−η, −X) =
an−k+1. So, if M is oriented, by Corollaries 4.15 and 4.16,

−zsm(−η) =−
n∑

k=1

(−1)k
(
1− ean−k+1

)
m1

n−k+1. (8.1)

8.2. Asymptotics of the perturbed Morse operators

Consider the notation of Section 6.2.4. By Equation (6.8),

dz,k−1 = e−akz(d′
k−1+d′′

z,k−1) , (8.2)

for k = 1, . . . ,n, where

d′
k−1eq =

∑
p∈Yk, γ∈T (p,q), η(γ)=−ak

ε(γ)ep , (8.3)

d′′
z,k−1eq =

∑
p∈Yk, γ∈T (p,q), η(γ)<−ak

ez(ak+η(γ))ε(γ)ep , (8.4)

for q ∈ Yk−1. Observe that

eakzdz,k−1 = d′
k−1+O(e−cμ) (μ→+∞). (8.5)

So

d′
kd

′
k−1 = lim

μ→+∞
e(ak+1+ak)zdz,kdz,k−1 = 0.

Hence, the operator d′ =
∑

kd
′
k on C• satisfies (d′)2 = 0. Taking adjoints in Equations

(8.2)–(8.4) or using Equation (6.9), we also get

δz,k = e−ak z̄(δ′k+δ′′z,k) , (8.6)
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for k = 1, . . . ,n, where

δ′kep =
∑

q∈Yk−1, γ∈T (p,q), η(γ)=−ak

ε(γ)eq, (8.7)

δ′′z,kep =
∑

q∈Yk−1, γ∈T (p,q), η(γ)=−ak

ez̄(ak+η(γ))ε(γ)eq , (8.8)

for p ∈ Yk. Moreover, Equation (8.5) yields

eak z̄δz,k = δ′k+O(e−cμ) (μ→+∞). (8.9)

Let δ′ =
∑

k δ
′
k = (d′)∗, which satisfies (δ′)2 = 0, and let

D′ = d′+δ′ , Δ′ = (D′)2 = d′δ′+δ′d′.

We have

C• = kerΔ′⊕ imd′⊕ imδ′ ,

imΔ′ = imD′ = imd′⊕ imδ′ , kerΔ′ = kerD′ = kerd′∩kerδ′.

The orthogonal projections of C• to kerΔ′, imd′ and imδ′ are denoted by Π′ = Π′0,
Π′1 and Π′2, respectively. Like in Sections 2.1.2 and 6.2.6, the composition (d′)−1Π′1 is
defined on C•. From Equations (8.5) and (8.9), we easily get that, as μ→+∞,

Πj
z,k =Π′j

k +O(e−cμ) (j = 0,1,2) , (8.10)

e−akz(dz,k−1)
−1Π1

z,k = (d′
k−1)

−1Π′1
k +O(e−cμ). (8.11)

By Equations (8.5) and (8.9), on imδz,k⊕ imdz,k−1,

Δz = e−2akμΔ′+O(e−(2ak+c)μ) (μ→+∞). (8.12)

Proposition 8.3. For k = 0, . . . ,n and μ� 0, the spectrum of Δz on imδz,k⊕ imdz,k−1

is contained in an interval of the form[
Ce−2akμ,C ′e−2akμ

]
(C ′ ≥ C).

Proof. The positive eigenvalues of Δ′ are contained in an interval [C0,C
′
0] (C

′
0 ≥C0 > 0).

By Equation (8.12), for μ� 0 and e ∈ imδz,k⊕ imdz,k−1,

〈Δze,e〉 ≥ e2akμ〈Δ′e,e〉−C1e
−(2ak+c)μ‖e‖2 ≥

(
C0e

−2akμ−C1e
−(2ak+c)μ

)
‖e‖2 ,

〈Δze,e〉 ≤ e2akμ〈Δ′e,e〉+C1e
−(2ak+c)μ‖e‖2 ≤

(
C ′

0e
−2akμ+C1e

−(2ak+c)μ
)
‖e‖2.

Then result follows taking 0<C < C0 and C ′ >C ′
0.
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8.3. Estimates of the nonzero small spectrum

Theorem 8.4. If μ� 0, the spectrum of Δz,sm on imδz,sm,k⊕ imdz,sm,k−1 is contained

in an interval of the form

[Cμe−2akμ,C ′μe−2akμ] (C ′ ≥ C).

