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Abstract
The objective of this paper is to present the movement mechanisms of transport aircraft response to severe clear-air
turbulence to obtain the loss of control prevention for pilot training in IATA – Loss of Control In-flight (LOC-I)
program. The transport aircraft in transonic flight is subjected to severe clear-air turbulence, resulting in a sudden
plunging motion with the abrupt change in flight attitude and gravitational acceleration. The comparative analyses
of the flight environment and aircraft response to severe clear-air turbulence for two four-jet aircraft are studied.
The one with a larger dropped-off altitude during the plunging motion will be chosen to construct the movement
mechanism. The nonlinear unsteady aerodynamic model of the chosen transport is established through flight data
mining and the fuzzy-logic modeling of artificial intelligence technique based on post-flight data. The crosswind
before the turbulence encounter will easily induce a rolling motion and then the sudden plunging motion during the
turbulence encounter. The influences of the varying vertical wind and crosswind on loss of control are presented.
To formulate preventive actions, the situation awareness of varying crosswind encountering for the operational pilot
will be studied further in the future. The present study is initiated to examine the possible mitigation concepts of
accident prevention for the pilot training course of IATA – Loss of Control In-flight (LOC-I) program.

Nomenclature

A(xr) membership function for input variable xr

az vertical acceleration, g
b wing span, m
Cx, Cz, Cm longitudinal aerodynamic force and moment coefficient
Cy, Cl, Cn lateral-directional aerodynamic force and moment coefficients
c̄ mean aerodynamic chord, m
g gravity acceleration, m/s2

h altitude, m
Ixx, Iyy, I zz moments of inertia about x-, y-, and z-axes, respectively, kg·m2

Ixy, Ixz, Iyz products of inertia, kg·m2

k1, k2 longitudinal and lateral-directional reduced frequencies, respectively
L, M, N moments acting about the (x,y,z)-body axes of aircraft, respectively, N·m
M Mach number
m aircraft mass, kg
ṁf fuel flow rate, kg/h
p, q, r body-axis roll rate, pitch rate, and yaw rate, deg/s
PMic pitching moment due to inertia coupling, N·m
RMic rolling moment due to inertia coupling, N·m
YMic yawing moment due to inertia coupling, N·m
q̄ dynamic pressure, kpa
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R2 square of multiple correlation coefficients
S wing reference area, m2

Tx thrust term along the x-body axis of the aircraft, N
Tm thrust-moment term in the pitching equation of motion, N
t time, s
T, W thrust and aircraft weight in flight, N, respectively
X, Y, Z forces acting on the aircraft body-fixed axes along x-, y- and z-axes, N, respectively
α, α̇ angle-of-attack, deg and time rate of change of angle-of-attack, deg/s, respectively
β, β̇ sideslip angle, deg and time rate of change of sideslip angle, deg/s, respectively
δa, δe, δr control deflection angles of aileron, elevator and rudder, respectively, deg
φ, θ ,ψ Euler angles in roll, pitch and yaw, respectively, deg

1.0 Introduction
Clear-air turbulence has long been a difficult issue for the aviation community because it is not only the
leading cause of serious injury in non-fatal accidents, but also most likely to cause the aircraft loss of
control. Historically, commercial aircraft pilots encountering en-route turbulence have been using the
voice communication channel to provide in-situ warnings in verbal reports to other nearby aircraft and
to air traffic control [1]. Air travel is considered by many to be safer than riding in a car or a train, but
that doesn’t mean airline passengers don’t sustain injuries – passengers sustain an inflight injury aboard
commercial flights far more often than one might expect. The Federal Aviation Administration (FAA)
estimates that roughly 58 people sustain inflight injuries due to clear-air turbulence every year [2]. Other
people are injured from improperly stowed baggage falling from overhead bins. In nonfatal accidents,
inflight turbulence is the leading cause of injuries to airline flight attendants and passengers. Experience
indicates that most flight injuries in clear-air turbulence have been caused by sudden plunging motion
with a localised region of strong turbulence.

According to IATA annual report in 2005, for more than $65.8 million USD/year lost to airlines of
turbulence-related injuries to cabin crew [3]. In recent years, the transport aircraft response to severe
clear-air turbulence has been of great concern among all kinds of hazardous weathers. The flight safety
prevention in avoidance of injuries for passengers and cabin crews is essential for the airlines. The
influence of clear-air turbulence results from abrupt changes of flight attitude and potentially can cause
the transport aircraft out of control [4]. These effects are quite difficult to be simulated by wind-tunnel
tests or conventional flight simulators.

IATA – Loss of Control In-flight (LOC-I) program [5] has made a great contribution to arrange
international training courses for the pilots in recent years. IATA’s mission is to represent, lead and serve
the airline industry. Membership of IATA amounts to some 290 airlines in 120 countries. The attendees
of the LOC-I training course are the representatives of the Crew Evaluation Section, Standardisation
Department, Flight Operation Division from airlines. The Standardisation Department of the airlines
will extend the training course in their own country, if it is necessary.

In numerical meteorology, wind with horizontal dimensions ranging from around five to several
hundred kilometers can be resolved adequately. However, to accurately diagnose aircraft vertical load
acceleration due to the impact of vertical wind shear in clear-air turbulence, resolved scales of motion as
small as 50m are needed [6]. In fact, spatial resolution should be well below the aircraft length of which
the order is 30m [7]. Such vertical wind speed of high frequency (low wavelength) is not measurable
quantitatively with the existing onboard weather radars. Sheu and Lan [8] estimated the unknown vertical
wind speed of clear-air turbulence on a response aircraft based on the raw flight data of flight data
recorder (FDR) with accuracy consistent with the measurement of the alpha sensor. The results were
used to explain the associated physical phenomena in the plunging motion. Unfortunately, a lack of the
measurement data of the vertical wind speed sensor on board verifies the estimated values of damping
term. Otherwise, it may be possible to define the severity of the plunging motion based on the vertical
plunging equation of motion.
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Regarding the vertical wind impact, the following is a review of literature worth mentioning in the
study of vertical load acceleration or vertical-force in-situ turbulence. In reference to Cornman et al.
[9], the clear-air turbulence severity was estimated in real time from in-situ aircraft measurements. The
purpose was to calculate the eddy dissipation rate from the measurement of aircraft vertical acceleration
based on the assumption of a homogeneous, continuous, linear von Kármán turbulence model coupled
with a linear transfer function of the aircraft dynamics. Stewart’s research [10] ignored the measure-
ment of eddy current dissipation rate, to use the vertical-force in-situ turbulence algorithm and directly
reporting (or deriving) the aircraft response (hazard) instead, but it still based on steady linear aerody-
namics. Proctor & Hamilton [6] believed that the damage of turbulence to aircraft mainly comes from
the vertical wind impact, not the eddy current dissipation rate, radar reflection ability or other variables.
The method of their turbulent motion prediction is based on von Kármán’s dynamic spectral density;
this method is unrealistic in most applications, since real turbulence is not isotropic.

