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Abstract
Artificial intelligence (AI) is revolutionizing the way firms pursue technological diversification (TD), yet
its distinct effects on related and unrelated diversification remain insufficiently explored. Based on the
knowledge-based view, this study examines the distinct effects of AI on related and unrelated TD to eluci-
date AI’s specific role in facilitating both the optimization of existing knowledge and the exploration of new
domains. Using a multi-period difference-in-differences model and panel data from China’s listed manu-
facturing firms (2013–2022), our empirical analysis demonstrates that AI significantly promotes firm TD,
particularly in unrelated TD. Additionally, we identify that core-technology competence strengthens the
positive effect of AI on unrelated TD, while knowledge stocks weaken it. These results contribute to the lit-
erature on TD by underscoring the role of AI. Practically, the study offers actionable insights for managers
to harness AI in balancing exploration and exploitation within their TD strategies.

摘要
人工智能正在彻底改变企业追求技术多元化的方式,然而其对相关和非相关多元化的独特影响尚未
得到充分探索。基于知识基础观, 本研究考察了人工智能对相关和非相关技术多元化的独特影响,
以阐明人工智能在促进现有知识优化和新领域探索方面的具体作用。通过使用多期双重差分模型
和中国上市制造企业(2013 - 2022年)的面板数据, 我们的实证分析表明, 人工智能显著促进了企业
技术多元化, 特别是在非相关技术多元化方面。此外, 我们发现核心技术能力加强了人工智能对非
相关技术多元化的积极影响, 而知识储备则削弱了这种影响。这些结果通过强调人工智能的作用,
为技术多元化的文献做出了贡献。实际上,该研究为管理者在其技术多元化战略中利用人工智能平
衡探索和开发提供了可行的见解。
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Introduction
In recent decades, we have witnessed the remarkable evolution and rapid iteration
within the realm of artificial intelligence (AI). This progress, characterized by advance-
ments in data collection, optimization, and breakthroughs in novel algorithms (Jarrahi,
Askay, Eshraghi, & Smith, 2023; Townsend, Hunt, Rady, Manocha, & Jin, 2024), has not
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only enhanced convenience and spurred innovation but also significantly boosted prof-
itability (Brem, Giones, & Werle, 2023; Füller, Hutter, Wahl, Bilgram, & Tekic, 2022;
Raisch & Fomina, 2024). Consequently, it has also fueled the extensive adoption of AI by
firms seeking to explore new frontiers and drive further innovation. Take, for instance, Midea, a
Chinese private firm with over two decades of history, which has successfully transitioned from
a domestic appliance manufacturer to a global technology powerhouse within the past decade by
leveraging AI technologies. Its expanded technological landscape now includes natural language
processing (NLP)-powered smart home interaction systems, computer vision-enabled industrial
inspection robots, and deep learning-optimized medical imaging diagnostics. This case exemplifies
the potential of AI to enhance firm technological diversification (TD).

TD, defined as the breadth of technological domains a firm spans (Choi & Lee, 2022), is a piv-
otal strategy for firms to gain a competitive edge and establish a dominant market position (Ceipek,
Hautz, Mayer, & Matzler, 2019; Choi & Lee, 2021). It not only enhances a firm’s average produc-
tivity but also serves to mitigate risks associated with technology investment (Belderbos, Leten, &
Suzuki, 2023; Garcia-Vega, 2006). To better understand the nuances of TD, scholars have made a
distinction between related technological diversification (RTD) and unrelated technological diver-
sification (UTD). RTD refers to diversification within adjacent technological domains, while UTD
involves broad diversification across distant technological domains (Choi & Lee, 2022; Kim, Lim, &
Park, 2009). Although TD is widely recognized as a critical strategy for firms to achieve competi-
tive advantage, the processes underlying RTD and UTD differ significantly. The distinction between
RTD and UTD reflects a fundamental strategic dilemma: exploiting existing competencies versus
exploring new domains. RTD enables firms to incrementally improve and leverage existing knowl-
edge (exploitation), whereas UTD involves venturing into unfamiliar territories with higher risks
but the potential for breakthrough innovation (exploration). These distinctions are particularly rel-
evant in the context of AI, which functions both as a tool for exploiting existing knowledge and
as an enabler for exploring new domains (Grimes, von Krogh, Feuerriegel, Rink, & Gruber, 2023;
Haefner, Wincent, Parida, & Gassmann, 2021; Hutchinson, 2021). By formalizing tacit knowledge
and identifying cross-domain synergies, AI uniquely addresses the challenges of knowledge distance
and integration barriers. Consequently, AI disrupts traditional exploration costs and risks, enabling
firms to pursue UTD more strategically while maintaining RTD efforts (Jarrahi, Askay, Eshraghi, &
Smith, 2023; Raisch & Fomina, 2024). Understanding this dual role of AI is essential for firms seeking
to balance stability in existing domains with innovation in new ones.

Previous studies have identified several factors that contribute to a firm’s TD, including resource
utilization (Ceccagnoli, Lee, &Walsh, 2024;Wang&Xiao, 2017), the diversity of firm innovation net-
works’ partners, regional diversity (Zhang & Tang, 2018), innovation-oriented strategy formulation
(Tang, Liu, &Xiao, 2023), and internal basic research (Ceccagnoli et al., 2024; Gupta, 1990). However,
the inadequacy lies in the fact that these approaches do not inherently mitigate the complexities
involved in capturing and integrating disparate knowledge. It overlooks the need for sophisticated
mechanisms to overcome the challenges of operational barriers, such as decoding and integrating,
which are posed by knowledge distance (Miller, 2006), which is defined as the difference between
the external knowledge a firm acquires and its internal knowledge base (Zhu, Yang, Zhang, & Wang.,
2024). However, the role of AI in TD remains unclear in existing research. Midea’s strategic diversi-
fication provides a compelling example of how AI can influence the choice between RTD and UTD.
Initially focused onhome appliances,Midea usedAI to develop intelligent productswith voice control
and user habit learning, a clear case of related diversification within its traditional domain. However,
when the firm recognized the limitations of millimeter wave radar technology – characterized by
market homogeneity and low commercial value – it leveraged AI to explore new opportunities in
unrelated fields. Specifically, AI tools were used to analyze market trends and identify medical imag-
ing as a high-growth area. Midea built on its existing expertise in imaging technologies but extended
into the medical domain by developing a smart imaging platform driven by AI. This shift illustrates
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how AI can help firms cross knowledge distance by identifying synergies between existing capabili-
ties and new technological fields, enabling informed decisions about diversification. Thus, AI served
not only as a technical enabler but also as a strategic tool for navigating diversification choices.

Some scholars argue that AI technologies such as machine learning and knowledge graphs facil-
itate feature extraction and similarity calculation (Brem et al., 2023), which empowers firms to
construct a proprietary knowledge base and foster RTD. This approach yields benefits such as learn-
ing, knowledge transfer, and accumulation (Chen, Shih, & Chang, 2012). Conversely, an alternative
view holds that AI transcends boundaries, decoding and weakening knowledge silos across various
technologies (Tian, Zhao, Yunfang, & Wang, 2023), enabling firms to explore novel technological
domains and promoting UTD (Lou & Wu, 2021). Notably, UTD safeguards technical commonality
while reducing innovation uncertainty and enhancing strategic flexibility (Chen et al., 2012; Chiu,
Lai, Liaw, & Lee, 2009). Despite these insights, the broader impact of AI on overall TD remains an
area ripe for exploration, particularly the nuanced differences between RTD and UTD, which remain
to be explored and studied.

Based on the knowledge-based view (KBV), this study analyzes the relationship between AI and
firmTD, including its two subtypes: RTD andUTD. Empirical testing utilizes panel data fromChina’s
publicly listed manufacturing firms over the decade from 2013 to 2022, employing a multi-period
difference-in-differences (DID) model. Additionally, the study explores the moderating effects of
core-technology competence and knowledge stocks.

The main contributions of this study are as follows: First, drawing on the KBV, this work explores
the impact of AI on firm TD and finds that AI positively influences the level of firm TD, which not
only enriches the academic research around AI’s facilitation of diverse knowledge acquisition and
integration in firms (Grimes et al., 2023; Hutchinson, 2021; Kakatkar, Bilgram, & Füller, 2020), but
also supplements the antecedents of TD (Breschi, Lissoni, & Malerba, 2003; Ceccagnoli et al., 2024;
Granstrand, Bohlin, Oskarsson, & Sjöberg, 2007; Tang et al., 2023). Second, to further explore the het-
erogeneous effect of AI in two subtypes of TD, we consider the different characteristics of explicit and
tacit knowledge, and our findings reveal that AI significantly promotes UTD rather than RTD. This
discovery underscores the ability of AI to identify and formalize tacit knowledge (Jang, Kim, & Yoon,
2023; McKinney et al., 2020; Yazici, Beyca, Gurcan, Zaim, Delen, & Zaim, 2020), which broadens a
firm’s technological scope in unrelated domains and highlights the practical utility of AI within firms
(Babina, Fedyk, He, & Hodson, 2024; Lanzolla, Pesce, & Tucci, 2020; Li, Xu, Zheng, Han, & Zeng,
2023). Third, we focus our attention on the potential conditioning role of core-technology compe-
tence and knowledge stocks. Specifically, core-technology competence, a capacity for combining and
architecting diverse knowledge (Henderson & Cockburn, 1994), enhances the relationship between
AI adoption and TD, particularly in unrelated domains. Conversely, knowledge stocks, by reinforcing
a focus on specialized knowledge and perpetuating learning inertia (Kang, Baek, & Lee, 2019), neg-
atively moderate the AI-TD connection, notably for unrelated domains. These findings augment the
existing literature onAI’s strategic implications for firms under distinct conditions (Igna &Venturini,
2023; Lou & Wu, 2021).

The article is structured as follows: Section 2 carries on the theoretical analysis and research
hypotheses; Section 3 introduces the data, variables, and model design; Section 4 presents empiri-
cal results, robustness tests, the moderating effects of core-technology competence and knowledge
stocks, and their heterogeneous impact; and Section 5 summarizes the full text and offers pertinent
recommendations.

Theory and Hypotheses
Technological Diversification
Early firm-level research framed TD as a matter of what a firm knows (Granstrand & Sjölander,
1990), reflecting the diversity and breadth of firm technical capabilities (Ceipek et al., 2019).
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Subsequently, TD has been categorized into RTD and UTD based on the degree of commonal-
ity between technological domains. RTD involves diversification within or between narrow tech-
nological domains, rooted in the same fundamental knowledge and sharing common scientific
principles. In contrast, UTD spans broad TD across distant technological domains (Kim et al.,
2009). TD plays a pivotal role in enhancing firm financial and innovation performance, form-
ing the cornerstone of its competitive advantage (Ceipek et al., 2019; Lee, Huang, & Chang,
2017). Due to its advantages, scholars have been deeply engaged in uncovering the antecedents
of TD.