Proof. By the commutativity of the diagram of Equation (2.7), for every eigenvalue λ

of Δz,sm on imδz,sm,k ⊕ imdz,sm,k−1, there are normalized λ-eigenforms, e ∈ imδz,sm,k

and e′ ∈ imdz,sm,k−1 so that dze = λ1/2e′ and δze
′ = λ1/2e. So the maximum and

minimum of the spectrum of Δz,sm on imδz,sm,k ⊕ imdz,sm,k−1 is ‖dz,sm,k−1‖2 and
‖d−1

z,sm,k−1Π
1
z,sm,k‖−2, respectively. Similarly, the maximum and minimum of the spectrum

of Δz on imδz,k ⊕ imdz,k−1 is ‖dz,k−1‖2 and ‖d−1
z,k−1Π

1
z,k‖−2, respectively. Then the

result follows from Corollaries 6.9, 6.14 and 6.17 and Proposition 8.3:

‖dz,sm,k−1‖2 ≤ ‖Φ−1
z,k‖2‖dz,k−1‖2‖Φz,k−1‖2

≤
((μ

π

)k−n
2

+O
(
e−cμ
))

C ′
0e

−2akμ
((π

μ

)k−1−n
2

+O
(
e−cμ
))

≤ C ′μe−2akμ ,

‖d−1
z,sm,k−1Π

1
z,sm,k−1‖−2 ≥ ‖Φ−1

z,k−1‖−2‖d−1
z,k−1Π

1
z,k‖−2‖Φz,k‖−2

≥
((π

μ

)k−1−n
2

+O
(
e−cμ
))

C0e
−2akμ

((μ
π

)k−n
2

+O
(
e−cμ
))

≥ Cμe−2akμ.

8.4. Asymptotics of the small zeta invariant

Theorem 1.2 (ii) is proved here.

Theorem 8.5. As μ→+∞,

η∧d−1
z Π1

z,sm,k �1

(
1− eak

)
Π1

z,sm,k.

Proof. Consider the notation of Sections 6.3 and 8.2. By Corollaries 6.13 and 6.16, for

μ� 0,

Π1
z,sm �0 Ψ̃zΠ̃

1

zΦz,sm = Ψ̃zΠ
1
zΦz,sm. (8.13)

For brevity, let Sz = ΦzΨ̃z−1 and Tz = Φz−1Pz−1,smΨ̃z on C•. By Corollaries 6.9 and

6.13,

Sz,Tz �1 1. (8.14)

Moreover, by Proposition 4.19 and Corollary 6.7, and the definitions of Ψz and Ψ̃z,
considered as maps C• → L2(M ;Λ), we get

Ψ̃zSz = Ψ̃zΦzPz−1,smΨ̃z−1 �1 Ψ̃zΦzPz,smΨ̃z−1

�1 Pz,smΨ̃z−1 �1 Pz−1,smΨ̃z−1 = Ψ̃z−1. (8.15)
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By Equations (8.5), (8.10), (8.11), and (8.13)–(8.15); Proposition 8.3; and Corollaries

4.20, 6.6, 6.7, 6.9, 6.11, 6.13 and 6.15 to 6.17; and Theorem 8.4,

eakΠ1
z,sm,k �0 e

akΨ̃zΠ
1
z,kΦz,sm �1 e

akΨ̃zΠ
′1
k Φz,sm

= eakΨ̃zd
′
k−1(d

′
k−1)

−1Π′1
k Φz,sm

�1 e
akΨ̃zSzd

′
k−1Tz(d

′
k−1)

−1Π′1
k Φz,sm

�1 e
akΨ̃z−1d

′
k−1Tz(d

′
k−1)

−1Π′1
k Φz,sm

�1 e
akΨ̃z−1e

ak(z−1)dz−1,k−1Tze
−akzd−1

z,k−1Π
1
z,kΦz,sm

= Ψ̃z−1dz−1,k−1Tzd
−1
z,k−1Π

1
z,kΦz,sm

�0 Ψ̃z−1dz−1,k−1TzΠ̃
2

z,k−1d
−1
z,k−1Π̃

1

z,kΦz,sm

�0 Ψ̃z−1dz−1,k−1Φz−1Pz−1,smΠ
2
z,k−1Ψ̃zd

−1
z,k−1ΦzΠ

1
z,sm

�0 Ψ̃z−1dz−1,k−1Φz−1Pz−1,smΠ
2
z,k−1Φ

−1
z d−1

z,k−1ΦzΠ
1
z,sm

= Ψ̃z−1Φz−1dz−1,sm,k−1d
−1
z,sm,k−1Π

1
z,sm,k �0 dz−1d

−1
z Π1

z,sm,k.