The attendees of the LOC-I training course are the airline pilots. They care about how to mitigate the
hazards and formulate preventive actions based on the existing system of their transport aircraft, but the
vertical wind field on a response aircraft is unknown during the clear-air turbulence encounter. How to
formulate preventive actions is the problem for the pilots. A new study of movement mechanisms for
a plunging motion based on the flight data of accident events in FDR is undertaken. The comparative
analyses of flight environment and aircraft response to severe clear-air turbulence for two four-jet aircraft
are employed. The one with higher dropped-off altitude during the plunging motion between the two
is chosen to construct the movement mechanism. The non-linear unsteady aerodynamic model of the
chosen transport aircraft is established through flight data mining and fuzzy-logic modeling techniques
based on the flight data of the FDR (flight data recorder). The influences of varying vertical wind and
crosswind on loss of control, and sources of significant increase in angles of attack will be presented
in this paper. To formulate preventive actions, the situation awareness of varying crosswind encounter
for the operational pilot before and during severe atmospheric turbulence encounter will be the further
study task in the future. The present study is initiated to examine possible mitigation concepts of accident
prevention for the purpose of providing a valuable lecture of international training courses for IATA –
Loss of Control In-flight (LOC-I) program.

2.0 Numerical method development
The input data for fuzzy-logic modeling is extracted from post-flight data. There are many flight variables
recorded by the FDR, but some variables are not related to the current study, such as light signs, landing
gear retracting and so on. The steps are to collect and organise a large amount of data and obtain the
required information from them for specific analysis and applications; this process is called flight data
mining [11]. The flight data mining process is divided into three parts: the developments of a non-
linear unsteady aerodynamic database, platform development of root cause summary in aviation accident
(including aerodynamic-model setup) and fuzzy-logic modeling algorithm.

2.1 Development of nonlinear unsteady aerodynamic database
This section describes the development process of data manipulation, compatibility check, input infor-
mation of aircraft main geometry and moment of inertia data, equations of motion and unsteady thrust
model. The flowchart for development of a non-linear and unsteady aerodynamic database is shown in
Fig. 1. The wind field is an additional section due to the study of transport aircraft response to the impact
of turbulent air zone in the present paper.

2.1.1 Data manipulation
Before developing a non-linear and unsteady aerodynamic database, one must ensure that the selected
variables and corresponding data are the required data for study. The variables and corresponding data
required for the current study include the following items:
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Figure 1. Flowchart for development of a non-linear unsteady aerodynamic database.

(1) To select the required raw data of flight status, wind field, flight control surface and engine for a
specific flight number from the actual flight Quick Access Recorder (QAR) or FDR data.

(2) The main geometric and moment of inertial data include appearance size, wingspan, average
chord length, wing area and so on. Most of the above are public data of aircraft manufacturers
and can be obtained via the Internet or flight operation manual. However, the thrust perfor-
mance of the entire aircraft is non-public data and must be obtained from the Flight Planning
and Performance Manual (Boeing Series) or Flight Crew Operation Manual (Airbus Series).

2.1.2 Wind field
Wind speed affects weather forecasting, operations of aircraft and maritime and countless other impli-
cations. Wind speed, or wind flow velocity, is a fundamental atmospheric rate. Wind speed is caused by
air moving from high pressure to low pressure, usually due to changes in temperature. Wind direction in
the QAR or FDR is based on cardinal direction of navigation. It refers to the horizontal angle between
the clockwise direction and the target direction from the true north direction of a certain point. The angle
between heading and track is known as the drift angle [12].

Wind speed, wind direction and drift angle are the required variables of wind field in actual flight data
of QAR or FDR. The required variables names, referred units, and referred sampling rates are shown in
Table 1. These three variables are low frequency in 1Hz.

When winds are not parallel to or directly with/against the line of travel, the wind is said to have a
crosswind component; that is, the force can be separated into two vector components — a crosswind
component and a headwind or tailwind component [13]. The crosswind component is computed by
multiplying the wind speed by the sine of drift angle. For example, a 10-knot wind coming at 45degrees
of drift angle will have a crosswind component of 10knots × sin (45◦) or about 7.07knots. The headwind
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Table 1. Raw data of wind filed

Variable name Units Sampling rate
Wind speed knots 1 Hz
Wind direction angle deg 1 Hz
Drift angle deg 1 Hz

component is computed in the same manner, using cosine instead of sine. Wind speed, wind direction
and drift angle are available on the Primary Flight Display (PFD). If the magnitude of drift angles is
large and with variations, the pilots should be educated that the varying crosswind encounter will occur.

A tailwind is a wind that blows in the direction of travel of an aircraft, while a headwind blows against
the direction of travel. A tailwind increases the speed of an aircraft and reduces the time required to
reach its destination, while a headwind has the opposite effect. Tailwind and headwind are commonly
estimated in relation to the speed of an aircraft.

Ground speed can be determined by the vector sum of the aircraft’s true airspeed and the current
wind speed with direction; a headwind subtracts from the ground speed, while a tailwind adds to it.
Winds at other angles to the heading will have components of either headwind or tailwind as well as a
crosswind component.

A crosswind is any wind that has a perpendicular component to the line or direction of travel. They
affect the aerodynamics of many forms of transport. In aviation, a varying crosswind is the component
of wind that blows across the runway, making landings and take-offs more difficult than it blows straight
down the runway. If a varying crosswind is strong enough, it may cause runway veer-off event after
touchdown.

The transport aircraft in today’s world does not have the sensor to measure the vertical wind speed.
Sheu and Lan [8] estimated this value on a response aircraft based on the raw flight data in QAR or FDR
with the measurement of the alpha sensor as follows.

Angle of attack α= αm + αw (1)

where the subscript m stands for motion and w for wind speed (including vertical wind speed).
From another point of view, an aircraft itself is in fact a big sensor in the atmospheric environ-

ment. Penetrating a turbulent air zone, the fast-varying variables of aircraft responds in a definite way
depending on the imposed wind field and aircraft aerodynamic characteristics. Typically, the longitudi-
nal, lateral and vertical accelerations (ax, ay, az), Euler angles (φ, θ , and ψ) and angle-of-attack α are
influenced by the wind field. In other word, the raw flight data of fast-varying variables recorded in QAR
or FDR includes the effects of the wind.