The firm’s selection between deepening or narrowing the technology trajectory is signifi-
cantly influenced by external communication channels (Estades & Ramani, 1998). Concurrently,
internal resources play a crucial role (Lai & Weng, 2014). It has been proved that inventor
collaboration networks broaden a firm’s technological horizons through recombining innova-
tive production factors (Li, Feng, Cao, & Shen, 2020). To capitalize on the advantages of their
network positioning, firms must possess substantial internal resources (Lai, 2015). Firms can
enhance external technology acquisition capabilities to boost their resource pools (Granstrand
et al.., 2007). Simultaneously, effective utilization of unabsorbed idle resources can facilitate TD
(Lai & Weng, 2014). Amidst these factors, scholars also highlight the paramount importance
of knowledge synergy in driving TD. The coherence of a firm’s internal knowledge structure
(Breschi et al., 2003) coupled with proficient knowledge-sharing mechanisms (Tang et al., 2023)
is essential in optimizing knowledge integration and restructuring processes, which, in turn,
affects TD.

In conclusion, TD has substantial strategic and practical significance for firms. Scholars have
extensively investigated its determinants, including internal and external networks (Estades &
Ramani, 1998; Li et al., 2020), technology acquisition capabilities (Granstrand et al., 2007), knowledge
base characteristics (Tang et al., 2023), and resource utilization (Gupta, 1990).While prior approaches
to enhancing TD have been valuable, they fall short in providing comprehensive solutions to bridge
the knowledge distance. Concurrently, conventional technologies are constrained by the physical lim-
itation of recoding and reinterpreting various technologies (Brem et al., 2023). However, AI emerges
as a transformative force in the new generation of technological revolutions (Babina et al., 2024; Igna
& Venturini, 2023; Townsend et al., 2024). AI offers the potential to decode and share various types
of data (Brem et al., 2023), which may have unforeseen implications on the established technology
strategic direction of the firm and its practical utility (Brem et al., 2023; Lou & Wu, 2021; Muhlroth
& Grottke, 2022). This emerging landscape provides a novel research direction for further advancing
firm TD.

In addition, as firms strive for higher levels of TD, they inevitably encounter elevated coordina-
tion and integration costs (Lee et al., 2017). During this phase, the firm’s core-technology competence
and knowledge stocks may play a regulatory role in the relationship between AI and firm TD. Core-
technology competence not only signifies proficiency in applying existing skills but also encompasses
the capacity to assimilate new technologies and foster novel knowledge development (Henderson &
Cockburn, 1994; Leonard-Barton, 1992). Promoting TD necessitates the effective management of
diverse knowledge. Core-technology competence enhances a firm’s ability to absorb diverse knowl-
edge and mitigate the complexities associated with managing multi-technology portfolios (Choi &
Lee, 2021). Meanwhile, knowledge stocks reflect the knowledge characteristics of the firm. Deep
knowledge stocks often signify technical specialization (Teece, Pisano, & Shuen, 1997), whereas
achieving TD requires firms to span multiple technological domains. Technical specialization results
in learning inertia and path dependence, which, in turn, heightens the difficulty of knowledge
acquisition and recombination (Kang et al., 2019).

Accordingly, we propose a moderating effect model to reveal the influence and boundary condi-
tions of AI on firm TD, as shown in Fig. 1.
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Figure 1. Research model

AI and TD
AI is a technique based on the continuous processing and analysis of multiple data sources to
develop new products and services or generate more solutions (Hutchinson, 2021). AI exerts a
profound impact on the training of skilled talents within firms (Apell & Eriksson, 2021), organi-
zational structures (Benassi, Grinza, Rentocchini, & Rondi, 2022), and innovation strategies (Jarrahi
et al., 2023). In these contexts, AI extends, complements, and potentially supersedes human capa-
bilities, thereby enabling effective and systematic innovation development and facilitation, revealing
promising opportunities – a process also known as AI-driven innovation. The incorporation of AI-
driven innovationmanagement may herald the seventh paradigm of innovationmanagement (Füller
et al., 2022). The adoption of AI by firms can enhance decision-making and achieve higher levels
of innovation (Mercier-Laurent, 2020; Yablonsky, 2020). Simultaneously, TD remains a vital strategy
for achieving long-term technological progress within organizations (van Rijnsoever, van den Berg,
Koch,&Hekkert, 2015). Consequently, further research is required to elucidateAI’s role in facilitating
cross-domain knowledge acquisition and integration (Grimes et al., 2023).

According to the KBV, firms can cultivate diverse knowledge bases through knowledge accumu-
lation, diffusion, and recombination of both old and new knowledge (Ceipek et al., 2019; Grant,
1996). Among these processes, knowledge recombination stands out as a critical mechanism. It
involves firms reshaping internally generated and externally acquired knowledge elements in novel
ways, thereby facilitating the discovery of fresh technological opportunities (Zahra & George, 2002).
Therefore, firm TD encompasses two essential processes. First, firms effectively acquire diverse
knowledge from external sources. Second, they recombine existing and newly acquired knowledge
(Kogut & Zander, 1992; Nag & Gioia, 2012). The impact of AI on firm TD manifests primarily in the
following ways.

First, in external knowledge acquisition, AI, particularly through machine learning approaches,
offers cost advantages and untapped potential in information collection and processing (Haefner et
al., 2021). Not only can AI swiftly gather and organize information from consumers, suppliers, and
competitors (Haefner et al., 2021), but it also accelerates the process of value extraction from complex,
multi-sourced data (Kakatkar et al., 2020). Alibaba, the world’s largest online commerce platform,
exemplifies how AI drives TD within the firm. Notably, its expansion into autonomous driving and
medical imaging stems fromAI’s capacity to reconfigure knowledge absorption processes. Since 2015,
AI has empowered Alibaba to decodemarket demands for intelligent connected vehicles and identify
autonomous driving opportunities (Nylund, Ferras-Hernandez, & Brem, 2018). The implementa-
tion of multimodal learning architecture allows systematic processing of unstructured road-testing
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videos and vehicle malfunction reports, facilitating domain-specific expertise acquisition. In medi-
cal imaging, where conventional analytics rely on statistical pattern recognition, AI achieves superior
precision in automated anomaly detection (e.g., tumor localization in CT scans) through advanced
feature extraction (Babina et al., 2024; Hussain et al., 2021). This capability enables Alibaba to derive
clinically actionable insights frommedical images, thereby accessing previously inaccessible technical
domains (Cockburn, Henderson, & Stern, 2019). Therefore, AI enriches a firm’s existing knowledge
base by expanding the search and efficient processing of external information from various domains,
transforming it into absorbed knowledge to explore new techniques.

Second, in terms of knowledge recombination, AI, leveraging neural networks, calculates the cor-
relations, characteristics, and similarities among existing knowledge elements (Brem et al., 2023).
It can identify associations between technologies by learning from vast amounts of patent data
and review reports, which help firms discover potential novel technologies (Jang et al., 2023; Lu
et al., 2020; Zhang et al., 2016). The clustering and grouping results serve as the foundation for
firms to further explore cross-fertilization across different knowledge categories (Kakatkar et al.,
2020). This process enables firms to recombine knowledge effectively, fostering the emergence of
cross-disciplinary technologies (Raisch & Fomina, 2024; Tsouri, Hansen, Hanson, & Steen, 2022).

In conclusion, AI improves the TD of firms by facilitating the acquisition and recombination of
diverse knowledge.

Hypothesis 1 (H1): AI has a positive effect on firm TD.

Separate Effects of AI on UTD and RTD
AI can improve the knowledge acquisition and recombination ability of firms, but the driving effect
generated by AI may be different in the two subtypes of TD. According to the KBV, knowledge can
be categorized into two types: explicit and tacit (Grant, 1996; Spender, 2014). Explicit knowledge is
revealed through communication, enabling it to be acquired by others at amarginal cost approaching
zero. Tacit knowledge, on the other hand, becomes apparent through the application of tacit knowl-
edge and, if not externalized, can only be attained through practice (Duan, Deng, Liu, Yang, Liu, &
Wang, 2022; Grant, 1996; Kucharska & Erickson, 2023). From the perspective of knowledge man-
agement (Alavi & Leidner, 2001; Galunic & Rodan, 1998), we posit that firms entering knowledge
domains closely aligned with existing knowledge demonstrate higher tacit-to-explicit knowledge
conversion efficiency, enabled by accumulated domain-specific experience and organizational learn-
ing mechanisms. As a supplementary learning accelerator, AI not only extracts latent patterns from
unstructured data via NLP architectures (e.g., BERT and GPT) but also engineers explicit knowledge
by formalizing tacit associations (Liebowitz, 2001;Ma& Fan, 2024; Zaoui Seghroucheni, Lazaar, &Al
Achhab, 2025). For example, high-tech firms leverage AI’s pattern recognition to extract radiologists’
experiential intuition in mammography interpretation (Ebel, Söllner, Leimeister, Crowston, & de
Vreede, 2021; McKinney et al., 2020). However, if the organizational learning mechanisms are highly
efficient, the residual tacit knowledge available for AI extraction diminishes, thereby differentiating
AI’s roles in UTD and RTD.

In related technological domains, much tacit knowledge has been partially formalized into
explicit forms or internalized through path-dependent learning mechanisms, thereby diminishing
the amount of remaining tacit knowledge readily available for AI to extract. Specifically, firms have
developed mature organizational learning mechanisms, such as formalized processes, procedural
routines, and IT infrastructures (Kucharska& Erickson, 2023), facilitating the conversion of tacit into
explicit knowledge. The residual tacit knowledge is predominantly embedded in highly contextual
practices, like emergent clinical decision-making or specific production line adjustments, charac-
terized by high specificity and discreteness, thus constraining AI extraction. Moreover, much of the
new tacit knowledge from related technical domains obtained through AI tends to overlap with the
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existing knowledge within firms, leading to increased redundancy and suboptimal value creation
(Kretschmer & Symeou, 2024). Consequently, AI’s incremental contribution to RTD advancement is
substantially diluted by the efficiency of path-dependent organizational learning systems.