Therefore,

η∧d−1
z Π1

z,sm,k = (dz −dz−1)d
−1
z Π1

z,sm,k �1 (1− eak)Π1
z,sm,k.

Theorem 1.2 (ii) follows from Corollaries 4.9 and 5.2 and Theorem 8.5.

Remark 8.6. Theorem 1.2 (ii) agrees with Corollaries 5.13 to 5.15 by Equation (8.1).

9. Prescription of the asymptotics of the zeta invariant

We prove Theorem 1.3 here. By Theorem 8.1, given a � 0, there is some η0 ∈ ξ and

some metric g satisfying (a) and (d) with the given X and so that Mk(η0,X) = a for all
k = 1, . . . ,n. Using the notation of Section 4.1, we are going to modify η0 only in every Up

for p ∈ Y0∪Yn.

Fix any ε > 0 such that, for every p ∈ Y0∪Yn, the open ball B(p,3ε) is contained in Up.

Let

V =
⋃

p∈Y0∪Yn

B(p,ε) , V ′ =
⋃

p∈Y0∪Yn

B(p,2ε).

Take a smooth function σ : [0,3ε]→ [0,1] so that

σ′ ≤ 0 , σ([0,ε]) = 1 , σ([2ε,3ε]) = 0.

Let fj ∈C∞(M,R) (j = 0,n) be the extension by zero of the combination of the functions

σ(|xp|) ∈ C∞
c (B(p,3ε),R) (p ∈ Yj). We have

suppdfj ⊂ V ′
j \Vj , fj(Vj) = 1 , fj(M \V ′

j ) = 0 , Xf0 ≥ 0 , Xfn ≤ 0.
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For any c0,cn ≥ 0, let η = η(c0,cn) = η0− c0 df0+ cn dfn. This closed 1-form satisfies (a)

and (d) with X and g, and we have

M1(η,X) = a+ c0 , Mn(η,X) = a+ cn , Mk(η1,X) = a (1< k < n).

Hence, by Corollary 4.15,

zsm(η)−zsm(η0) = ea(ec0 −1)m1
1+(−1)nea(1− ecn)m1

n. (9.1)

By (a), e(M,∇M ) = 0 on every Up (p ∈ Y). So, using the Stokes formula,

zla(η)−zla(η0) =

∫
M

(cn dfn− c0 df0)∧ (−X)∗ψ(M,∇M )

=

∫
M

(c0f0− cnfn)(−X)∗dψ(M,∇M )

=

∫
M

(c0f0− cnfn)e(M,∇M )−
∑
p∈Y

(−1)ind(p)(c0f0− cnfn)(p)

= (−1)ncn|Yn|− c0|Y0|. (9.2)

Combining Equations (9.1) and (9.2), we obtain

z(η)−z(η0) = ea(ec0 −1)m1
1+(−1)nea(1− ecn)m1

n+(−1)ncn|Yn|− c0|Y0|.

Using local changes of X and applying [69, Lemmas 1.1 and 1.2], we can increase |Y0| or
|Yn| as much as desired. By Lemma 4.12 and Equation (4.21), we have

m1
1 = |Y0|−β0

No , m1
n = |Yn|−βn

No , (9.3)

which can be increased as much as desired. So, if n is even (resp., odd), given any τ ∈ R

(resp., τ � 0), we get z(η(c0,cn)) = τ for some c0,cn ≥ 0.

Now, assume n is even. To prove that ±z(±η) = τ , by Equations (7.9), (9.1) and (9.2),
it is enough to prove that we can choose |Y0|, |Yn|, c0 and cn so that

zsm(η) = zsm(η0)+ ea(ec0 −1)m1
1+ ea(1− ecn)m1

n = 0,

zla(η) = zla(η0)+ cn|Yn|− c0|Y0|= τ.