Usually, ax, ay, az along the (x, y, z)-body axes of aircraft, α, φ, θ , and ψ , aileron deflection (δa),
elevator (δe), rudder (δr), stabiliser (δs), and so on are available and recorded in the QAR or FDR of
all transport aircraft. Since the recorded flight data may contain errors (or called biases), compatibility
checks are performed to remove them by satisfying the following kinematic [14, 15]:

φ̇ = p + q sin φ tan θ + r cos φ tan θ (2)

θ̇ = q cos φ − r sin φ (3)

ψ̇ = (q sin φ + r cos φ) sec θ (4)

V̇ = (ax − g sin θ) cos α cos β + (
ay + g sin φ cos θ

)
sin β + (az + g cos φ cos θ) sin α sin β (5)

α̇ =
[
(az + g cos θ cos φ)cos α− (ax − g sin θ) sin α

]
(V cos β)

+ q − tan β(p cos α + r sin α) (6)
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β̇ = cos β
(
ay + g cos θ sin φ

)
V

+ p sin α − r cos α

− sin β
[
(az + g cos θ cos φ) sin α− (ax − g sin θ ) cos α

]
/V (7)

where g is the gravitational acceleration and V is the flight speed. Let the errors be denoted by bax ,
bay , baz , bp, bq, br, bV , bα, bβ , bθ , bϕ , bψ , respectively for ax, ay, az, etc. These errors are estimated by
minimising the squared sum of the differences between the two sides of Equations (2)–(7).

These equations in vector form can be written as:
⇀̇

Z = ⇀

f
(
⇀
x
)

= ⇀

f
(
⇀
xm −


⇀
x
)

(8)

⇀

Z = (
V , ᾱ, β̄, θ , φ,ψ

)T (9)

⇀
xm = (

āx, āy, āz, p̄, q̄, r̄, V , ᾱ, β̄, θ , φ,ψ
)T (10)



⇀
x = (

bx , bay , baz , bp, bq, br, bV , bα, bβ , bθ , bφ , bψ
)T (11)

where overbar “–” stands for the mean value, and the subscript “m” indicates the measured or recorded
values.

The cost function is defined as:

J = 1

2

(
⇀̇
z − ⇀

f

)T

Q

(
⇀̇
z − ⇀

f

)
(12)

where Q is a weighting diagonal matrix with elements being 1.0 and
⇀̇
z is calculated with a central

difference scheme with
⇀
z m, which is the measured value of

⇀
z . The steepest descent optimisation method

is adopted to minimise the cost function. As the result of analysis, variables unavailable in the QAR or
FDR, such as β, p, q and r, are capable of being estimated.

The above-mentioned unavailable variables in the QAR or FDR need initial values as a basis for
correction, where the angular rates such as p, q, r are obtained from derivatives of ϕ, θ and ψ with time
by using the method of monotonic cubic interpolation. This interpolation method is used to connect the
flight data into a continuous curve to obtain the slope of the curve. The value of β cannot be obtained
from the derivative. The initial value of β is assumed to be 0 at the time of estimation, and it is calculated
when the Equation (7) is satisfied.

2.1.3 Aircraft main geometry and moment of inertia data
The main objective of this paper is to examine the possible mitigation concepts of accident prevention,
the nonlinear flight controllability models based on the post-flight data are established through flight data
mining and the fuzzy-logic modeling of artificial intelligence technique. The data of main geometry and
moments of inertia for this transport aircraft are presented in Table 2.

2.1.4 Equations of motion
The actual physical phenomenon of an aircraft flying in the atmosphere is the movement along the
flight trajectory over time. Since all flight variables recorded are based on the body axes, it is more
convenient to estimate the force and moment coefficients for aircraft on the same axes system. The
following equations of motion are derived based on the textbook of Roskam [16]:

(1) force coefficients acting on the body axes of the aircraft

max = Cxq̄S + Tx (13)

may = Cyq̄S + Ty (14)

maz = Czq̄S + Tz (15)
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Table 2. Main geometry and moment of inertia data for Aircraft A and B

Parameter Aircraft A Aircraft B
Takeoff gross weight (kg) 289,524 229,006
Wing reference area, S(m2) 541.1 510.9
Mean chord length, c̄(m) 7.8 7.8
Wing span, b(m) 64.4 59.6
Moment of inertia-x axis, Ixx(kg·m2) 11,300,061 11,285,683
Moment of inertia-y axis, Iyy(kg·m2) 16,591,279 1,659,659.2
Moment of inertia-z axis, Izz(kg·m2) 27,552,369 27,587,224
Moment of inertia-xz axes, Ixz(kg·m2) 0.0 0.0

(2) moment coefficients about the body axes of the aircraft

Clq̄Sb = Ixx ṗ − Ixzṙ + qr
(
Izz − Iyy

) − Ixzpq (16)

Cmq̄Sc̄ = Iyyq̇ + rp(Ixx − Izz)+ Ixz

(
p2 − r2

) − Tm (17)

Cnq̄Sb = −Ixz ṗ + Izzṙ + pq
(
Iyy − Ixx

) + Ixzqr (18)

where m is the aircraft mass; q̄ is the dynamic pressure; S is the wing reference area; b is the wing span;
c̄ is the mean aerodynamic chord; Cx, Cz and Cm are the longitudinal aerodynamic force and moment
coefficients; Cy, Cl and Cn are the lateral-directional aerodynamic force and moment coefficients; and
Ixx, Iyy and Izz are the moments of inertia about x-, y- and z-axes, respectively. The products of inertia,
Ixy, Ixz and Iyz, are assumed zero in the present case; but are included in the equations because non-
zero values may be available in other applications. The terms Tx, Ty, Tz and Tm represent the thrust
contributions to the force in the direction of x-, y-, z-axes, and to the pitching moment, respectively. Tm

is a thrust-moment term about y-axis, so the sign convention is negative in Equation (17)
In Equations (16)–(18), pq, qr, pr are the product terms of two dependent variables or p2, r2 are the

square terms of a variable; those are non-linear terms in mathematics. Therefore, Equations (16)–(18)
belong to the nonlinear differential equation system. Non-linear differential equations are very difficult to
solve mathematically, and the physical phenomena of motion are more complicated [14]. In the physical
sense, the product term of the two dependent variables is related to each other, which is the coupling
effect of nonlinear motion. The raw flight data of QAR or FDR are time-dependent recorded data; it can
be used to establish a non-linear and unsteady aerodynamic database through the steps of Sections 2.1.1
to 2.1.4.

The terms on the left-hand side of Equations (16)–(18) are rolling, pitching, and yawing moments,
respectively. The moments due to inertia coupling on the right-hand side in Equations (16)–(18) will be
produced due to the abrupt change in the flight attitude before and during the severe clear-air turbulence
encounters.

The third term on the right-hand side of Equation (16) is the rolling moment (RMic) due to inertia
coupling as follows:

RMic = qr
(
Izz − Iyy

)
(19)

The product of qr in Equation (19) represents pitch rate coupling with yaw rate, so as, the pitching
moment (PM ic) and yawing moment (YM ic) due to inertia coupling are also presented as follows:

PMic = rp(Izz − Ixx) (20)

YMic = pq
(
Iyy − Ixx

)
(21)
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2.1.5 Unsteady thrust model
Tx, Ty, Tz, Tm are the axial thrusts along body x-, y-, z-coordinate, and pitching moment about y-axis,
respectively, in the Equations (13)–(15), and (17). It can be known from the various thrusts that the force
and moment acting on the aircraft will be affected by the engines. Both thrust and aerodynamic forces
are generated together, and the two effects cannot be accurately separated only from the flight record
data during analysis. To accurately estimate the aerodynamic coefficient, it is necessary to obtain an
accurate thrust value to separate the thrust effects, and then the accurate aerodynamic coefficients can
be obtained [14].