In contrast, within unrelated technological domains, path-dependent organizational learning
mechanisms are less efficient, leaving much explicit knowledge not acquired and the majority of tacit
knowledge not explicit (Nooteboom, Van Haverbeke & Duysters et al., 2007). Consequently, a rich
reservoir of explicit and tacit knowledge from unrelated technological domains remains accessible
for AI extraction. Before AI adoption, firms encountered dual challenges in knowledge transforma-
tion: (1) the absence of foundational cognitive frameworks for unrelated domains, which hinders the
identification of tacit knowledge (Prusak, 1997), and (2) the lack of practical trial-and-error learning,
which limits the efficiency of tacit-to-explicit knowledge conversion (Prusak, 1997). These limita-
tions constrain the efficiency of path-dependent learning mechanisms in obtaining tacit knowledge
from unrelated domains but also signify substantial potential for AI to extract such knowledge. Given
AI’s higher returns and innovative problem-solving capabilities, firms exhibit greater demand for AI
technologies when new technological opportunities emerge, aiming to pursue diverse technologi-
cal advancements through varied recombination strategies (Babina et al., 2024; Boussioux, Lane,
Zhang, Jacimovic, & Lakhani, 2024; Wu, Hitt, & Lou, 2020). First, firms can leverage eXplainable
AI to analyze technical themes in patent documents from unrelated technological domains (Jang
et al., 2023), thereby quickly gaining explicit knowledge in those areas. Meanwhile, AI technologies
based on feature selection methods can identify and extract critical tacit knowledge (Yazici et al.,
2020), constructing cross-modal knowledge networks for the systematic mining of tacit knowledge.
Second, drawing onNonaka’s SECImodel, AI accelerates the socialization and externalization of tacit
knowledge (Ahamad & Mishra, 2024), facilitating knowledge integration and cross-technological
recombination from unrelated domains (Tsouri et al., 2022; Wu, Lou, & Hitt, 2024). This pro-
motes connections and complementarities among different types of technologies (Brem et al., 2023),
enhancing firms’ adaptability across various technological domains (Grashof & Kopka, 2022).

Therefore, in related technical domains, much of the tacit knowledge can be effectively cap-
tured through path-dependent organizational learningmechanisms, rendering it explicit. Conversely,
in unrelated technical domains, the path-dependent learning mechanisms are inefficient, leaving
a substantial reservoir of tacit knowledge available for AI extraction. This underscores the more
pronounced role of AI in promoting firm UTD.

Hypothesis 1a: (H1a) AI has a positive effect on firm UTD.

Hypothesis 1b (H1b): AI does not have a positive effect on firm RTD.

Moderation Effect
Themoderating effect of core-technology competence
Core-technology competence shows the importance of performing R&D outside the current tech-
nical domain for firms (Choi & Lee, 2021). The core-technology competence of firms includes
‘combination capabilities’ and ‘architecture capabilities’ (Henderson & Cockburn, 1994). The for-
mer pertains to the mastery and practical application of existing technologies, enabling firms to
address commonly related challenges. The latter refers to the absorption, comprehension, and inno-
vative application of new technologies, fostering the development of new knowledge (Grant, 1996;
Henderson & Cockburn, 1994). This multifaceted capability equips firms to cope with new technolo-
gies while maintaining existing skills (Kim, Lee, & Cho, 2016).

First, firms with strong core-technology competence have established a solid R&D foundation
and are adept at leveraging their existing technological expertise to create novel combinations of
technologies, which means they can more effectively absorb knowledge from multiple domains
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obtained through AI (Henderson & Cockburn, 1994). Simultaneously, these firms often attract tal-
ent with high-caliber R&D management skills (Leonard-Barton, 1992), who excel in identifying and
comprehending diverse technical knowledge that can be integrated into their existing technological
frameworks. Empowered by AI, they possess the foresight to facilitate the fusion of foundational and
cutting-edge technologies, promoting profound restructuring within innovation systems (Liu & Ali,
2022), thereby enhancing the efficiency of acquiring and recombining various types of knowledge.
This expansion of knowledge boundaries significantly contributes to TD.

Second, RTD, focusing on the extension of existing related technological domains, necessitates
the efficient restructuring of explicit knowledge. Firms with high core-technology competence are
adept at systematically capturing and structuring explicit knowledge through their current technolo-
gies, integrating it into their firm technology management systems (Grant, 1996), which not only
increases the internal diversity of related technologies but also accelerates the role of AI in recombin-
ing explicit knowledge, thereby fostering RTD. In contrast, UTD emphasizes the acquisition of tacit
knowledge and the recombination of both tacit and explicit knowledge. Firms with less advanced
core-technology competence struggle to identify and manage diversified knowledge in remote and
unrelated domains, which are typically characterized by higher uncertainty (Kim et al., 2016). Their
architectural capabilities come into play inmore innovatively applying new technologies to attain and
manage new knowledge, augmenting AI’s effectiveness in unrelated technological domains (Grant,
1996; Henderson & Cockburn, 1994). Furthermore, when a firm endeavors to broaden its technolog-
ical footprint, it inevitably faces the increasing complexity and heightened coordination demands of
its technology portfolio (Lee et al., 2017). Firms with superior core-technology competence leverage
their combinatorial capabilities to harmonize and integrate disparate knowledge categories (Choi &
Lee, 2021).

Hypothesis 2 (H2): Core-technology competence positivelymoderates the relationship betweenAI and
firm TD.

Hypothesis 2a (H2a): Core-technology competence positively moderates the relationship between AI
and firm UTD.

Hypothesis 2b (H2b): Core-technology competence positively moderates the relationship between AI
and firm RTD.

Themoderating effect of knowledge stocks
Knowledge stocks are the set of explicit knowledge and tacit knowledge that firms accumulate over
time (Teece et al., 1997). According to the KBV, knowledge stock represents a strategic asset accumu-
lated over the long term by a firm. To develop a diversified knowledge base, firms need to consider the
influence of existing knowledge characteristics (Grant, 1996). While long-term knowledge accumu-
lation implies that the firm is less susceptible to being overtaken by short-term rivals, it also signifies a
deepening of experience within specific knowledge domains (Kang et al., 2019). Therefore, we intro-
duce knowledge stocks to examine the boundary issues concerning the relationship between AI and
firm TD, including UTD and RTD.

Deep knowledge stocks often reflect the specialization of knowledge in a certain techni-
cal domain, resulting in higher similarity and a narrower gap between knowledge elements
(Breschi et al., 2003; Chen, Lin, Lin, & Hsiao, 2018). However, improving TD necessitates that firms
possess diverse knowledge and skills to achieve breadth. Paradoxically, the knowledge dependence
and learning inertia stemming from specialization can diminish firms’ motivation to fully harness AI
in acquiring diverse knowledge (Kang et al., 2019). This can stifle creative thinking and innovative
behavior, as the comfort of existing expertise might overshadow the pursuit of novel, diverse insights
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(Kang et al., 2019; Teece et al., 1997). Therefore, deep knowledge stocks will weaken the positive
impact of AI on TD.

Regarding RTD, deep knowledge stocks often lead firms to focus their resources on specific tech-
nological domainswhile potentially neglecting the importance of related domains.However, the gains
of a particular knowledge domain show a decreasing pattern (Klette & Kortum, 2004). Even with
AI, under conditions of high specialization and improper resource allocation, AI’s ability to inno-
vatively recombine related explicit knowledge is constrained (Galunic & Rodan, 1998), resulting in
diminishing returns and thereby inhibiting the promotion ofAI in RTDwithin firms. Simultaneously,
as for UTD, firms need to internalize the tacit knowledge they acquire. The transformation of tacit
knowledge into explicit knowledge is a prevailing trend in knowledge integration within modern
firms (Spender, 2014). However, the incremental new knowledge introduced by AI and the deeply
specialized knowledge from a firm’s internal knowledge base amplify the incompatibility of knowl-
edge structures, making knowledge integrationmore difficult (Capaldo, Lavie, &Messeni Petruzzelli,
2016). Consequently, knowledge stocks negatively influence the relationship between AI and firm
UTD.

Hypothesis 3 (H3): Knowledge stocks negatively moderate the relationship between AI and firm TD.

Hypothesis 3a (H3a): Knowledge stocks negatively moderate the relationship between AI and firm
UTD.

Hypothesis 3b (H3b): Knowledge stocks negatively moderate the relationship between AI and firm
RTD.

Research Design
Sample Selection and Data Source
According toTheGlobal AI Index published by the UK’s Tortoise Media, the United States and China
rank first and second, respectively, in the global AI landscape. While the United States maintains a
clear lead in terms of technological iterations, China, as the world’smanufacturing hub, boasts amore
comprehensive industrial system and a broader category of sectors. This diversity in its industrial
portfolio fosters a wider variety of application scenarios for AI, thereby providing a rich research
context for both UTD and RTD studies in the AI domain.

Therefore, this study selects 2,054manufacturing firms listed on the Shanghai and Shenzhen stock
exchanges from 2013 to 2022 as the sample. Because the annual reports of listed firms are rela-
tively complete, they offer comprehensive financial and patent data. According to the China Artificial
Intelligence Development Report 2020 released by Tsinghua University, AI technologies made break-
through progress in deep learning in 2013. Since then, AI has been broadly applied across a variety
of industries. Therefore, I have chosen 2013 as the starting point for my research. We divide Chinese
manufacturing firms into two categories: the first category is manufacturing firms engaged in AI
research or AI product manufacturing, that is AI developers; the second category is manufacturing
firms that apply typical AI products, technologies, or solutions to their business management pro-
cesses, including R&D, production, marketing, operation, and maintenance (Xie, Ding, Xia, Guo,
Pan, & Wang, 2021). Given the research focus on AI’s impact on firm TD, this study concentrates
on the latter category. Because the former category firms are engaged in AI research and develop-
ment from the beginning to the end, there are more complex mechanisms between AI and firm
TD. Specifically, the following criteria were applied to screen and select data: (1) There are 67 AI-
based manufacturing firms whose main business is the research and development of AI technology
or themanufacture of AI products; (2) firms that have been delisted, suspended, or terminated; (3) ST
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and *ST firms; and (4) firms with serious missing of important data during the survey period. After
excluding the firms under these rules, this article takes the remaining 1,987 manufacturing firms as
research samples.

TheAI data used in this paper aresourced from annual reports publicly disclosed by firms through
content analysis. Additionally, patent data are obtained from the State Intellectual Property Office
of China (CNIPA), while financial data are derived from the China Securities Market Accounting
Research Database (CSMAR). To mitigate the impact of outliers on the results, we winsorize all
continuous variables at the 1% level separately by calendar year in this research (Jäger, Schoefer &
Heining, 2021).

Variable Description
Independent variable: AI
AI has penetrated many industries, yet the measurement of AI has not reached a consensus in the
academic community. Previous studiesmainlymeasureAI based on twoprimary sources: data related
to industrial robots within firms (Wang, Zhou, & Chiao, 2023) and the frequency of AI-related words
in firm annual reports (Li et al., 2023; Wang, Sun, & Xu, 2022; Xie et al., 2021). Nevertheless, the
former approach tends to underestimate the diverse application scenarios of AI in manufacturing
firms, whereas the latter is more comprehensive. Consequently, we argue that the latter approach is
more appropriate for our research. It is noteworthy, however, that previous research employing text
analysis mistakenly includes AI-related vocabulary extracted from the industry overview sections of
the firm’s annual reports, leading to measurement errors. To refine this approach, in this study, we
harness text analysis in conjunctionwith residual analysis to scrutinize the distribution characteristics
of AI-related word frequencies in the annual reports of 1,987 listed manufacturing firms in China,
aiming to ascertain whether these firms have adopted AI and identify the initial year of AI adoption.