Using Equation (9.3) and writing u=−e−azsm(η0) and v = τ −zla(η0), the above system

becomes

(ec0 −1)(|Y0|−β0
No)+(1− ecn)(|Yn|−βn

No) = u,

cn|Yn|− c0|Y0|= v.

The following result states that these equalities are satisfied by some c0,cn ≥ 0 and

|Y0|,|Yn| � 0.

Lemma 9.1. Given u,v ∈R and β,γ ≥ 0, there are c,d≥ 0 and integers p,q� 0 such that

(ec−1)(p−β)+(1− ed)(q−γ) = u,

dq− cp= v.
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Proof. Taking q > 0, we get

d= (cp+v)/q.

Thus, cp+v ≥ 0; that is, c≥−v/p. Let

Fp,q(c) = (ec−1)(p−β)+
(
1− e(cp+v)/q

)
(q−γ).

We have to find integers p,q � 0 and c≥ 0,−v/p such that Fp,q(c) = u.
Observe that

β < p < q ⇒ lim
c→+∞

Fp,q(c) = +∞ , (9.4)

γ < q < p⇒ lim
c→+∞

Fp,q(c) =−∞. (9.5)

Note also that, if (c,d,p,q) is a solution for some (u,v,β,γ), then (d,c,q,p) is a solution for

(−u,−v,γ,β). So it is sufficient to consider the case v ≥ 0. In this case, c can reach 0 and

Fp,q(0) =
(
1− ev/q

)
(q−γ) ,

which is independent of p. Choose q � β,γ; thus, Fp,q(0) ≤ 0. If u ≥ Fp,q(0), take p so

that β � p < q, yielding u ∈ imFp,q by Equation (9.4). If u < Fp,q(0), take p > q, yielding
u ∈ imFp,q by Equation (9.5).

10. The switch of the order of integration

The proof of Theorem 1.4 is given in this section. Let S be the Schwartz space on R.

Recall that the space of tempered distributions is the continuous dual space S ′, with
the strong topology. Suppose first that Equation (1.7) is used as definition of Zμ. By
Theorems 1.1 and 1.2, the expression (1.7) defines a tempered distribution Zμ for μ� 0.

Moreover, using also the formula of the inverse Fourier transform, we get, for f ∈ S,

〈Zμ,f〉=
1

2π

∫ ∞

−∞
ζ(1,z) f̂(ν)dν → z

2π

∫ ∞

−∞
f̂(ν)dν = zf(0) ,

as μ→+∞, uniformly on ν. For every C > 0, this convergence is also uniform on f ∈ S
with |f̂(ν)|,|ν2f̂(ν)| ≤ C. So Zμ → zδ0 in S ′ as μ → +∞. To get Theorem 1.4, it only

remains to prove the following.

Theorem 10.1. Both Equations (1.4) and (1.7) define the same tempered distribution
Zμ for μ� 0.

Proposition 10.2. For μ� 0, t > 0 and f ∈ S,∫ ∞

−∞

∫ ∞

t

∣∣Str(η∧δze
−uΔz
)∣∣ |f̂(ν)|dudν <∞.
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Proof. By [26, Corollary XI.9.8 and Lemma XI.9.9 (d)],∣∣Str(η∧δze
−uΔz
)∣∣≤ ∣∣η∧δze

−uΔz
∣∣
1
≤ ‖η∧‖

∣∣δze−uΔz
∣∣
1

= ‖η‖L∞ Tr
(
(dzδz)

1/2e−uΔz
)
≤ ‖η‖L∞ Tr

(
Δ1/2

z e−uΔz
)
,

where | |1 denotes the trace norm. Hence,∫ ∞

t

∣∣Str(η∧δze
−uΔz
)∣∣du≤ ‖η‖L∞

∫ ∞

t

Tr
(
Δ1/2

z e−uΔz
)
du

= ‖η‖L∞ Tr
(
Δ−1/2

z e−tΔzΠ⊥
z

)
.