Since the values of thrust for aircraft in flight cannot be directly measured in the current state of the
art, they are neither recorded in the QAR nor FDR. A realistic thrust model is quite complex and cannot
be represented by any simple equation. Since such thrust model is not available for the present study,
a numerical model ties up the recorded engine data and flight operation manual to develop the thrust
model by using the fuzzy-logic algorithm.

The manufacturers of engines agreed that using variables such as the Mach number, airspeed, flight
altitude, temperature, rpm of the pressure compressors and engine pressure ratios are adequate to esti-
mate the engine thrust [1]. To study aircraft performance with fuel consumption, data from the flight
manual for the fuel flow rate (ṁf ) at various altitude (h), weight (W ), Mach number (M), calibrated
airspeed (CAS), engine pressure ratio (EPR), in cruise flight are utilised. The flight operation manual
has the required lists and graphs of engine efficiency changes with altitude and speed; these data can be
used to complete the engine’s thrust change curves.

For the Pratt & Whitney (PW) turbofan engines, thrust (T ) is defined by EPR, so that the thrust model
is set up as:

T = f
(
h, W, M, CAS, EPR, ṁf

)
(22)

For General Electrical (GE) or CFM International (CFM) turbofan engines, the rpm of the low-
pressure compressor (N1) is used to set the level of thrust, so that the thrust model is set up as:

T = f
(
h, W, M, CAS, N1, ṁf

)
(23)

In the present study, Aircraft A with GE turbofan engines and Aircraft B with PW one, Aircraft B
will be illustrated. The actual thrust in operation is obtained by using the recorded variables from engine
data in FDR. The engine’s thrust change curves tabularised in numerical datasets to associate with the
recorded data in FDR are the input data files for thrust model establishment.

Theoretically, clear-air turbulence (i.e. random change in u, w (or α) and v (or β)) affect the engine
performance through its effects on static and dynamic distortions at the engine face. However, its effects
are not known and cannot be estimated, and therefore are ignored in the present application.

Once the thrust model is generated as a function of h, W , M, CAS, EPR, and (ṁf ) ith the flight
conditions of climbing, cruise, and descent, one can estimate the thrust magnitude by inserting those
flight data into the aerodynamic database.

2.2 Platform development of root cause summary in aviation accident
This section describes the development of root caused analysis in aviation accident, as shown in Fig. 2.

The flowchart of Fig. 2 is based on the data of the non-linear unsteady aerodynamic database. The
fuzzy-logic modeling technique is used to set up aerodynamic models. The non-linear unsteady aerody-
namic model can provide the stability and controllability derivatives to be used for the event analyses.
The derivative indices can help to pinpoint the major cause more efficiently while proceeding event or
accident investigation, to judge about how difficult it was for the pilot or the autopilot system to control
the aircraft in severe clear-air turbulence.
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Figure 2. Flowchart for platform development of root cause summary in aviation accident.

2.2.1 Non-linear unsteady aerodynamic models
When studying the non-linear unsteady aerodynamic characteristics of motion, it can be found that
the non-linear unsteady aerodynamics with hysteresis [17, 18, 19] are affected by many variables of
motion state. The aerodynamic models developed by the fuzzy-logic modeling method is suitable for
aerodynamic research of coupling motion, and can be used to enchance the operational efficiency of
transport aircraft.

Modeling means to establish the numerical relationship among certain variables of interest. In the
fuzzy-logic model, more complete necessary influencing flight variables can be included to capture all
possible effects on aircraft response to structure deformations. The longitudinal main aerodynamics is
assumed to depend on the following ten flight variables [14]:

Cx, Cz, Cm = f (α, α̇, q, k1, β, δe, M, p, δs, q̄) (24)

The coefficients on the left-hand side of Equation (24) represent the coefficients of axial force (Cx),
normal force (Cz) and pitching moment (Cm), respectively. The variables on the right-hand side of
Equation (24) denote the angle-of-attack (α), time rate of angle-of-attack (dα/dt, α̇), pitch rate (q), longi-
tudinal reduced frequency (k1), sideslip angle (β), control deflection angle of elevator (δe), Mach number
(M), roll rate (p), stabiliser angle (δs) and dynamic pressure (q̄). These variables are called the influenc-
ing variables. The roll rate is included here because it is known that an aircraft encountering hazardous
weather tend to develop rolling which may affect longitudinal stability. The variable of dynamic pressure
is for estimation of the significance in structural deformation effects.
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For the lateral-directional aerodynamics [14],

Cy, Cl, Cn = f
(
α, β, φ, p, r, k2, δa, δr, M, α̇, β̇

)
(25)

The coefficients on the left-hand side of Equation (25) represent the coefficients of side force (Cy),
rolling moment (Cl) and yawing moment (Cn), respectively. The variables on the right-hand side of
Equation (25) denote the angle-of-attack (α), sideslip angle (β), roll angle (φ), roll rate (p), yaw rate
(r), lateral-directional reduced frequency (k2), control deflection angle of aileron (δa), control deflection
angle of rudder (δr), Mach number (M), the time rate of angle-of-attack (α̇) and the time rate of sideslip
angle (β̇).

2.2.2 Aerodynamic and damping derivatives
The most representative of numerical differentiation theory is the difference method. This paper uses the
central difference method to take the derivative. The central difference method to obtain the derivative
is to take the differential point as the centre point, and respectively select a value close to 0 from the left
and right of the differential point to compare and obtain the derivative of the certain point.

Assuming a function f (x), if one wants to find the derivative at the point x, take x as the centre point
and select the value of the distance between the left and right sides close to 0, namely f (x+) and f (x−),
and then find the Taylor expansion and the principle of the central difference method are as follows:

Taylor expansion to find f (x +
x):

f (x +
x) = f (x) + f ′(x)
x + f (2)(x)

2

x2 + . . . (26)

Taylor expansion to find f (x−
x):

f (x −
x) = f (x) + f ′(x)(−
x) + f (2)(x)

2
(−
x)2 + . . .

Then,

f (x −
x) = f (x) − f ′(x)
x + f (2)(x)

2

x2 + . . . (27)

Subtracting (26) from (28), one gets

f (x +
x) − f (x −
x) = 2f ′(x)
x (28)

Therefore,

f ′ (x)= f (x +
x)− f (x −
x)

2
x
. (29)

Although the above-mentioned numerical differentiation method is used to obtain the derivative of
a certain point of the function curve, in fact, it can also be applied to the derivative analysis of experi-
mental data. However, the experimental data are scattered and discontinuous points, and interpolation
must be used to connect the points into a continuous curve. Fuzzy-logic modeling plays the function of
interpolation.