First, we establish a dictionary of AI-related terms based on previous research. Wang and schol-
ars utilized a set of AI-related terms in the China Artificial Intelligence Development Report 2018
released by Tsinghua University as the key dictionary (Wang et al., 2022). Building upon this, our
study leverages the top 20 feature words extracted from AI patents (Miric, Jia, & Huang, 2022)
and considers the cooperation density of AI technology outlined in China’s New Generation of AI
Industry Development Report 2023 released by the China Artificial Intelligence Development Strategy
Research Institute. Consequently, we update the original key dictionary with the following 25 AI
keywords: Internet of Things (IoT), autonomous driving, virtual reality, intelligent recommendation,
blockchain, biometrics, human-computer interaction, knowledge graph, machine translation, pat-
tern recognition, neural networks, image matching, recognition systems, information processing,
big data, cloud computing, intelligent robotics, machine learning, computer vision, space technol-
ogy, learning algorithms, speech recognition, augmented reality, smart chips, and natural language
processing.

Then, this article extracts the above 25 keyword frequencies from the annual reports disclosed by
listed firms to find out all AI-related keyword frequencies. However, it is noteworthy that the market
background section of a firm’s annual reports often references the application of AI within the indus-
try. To mitigate the impact of this section on the final research outcomes, we analyze the regression
residual. Specifically, we regress theAI-relatedword frequency obtained fromfirms against the indus-
try’s average value. Subsequently, we analyze the residuals. If the residuals remain positive for three
consecutive years, we consider the year of the initial positive residual as the time when the firm first
adopted AI. If the residual is positive and negative alternately, or only two consecutive years of pos-
itive, we combine this information with the firm’s word frequency data for the corresponding years.
In such cases, a manual examination of the firm’s annual report is conducted to ascertain whether AI
adoption occurred and to determine the specific timing at which the firm adopts AI.
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According to the above rules, if a firm adopts AI, Treatit is 1, otherwise 0. If AI is adopted in year
t, Postit is 0 before year t and Postit is 1 after (and including) year t. The independent variable,DIDit ,
is the cross term of the dummy variables for Treatit and Postit .

Dependent variable: TD
TD.As defined earlier, TD represents the degree to which a firm’s knowledge is dispersed across vari-
ous technical domains.Meanwhile, the patent IPC classification number is widely used in the research
of patent scope (Huang&Chen, 2010). Patents categorized by technical levels are segmented into sec-
tions (e.g., A), classes (e.g., A01), subclasses (e.g., A01B), and groups (e.g., A01B33/00). Following the
research of Bolli, Seliger, and Woerter (2019; Duan, Deng, et al., 2022), the four-digit IPC subclass is
used to distinguish technological domains. Therefore, this article uses the entropy index method to
measure firm TD (Aldieri, Makkonen, & Paolo Vinci, 2020; Carnabuci & Operti, 2013):

Technological diversification (TD) =
n

∑
j=1

Pj × ln( 1

Pj
) (1)

Pj is the share of firms that have filed at least one patent as an inventor in the technological domain

j in the last three years, and ln ( 1

Pj
) is the weight of each four-digit IPC subclass, which is calculated

as the reciprocal natural logarithm of the number of patents as a share. The sum of the shares of
all technology categories is the degree of firm TD. If a firm is only engaged in research in a specific
technology area, the index is 0. And if it specializes in different technology areas, the index is close
to ln(N).

The entropy indexmeasure can be divided into related and unrelated categories, which have higher
consistency in the discriminant and prediction tests. So, it is useful for evaluating the variance within
the group. We utilize the entropy measure to divide TD into RTD and UTD (Liu et al., 2020).

UTD.As defined by Chatterjee and Blocher, UTD represents the degree to which a firm is diversi-
fied in unrelated technology areas, which ismeasured as the entropy of the distribution of patents over
first-level-patent categories (Chatterjee & Blocher, 1992; Chen et al., 2012; Zabala-Iturriagagoitia,
Gómez, & Larracoechea, 2020):

Unrelated technological diversification (UTD) =
n

∑
k=1

Pk × ln( 1

Pk
) (2)

Pk is the share of firms that have filed at least one patent as an inventor in the technological domain
k in the previous three years.

RTD. Because TD is composed of RTD and UTD. TD is the union of UTD and RTD. RTD is
calculated as follows (Chen et al., 2012):

Related technological diversification (RTD) = TD − UTD (3)

Moderators: core-technology competence and knowledge stocks
Core-technology competence. There are two main measures at present. The first is to use the techno-
logical domain with the highest volume of patent applications. However, this method overlooks the
cross-technology patent tendency exhibited by certain firms and fails to account for industry-specific
variations in relative strength among firms. The second approach is to use the revealed technology
advantage (RTA) index. The RTA index is often used to study a firm’s technical depth and technical
advantages in the industry (Choi & Lee, 2021; Kim et al., 2016), which can overcome the shortcom-
ings of the first measure. In year t, the RTA index of firm i in the technological domain j is calculated
as follows:

RTAijt = Pijt/Pit
Pjt/Pt

(4)
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Pijt is the number of patent applications for the firm i in the technological domain j at time t.

Pit is the total number of patent applications by the firm i at time t (Pit =
n

∑
j
Pijt). Pjt is the total

number of patent applications by the entire sample firms in the technological domain j at time t

(Pjt =
n

∑
i
Pijt). Pt is the total number of patent applications by all firms in the technological domain

j at time t (Pt =
n

∑
i

n
∑
j
Pijt).

As seen from the above formula, the RTA index calculates the ratio of the patent share of firm i
in the technological domain j (Pijt/Pit) to the total patent application share of all firms in the tech-
nological domain j (Pjt/Pt), which reflects the comparative advantage of firm i in the technological
domain j in the whole industry. When the RTA index is greater than 1, it indicates that the firm’s level
in the technological domain j is higher than the industry average level; when the RTA index is less
than 1, it indicates that the firm’s level in the technological domain j is lower than the industry level.

Either interpretation indicates that the RTA index represents firm i’s comparative advantage in
technological field j. As the measure of firm-specific core-technology competence, we use the max-
imum value among the RTA indexes (i.e., relative strength) multiplied by the number of patent
applications for the corresponding technological domain (i.e., absolute strength) (Choi & Lee, 2021;
Kim et al., 2016; Patel & Pavitt, 1997). The calculation formula is as follows:

CORETECHit = ln [max {RTAijt ⋅ Pijt}] (5)

Knowledge stocks. Patent stock serves as ametric for quantifying a firm’s knowledge reservoir.This
reservoir encapsulates the innovative accomplishments attained by the firm (Bolívar-Ramos, 2017).
To explore how historical knowledge accumulation moderates the relationship between AI and firm
TD, this article examines the total number of patents granted by firms in the past three years (in
thousands of records) to measure the knowledge stocks by firms (Chenet al., 2018).

PreStoreit =
t−3
∑
t−1

storeit (6)

Control variables
Given that the adoption and implementation of technology within a firm are influenced by multi-
faceted factors, including organizational resources and profitability, this study selects the following
control variables based on prior research (Li et al., 2023; Tian et al., 2023; Yayavaram & Chen, 2014):
(1) Firm age (AGE) – the logarithm of the time interval from the year of firm establishment to the
study year (Kim et al., 2016); (2) Firm growth (TOBINQ) –measured by Tobin’sQ value, which reflects
themarket value of a firm relative to its assets; (3)Firmprofitability (ROA)–measured by the return on
total assets, providing insights into financial performance; (4) Firm quick-freezing ratio (Quickratio)
– the ratio of quick-freezing assets and current liabilities; (5) Firm asset-liability ratio (LEV) – the
ratio of total liabilities and total assets of the firm; (6) Firm R&D intensity (RDratio) – the ratio of
R&D expenditure to total operating income; (7) Influence of major shareholders (Sharehold) – the
shareholding ratio between the first and second largest shareholders; and (8) CEO duality (DUAL)
– a dummy variable, if the chairman and the general manager are the same one, the value is 1, and
otherwise, it is 0.

Variable definitions and summary statistics are presented in Tables 1 and 2, respectively. Table 3
presents the correlation coefficients between all variables. Furthermore, Fig. 2 depicts the adop-
tion rate of AI among Chinese manufacturing firms from 2013 to 2022. Notably, between 2017
and 2019, significant advancements in AI technologies were observed, including the introduc-
tion of deep learning frameworks such as TensorFlow 1.0 and the emergence of edge computing
(Grzybowski, Pawlikowska-Lagod, & Lambert, 2024).These developments have been instrumental in
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Table 1. Variable definitions

Variable Definition

Treat AI dummy: 1 if the firm adopts AI, 0 otherwise

Post AI adoption year dummy: 1 for all years after (and including) the year of AI adoption, 0 otherwise

DID Interactions of treat and post

TD Technological diversification measured by the methods of Aldieri et al. (2020); Carnabuci and
Operti (2013); and Chen et al. (2012)

UTD Unrelated technological diversification measured by the methods of Chen et al. (2012) and
Zabala-Iturriagagoitia et al. (2020)

RTD Related technological diversification measured by the method of Chen et al. (2012)

AGE The logarithm of the elapsed years since the firm’s establishment measured by the method of
Choi and Lee (2022)

ROA Return on Assets

DUAL Management power dummy: 1 if the chairman and the general manager are the same person, 0
otherwise

TOBINQ Firm growth measured by Tobin’s Q

RDratio The ratio of R&D expenses to total revenue

LEV The ratio of total liabilities to total assets

Quickratio The ratio of liquid assets to current liabilities

Sharehold The shareholding ratio of the first- and second-largest shareholders.

CORETECH Core-technology competence measured by the method of Kim et al. (2016)

PreStore Knowledge stocks measured by the method of Chen et al. (2018)

facilitating efficient productionmanagement and real-time decision-making inmanufacturing firms.
Consequently, the period from 2017 to 2019 witnessed a notable increase in the application of AI
within firms’ operations. Moreover, Table 2 reveals a pronounced variation in firm TD, with a stan-
dard deviation of 1.209.This indicates that many firms have considerable scope for TD improvement.
These observations highlight the importance of investigating the potential of AI to bolster TD within
firms.

Model Design
The main purpose of this article is to assess the influence of AI on firm TD and its subtypes, RTD and
UTD. Additionally, we explore the moderating effect of core-technology competence and knowledge
stocks in the process. The DID method can accurately estimate the causal effect of an event on spe-
cial groups based on the time of the event and the presence or absence of individual-specific trends
(Ashenfelter & Card, 1985; Xie et al., 2021). Referring to the relevant research, AI is selected as a
quasi-natural experiment (Li et al., 2023; Tian et al., 2023; Zhou, Luo, Ye, & Tao, 2022). Since the tra-
ditional DID model is only applicable to the simultaneous occurrence of quasi-natural experiments,
we adopt a multi-period DID model to account for varying adoption times across firms. Specifically,
we designate manufacturing firms that have adopted AI as the experimental group, contrasting them
with manufacturing firms that have not adopted AI, serving as the control group.