The operator (1+Δ)−N is of trace class for any N > n. Therefore,

Tr
(
Δ−1/2

z e−tΔzΠ⊥
z

)
≤
∣∣(1+Δ)−N

∣∣
1

∥∥(1+Δ)NΔ−1/2
z e−tΔzΠ⊥

z

∥∥.
By Corollary 2.3 and Theorem 8.4, for μ� 0 and α ∈ L2(M ;Λ),∥∥(1+Δ)NΔ−1/2

z e−tΔzΠ⊥
z α
∥∥

≤ C0

∥∥Δ−1/2
z e−tΔzΠ⊥

z α
∥∥
2N

≤ C1|z|2N
∥∥Δ−1/2

z e−tΔzΠ⊥
z α
∥∥
2N,z

= C2|z|2N
2N∑
k=0

∥∥Dk
zΔ

−1/2
z e−tΔzΠ⊥

z α
∥∥≤ C3|z|2N

2N∑
k=0

1

tk/2

∥∥Δ−1/2
z Π⊥

z α
∥∥

≤ C|z|2N
(
1+ t−N

)
ecμ‖α‖.

Thus, since f ∈ S,∫ ∞

−∞

∫ ∞

t

∣∣Str(η∧δze
−uΔz
)∣∣ |f̂(ν)|dudν

≤ C‖η‖L∞
∣∣(1+Δ)−N

∣∣
1

(
1+ t−N

)
ecμ
∫ ∞

−∞
|z|2N |f̂(ν)|dν <∞.

Proof of Theorem 10.1. We compute

− 1

2π

∫ ∞

−∞
lim
t↓0

Str
(
η∧d−1

z e−tΔzΠ1
z

)
f̂(ν)dν

=− 1

2π
lim
t↓0

∫ ∞

−∞
Str
(
η∧d−1

z e−tΔzΠ1
z

)
f̂(ν)dν

=
1

2π
lim
t↓0

∫ ∞

−∞

∫ ∞

t

Str
(
η∧δze

−uΔz
)
f̂(ν)dudν

=
1

2π
lim
t↓0

∫ ∞

t

∫ ∞

−∞
Str
(
η∧δze

−uΔz
)
f̂(ν)dν du

=
1

2π

∫ ∞

0

∫ ∞

−∞
Str
(
η∧δze

−uΔz
)
f̂(ν)dν du.

Here, the first equality is given by the Lebesgue’s dominated convergence theorem, whose

hypothesis is satisfied because f̂ ∈ S and |Str(η∧d−1
z e−tΔzΠ1

z)| ≤ C for all t > 0, |μ| � 0
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and ν ∈ R by Theorems 1.1 and 1.2. The third equality is given by Fubini’s theorem,
whose hypothesis is satisfied by Proposition 10.2.

A. Integrals along instantons

Theorem 8.1 is proved here. We show the case where an ≥ ·· · ≥ a1 � 0. Then the case

where a1 ≥ ·· · ≥ an � 0 follows by using −X and −ξ.

By [69, Theorem B], there is some Morse function h on M such that h(Yk) = {k}
(k=0, . . . ,n), Xh< 0 on M \Y, and h is in standard form with respect to X ; in particular,

Critk(h) = Yk. Now, we proceed like in the proof of [18, Proposition 16 (i)]. Since Y is

finite, there is some η′ ∈ ξ such that η′ = 0 on some open neighborhood Up of every
p ∈ Y. Let Uk =

⋃
p∈Yk

Up and U =
⋃

kUk. We can assume h(Uk)⊂ (k−1/4,k+1/4) for

all k = 0, . . . ,n. If C � 0, then the representative η′′ := η′+Cdh of ξ satisfies η′′(X)< 0

on M \Y.
For k = 0, . . . ,n, let I±k ⊂ R be the closed interval with boundary points k ± 1/4

and k ± 1/2. Since there are no critical values of h in I±k , every T±
k := h−1(I±k ) is

compact submanifold with boundary of dimension n, every Σ±
k := h−1(k ± 1/2) is a

closed submanifold of codimension 1, and there are identities T±
k ≡ Σ±

k × I±k given by
x≡ (π±

k (x),h(x)) (x∈ T±
k ), where π±

k (x) is the unique point of Σ
±
k that meets the φ-orbit

of x. Of course, Σ−
k =Σ+

k−1 (k = 1, . . . ,n) and T−
0 =Σ−

0 = T+
n =Σ+

n = ∅. (See Figure 1.)