The tangent slope of a point on the curve is the derivative value of this point. Add and subtract a
small same value to the abscissa value of this point respectively, corresponding to the slope of the line
connecting two points on the curve, which is calculated by the finite difference method. Fuzzy-logic
modeling is extremely important in the aerodynamic performance analysis of actual flight data. The
following are two examples of applying the fuzzy-logic modeling model to take derivatives:

The longitudinal stability derivative (Cmα) comes from the model of Cm. The aerodynamic deriva-
tive of the unsteady aerodynamic model can be calculated using the central interpolation method. The
formula of the central difference method is as follows:

Cma = [Cm(α+
α, ---) − Cm(α−
α, ---)]/2
α (30)
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Table 3. The effectiveness criteria for derivative values of stability, damping and controllability [16]
Orientation Sort Derivative Derivative description Effectiveness
Longitudinal Static stability Czα Derivative of Cz with respect to α +

Cmα Derivative of Cm with respect to α −
Dynamic stability Czα̇ Derivative of Cz with respect to α̇ +

Cmα̇ Derivative of Cm with respect to α̇ −
Damping Czq Derivative of Cz with respect to q +

Cmq Derivative of Cm with respect to q −
Controllability Cmδe Derivative of Cm with respect to δe −

Lateral &
directional

Static stability Clβ Derivative of Cl with respect to β −

Cnβ Derivative of Cn with respect to β +
Dynamic stability Clβ̇ Derivative of Cl with respect to β̇ −

Cnβ̇ Derivative of Cn with respect to β̇ +
Damping Clp Derivative of Cl with respect to p −

Cnr Derivative of Cn with respect to r −
Controllability Cnδr Derivative of Cn with respect to δr −

Clδa Derivative of Cl with respect to δa +
Remarks: The effectiveness is judged based on the positive or negative of derivative value.


α= 0.1 degrees mean that α changes up and down by 0.1 degrees, while all other variables remain
unchanged.

The damping derivative (Clp) is proposed from the model Cl. The formula of the central interpolation
method is as follows:

Clp = [Cl(---, p
+ p, ---) − Cl(---, p −
p, ---)]/2
p (31)

where 
p is in unit of deg/s.
The calculations of all other aerodynamic derivatives are derived with the same method in this paper.
The effectiveness criteria for derivative values of stability, damping and controllability are shown in

Table 3. The root caused analysis for aircraft accident due to the pilots in loss of control are based on
assessment of stability, damping and controllability in flight dynamics. The magnitude values of these
three derivatives are the judgement criteria for effectiveness.

2.3 Fuzzy-logic modeling algorithm
Since the aerodynamic models are established by using flight data, modeling technique is important and
need to be carefully considered. Factors that affect the modeling procedures include the mathematical
tool to set up a system model and the method to identify variables of a model structure. Modeling
procedures start from separating the input data into many groups, and nonlinear relations are set up
between each input-output data space. To obtain continuous variations of predicted results, the present
method is based on the internal functions, instead of fuzzy sets [20], to generate the output of the model.

The internal functions are defined to cover the ranges of the influencing variables (i.e. input variables).
The ranges of the input variables are all transformed into the domain of [0, 1]. The membership grading
also ranges from 0 to 1.0, with “0” meaning no effect from the corresponding internal function, and “1"
meaning a full effect. These internal functions are assumed to be linear functions of input variables as
follows [21, 22]:

Pi = yi(x1, x2, · · ·, xr, · · · xk)= Pi
0 + Pi

1x1 + · · · + Pi
rxr + · · · Pi

kxk (32)

Where pi
r, r = 0, 1, 2,. . ., k, are the coefficients of internal functions yi, and k is number of input

variables. In Equation (33), yi is the estimated aerodynamic coefficient of force or moment, and Xr are
the variables of the input data.
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Figure 3. Flowchart of refining process of fuzzy-logic modeling.

The recorded data in QAR or FDR, such as flight altitude (h), calibrated airspeed (CAS), angle-of-
attack (α), accelerometer readings (ax, ay, and az) and Euler angles (θ , φ, and ψ), etc. is chosen as the
variables to form the data for specific fuzzy models. In the present section, yi is defined to be an estimated
aerodynamic coefficient of force or moment, and Xr are the variables of the input data. The numbers of
the internal functions (i.e. cell numbers) are quantified by the total number of membership functions.

The values of each fuzzy variable, such as the angle-of-attack, are divided into several ranges, each of
which represents a membership function with A(xr) as its membership grade. One membership function
from each variable constitutes a fuzzy cell. For the ith cell, the corresponding membership grades are
represented by Ai

r(xr), r = 1, 2,. . ., k. In other words, the membership functions allow the membership
grades of the internal functions for a given set of input variables to be assigned.

The flowchart of refining process for fuzzy-logic modeling is presented in Fig. 3. This flowchart
includes input, normalisation, membership function calculation, internal function calculation, etc. The
model refining process of modeling can be treated as a system. For a given system with input variables
(x1, x2, · · ·, xr, · · · xk) of one data point, the recorded values of each input variables are normalised by
using

xr,norm = xr − xr,min

xr,max − xr,min

, r = 1, 2, · · ·, k (33)

Hereafter xr,norm is denoted by xr for simplicity in description. The range, (xr,max − xr,min), represents
the scaling factor and usually is assumed to have a larger range than what actually appears in the data
with numerous data points to be more generally applicable for the resulting model.

The membership functions partition the input space into many fuzzy subspaces, which are called the
fuzzy cells. The total number of fuzzy cells is n = N1 × N2 × · · · × Nr × · · · × Nk. For a variable Xr , the
number of membership function is Nr. Each fuzzy cell is in a different combination from others formed
by taking one membership function from each input variable.

In each fuzzy cell, the contribution to the outcome (i.e. the cell output) is based on the internal
function, Equation (33). The final prediction of the outcome is the weighted average of all cell outputs
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after the process of reasoning algorithm. The output is estimated by the centre of gravity method. For
the j th input (x1,j, x2,j, · · ·, xr,j, · · ·, xk,j), the output is as follows:

ŷ =

n∑
i=1

op
[
Ai

(
x1,j

)
, · · ·, Ai

(
xr,j

)
, · · ·, Ai

(
xk,j

)]
Pi

n∑
i=1

op
[
Ai

(
x1,j

)
, · · ·, Ai

(
xr,j

)
, · · ·, Ai

(
xk,j

)] j = 1, 2, · · ·, m (34)

In Equation (34), op
[
Ai

1

(
x1,j

)
, · · ·, Ai

k

(
xk,j

)]
is the weighted factor of the ith cell; and the index j of the

data set, where j = 1, 2, . . ., m, and m is the total number of the data records. The symbol “op” stands
for product operator of its elements in the present paper.