Baseline model
First, we construct a baseline regression model to explore the impact of AI on firm TD, including
RTD and UTD:

TDit = 𝛼0 + 𝛽0DIDit + Xit + 𝜎t + 𝛾j + 𝛿k + 𝜁i + 𝜀ijt (7)
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Table 2. Summary statistics for variables

Mean SD Min Max

DID 0.297 0.457 0.000 1.000

TD 2.662 1.209 0.000 5.497

UTD 1.393 0.720 0.000 2.942

RTD 1.267 0.721 0.000 3.050

AGE 2.919 0.313 1.609 3.584

ROA 0.045 0.057 −0.224 0.234

DUAL 0.287 0.452 0.000 1.000

TOBINQ 1.995 1.194 0.786 9.797

RDratio 4.146 3.026 0.050 19.630

LEV 0.412 0.182 0.052 0.896

Quickrate 1.780 1.597 0.155 14.614

Sharehold 7.767 11.909 1.001 120.200

PreStore 0.172 0.355 0.001 3.312

CORETECH 6.799 1.256 3.967 10.338

UTDit = 𝛼0 + 𝛽0DIDit + Xit + 𝜎t + 𝛾j + 𝛿k + 𝜁i + 𝜀ijt (8)

RTDit = 𝛼0 + 𝛽0DIDit + Xit + 𝜎t + 𝛾j + 𝛿k + 𝜁i + 𝜀ijt (9)

DIDit = Treatit × Postit (10)

In the model, the subscripts i, t, and j represent the firm, year, and industry, respectively. 𝛼 is an
intercept. 𝜎t represents firm fixed effect. 𝛾j represents the year fixed effect, and 𝛿k represents industry
fixed effects. 𝜁i represents the province fixed effect. And 𝜀ijt is a random error term.The core explana-
tory, DIDit , is the cross term of dummy variables for Treatit and Postit . Its coefficient 𝛽 is the focus
of this paper. A positively significant coefficient indicates that AI promotes TD in firms, whereas a
negatively significant coefficient suggests otherwise.

Moderation model
Through the theoretical analysis in the previous section, we will further discuss themoderating effect
on the relationship between AI and TD, considering the core-technology competence and knowledge
stocks of firms. The specific model settings are as follows:

(1) The moderating effect of core-technology competence:

TDit = 𝛼1 + 𝛽2DIDit + 𝜂1CORETECHit + 𝜂2DIDit × CORETECHit

+ Xit + 𝜎t + 𝛾j + 𝛿k + 𝜁i + 𝜀ijt (11)

To assess the effectiveness of the moderating effect, we focus on the coefficient of DIDit and the
interactive itemsDIDit×CORETECHit , considering both their sign consistency and statistical signifi-
cance. Specifically, if 𝜂2 exhibits statistical significance and alignswith the sign of 𝛽2 (either positive or
negative), it indicates that the core-technology competence of firms reinforces AI’s role in promoting
TD.
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Table 3. Correlation coefficients

1 2 3 4 5 6 7 8 9 10 11 12 13

1. DID 1

2. TD 0.230*** 1

3. UTD 0.206*** 0.839*** 1

4. RTD 0.179*** 0.840*** 0.411*** 1

5. AGE 0.111*** 0.148*** 0.150*** 0.098*** 1

6. ROA −0.024*** −0.022** −0.033*** −0.004 −0.065*** 1

7. DUAL 0.013 −0.081*** −0.085*** −0.051*** −0.097*** 0.065*** 1

8. TOBINQ −0.027** −0.174*** −0.164*** −0.129*** −0.038*** 0.244*** 0.049*** 1

9. RDratio 0.160*** 0.138*** 0.089*** 0.143** −0.043*** −0.022** 0.074*** 0.160*** 1

10. LEV 0.106*** 0.320*** 0.307*** 0.230*** 0.117*** −0.403*** −0.108*** −0.276*** −0.189*** 1

11. Quickratio −0.062*** −0.233*** −0.226*** −0.165*** −0.102*** 0.291*** 0.096*** 0.226*** 0.224*** −0.692*** 1

12. Sharehold −0.043*** −0.006 −0.008 −0.002 0.009 −0.046*** −0.080*** −0.028*** −0.080*** 0.069*** −0.040*** 1

13. CORETECH 0.087*** 0.181*** 0.154*** 0.151*** 0.021** 0.064*** −0.001 −0.008 0.002 0.028*** −0.048*** −0.055*** 1

14. PreStore 0.204*** 0.493*** 0.463*** 0.370*** 0.100*** −0.027*** −0.028*** −0.130*** 0.103*** 0.251*** −0.138*** −0.026*** 0.241***

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Figure 2. AI adoption rate during 2013–2022

(2) The moderating effect of knowledge stocks:

TDit = 𝛼1 + 𝛽2DIDit + 𝜂3PreStoreit + 𝜂4DIDit × PreStoreit + Xit + 𝜎t + 𝛾j + 𝛿k + 𝜁i + 𝜀ijt
(12)

To assess the effectiveness of the moderating effect, we focus on the coefficient of DIDit and the
interactive items DIDit × PreStoreit , considering both their sign consistency and statistical signifi-
cance. Specifically, if 𝜂4 exhibits statistical significance and diverges from the sign of 𝛽2 (particularly
if it is negative), it indicates that the knowledge stocks of firms attenuate the promotional impact of
AI on TD.

Empirical Test and Analysis
The Impact of AI on TD
Since the data in this study are observational rather than experimental, employing the multi-
period DID model for demonstration is prone to the problem of ‘selection bias’ (Zhou et al., 2022).
Specifically, before the firm adopts AI, there is no guarantee that there will be similar individuals
in the control group and the experimental group. Since the research object of this article is Chinese
manufacturing firms, inherent individual differences are inevitable. To mitigate the potential selec-
tivity bias in our empirical results, we use the propensity score matching (PSM) method. Individual
characteristics used for identification include all control variables and the industry to which a firm
belongs.We implement one-to-three nearest-neighbormatching and construct a Logit model to esti-
mate propensity scores (Liet al., 2023). In the matching balance test, the PSM method significantly
reduces the deviation between the treatment firms and the control firms, and no significant difference
is found in themean of covariates between the treatment group and the control group at a significance
level of 5%, suggesting that the matching effect is satisfactory.

This article uses the fixed effects method to examine the relationship between AI and firm TD
by constructing a multi-period DID model. In addition, we apply VIF for testing before regression
to avoid multicollinearity between variables. The experimental results show that the VIF value of
each variable is less than 10, and the highest value across all models and variables was less than 2.26,
indicating that the problem ofmulticollinearity is not significant among the independent and control
variables. Therefore, the variables can be regressed. The results of the baseline regression are reported
in Table 4. Notably, regardless of whether control variables are added, AI significantly promotes firm
TD. AI facilitates large-scale data mining and knowledge recombination, enabling firms to transcend
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Table 4. Impact of AI on TD and its two types

(1) (2) (3) (4) (5) (6)
TD TD UTD UTD RTD RTD

DID 0.083** 0.076** 0.062*** 0.058*** 0.022 0.019
(0.034) (0.034) (0.022) (0.022) (0.025) (0.025)

AGE 0.390* 0.338** 0.048
(0.209) (0.142) (0.143)

ROA 1.023*** 0.465*** 0.572***
(0.245) (0.140) (0.168)

DUAL 0.061* 0.023 0.038*
(0.032) (0.020) (0.023)

TOBINQ −0.012 −0.006 −0.006
(0.011) (0.007) (0.008)

RDratio 0.034*** 0.019*** 0.015***
(0.008) (0.005) (0.005)

LEV 0.670*** 0.371*** 0.305***
(0.135) (0.085) (0.093)

Quickratio −0.003 −0.0005 −0.003
(0.011) (0.007) (0.007)

Sharehold −0.002 −0.001 −0.001
(0.001) (0.001) (0.001)

Constant 2.645*** 1.073* 1.378*** 0.155 1.265*** 0.923**
(0.010) (0.609) (0.007) (0.415) (0.007) (0.419)

Observations 11,175 11,175 11,175 11,175 11,175 11,175

Adjusted R2 0.630 0.633 0.667 0.670 0.413 0.415

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

the constraints of a single technology and expand intomultiple technological domains. Furthermore,
to enhance the robustness of our findings, we control for individual, year, province, and industry fixed
effects. Even after accounting for these factors, the results remain statistically significant at the 5%
level. Consequently, we accept H1.

The Impact of AI on Two Types of TD
To further study the heterogeneous impact of AI on two types of TD, this article categorizes TD
into UTD and RTD. Employing a benchmark regression approach, the empirical results can be seen
in Table 4. In models (3) and (4), regardless of whether the control variables are added or not, AI
can significantly contribute to UTD. Even after controlling for the individual, year, province, and
industry fixed effects, the core explanatory variable DID remains positively significant at the 1%
level. However, when examining the impact of AI on RTD, we find that it does not influence the
diversification patterns within firms. Therefore, H1a and H1b are verified.
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(a) (b)

(c)

Figure 3. Dynamic trend test
Notes: The x-axis represents the adoption year of AI by the firm. The y-axis represents the coefficient value of treatment effect. The vertical
dashed line in the graph represents the 95% confidence interval.

Robustness Test
Dynamic trend test
Theprerequisite for the use ofmulti-periodDID is that the experimental group and the control group
met the parallel trend beforehand, indicating that the two groups showed similar trends in TD before
adopting AI. We conducted a parallel trend test to ensure the validity of the DID model (Wu & Huo,
2023). In (a), (b) and (c) from Fig. 3, we can see that before adopting AI, TD, UTD, and RTDwere not
significant at the 95% confidence interval over the four years, which indicated that the experimental
and control groups showed a consistent trend before adopting AI. Simultaneously, the promoting
effect of AI adoption on firm TD is significant at the 5% level and persists until the third period. Its
influence onUTDwithin firms is significant within the first two years following adoption. In contrast,
the effect on RTD exhibits a notable lag, only becoming significant by the third period, and overall, its
effect on RTD is not significant. Hence, the dynamic trends further substantiate that AI is the driver
of improvements in TD and UTD.

Placebo test
To test the influence of AI on TD and its subtypes, we address the potential influence of random
factors or unobserved variables. Specifically, our objective is to ascertain whether observed changes
indeed result from the adoption of AI by firms. Our core explanatory variable, DID, was randomly
sampled 500 times (Ferrara, Chong & Duryea, 2012).

Figure 4 shows the estimated coefficients and P-value density distribution of core explanatory
variables obtained through random sampling. As seen (a), (b) and (c) from Fig. 4, under the random

https://www.cambridge.org/core/terms. https://doi.org/10.1017/mor.2025.10075
Downloaded from https://www.cambridge.org/core. IP address: 10.1.229.204, on 16 Nov 2025 at 23:43:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/mor.2025.10075
https://www.cambridge.org/core


Management and Organization Review 19

(a) (b)

(c)

Figure 4. Placebo test

sampling of 800 times, the coefficients obey a normal distribution around the zero value. Moreover,
the coefficients are far away from our baseline regression estimate. Therefore, it is proved that the
influence of AI on firm TD and its classification is robust and not accidental.