We have Σ±
k � ι±p (W

±
p ) for p∈Yk. Let K

±
p =Σ±

k ∩ ι±p (W
±
p ) and K±

k =
⋃

p∈Yk
K±

p , which

are closed submanifolds of Σ±
k ; K

−
k is of codimension k in Σ−

k , and K+
k of codimension n−

k in Σ+
k . Since the α- and ω-limits of the orbits of X are zero points, the orbit of φ through

every point x ∈Σ+
k \K+

k meets Σ−
k \K−

k at a unique point ψk(x) := φτk(x)(x) (τk(x)> 0).
This defines a diffeomorphism ψk : Σ+

k \K+
k → Σ−

k \K−
k and a smooth function τk : Σ+

k \

T+
k

T−
k+1

T−
k

T+
k−1

Σ+
k = Σ−

k+1

Σ−
k = Σ+

k−1

p

Figure 1. A representation of the sets T±
k , Σ±

k , T+
k−1 and T−

k+1, taking Yk = {p}.
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K+
k → R

+. Moreover, the sets K±
p (p ∈ Yk) have corresponding open neighborhoods V ±

p

in Σ±
k , with disjoint closures, such that ψk(V

+
p \K+

p ) = V −
p \K−

p . Take smooth functions

λ±
p (p ∈ Yk) on Σ±

k so that 0≤ λ±
p ≤ 1, suppλ±

p ⊂ V ±
p , λ±

p = 1 on K±
p and λ+

p = ψ∗
kλ

−
p on

Σ+
k \K+

k . Moreover, let

T̃k = h−1([k−1/2,k+1/2]) , K̃p = T̃k ∩
(
ι+p (W

+
p )∪ ι−p (W

−
p )
)
,

Ṽp = {φt(x) | x ∈ V +
p \K+

p , 0≤ t≤ τk(x)}∪ K̃p ,

K̃k =
⋃

p∈Yk

K̃p , Ṽk =
⋃

p∈Yk

Ṽp , Mk = h−1((−∞,k+1/2]).

Thus, Mk = T̃0∪·· ·∪ T̃k. Note that T̃k and Mk are compact submanifolds with boundary

of dimension n, and every Ṽp (resp., K̃p) is open (resp., closed) in T̃k. We also get smooth

functions λ̃p (p ∈ Yk) on T̃k determined by the condition λ̃p(φ
t(x)) = λ+

p (x) for all x ∈
Σ+

k \K+
k and 0≤ t≤ τk(x). They satisfy 0≤ λ̃p ≤ 1, supp λ̃p ⊂ Ṽp and λ̃p = 1 on K̃p.

Let

Ap =max{|η′(γ)| | γ ∈ T 1
p }

(
p ∈ Y+

)
,

Ak = max
p∈Yk

Ap (k = 1, . . . ,n) , A=max{A1, . . . ,An}.

We can suppose C >A and a1 >C+A> 0. For p ∈ Yk, q ∈ Yk−1 and γ ∈ T (p,q),

dh(γ) = h(q)−h(p) =−1.

Therefore,

0> η′′(γ) = η′(γ)+Cdh(γ)≥−A−C >−a1 (γ ∈ T 1). (A.1)

Claim 1. For k = 0, . . . ,n, there is a smooth function fk on M such that

dfk(X)≤ 0 , (A.2)

suppdfk ⊂ M̊k , (A.3)

max{(η′′+dfk)(γ) | γ ∈ T 1
p }=−al (p ∈ Yl, 1≤ l ≤ k) , (A.4)

(η′′+dfk)(δ)>−ak (δ ∈ T 1
k+1). (A.5)

The statement follows directly from Claim 1 taking η = η′′+ dfn. So we only have to

prove this assertion.

We proceed by induction on k. For k = 0, we choose f0 = 0. Then Equation (A.4) is
vacuous, Equations (A.2) and (A.3) are trivial and Equation (A.5) is given by Equation

(A.1).