There are two main tasks involved in the fuzzy-logic modeling process. One is the determination
of coefficients of the linear internal functions. The other is to identify the best structure of fuzzy cells
of the model, i.e. to determine the best number of membership functions for each fuzzy variable. The
coefficients are calculated with the gradient-descent method by minimising the sum of squared errors
(SSE) [18]:

SSE =
m∑

j=1

(
ŷj − yj

)2 (35)

On the other hand, the structure of fuzzy cells is optimised by maximising the multiple correlation
coefficients (R2):

R2 = 1 −

{
m∑

j=1

(
ŷj − yj

)2

}
{

m∑
j=1

(
ȳ − yj

)2

} (36)

where ŷj is the output of the fuzzy-logic model, yj is the measured data, ȳ is the average value of extracted
dataset, and m is the total number of data points.

The aerodynamic or flight control model is defined by the values of pr
i –coefficients. These

coefficients are determined by minimising SSE (Equation (35)) with respect to these coefficients.
Minimisation is achieved by the gradient-descent method with an iteration formula defined by:

Pi
r,t+1 = Pi

r,t − αr

∂(SSE)

∂Pi
r

(37)

where αr is convergence factor or step size in the gradient method; subscript index t denotes the iterative
sequence.

After simplification, Equation (37) becomes

∂(SSE)

∂Pi
r

= 2
m∑

j=1

(
ŷj − yj

) ∂ ŷj

(
x1,j, · · ·, xk,j, P1

r , · · ·, Pn
k

)
∂Pi

r

(38)

Since the computed gradient tends to be small with Equation (38) and involves matrix iteration so
that the convergence is slow and time-intensive. To accelerate the convergence, the iterative formulas
are modified by using the local squared errors to give:

For r = 0,

Pi
0,t+1 = Pi

0,t − 2α0

(
ŷj − yj

) op
[
Ai

1

(
x1,j

)
, · · ·, Ai

k

(
xk,j

)]
n∑

s=1

op
[
As

1

(
x1,j

)
, · · ·, As

k

(
xk,j

)] (39)

and for r = 1, . . ., k,

Pi
r,t+1 = Pi

r,t − 2αr

(
ŷj − yj

) op
[
Ai

1

(
x1,j

)
, · · ·, Ai

k

(
xk,j

)]
xr,j

n∑
s=1

op
[
As

1

(
x1,j

)
, · · ·, As

k

(
xk,j

)] (40)
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Table 4. The variations of main flight variables in aerodynamic and flight environments

Aircraft A Aircraft B
Variable variations 6,805∼6,8 95s 6,258∼6,3 06s
Vertical acceleration az (g) +1.67 ∼ −0 +1.70 ∼ −0.90
Angle-of-attack α (deg) +6.2 ∼ −5.9 +6.6 ∼ −3.4
Mach number 0.88 ∼ 0.83 0.84 ∼ 0.80
Largest drop-off height (m) 57.8 51.5
Wind speed (m/s) +79.8 ∼ +40.9 +60.3 ∼ +21.4
Wind direction (deg) +155.0 ∼ +92.0 +358.0 ∼ +57.4
Drift angle (deg) +5.0 ∼ 0.0 +4.0 ∼ 0.0

In Equations (39) and (40), , op[Ai
1

((
x1,j

)
, · · ·, Ai

k

(
xk,j

)]
is weighted factor of the ith cell; and the index

j of the data set, where j = 1, 2, . . ., m, and m is the total number of the data record; and the “op” stands
product operator of its elements in this paper.

Equations (39) and (40) are based on a point-iteration in variables identification algorithm. The
iteration during the search sequence stops, when one of the following three criteria [18] is satisfied:

(1) Cost = SSEt = minimised

(2) RER = SSEt − SSEt−1

SSEt

< ε2

(3) t = tmax

In the above criteria, SSEt is the sum of squared errors (SSE) being the cost function and RER =
(cost_current-cost_previous)/cost_current to be denoted by “RER” (i.e. the relative error) for simplicity
in descriptions; ε2 is the required precision criteria. The algorithm variables identification plays the role
of refining model. The point-iteration in variables identification algorithm is also shown in the flowchart
of Fig. 3.

Once the fuzzy-logic aerodynamic models were set up, one can input to the model influencing vari-
ables to describe the flight conditions under analysis. In the present paper, all aerodynamic derivatives
are computed with central differences through the aerodynamics models.

3.0 Numerical results and discussions
Two transport aircraft under the study encountered severe clear-air turbulence in revenue flights. As a
result, several passengers and cabin crews sustained injuries, because of which these two events were
classified as the aviation accidents. To investigate the root causes of the aviation accidents, it is impera-
tive to understand the aerodynamic and flight environments first, and then study the aircraft responses in
operations. The flight dynamic mechanism that induced the sudden plunging motion can be constructed
from the study of crosswind influence, and sources of significant increase in angles of attack.

3.1 Aerodynamic and flight environments
The variations of main flight variables in aerodynamic and flight environments are presented in Table 4.
The time spans of severe clear-air turbulence encountered are underneath each aircraft as shown in
Table 4. The corresponding flight data of the Aircraft A with severe clear-air turbulence encountered at
the altitude around 11,277m in transonic flight. The variation of vertical acceleration, the highest az is
1.67g and the lowest is 0g. The variation of α is approximately in phase with az. The highest α is about
6.2deg and the lowest is −5.9deg. At the same time, M is dropped from around 0.88 to 0.83. The varia-
tions of wind speed is from +79.8 to 40.9m/s; wind direction is from +155.0 to +92.0deg; drift angle is
from +5.0 to 0.0deg. The variations of main flight variables for Aircraft B are also presented in Table 4.

The unsteady aerodynamic effects can be expected to be very significant under the circumstances of
nearly rapid changes in angles of attack (α), flight altitude and Mach number at transonic flight. Since
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the highest α of Aircraft B reaches the values is above 6.6deg in transonic flight, compressibility effect
is important. It should be noted that the turbulent vertical wind field was not measured or estimated in
the QAR or FDR; but is included in the total α. The variation of wind speed for Aircraft B is the large,
while drift angle is the small. The az value of Aircraft A is not higher than Aircraft B, but the drop-off
height and angles of attack variations are larger than those of Aircraft B.

3.2 Aircraft responses in operations
It can be observed that various flight variables change during severe clear-air turbulence encountered
after analysing the aerodynamic and flight environments. Is it rule out that is the result of the aircraft
operation to make the rapid changes of angles of attack (α), flight altitude and Mach number? It is of
interest to examine the aircraft in operations in this section.

(1) Aircraft A

Figure 4 presents the variations of dynamic characteristics and control variables for Aircraft A at the
altitude around 11,277m. The changes of α and sideslip angle (β) including turbulence effects are shown
in Fig. 4(a). The variation ranges of α are 6.2 to −5.9deg in turbulence encounter; the time history of
β is small, as indicated in Fig 4(a). The time history of θ and φ is shown in Fig. 4(b). The θ does not
vary as much as α, but the highest value reaches 5.1deg The variations of φ is large with the variations
−12 to 12deg during the turbulence encounter. The magnitudes of q and p are shown in Fig. 4(c); the
variation of p is much larger than that of q.

