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Abstract. For E ⊂ N, a subset R ⊂ N is E-intersective if for every A ⊂ E having positive
relative density, R ∩ (A − A) �= ∅. We say that R is chromatically E-intersective if for
every finite partition E = ⋃k

i=1 Ei , there exists i such that R ∩ (Ei − Ei) �= ∅. When
E = N, we recover the usual notions of intersectivity and chromatic intersectivity. We
investigate to what extent the known intersectivity results hold in the relative setting
when E = P, the set of primes, or other sparse subsets of N. Among other things, we
prove the following: (1) the set of shifted Chen primes PChen + 1 is both intersective
and P-intersective; (2) there exists an intersective set that is not P-intersective; (3) every
P-intersective set is intersective; (4) there exists a chromatically P-intersective set which is
not intersective (and therefore not P-intersective).
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1. Introduction
1.1. Combinatorial theorems in dense sets of integers and transference to sparse
sets. Let N be the set of positive integers {1, 2, 3, . . .} and for N ∈ N, define
[N] = {1, 2, . . . , N}. If A, E ⊂ N, the upper density of A relative to E is defined as

dE(A) := lim sup
N→∞

|A ∩ E ∩ [N]|
|E ∩ [N]| .

Similarly, the lower density of A relative to E is

dE(A) := lim inf
N→∞

|A ∩ E ∩ [N]|
|E ∩ [N]| .

When the ambient set E is unambiguous from context, we simply say ‘the upper relative
density’ and the ‘the lower relative density’ of A without mentioning E.

Note that dE(A) ≤ dE(A). If equality holds, we denote by dE(A) the common value
and call it the density of A relative to E. If E = N, we omit E and simply write
d(A), d(A), d(A) and call them the upper density, lower density, and density of A,
respectively. We say a set A of integers is dense if d(A) > 0 and sparse if d(A) = 0. More
generally, we say that A is dense relative to E if dE(A) > 0, and that A is sparse relative
to E otherwise.

Dense subsets of N are known to inherit many combinatorial properties of N. For
example, Roth [44] proved that every dense set contains infinitely many three-term
arithmetic progressions. Szemerédi [48] showed such a set contains arbitrarily long
arithmetic progressions. That being said, these properties are not exclusive to dense
sets. For instance, despite being a sparse set, the set of primes P also enjoys the same
properties. In [20], Green devised a transference principle to deduce from Roth’s theorem
that every set which is dense relative to P contains three-term arithmetic progressions. This
transference principle was a precursor to another one which enabled Green and Tao [21]
to prove that a dense subset of primes contains arbitrarily long arithmetic progressions.
Since then, many variants of the transference principle were devised to prove combinatorial
theorems in sparse sets of integers such as the squares [10], the sums of two squares [37],
and various relatively sparse subsets of the primes.

Against this backdrop, the goal of our paper is to investigate whether other combinato-
rial properties of N may be transferred to P and other sparse sets. The properties we will
study are the so-called intersective properties, which we now define.

1.2. Intersectivity. Given A, B ⊂ Z, we define their sumset and difference set to be
A + B := {a + b : a ∈ A, b ∈ B} and A − B := {a − b : a ∈ A, b ∈ B}, respectively.
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Intersective sets for sparse sets of integers 3

Definition 1.1. For an infinite set E ⊂ N, a subset R ⊂ N is said to be E-intersective if for
every A ⊂ E with dE(A) > 0, we have R ∩ (A − A) �= ∅.

Thus, R is E-intersective if every A satisfying dE(A) > 0 contains two distinct elements
differing by an element of R. We will refer to a P-intersective set as prime intersective, and
we will refer to an N-intersective set as intersective.

An intersective set is also called a set of recurrence. This terminology is motivated by
the following connection to dynamical systems: a set R ⊂ N is intersective if and only if
for every measure-preserving system (X, B, μ, T ) and B ∈ B satisfying μ(B) > 0, there
exists r ∈ R such that

μ(B ∩ T −rB) > 0. (1)

(A measure-preserving system is a quadruple (X, B, μ, T ), where (X, B, μ) is a proba-
bility space and T : X → X is a B-measurable map satisfying μ(T −1B) = μ(B) for all
B ∈ B.) One direction of the equivalence is provided by Furstenberg’s correspondence
principle [15, Theorem 1.1]; see [5, Théorème 1] for a proof of the equivalence.