Change PSMmethod
We replaced thematchingmethod used in the PSM analysis.This approach is intended to ensure that
our primary findings are not influenced by the specific choice of matching technique. Specifically,
we substituted the original nearest neighbor matching with radius matching (Li et al., 2023). This
substitution enables us to verify the consistency and reliability of our results across differentmatching
methods. Table 4 reports the DID results for the sample matched using the radius matching method.

In Table 5, the sample matching method does not change the conclusion of this article. AI sig-
nificantly improves the TD in firms, including UTD. However, the impact of AI on RTD remains
statistically insignificant. Thus, our previous empirical findings are still robust when considering the
sample selectivity bias.

Replace the independent variable
Measuring the adoption of AI technologies crucially involves constructing a lexicon. In our
benchmark regression, we compiled a list of 25 AI-related terms based on previous research
(Li et al., 2023; Miric et al., 2022; Wang & Qiu, 2023). To provide a more comprehensive assess-
ment of AI characteristics and their impact on firms, we employed the AI dictionary constructed
by Yao, Zhang, Guo, and Feng (2024). The construction method for this dictionary was as follows:
First, drawing upon industry reports on AI and the AI vocabulary provided by the World Intellectual
Property Organization, we selected 52 seed words. Subsequently, utilizing theWord2Vecmethod and
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Table 5. PSM regression by radius matching

(7) (8) (9) (10) (11) (12)
TD TD UTD UTD RTD RTD

DID 0.099*** 0.091*** 0.066*** 0.061*** 0.034 0.030
(0.032) (0.032) (0.021) (0.021) (0.023) (0.023)

AGE 0.428** 0.340*** 0.083
(0.198) (0.131) (0.135)

ROA 0.858*** 0.368*** 0.505***
(0.227) (0.131) (0.154)

DUAL 0.050* 0.014 0.037*
(0.030) (0.019) (0.021)

TOBINQ −0.022** −0.012* −0.009
(0.010) (0.007) (0.007)

RDratio 0.031*** 0.017*** 0.015***
(0.008) (0.005) (0.005)

LEV 0.605*** 0.331*** 0.281***
(0.128) (0.079) (0.087)

Quickratio −0.005 −0.0003 −0.005
(0.010) (0.007) (0.007)

Sharehold −0.002 −0.001 −0.001
(0.001) (0.001) (0.001)

Constant 2.632*** 1.018* 1.374*** 0.186 1.257*** 0.840**
(0.010) (0.580) (0.006) (0.385) (0.007) (0.397)

Observations 12,610 12,610 12,610 12,610 12,610 12,610

Adjusted R2 0.629 0.632 0.664 0.667 0.416 0.418

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Skip-gram model, we trained the corpus using text materials from annual reports and patent docu-
ments. Based on the cosine similarity between the seed words and output words, we identified the
10 most semantically similar words for each seed term. Next, we eliminated duplicate words, those
unrelated to AI, and those with excessively low frequency. This process culminated in a final set of 73
words constituting our AI lexicon for this study, which is detailed in the Appendix.

According to this AI dictionary, we use the natural logarithm of AI keywords plus 1 (lAIwords)
as a proxy for AI drawing on the listed firm’s annual report. Regression results are shown in Table 6.
After changing the core explanatory variable, AI remains statistically significant at the 1% level on
TD and UTD, whereas its impact on RTD is insignificant. These results attest to the robustness of our
previous findings.

Replace the dependent variable
The Herfindahl index is commonly used to measure the TD. So we use the Garcia-Vega method to
replace the original measure with the adjusted Herfindahl index (aHHI) (Garcia-Vega, 2006). The
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Table 6. Replace the independent variable

(13) (14) (15)
TD UTD RTD

lAIwords 0.101*** 0.069*** 0.032
(0.029) (0.018) (0.022)

AGE 0.393* 0.342** 0.047
(0.208) (0.141) (0.143)

ROA 1.013*** 0.455*** 0.572***
(0.245) (0.140) (0.169)

DUAL 0.059* 0.022 0.037
(0.032) (0.020) (0.023)

TOBINQ −0.012 −0.006 −0.005
(0.011) (0.007) (0.008)

RDratio 0.034*** 0.019*** 0.015***
(0.008) (0.005) (0.005)

LEV 0.659*** 0.366*** 0.300***
(0.135) (0.085) (0.093)

Quickratio −0.004 −0.001 −0.003
(0.011) (0.007) (0.007)

Sharehold −0.002 −0.001 −0.001
(0.001) (0.001) (0.001)

Constant 1.050* 0.136 0.920**
(0.608) (0.413) (0.420)

Observations 11,160 11,160 11,160

Adjusted R2 0.634 0.670 0.416

Firm FE Yes Yes Yes

Year FE Yes Yes Yes

Industry FE Yes Yes Yes

Province FE Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

calculation formula is as follows:

adjusted diversity = (1 −
n

∑
j=1

(Nij

Ni
)

2
) ( Ni

Ni−1
) (13)

Nij refers to the number of patents authorized by i in the technical domain j, and Ni refers to the
number of all patents authorized by the firm. Similarly, we distinguish patent scope by IPC classifi-
cation number, the four-digit IPC number is used to calculate the whole firm TD. UTD is measured
by the first digit IPC number, and RTD is the difference between TD and UTD. Compared to the
traditional Herfindahl index, the estimate can reflect the true diversification of a firm with a limited
number of patents (Garcia-Vega, 2006). Using this value as the explained variable, benchmark regres-
sion results are shown in Table 7, Models (16–18). Notably, AI contributes to UTD rather than RTD.
These findings underscore the robustness of our previous results.

To more accurately measure RTD in firms, we calculate it by a three-digit IPC number, which
means these patents belong to the same class. The regression result shown in Table 7, Model (19),
indicates that the core independent variable is not statistically significant, which is consistent with
our previous findings.
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Table 7. Replace the dependent variable

(16) (17) (18) (19)
aHHI-TD aHHI-UTD aHHI-RTD RTD_3-digit IPC

DID 0.008* 0.013** −0.005 −0.0056
(0.005) (0.007) (0.006) (0.0042)

AGE 0.034 0.038 −0.007 −0.0412
(0.026) (0.037) (0.034) (0.0256)

ROA 0.023 0.0001 0.022 −0.0446
(0.031) (0.045) (0.042) (0.0296)

DUAL 0.008* 0.010 −0.002 −0.0014
(0.004) (0.006) (0.006) (0.0041)

TOBINQ 0.0001 0.002 −0.002 0.0022
(0.002) (0.002) (0.002) (0.0015)

RDratio 0.002** 0.003** −0.001 −0.0007
(0.001) (0.001) (0.001) (0.0009)

LEV 0.064*** 0.103*** −0.037* −0.0371**
(0.017) (0.024) (0.022) (0.0167)

Quickratio 0.0004 0.003 −0.003 −0.0008
(0.002) (0.002) (0.002) (0.0015)

Sharehold 0.0001 −0.0002 0.0003 −0.0002
(0.0002) (0.0002) (0.0002) (0.0002)

Constant 0.740*** 0.375*** 0.360*** 0.3256***
(0.075) (0.109) (0.100) (0.0747)

Observations 10,950 10,950 10,950 11,175

Adjusted R2 0.424 0.403 0.341 0.2373

Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Province FE Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Change the sample period
Long-term datasets may be subject to influences from various factors, such as economic fluctua-
tions across different periods and changes in the pace of technological advancements, which can
potentially lead to instability in the results. According to the China Artificial Intelligence Development
Report 2020, released by Tsinghua University, China hit a high in AI patent applications in 2018,
indicating an intense focus on AI technology among Chinese firms that increasingly adopted AI in
their operations. This study addresses this issue by shortening the sample period to investigate the
relationship between AI and firm TD during the timeframe of 2018 to 2022, thereby reducing the
potential confounding effects of non-research variables. The regression results, as shown in Table 8,
indicate that the promoting effect of AI on firm TD is statistically significant at the 5% level without
adding control variables. After considering control variables, AI’s impact on UTD is significant at the
5% level. However, its impact on RTD is not statistically significant. Thus, our previous findings are
robust.
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Table 8. Change the sample period: 2018–2022

(20) (21) (22) (23) (24) (25)
TD TD UTD UTD RTD RTD

DID 0.108** 0.096* 0.078*** 0.071** 0.035 0.029
(0.053) (0.053) (0.030) (0.030) (0.041) (0.041)

AGE 0.052 0.326 −0.246
(0.505) (0.306) (0.384)

ROA 0.324 0.072 0.271
(0.310) (0.165) (0.236)

DUAL 0.009 −0.002 0.013
(0.046) (0.028) (0.036)

TOBINQ −0.024 −0.006 −0.018*
(0.015) (0.009) (0.011)

RDratio 0.015 0.011** 0.004
(0.010) (0.005) (0.008)

LEV 0.657*** 0.285** 0.377**
(0.212) (0.113) (0.158)

Quickratio −0.015 −0.006 −0.010
(0.020) (0.011) (0.014)

Sharehold −0.003 −0.001 −0.002
(0.002) (0.001) (0.002)

Constant 2.860*** 2.442 1.491*** 0.372 1.366*** 1.983*
(0.021) (1.519) (0.012) (0.916) (0.016) (1.156)

Observations 6,686 6,686 6,686 6,686 6,686 6,686

Adjusted R2 0.627 0.629 0.704 0.705 0.391 0.391

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Moderation Analysis
Table 9 reports the results of the moderation analysis. We incorporate the moderator , the core
explanatory variable, and their interaction term into the regression model. We then assess the
statistical significance of the interaction term’s coefficient to test the morderation effect.

First, the coefficient of DID × CORETECH is positive, statistically significant, and consistent with
the coefficient of DID, indicating that the core-technology competence positively moderates AI and
TD. Notably, this effect effectively influences UTD rather than RTD. Thus, we accept H2 and H2a,
while rejecting H2b.

Second, the coefficient for the interaction term DID × PreStore is significantly negative in the
relationship of AI and TD, including UTD. This finding suggests that knowledge stocks weaken AI’s
role in promoting UTD within firms. Consequently, we accept H3 and H3a, while rejecting H3b.