The flight data recorder doesn’t show that the autopilot is deactivated during the turbulence encounter.
The time history of δe and δa is shown in Fig. 4(d). When the altitude is dropping fast, δe becomes
more negative, as shown in Fig. 4(d). On the other hand, around t = 6,855, when the aircraft is rising,
δe becomes more positive. The variation of δe significantly affects the pitching moment coefficient and
magnitude of q. It has no corresponding larger variations of elevator activity with respect to the variations
of angles of attack. The values of φ are changed from negative to positive (t = 6,837–6,863s) and φ
reaches a range from −12 to +12deg. While the φ is changing fast in the negative direction before
t = 6,840s, δa is increased to positive, reaching +3deg at t = 6,845s, as shown in Fig. 4(d).

(2) Aircraft B

Figure 5 presents the variations of dynamic characteristics and control variables for Aircraft B at the
altitude around 12,192m. The variation ranges of α are 6.6 to −3.4deg in turbulence encounter; the time
history of β is approach 0deg with small fluctuation, as indicated in Fig 5(a). The time history of θ and
φ is shown in Fig. 5(b). The θ does not vary as much as α, but it has the magnitude with fluctuation.
The variations of φ is large and the most magnitudes are in negative. The magnitudes of both data are
fluctuation in abnormal appearance, it may cause due to the problems of measured sensors. The variables
of p and q are unavailable in the FDR; the magnitudes of these two variables are estimated through the
compatibility check. The magnitudes of both data are also fluctuation in abnormal appearance, as shown
in Fig. 5(c). The flight data recorder doesn’t show that the autopilot is deactivated during the turbulence
encounter. The time history of δe and δa is shown in Fig. 5(d).

The FDR of Aircraft A and B didn’t indicate that the autopilots were deactivated during the turbulence
encounter. Based on the comprehensive analysis of the above two aircraft, the tentative conclusion is as
follow:

(1) The magnitude variations of φ, p, and sideslip angle β of Aircraft A are larger than those of
Aircraft B.

(2) The magnitudes of both θ and φ of Aircraft B are fluctuation in abnormal appearance, these may
be caused by the measured sensors.

(3) The results of aircraft operations causing drastic changes in angle of attack (α), flight altitude
and Mach number have been ruled out.
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Figure 4. Variations of dynamic characteristics and control variables for Aircraft A.

3.3 Analysis of model predictions
In the present study, the accuracy of the established unsteady rolling moment model by using fuzzy-
logic modeling technique is estimated by the sum of squared errors (SSE) and the square of multiple
correlation coefficients (R2). All the coefficients and derivatives of pitching moment (Cm) and rolling
moment (Cl) in the study of flight dynamic characteristics are calculated with these two models.
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Figure 5. Variations of dynamic characteristics and control variables for Aircraft B.

Figure 6 presents the Cm and Cl of the Aircraft A predicted by the unsteady pitching moment and
rolling moment models, respectively. The predicted results by the final models have good match with the
input data before the modeling. Once the Cm and Cl models are set up, one can calculate all necessary
derivatives by central difference scheme to analyse the flight dynamic characteristics.

The final pitching- and rolling- moment models of Aircraft A consist of many fuzzy rules for each
coefficient as described in Tables 5 and 6. In these tables, the numbers below each input variable
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Table 5. Final models of pitching-moment coefficients of Aircraft A

Coef. α, α̇, q, k1, β, δe, M, p, δs, q̄ n R2

Cm 2 2 3 2 2 4 2 4 2 2 6,144 0.967
Notes: Total number of fuzzy cells (n) = n1 × n2 × n3 × . . . n10.

Table 6. Final models of rolling-moment coefficients of Aircraft A

Coef. α, β, φ, p, r, k2, δa, δr, M, α̇, β̇ n R2

Cl 4 2 2 2 2 3 2 2 2 2 2 6,144 0.972
Notes: Total number of fuzzy cells (n) = n1 × n2 × n3 × . . . n11.

Figure 6. The comparisons of the predicted results and input data before the modeling for Aircraft A.

represent the number of membership function. The total number of fuzzy cells (n) in each model is
the product of each number, which is presented in column 3. The last column shows the final multi-
ple correlation coefficients (R2). The accuracy of the established pitching- and rolling-moment models
through the fuzzy-logic algorithm can be judged by the (R2).

3.4 Influence of crosswind on loss of control
Aircraft A is subjected to crosswind before the plunging motion; the magnitudes of crosswind have
the large variations in the time span of 6,830–6,860s, as shown in Fig. 7(a). The magnitude of drift
angles is in the range of +5.0–0.0deg. The rolling motion in varying crosswind and the corresponding
aileron deflections are presented in Fig. 7(b) and (c). The magnitudes of roll angles (φ) are changed
from positive to negative (t = 6,835–6,855s) and φ reaches ±12deg in the time span of 6,838–6,850s. in
Fig. 7(b), when the crosswind is abruptly decreased. While φ is changing fast in the time span of 6,830–
6,880s i, the magnitudes of aileron angle (δa) are in large variations, as shown in Fig. 7(c). It is shown
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Figure 7. Influence of varying crosswind corresponding to rolling control for Aircraft A.

that the corresponding aileron angle will not be effective to control it. The roll control power derivatives
should be positive in the effectiveness criteria of Table 3. Some values of Clδa are negative in plunging
motion as shown in Fig. 7(d), and it implies uncontrollability because the corresponding aileron angle is
ineffective. Although there are considerable control deflections of aileron angle (δa) around the time of
fast variations of roll angles (φ), and there is no control effectiveness in the period of t = 6,830–6,880s,
it may be concluded that the rolling movement does not have well response to the aileron control due to
the airflow detach with the control surface in a transient time.
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Figure 8. The time history of roll damping and oscillatory derivatives for Aircraft A.

The large variations of roll angles (φ) obviously induced by the influenced of varying crosswind. The
corresponding aileron angle will not be effective to control the roll motion. It is of interest to examine the
roll damping in oscillatory motion to evaluate the dynamic stability characteristics during the plunging
motion.

Figure 8 presents the time history of roll damping in oscillatory motion for Aircraft A along the flight
path to associate with β̇-derivatives. Note that in Fig. 8(c), the roll damping oscillatory derivatives are
defined as:

(
Clp

)
osc

= Clp + Clβ̇ sin α (41)
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The values of oscillatory derivatives are equivalent to the combinations of static damping and
dynamic derivatives in above Equation (41). The use of oscillation derivative instead of static damp-
ing only is more consistent with the actual case in the analysis of dynamic stability characteristics. To
be stable, (Clp)osc < 0. Physically, if it is unstable, the motion will be divergent in oscillatory motions.
The values in the period of plunging motion have some differences between oscillatory and static damp-
ing derivatives in Fig. 8(a) and (c) for Aircraft A due to the effects of the dynamic derivatives (i.e.
β̇-derivatives).