In the late 1970s, Sárközy [46] and Furstenberg [15, 17] proved independently that
{n2 : n ∈ N} is intersective. Furstenberg used ergodic theory, while Sárközy’s proof is
inspired by the original proof of Roth’s theorem [44] that employs the circle method.
Sárközy [47] proved subsequently that {n2 − 1 : n > 1}, P − 1 and P + 1 are also intersec-
tive, confirming conjectures of Erdős. Kamae and Mendès France’s criterion [29] provides
a generalization of Sárközy’s results to arbitrary polynomials of integer coefficients, which
we now state.

THEOREM 1.2. [29] Suppose Q ∈ Z[x] has positive leading coefficient.
(1) The set Q(N) ∩ N is intersective if and only if for every m ∈ N, there is n ∈ Z

such that Q(n) ≡ 0(mod m). If this condition holds, we say Q is an intersective
polynomial.

(2) The set Q(P) ∩ N is intersective if and only if for every m ∈ N, there is n ∈ Z such
that gcd(m, n) = 1 and Q(n) ≡ 0(mod m).

All intersective sets mentioned above are also prime intersective. Indeed, using
Green’s transference principle [20], the fourth author [33] proved that if Q is an
intersective polynomial, then Q(N) is prime intersective. This result is now superseded
by Rice [43], who proved that if Q(N) is not E-intersective, then |E ∩ [N]| ≤
c1(N/(log N)c2 log log log log N), where c1 > 0 is a constant depending on Q and c2 > 0
depends only on the degree of Q. Li and Pan [36] showed that if Q(1) = 0, then Q(P) is
also prime intersective. For the general case (when Q satisfies item (2)), Q(P) is proved to
be prime intersective by Rice [42].

1.3. Shifted Chen primes. Our first result contributes to the previously mentioned pool
of sets that are both intersective and prime intersective. The sets that we study come from
almost twin primes. A prime p is a Chen prime if p + 2 is a product of at most two primes.
Chen [11] proved that the set of Chen primes, denoted by PChen, is infinite. Another type of
almost twin primes is bounded gap primes. For a fixed natural number h, let Pbdd,h be the
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4 P.-Y. Bienvenu et al

set of primes p such that p + h is a prime. The celebrated theorem of Zhang [51] shows
that there exists h ∈ N such that Pbdd,h is infinite.

As previously mentioned, the results of Sárközy [47] and Li–Pan [36] say that P − 1 and
P + 1 are both intersective and prime intersective. Therefore, a natural question is whether
PChen − 1, PChen + 1, Pbdd,h − 1 and Pbdd,h + 1 are intersective (and prime intersective)
for some h ∈ N.

An intersective set must contain a non-zero multiple of every natural number. If
p ∈ Pbdd,h, then p + h ∈ P. Therefore, Pbdd,h − 1 is a subset of P − h − 1 which does
not contain a non-zero multiple of h + 1. Thus, Pbdd,h − 1 cannot be intersective. For a
similar reason, Pbdd,h + 1 is not intersective unless h = 2. This leads to a question: Is
Pbdd,2 + 1 intersective? Even though this question is interesting, it is out of the scope of
our investigation because a positive answer will imply that there are infinitely many twin
primes. The matter is more tractable regarding Chen primes, and we are able to prove the
following theorem.

THEOREM A. PChen + 1 is both intersective and prime intersective.

To prove Theorem A, we use a transference principle developed by the first author,
Shao, and Teräväinen [7]. Due to a local obstruction, we cannot use the same method for
PChen − 1 and so the question as to whether PChen − 1 is intersective is still open.

1.4. Separating intersective sets and prime intersective sets. The similarities in known
examples of intersective sets and prime intersective sets raise the question of the existence
of intersective sets which are not prime intersective. This question was also asked by the
third author in his survey [34].

Question 1.3. [34, Problem 6] Does there exist an intersective set which is not prime
intersective?

In this paper, we give a positive answer to this question in a rather strong way. To explain
our results in detail, we first introduce some important classes of subsets of integers: thick
sets and syndetic sets.

A set S ⊂ Z is thick if S contains arbitrarily long intervals of the form {m, m + 1,
. . . , m + n}. We say S is syndetic if S − F ⊃ Z for some finite set F; equivalently, S
is syndetic if the gaps between consecutive elements of S are bounded. Note that these two
classes of sets are dual to each other in the following sense: given a family X of subsets
of Z, its dual is X∗ = {E ⊂ Z : E ∩ A �= ∅ for all A ∈ X}. When X is upward closed, i.e.
any superset of any member of X is again a member of X, it is easy to see that X∗∗ = X.
Therefore, a set is thick if, and only if, it intersects every syndetic set; and a set is syndetic
if, and only if, it intersects every thick set.