Heterogeneity Analysis
To further study the relationship between AI and firm TD, this article conducts a heterogeneity
analysis from three aspects: firm size, region, and firm ownership types.
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Table 9. Regression results of the moderating effect

(26) (27) (28) (29) (30) (31)
TD TD UTD UTD RTD RTD

DID 0.068** 0.090** 0.053** 0.058** 0.015 0.032
(0.029) (0.038) (0.022) (0.024) (0.024) (0.029)

CORETECH 0.071*** 0.020*** 0.051***
(0.011) (0.007) (0.008)

DID × CORETECH 0.032** 0.025** 0.008
(0.016) (0.011) (0.013)

PreStore −0.107 0.138*** −0.239***
(0.069) (0.051) (0.061)

DID × PreStore −0.131** −0.157*** 0.033
(0.066) (0.045) (0.060)

AGE 0.378** 0.537** 0.329** 0.436** 0.044 0.097
(0.165) (0.265) (0.141) (0.172) (0.142) (0.197)

ROA 1.010*** 0.736*** 0.463*** 0.320** 0.561*** 0.435**
(0.200) (0.259) (0.140) (0.145) (0.167) (0.182)

DUAL 0.057** 0.065* 0.021 0.016 0.036 0.048*
(0.028) (0.035) (0.020) (0.022) (0.022) (0.026)

TOBINQ −0.015 −0.011 −0.007 −0.008 −0.007 −0.003
(0.010) (0.011) (0.007) (0.007) (0.008) (0.008)

RDratio 0.034*** 0.032*** 0.019*** 0.019*** 0.015*** 0.013**
(0.006) (0.008) (0.005) (0.005) (0.005) (0.006)

LEV 0.650*** 0.542*** 0.365*** 0.335*** 0.292*** 0.211*
(0.107) (0.153) (0.084) (0.093) (0.092) (0.110)

Quickratio −0.005 −0.015 −0.001 −0.004 −0.004 −0.011
(0.010) (0.014) (0.007) (0.009) (0.007) (0.010)

Sharehold −0.002 −0.003* −0.001 −0.001 −0.001 −0.002**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Constant 1.129* 0.827 0.186 −0.057 0.950** 0.890
(0.484) (0.782) (0.413) (0.507) (0.415) (0.582)

Observations 11,175 9,536 11,175 9,536 11,175 9,536

Adjusted R2 0.637 0.623 0.671 0.671 0.419 0.400

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Firm size is pertinent to a firm’s technological capabilities and financial capacity to invest in emerg-
ing AI technologies (Li et al., 2023).Moreover, geographically, firms located in pilot zones for the new
generation of AI enjoy unique policy incentives, access to advanced facilities, and a concentration of
AI talent (Li et al., 2023). Lastly, firms with differing ownership exhibit variations in their culture,
strategic decisions, and risk appetites (Tian et al., 2023). Consequently, examining these dimensions
of heterogeneity sheds light on the subtle differences in how AI influences TD, including its subtypes,
across firms with distinct profiles.
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Table 10. Heterogeneity regression results of firm size

Small scale Large scale

(32) TD (33) UTD (34) RTD (35) TD (36) UTD (37) RTD

DID 0.098* 0.069** 0.031 0.021 0.015 0.007
(0.053) (0.032) (0.037) (0.040) (0.030) (0.036)

AGE 0.940*** 0.626*** 0.330 −0.221 −0.007 −0.233
(0.345) (0.211) (0.237) (0.238) (0.190) (0.213)

ROA 0.561 0.308 0.253 0.745** 0.142 0.617**
(0.354) (0.201) (0.246) (0.305) (0.193) (0.264)

DUAL 0.028 0.018 0.011 0.070 0.013 0.055
(0.042) (0.027) (0.030) (0.042) (0.028) (0.038)

TOBINQ 0.005 −0.003 0.007 −0.026 −0.007 −0.018
(0.014) (0.008) (0.010) (0.017) (0.013) (0.013)

RDratio 0.028*** 0.012** 0.015** 0.022** 0.016** 0.007
(0.010) (0.006) (0.007) (0.009) (0.006) (0.009)

LEV 0.651*** 0.295** 0.369*** 0.238 0.073 0.162
(0.201) (0.118) (0.131) (0.174) (0.137) (0.166)

Quickratio −0.006 −0.008 0.002 −0.036 −0.015 −0.023
(0.013) (0.008) (0.009) (0.022) (0.013) (0.016)

Sharehold −0.005** −0.003*** −0.002 −0.001 −0.001 −0.0001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Constant −0.884 −0.831 −0.105 3.651*** 1.626*** 2.081***
(0.986) (0.604) (0.681) (0.710) (0.567) (0.632)

Observations 5,419 5,419 5,419 5,584 5,584 5,584

Adjusted R2 0.467 0.585 0.306 0.641 0.662 0.407

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Firm size
To assess whether firm size has an impact on the relationship between AI and TD, we categorize firms
into large firms and small firms according to the median firm size within our sample (Li et al., 2023).
As seen in Table 10, small firms gain more benefits from AI on UTD. It may be because of the agility
of small firms, enabling them to swiftly adapt to market-driven technological shifts. Despite their
relatively limited resources compared to large firms, small firms strategically harness AI to expand
their technological horizons and foster diversification.

Region
To investigate whether the geographic region of a firm matters in the effect of AI, this study con-
ducts a regional heterogeneity test. China’s Ministry of Science and Technology has set up 17
new-generation AI innovation and development pilot areas, including Beijing, Shanghai, Tianjin,
Shenzhen, Hangzhou, Hefei, Deqing County, Chongqing, Chengdu, Xi’an, Jinan, Guangzhou,
Wuhan, Suzhou, Changsha, Zhengzhou, and Shenyang.

As seen fromTable 11, AI has a significant effect on the promotion of firmTD, includingUTD and
RTD, for those in these innovation and development pilot areas. The successful application of AI in
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Table 11. Heterogeneity regression results of region

No AI pilot area AI pilot area

(38) TD (39) UTD (40) RTD (41) TD (42) UTD (43) RTD

DID 0.035 0.050** −0.014 0.145*** 0.070** 0.077**
(0.036) (0.020) (0.027) (0.052) (0.029) (0.039)

AGE 0.120 0.125 −0.009 0.829*** 0.725*** 0.099
(0.206) (0.117) (0.156) (0.282) (0.158) (0.212)

ROA 1.203*** 0.525*** 0.693*** 0.605* 0.296 0.319
(0.242) (0.137) (0.184) (0.360) (0.202) (0.270)

DUAL 0.059* 0.021 0.037 0.071 0.030 0.042
(0.034) (0.019) (0.026) (0.049) (0.028) (0.037)

TOBINQ −0.026** −0.007 −0.019** 0.005 −0.010 0.015
(0.012) (0.007) (0.009) (0.017) (0.009) (0.013)

RDratio 0.029*** 0.020*** 0.009 0.038*** 0.017*** 0.021***
(0.008) (0.004) (0.006) (0.009) (0.005) (0.007)

LEV 0.539*** 0.296*** 0.248** 1.012*** 0.574*** 0.449***
(0.127) (0.072) (0.096) (0.205) (0.115) (0.154)

Quickratio −0.001 −0.002 0.001 −0.012 0.002 −0.014
(0.012) (0.007) (0.009) (0.018) (0.010) (0.014)

Sharehold −0.001 −0.001 −0.0005 −0.003 −0.001 −0.002
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Constant 1.915*** 0.789** 1.130** −0.283 −0.998** 0.721
(0.605) (0.344) (0.459) (0.817) (0.459) (0.613)

Observations 7,764 7,764 7,764 3,411 3,411 3,411

Adjusted R2 0.635 0.669 0.409 0.634 0.676 0.434

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

these regions can be attributed to the favorable policy environment, financial backing, and collabora-
tive resource-sharing among firms. By leveraging cross-technology exchange and application, firms
radiate their technological expertise into unrelated domains while maintaining their competitive
advantages. Notably, even in non-AI pilot areas, AI continues to drive and become more significant
in UTD within firms, which may be because they have to rely on self-exploration to develop areas
that are further away from existing domains, and AI serves as a good tool for that.

Ownership
To investigate whether the ownership of a firmmatters in the effect of AI, we divide the whole sample
into two subsamples: state-owned enterprises (SOEs) and non-state-owned enterprises (non-SOEs).
We conduct regression for these two types of ownership, and the results are shown inTable 12.Wefind
that the promotion effect of AI on firm TD and firm RTD is significant in SOEs, while the promotion
of AI on UTD is significant in non-SOEs. It may be because SOEs have more abundant capital and
policy support, firms’ culture focuses on stable management, and they tend to integrate AI with the
present technology systems to improve RTD. Non-SOEs have a short decision-making chain, an agile
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Table 12. Heterogeneity regression results of ownership

Non-SOEs SOEs

(44) TD (45) UTD (46) RTD (47) TD (48) UTD (49) RTD

DID 0.053 0.064*** −0.010 0.116** 0.039 0.079**
(0.037) (0.021) (0.028) (0.049) (0.028) (0.037)

AGE 0.639*** 0.477*** 0.159 −0.166 −0.182 0.027
(0.198) (0.111) (0.150) (0.332) (0.190) (0.252)

ROA 1.022*** 0.522*** 0.512*** 0.901** 0.327 0.594**
(0.240) (0.135) (0.182) (0.367) (0.211) (0.278)

DUAL 0.037 0.026 0.011 0.106** 0.009 0.096**
(0.034) (0.019) (0.025) (0.050) (0.028) (0.038)

TOBINQ 0.005 0.002 0.004 −0.050*** −0.027*** −0.023*
(0.012) (0.007) (0.009) (0.018) (0.010) (0.014)

RDratio 0.047*** 0.028*** 0.018*** 0.003 −0.005 0.009
(0.007) (0.004) (0.005) (0.011) (0.006) (0.008)

LEV 0.709*** 0.379*** 0.336*** 0.542*** 0.263** 0.287**
(0.134) (0.075) (0.101) (0.185) (0.106) (0.140)

Quickratio 0.001 0.005 −0.004 −0.032 −0.029** −0.003
(0.011) (0.006) (0.008) (0.023) (0.013) (0.018)

Sharehold 0.00001 0.0001 −0.0002 −0.003** −0.001* −0.001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Constant 0.122 −0.399 0.528 3.282*** 2.101*** 1.139
(0.573) (0.322) (0.433) (1.001) (0.574) (0.759)

Observations 7,435 7,435 7,435 3,740 3,740 3,740

Adjusted R2 0.594 0.651 0.378 0.667 0.670 0.454

Firm FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Province FE Yes Yes Yes Yes Yes Yes

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

market response, and a higher willingness to take risks.They tend to use AI to explore new areas, find
new growth points, and promote UTD.

Conclusion
Research Conclusion
The competitiveness and survival of firms increasingly depend on the development of diversified
technological capabilities, which, in turn, are limited by knowledge distance and direction (Miller,
2006). As an emerging technology, AI is reshaping firm landscapes. With the ability to analyze multi-
source data (Kakatkar et al., 2020) and decode various technologies (Brem et al., 2023), AI opens
novel avenues for firms to explore new technological domains. Therefore, based on the KBV, this
paper discusses the impact of AI on firm TD and its two subtypes. Treating firm AI adoption as a
quasi-natural experiment, we employ panel data from China’s listed manufacturing firms spanning
2013 to 2022. Our findings are as follows.

First, by evaluating the direct effect of AI on firm TD, it is found that China’s listed manufacturing
firms adopting AI have significantly improved their TD. We further subdivide TD into RTD and
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UTD, confirming that AI can significantly promote UTD, while the improvement of firm RTD is
significant only for those located in the new generation of AI pilot areas.