Now, take any k ≥ 1 and assume fk−1 is defined and satisfies Equations (A.2)–(A.5).
Let

bp =−max{(η′′+dfk−1)(γ) | γ ∈ T 1
p } (p ∈ Yk) , (A.6)

bk =min{bp | p ∈ Yk }.
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For every p ∈ Yk, we have bp < ak−1 ≤ ak because fk−1 satisfies Equation (A.5). So

there is a smooth function h−
p on I−k such that (h−

p )
′ ≥ 0, h−

p = 0 around k− 1/2, and

h−
p = ak− bp around k−1/4. Let h̃−

p be the function on V −
p × I−k ⊂ Σ−

k × I−k ≡ T−
k given

by h̃−
p (x,s) = h−

p (s). We have h̃−
p = 0 around V −

p ×{k− 1/2} and h̃−
p = ak − bp around

V −
p ×{k− 1/4}. Thus, h̃−

p has a smooth extension to Ṽp, also denoted by h̃−
p , which is

equal to ak − bp on Ṽp \T−
k . The function λ̃ph̃

−
p on Ṽp can be extended by zero to get a

smooth function on T̃k, also denoted by λ̃ph̃
−
p . Let h̃

−
k =
∑

p∈Yk
λ̃ph̃

−
p on T̃k.

On the other hand, let ρk be a smooth function on I+k such that ρ′k ≥ 0, ρk = 0 around

k+1/4 and ρk = 1 around k+1/2. Let ρ̃k be the smooth function on T+
k ≡Σ+

k ×I+k given

by ρ̃k(x,s) = ρk(s), and let

h̃+
k = h̃−

k (1− ρ̃k)+(ak− bk)ρ̃k

on T+
k . This smooth function is equal to h̃−

k around Σ+
k ×{k+1/4}, and is equal to

ak − bk around Σ+
k ×{k+1/2} ≡ Σ+

k . So the functions, h̃−
k on T̃k \T+

k and h̃+
k on T+

k ,

can be combined to produce a smooth function h̃k on T̃k. Since h̃k = 0 around Σ−
k and

h̃k = ak − bk around Σ+
k , there is a smooth extension of h̃k to M, also denoted by h̃k,

which is constant on M \ T̃k.

Let fk = fk−1+ h̃k on M. This smooth function satisfies Equation (A.2) because fk−1

satisfies Equation (A.2), and X induces the opposite of the standard orientation on every

fiber {x}×I±k ≡ I±k of T±
k (x ∈Σ±

k ). It also satisfies Equations (A.3) and (A.4) for p ∈ Yl

with 1≤ l < k because fk−1 satisfies these properties and dh̃k is supported in the interior

of T̃k.
Next, take any p ∈ Yk, q ∈ Yk−1 and γ ∈ T (p,q) ⊂ T 1

p . We have γ ∩T−
k ≡ {x}× I−k for

some x ∈K−
p ∩K+

q ⊂ Σ−
k =Σ+

k−1, and the orientation of γ∩T−
k agrees with the opposite

of the standard orientation of {x}× I−k ≡ I−k . Then

(η′′+dfk)(γ) = (η′′+dfk−1+dh̃k)(γ)≤−bp+λ−
p (x)dh̃

−
p (γ)

=−bp−
∫
I−
k

dh−
p =−bp− (ak− bp) =−ak.

Here, the equality holds when the maximum of Equation (A.6) is achieved at γ. Hence,
fk also satisfies Equation (A.4) for p ∈ Yk.

Finally, take any p∈Yk, u∈Yk+1 and δ ∈ T (u,p)⊂T 1
u ⊂T 1

k+1. Thus, δ∩T+
k ≡ {y}×I+k

for some y ∈K+
p ∩K−

u ⊂Σ+
k =Σ−

k+1, and the orientation of δ∩T+
k agrees with the opposite

of the standard orientation of {y}× I+k ≡ I+k . Then

(η′′+dfk)(δ) = (η′′+dfk−1+dh̃k)(δ) = η′′(δ)+dh̃+
k (δ)

= η′′(δ)+
(
h̃−
k (y)− (ak− bk)

)∫
I−
k

dρk

= η′′(δ)+ λ̃p(y)h̃
−
p (y)+ bk−ak

= η′′(δ)+ak− bp+ bk−ak = η′′(δ)+ bk− bp ≥ η′′(δ)>−ak ,

https://doi.org/10.1017/S1474748024000343 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000343


Zeta invariants of Morse forms 67

where the second equality is true because fk−1 satisfies Equation (A.3), and the last

inequality holds by Equation (A.1). So fk satisfies Equation (A.5).
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[6] J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam, ‘A trace formula for
foliated flows’, Preprint, 2024, arXiv:2402.06671.

[7] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac Operators,
Grundlehren Text Editions (Springer-Verlag, Berlin, 2004). Corrected reprint of the 1992
original. MR 2273508
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