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Abstract

In 1985 John Reade determined the spectrum of C| regarded as an operator on the space ¢y of
all null sequences normed by ||x|| = sup,>q |x»]- It is the purpose of this paper to determine the
spectrum of C regarded as an operator on the space bvg of all sequences x such that x; — 0
as k — oo and [|x|| = 30220 [Xk41 — Xkl < 0.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 40 F 05, 47 A 10.

NOTATION. s; Co; /y; bug; bs; T*; X*B(X); A", a(T); O(1); o(1); x;Re(z);
will denote the set of all sequences; convergent to zero sequences, that is,
null sequences; sequences such that > 7o |xi| < oo; sequences such that
Yoo lXk+1 — Xkl < oo; bounded series, that is, sequences x such that
Sup,>g | Y k<o Xx| < oo; the adjoint operator of T'; the space of all contin-
uous linear functionals on X, that is, the continuous dual of X; the linear
space of all bounded linear operators, say, 7" on X into itself; the transposed
matrix of A4; the spectrum of T; capital order, that is, x, = O(1) if there
exists M € R* such that |x,| < M for all n; small order, that is, x, = o(1)
as n — oo, that is, lim,_,., X, = 0; lies between two positive constant mul-
tiples, for example a, =< b, means that there exist m, M € R* such that
mb, < a, < Mb,; the real part of the complex number z, respectively.
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1. Introduction

In his 1985 paper Reade considers the operator which converts a sequence
(xn)§° into its sequence of averages

()CQ+X1+"'+Xn)°°

n+1 n=0

He shows it is a bounded operator on ¢;. We shall denote this operator by
C) = (G, 1) and call it the Cesaro operator. It can be represented by the

matrix
1 0 0 O
: o 000
3 3 3 0

The key to determining the spectrum ¢(C;) of a bounded linear operator C;:
bvy — bvg on a Banach space bv, is the determination of all eigenvalues of
Ct € B(bvg), that is, the determination of all 2 € C such that (C; —AI)~!' €
B (b'Uo).

1.1 THEOREM. Let T € B(X), where X is any Banach space. Then the
spectrum of T* is identical with the spectrum of T. Furthermore, R;(T*) =
(Ri(T))* for A € p(T) = p(T*), where Ry(T) = (T - Al)~! and p(T) = {A €
C: (T - A" exists).

PrOOF. See {2, page 568] and [3, page 71].
1.2. LeMMA. C;: byg — bvg and Cy € B(bvg) with ||Cy||py, = 1.

Proofr. Since C: bvyg — bvg, write y, = C;x and define x, = ap + a +
-++a,. Theny, - 0asn— oo and
n+1

00
?L;Oly”‘y"“' z:(n+ 1)(n+2 Z”“"

< Z(n+1) n+2)§:"|a"I

n—O

= Z"'a”' Z (n+1)(n+2)

v=1 nul

Z |.X,, - xu—ll-
v=0

u [l\/%g
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Direct manipulation gives
||C1 ”(bvo,bvo) = sup{ 1, 0, 0, .es } = 1.
Clearly lim, .o, 11; = 0 and hence C; € B(bvy).

1.3. LeMMA. Each bounded linear operator T: X — Y, where X = ¢y, 1,
and Y = ¢p,l, (1 £ p < ), I (where l, denotes sequences x such that
Yoo [XklP < 00 and lo, denotes bounded sequences) determines and is deter-
mined by an infinite matrix of complex numbers.

ProoF. See Taylor [13, pages 221-223].

1.4, LEMMA. Let C;: bvg — bvy. Then C}: bvg — buvg is given by Ct
and C! € B(bs).

ProoOF. Since bvy has AK and bvg is isomorphic to bs under the map
h: bvg — bs, h(f) = (to,t1,t2,...), where t, = f(é"), n > 0, f € by, we
have (see Lemma 1.3)

1 1 11

2 3 4

P B T
C|=Cl= 0 % 1
3

But for any operator 7 on a normed linear space X, ||T|x = |7T"||x- (see [2,
page 478], [3, page 54] and [7, page 232]), so

ICillu, = ICT lou; = ICilles = 1.

Thus C} € B(bvg), that is, C] € B(bs) since it is also clear that each column
of Cf{ is null (C) being a normal matrix).

1.5. CoroLLARY. C; € B(bvy) has not eigenvalues.

ProoF. The proof follows from the fact that C; € B(cp) has no eigenvalues
(see [10]) since bvg C ¢p.

1.6. LEMMA. Let
< 1
Zn=ln<l—m), A#O,AGC.
Then the partial sums of 3, | Z, are bounded if and only if Re(1/4) > 1.
ProOOF. When 4 = 1, Z, = 0 for all n and so the partial sums of 3 -2, Z,

are certainly bounded.
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Let C be a constant depending only on A which may be different at each
occurrence and A a non-zero constant. We have that

— 1
(1.1) log,(1 —u) = X_:h‘ = —u+ O(u?)
uniformly in ju| < }, u € C. Now given 4 # 0 there is v such that |A|(v+1) >
2 for v > vy,
- 1

(1.2) log, Z, = ,,Z=010g (l _}»—(1/_+1—))