Second, the moderating effects of core-technology competence and knowledge stocks are tested
empirically. The results show that core-technology competence positively moderates the relationship
between AI and TD, which is primarily observed in the UTD. Additionally, knowledge stocks weaken
the relationship between AI and UTD.

Third, it further analyzes the heterogeneous effect of AI on firm TD and its subtypes from three
aspects: firm size, ownership types, and region. At the firm level, the results show that AI significantly
facilitatesUTD in small firms and non-SOEs. Also, AI improves TD andRTD in SOEs. At the regional
level, AI plays a more pronounced role in promoting firm TD, including UTD and RTD, in the AI
pilot area.

Theoretical Contribution
This study aims to provide a new understanding of how AI promotes firm TD and its subtypes based
on the KBV, and how core-technology competence and knowledge stocks moderate the relationship
between AI and TD. The study’s key contributions are as follows.

First, this research is grounded in the KBV, elucidating how AI extends the boundaries of knowl-
edge acquisition for firms and facilitates the recombination of new and existing knowledge. This aids
firms in transforming information into diversified technological knowledge that can be assimilated,
thus providing micro-level evidence for the role of AI in enhancing TD within firms. This finding
not only supplements Agrawal et al.’s assertion that ‘AI in knowledge creation is characterized by the
capability to leverage the information one possesses to generate information one did not have before’
(Agrawal, Gans, & Goldfarb, 2017), but also contributes to the literature on the antecedents of TD.
Prior research on the antecedents of TD has predominantly centered on firm resources (Gupta, 1990;
Lai, 2015), network positioning (Estades & Ramani, 1998), knowledge attributes (Tang et al., 2023),
andmerger and acquisition strategies (Granstrand et al., 2007). Despite these contributions, there has
been an oversight regarding the impact of new technology on firms’ exploration of novel technolog-
ical domains (Brem et al., 2023; Muhlroth & Grottke, 2022). By underscoring the role of AI in this
context, we fill this research gap and further apply the KBV within the realm of AI-driven knowledge
management (Grimes et al., 2023; Jarrahi et al., 2023).

Second, we identify the heterogeneous impact of AI onUTD and RTD based on the differing chal-
lenges in acquiring and transferring explicit and tacit knowledge. Due to the accessibility of explicit
knowledge (Grant, 1996), firms can accumulate sufficient expertise within related domains, whereas
the difficulty in identifying and formalizing tacit knowledge leaves more room for optimization in
unrelated technical domains (Duan, Yang, et al., 2022). The capability to acquire new information,
which is already somewhat present in a similar form within the firm, varies with different types of
diversification (Kretschmer& Symeou, 2024).That is one of the reasonswhyAI is a tool for enhancing
UTD, but ineffective in related domains. Simultaneously, AI technologies such as machine learning
enhance the firm’s ability to decipher tacit knowledge fromother domains andmanage different levels
of knowledge, effectively aiding in the exploration of unrelated technical domains (Yazici et al., 2020;
Zhang et al., 2016). This resonates with the findings by Lou and Wu that ‘AI has limitations in incre-
mental drug development but is effectively pronounced for new drug-target pairs’ (Lou & Wu, 2021),
and we extend this to the manufacturing industry. Consequently, this study broadens the research
frontier at the intersection of AI and firm technology management (Hutchinson, 2021; Kakatkar et
al., 2020), aiming to reveal the unique capabilities of AI in UTD in firms.

Finally, we explore the boundary conditions between AI and firm TD. We find that the core-
technology competence of a firm, which represents its ability to integrate and build various forms
of knowledge (Cockburn et al., 2019; Henderson & Cockburn, 1994; Kim et al., 2016), enhances the
relationship betweenAI adoption and firmTD, particularly inUTD. Conversely, knowledge reserves,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/mor.2025.10075
Downloaded from https://www.cambridge.org/core. IP address: 10.1.229.204, on 16 Nov 2025 at 23:43:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/mor.2025.10075
https://www.cambridge.org/core


Management and Organization Review 29

reinforcing a focus on specialized expertise and maintaining a learning inertia (Kang et al., 2019;
Teece et al., 1997), negatively moderate the AI-TD connection, especially in UTD. These findings
deepen our understanding of how AI influences a firm’s strategic choices under certain conditions
(Igna & Venturini, 2023).

Managerial Implications
By framing RTD and UTD within the KBV, this study highlights how AI enables firms to address
the distinct challenges of each strategy. This dual role of AI – enhancing efficiency in related domains
and enabling exploration in unrelated domains – provides new insights intoAI’s strategic implications
for firms seeking to achieve sustainable innovation and competitive advantage. The study offers some
implications for technology diversification-related strategic decision-making and AI practitioners.

This study confirms the significant impact of AI on firm TD, especially in UTD. This underscores
the pivotal role of AI in facilitating diverse knowledge acquisition and recombination, ultimately
bolstering TD. In general, firms pursuing TD strategies should seize the opportunities brought by
emerging technologies, accelerating the adoption of AI, especially small-scale listed firms. Those
technology-focused firms should judiciously align their strategic trajectories with their geographical
context, making well-informed decisions about the adoption of AI. To effectively embed and lever-
age AI, firms must continually strengthen their core-technology competence, foster interdisciplinary
talent, and enhance their capacity to manage and absorb knowledge from unrelated technological
domains. At the same time, although knowledge stocks have a negative moderating effect on AI’s
impact, it does notmean that knowledge stocks are not important. Instead, firms should cultivate flex-
ible and open knowledgemanagement systems to encourage the continuous updating and iteration of
their existing knowledge base. They are supposed to advocate an innovation-oriented organizational
culture that encourages employees to jump out of the path-dependent thinking paradigms. By mit-
igating path dependence and strategically combining existing knowledge with emerging AI, a firm
can expand its technology horizons.

In practice, firmsmust strike a balance betweenUTDandRTDby considering their resource avail-
ability and risk tolerance to determine the optimal diversification strategy. After adopting AI, firms
should prevent an excessive concentration onUTD to the detriment of RTD. First, firms shouldmake
a reasonable resource management prioritization. Assess the firm’s available resources and market
trends to prioritize investment in key technology areas. If resources are feasible, aim to pursue both
RTD and UTD realms, but establish clear priorities. Allocate more resources to enhancing the inter-
nal AI ecosystem for UTD, but ensure that the strategic shift does not weaken the firm’s competence
in existing technologies. Second, firms should manage TD risk promptly. Conduct thorough risk
assessments and formulate risk management plans for both RTD and UTD. Implement pilot projects
to gradually enter new domains while monitoring potential risks in existing technological domains.
Utilize AI algorithms to assess prospective risks and identify the optimal combination of technologies
to minimize overall risk.

Policymakers must proactively adapt to the rapidly evolving AI landscape. Acknowledging AI’s
pivotal role in advancing TD within firms, policymakers should facilitate the seamless integra-
tion of AI into manufacturing firms. Simultaneously, we find that AI significantly promotes both
UTD and RTD within firms located in AI pilot areas. Conversely, firms situated outside AI pilot
areas experience no significant impact on RTD. This divergence likely stems from varying AI matu-
rity levels across regions. To address this, the government can expand AI pilot areas based on
the successful experiences of existing pilot areas. Additionally, special subsidies can be offered to
incentivize firms outside the pilot areas to embrace AI adoption. Such measures would not only cat-
alyze cross-technology exploration but also level the playing field, ensuring broader participation in
the AI-driven technological revolution.
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Limitations and Future Research
This article empirically tests the relationship between AI and firmTD, enriching the existing research
on the antecedents of TD and the utility of AI. But there remains scope for further improvement and
discussion.

First, due to the availability of data, this study focuses on China’s publicly listed manufacturing
firms as the research context. The practical implications of our findings are significant within this
specific domain. Nevertheless, it is essential to acknowledge that listed firms often operate on a large
scale. Consequently, the adoption of AI andTDmay yield different outcomes and boundaries in other
countries, industries, or smaller-scale firms. Factors such as industry structure, geographic market
dynamics, and regulatory frameworks may alter the mechanisms through which AI impacts diver-
sification strategies. Future research should explore these contextual variations to further refine our
understanding of AI’s contributions.

Second, based on the KBV, this article discusses the action mechanism of AI on firm TD from
the perspective of diverse knowledge acquisition and recombination. There may be other mecha-
nisms that exist. Future research could explore this issue from various theoretical lenses, including
the resource-based view, dynamic capability theory, and learning theory.

Third, this study acknowledges the need to explore how firms strike a balance between RTD and
UTD after adopting AI, and identifying the equilibrium and boundary points between UTD and
RTD remains a direction for future research. Meanwhile, further exploration regarding the specific
impact of AI on organizational performance after the promotion of firm TD is necessary. Scholars
are encouraged to delve into the tangible contributions of AI post-implementation, shedding light on
its role in enhancing organizational outcomes.

Finally, given the rapid evolution of AI and its multifaceted application within the firm environ-
ment, there are currently lacking unified standards for measuring the degree of firm adoption of
AI. This study uses word frequency methods and residual analysis to identify possible biases in AI
patterns. However, a more comprehensive understanding necessitates qualitative approaches, such
as case studies, which can illuminate the diverse facets of AI across different technological con-
texts. Meanwhile, distinguishing technological domains based on IPC classification numbers may
introduce some measurement errors. Future research could explore more refined measures to better
address these nuances.
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Appendix:
AI dictionary in English

A–E F–M N–W

AI Chips Face Recognition Natural Language Processing (NLP)

AI Products Feature Detection Neural Networks

Artificial Intelligence (AI) Feature Extraction Pattern Recognition

Artificial Intelligence Chips Fintech Question-Answering System

Augmented Reality (AR) Human-Computer Collaboration Recurrent Neural Networks (RNN)

Autonomous Driving Human-Computer Interaction Reinforcement Learning

Big Data Analytics Human-Machine Dialogue Robo-Advisors

Big Data Management Image Recognition Robotic Process Automation (RPA)

Big Data Marketing Intelligent Agents Smart Agriculture

Big Data Operations Intelligent Computing Smart Banking

Big Data Platforms Intelligent Customer Service Smart Governance

Big Data Processing Intelligent Education Smart Healthcare

Big Data Risk Control Intelligent Elderly Care Smart Homes

Biometric Identification Intelligent Environmental Protection Smart Insurance

Business Intelligence Intelligent Regulation Smart Retail

Cloud Computing Intelligent Search Smart Speaker

Computer Vision Intelligent Sensors Speech Recognition

Convolutional Neural Network (CNN) Intelligent Transportation Speech Synthesis

Data Mining Intelligent Voice Support Vector Machine (SVM)

Deep Learning Internet of Things (IoT) Unmanned Vehicles

Deep Neural Networks Knowledge Graph Virtual Reality (VR)

Distributed Computing Knowledge Representation Voice Interaction

Edge Computing Long Short-TermMemory (LSTM) Voiceprint Recognition

Enhanced Intelligence Machine Learning Wearable Devices

Machine Translation
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