Figure 8(a) and (b) show roll damping and dynamic derivatives of stability, respectively. To be stable,
the roll damping (Clp < 0) and dynamic derivatives of stability (Clβ̇ < 0). The magnitudes of Clp are
positive with insufficient in roll damping and Clβ̇ are positive with unstable conditions in the period of
t = 6,835–6,860s. The effects of β̇-derivative on (Clp)osc are to cause the lateral-stability more unstable
in Fig. 8(c) through the magnitude comparisons of (Clp)osc with Clp. It implies that the effects of β̇-
derivativecan cause the lateral-stability more unstable.

3.5 Sources of significant increase in angles of attack
Figure 9 presents the time history of flight variables and with pitch-control-power derivative for Aircraft
A during cruise phase. The flight variables in Fig. 9(a) are vertical acceleration (az), angle-of-attack
(α), pitch angle (θ ), elevator angle (δe). The variations of az and α show the highest magnitudes being
1.67g and 6.2deg at t = 6,863s and the lowest being close to 0g and 5.9deg around t = 6,856s, respec-
tively. Figure 9(b) shows that variations of α and θ are approximately in phase with az during turbulence
encounter. The magnitude of α should be approximately close to θ , if there is no airflow disturbance dur-
ing cruise flight. The magnitudes of α are obviously larger than those of θ during turbulence encounter
in the time span between t = 6,830–6,865s.

At transonic speeds, the variation range of angle-of-attack is +6.2 to −5.9deg as shown in Fig. 9(b) is
high for transport aircraft in cruise. Numerical calculation of a typical supercritical aerofoil shows strong
shock and possible flow separation at 6.5deg in angle-of-attack. Yet on the subject aircraft, the largest
angle-of-attack reached is 6.2deg. Is this large angle produced by the elevators? The elevator angles (δe)
and the corresponding control power derivatives (Cmδe< 0) are presented in Fig. 9(c) and (d), respectively.
Under normal conditions, the pitch control power derivatives should be negative (Cmδe< 0), meaning the
pitching moment being negative if the elevator being positive (i.e. trailing-edge down). From Fig. 9(d),
it is seen that fast angle-of-attack variation during the period t = 6,830–6,880s, the longitudinal control
of Cmδe is ineffective. It may be concluded that the pitching movement does not have a good response to
the elevator control due to the airflow detach with the control surface in a transient time.

The most parts of elevator activities are nose-up, because they are negative in elevator angles as
shown in Fig. 9(c); except the activity of elevators at t = 6,855–6,865s. is nose-down. In general, the
magnitudes of angles of attack and pitch angles should be increased with the equivalent values in cruise
flight as the response respect to nose-up elevator activities. However, the most parts of angles of attack
are larger than pitch angles as shown in Fig. 9(b) and some parts of control power derivatives are positive
as shown in Fig. 9(d) in this period. The variation of angle-of-attack is essential, but it has less corre-
sponding variation of elevator activity in this period. Therefore, some increments in angle-of-attack are
not produced by elevators.

Equation (1) indicates that mergers of αm and αw are the measurement of the alpha sensor due to the
aircraft motion and wind speed influence (including vertical wind speed), respectively. The magnitudes
of α are rapidly changed in phase with az, therefore, the mutation of α should be mainly influenced
by vertical wind speed. Are certain variations of α produced by the aircraft motion? The movement
mechanism will be further investigations below.

The pitching moment (PM ic) represents pitch rate coupling with yaw rate in Equation (20). PM ic is
very important in fighter design and not limited to high-speed conditions. If both “p” and “r” are of the
same sign, and Izz > Ixx, (usually being the case), PM ic is positive.
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Figure 9. Time history of flight variables and with pitch-control-power derivative for Aircraft A.
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Figure 10. Roll rate, yaw rate and pitching moment due to inertial coupling.

Figure 10(a), (b) and (c) presents the variations of roll rate, yaw rate and pitching moment due to
inertial coupling (PM ic). PM ic has a large variation during t = 6,830–6,860s. due to the large variations of
roll and yaw rates, especially for roll rate. The rapid variations of angles of attack should be contributed
by PM ic during this period. A tentative conclusion is that if the variations of angle-of-attack and pitch
angle occur at the same time, the increase or decrease must be caused by a pitching moment, or inertial
coupling in this case. This is because the pitch angle can only be changed by a pitching moment. On
the other hand, if the pitch angle change is not in phase with that of the angle-of-attack, the increase
in angle-of-attack should be caused by upflow in the turbulent air, which is usually assumed in random
motion [23, 24], resulting in flight altitude loss.
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4.0 Concluding remarks
The objective of the present paper was to present the movement mechanisms of transport aircraft
response to severe clear-air turbulence to obtain the loss of control prevention for pilot training in IATA
– Loss of Control In-flight (LOC-I) program. The comparative analyses of flight environment and air-
craft response to severe clear-air turbulence for two four-jet aircraft were studied. The one with larger
dropped-off altitude during the plunging motion was chosen to construct the movement mechanism. The
nonlinear unsteady aerodynamic model of the chosen transport aircraft was established through flight
data mining and the fuzzy-logic modeling techniques based on post-flight data. The influences of vary-
ing vertical wind and crosswind on loss of control were presented. The source of significant angles of
attack induced by the varying crosswind during the sudden plunging motion were proved through the
analysis of oscillatory derivatives based on model predicted data. The numerical results and discussions
of application to the movement mechanisms were concluded as follows:

(1) The crosswind before the turbulence encounter would easily induce rolling motion and then
initiate the sudden plunging motion during the turbulence encounter. The magnitude of varying
crosswind encounter on the flight route could be judged by the drift angle.

(2) The roll rate would increase the oscillatory rolling motion during plunging motion, if the rolling
damping was insufficient. The drop-off altitude would be enlarged by the oscillatory rolling
motion during the sudden plunging motion.

(3) The variation of angle-of-attack is essential, but it has less corresponding variation of elevator
activity in severe clear-air turbulence. The increments of α should be mainly influenced by ver-
tical wind speed; some increments in angle-of-attack were caused by the pitching moment due
to inertial coupling PMic after the movement mechanism being further investigated.

The analytical results could provide the mitigation concepts and promote the understanding of
dynamic responses of the transport aircraft in severe clear-air turbulence. To formulate preventive
actions, the situation awareness of drift angle variations for the operational pilot before and during
severe atmospheric turbulence encounter will be the further study task in the future. The present con-
cept is an innovation to improve aviation safety and operational efficiency for the airlines. It is expected
to provide a valuable lecture for international training courses for the IATA – Loss of Control In-flight
(LOC-I) program after this paper is published.
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