—C—lz—l—--i-it

- A&~ 1+v v

where ¢, = O(1/v?), and

(1.3) it.,:it.,—it,,=€+0(%)

v=yg V=i v=n+1
Also
(1.4) i ! =C+logn+ O l)
) v+l - g n
since if C =} )_ ;47 —logn, then
1 n+1 1
C"+1‘C"=m“‘°g( n )=0(ﬁ)
Therefore
n
Car1 =C+3 (Cor1 = C))
v=0
=C+Y (Cu1=C)= Y, (Co=C), Co=0,
v=0 v=n+1
that is,
(15) Cri=C= ¥ Gu-C=c+o(})
v=n+1

Hence as n — oo, logZ, = C — 1/Alogn + O(1) so Z, = An='4(1 + O(1))
= An~Y* 4 O(n—Re(1/)-1) If Re(1/A) > 1, A = 1, the partial sums of
Yoo, n~Y* are bounded and 302, n—Rel/A—1 < oo, 50 the partial sums of
Yono1 Zy are bounded. If 0 < Re(1/A) < 1 or 4 = 1 then the partial sums
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of 3", n~'/* are unbounded, but we still have 300, n=Rel/D-1 « oo, If
Re(1/4) <0 then

N
(1.6) S nm A< N1V (1_%)
n=1
Now
f: — Re(1/A)-1 {O(N_Re(lm)’ if Re(1/4) <0,
n =
O(log N), if Re(1/4) =0.

n=1

Using (1.6) we see that the partial sums of ;> n~!/* are unbounded al-
though 22, n~Re(l/I-1 < o0, and hence we conclude that the partial sums
of Y°,°, Z, are bounded if and only if Re(1/4) > 1.

2. Determination of the spectrum of C| on bvy

2.1. THeoReM. The eigenvalues of C} € B(bvg), that is, C| € B(bs), are
all € C satisfying |4~ 1| < 1.

PROOF. Suppose Ci{x = Ax, x € bs, x # 6 where 6 is the zero sequence.
Then as in Lemma 1.4,

1 1 1
1 3 3 3
o 1 i .
Ci=Ci= 11
0 o 3 3
and solving the system of equations
xo+%xl+%x2+---=xo
Lxj+ 4 0=
I+ =x
1x + ! Xp + =X
n n—1 n+1 n = An-—1
1
____xn+...=xn
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we obtain
X = (1 - %) Xo
Xy = (l—i—) (1—%)%
(2.2) X3 = (1—%) (1—21—1) 1—%},) Xo

Hence the result follows.

2.2. THEOREM. Let C;: bvy — bvg. Then the spectrum of C, is
o(C)={AeC: A~} < 4}

2.3. DeFINITION (Weighted mean method). The weighted mean method
is a matrix 4 = (a,;) with

n
Qnk =pk|Pn, P, = Zpk # 0.
k=0

2.4. LEMMA. If (M,p) = (N, p) is a regular (conservative) weighted mean
method then (M,p) = (N, p) is absolutely regular (conservative).

(See [1], [14] for further details.)
PRroOF. Since (N, p) is a regular (conservative) mean method we have by
the Kojima-Schur conditions

(2.3) |Py| = 00 as n— oo,
where P, =Y, _,p, and

(2.4) Pr=3"Ip,| = Oy
v=0

We need to prove that (N, p) is absolutely regular (conservative), that is, that

(2.5) Py !
n=k

1
_— <M.
Pn Pn—l -
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Let Py =Y, _,|p,]. Then (2.4) becomes P; < K|P,| for all n > 1 (K some
constant). Thus

|Pal |Pn|K
IPk IIZIPHP_‘_lpk llz n ;
< K?|P, |Z 1
= k=1 P, P’
n=k \"n—1 n

Since |P,| — oo as n — oo by (2.3), we have that P; — oo (since P; > |P,]),
therefore 0, (1/P:_, —1/Py) =1/P;_, and so (2.5) follows, provided that
|Pe—1l/P;_, < M for some M. But M = 1 will do and the result follows.

We now prove Theorem 2.2.

ProoF. By virtue of Theorem 2.1 and the fact that o(C,) = o(C}) (see
Theorem 1.1), it is enough to prove that B = (C; — AI)~! € B(bvy) for all
|A— 4| > 1, that is, that Q is absolutely regular where B = —I/A— Q/A(A—1)
except when A is the reciprocal of a positive integer, B = (C — AI)~! =

I/A— Q/A(A - 1), where Q = (qnt), dmi = A5 /4114,
«_(nte)_(at+n)--(a+])
A"—< n )_ n!

is a Hausdorff matrix (u, u,),

! %
n=al-1-—2—.
’ A( <n+1>—%)

It is also clear that Q is the Hausdorff matrix (u, (1 — %)/ ((n+1)-— %)). The
proof of this is trivial (see Rhoades [11]).

Now Q is a regular Hausdorff transformation when Re(1/4) < 1. To see
this we simply check the regularity conditions, namely:

(1) limp oo gni = limp— oo A—_'/’l/Al:'/’1 = 0 since
n—1 n—1
k] = 1420 14,2 = 14 2 Ot

and a = Re(1/4) < 1, whence g, — 0 as n — o0;
(if) X, 4 'W = A'~Y* and therefore limyoo Y ogoy dnk = 1;

n—1 >

(iif) Yp_, A “" = 37, 0(k=®) = O(n'~=) = O(j4'="%|) and therefore
Th- .|A"/‘|—0(|A‘ 7.

i
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It is clear that Q = (g,¢) is a weighted mean method (matrix) (N, A,:_l/l’wL

with ¥°p_, A,:_l/l’1 = A,ll:}/ *_ Since Q is a weighted mean method and a regular
Hausdorff method, theorem 2.2 follows.
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