A folklore result says that every thick subset of N is intersective (see [16]). Our next
result says that there are thick sets which are not prime intersective, and in fact, a thick set
can fail very badly to be prime intersective.
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THEOREM B. There exists A ⊂ P such that dP(A) = 1 and A − A is not syndetic.
Consequently, R = N \ (A − A) is a thick set (and so an intersective set) but not a prime
intersective set.

This naturally raises the question of whether P − P itself is syndetic; a theorem of Pintz
[41] implies that it is indeed syndetic.

The main ingredient in the proof of Theorem B is a classical sieve-theoretic bound for
the number πm(x) of primes p smaller than x such that p + m is also a prime. In fact,
the theorem applies not only to the primes but to a broad range of sparse sets that satisfy
similar bounds, for example, the images of nonlinear polynomials with integer coefficients
and the images of those polynomials evaluated at primes. (See Proposition 3.1.)

To state our next result, we need to introduce the notions of piecewise syndetic sets and
thickly syndetic sets. A set S ⊂ Z is piecewise syndetic if S = T ∩ R, where T is a thick set
and R is syndetic. A set S ⊂ Z is thickly syndetic if S intersects every piecewise syndetic
set. Equivalently, S is thickly syndetic if for every N, there is a syndetic set J such that
[N] + J ⊂ S, i.e. S contains syndetically many copies of intervals of arbitrary length. In
particular, a thickly syndetic set is both thick and syndetic. We say that S is thickly syndetic
in N if S = R ∩ N for some thickly syndetic set R.

We do not know if the conclusion of Theorem B can be upgraded to ‘R is thickly
syndetic in N but not prime intersective’. However, this upgrade is possible if we slightly
weaken the hypothesis on the largeness of A.

THEOREM C. For every ε > 0, there is a set A ⊂ P of relative density at least 1 − ε such
that P − A is not piecewise syndetic. In particular, R := Z \ (P − A) is thickly syndetic,
while R ∩ N is not prime intersective.

While the proof of Theorem B uses a quantitative input from number theory regarding
the number of bounded gap primes, the proof of Theorem C uses a softer approach based
on dynamics.

At the cost of replacing ‘relative density’ with ‘upper relative density’, Theorem C can
be extended from P to any set E whose closure in bZ, the Bohr compactification of Z, has
Haar measure zero (see §4 for definition of bZ). This applies to the image of an integer
polynomial {P(n) : n ∈ N} where deg P ≥ 2, the set of sums of two squares {x2 + y2 :
x, y ∈ N}, and the set of integers is represented by a norm form, for example, {x3 + 2y3 +
4z3 − 6xyz : x, y, z ∈ Z}.

It is easy to see that if d(A) > 0, then A − A is syndetic. (Here is a simple proof of this
fact: let k be the largest integer such that there are distinct integers n1 < · · · < nk for which
A + ni are pairwise disjoint. Thus, for any integer n, the shift A + n intersects one of the
shifts A + ni and so n − ni ∈ A − A. It follows that A − A + {n1, . . . , nk} ⊃ Z.) Now if
d(E) > 0 and A ⊂ E satisfies dE(A) > 0, then d(A) > 0 and so A − A is syndetic. As a
result, it is crucial in Theorems B and C that d(P) = 0. Given this fact, a natural question
is whether having zero lower density is all that is needed to satisfy these two theorems.
While we do not know the answer to this question for Theorem C (see Conjecture 7.5),
we show in Proposition 3.2 that the ambient set merely having zero lower density does
not suffice for Theorem B. In fact, we prove something stronger regarding upper Banach
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density. For E ⊂ Z, its upper Banach density is defined by

d∗(E) = lim
N→∞ sup

M∈N
|E ∩ [M , M + N)|

N
.

Note that we always have d∗(E) ≥ d(E) ≥ d(E). Proposition 3.2 below states that there
exists a set E with d∗(E) = 0 such that if dE(A) = 1, then A − A = Z (in particular,
A − A is syndetic).

1.5. Prime intersective sets must be intersective. Theorems B and C say that there exists
an intersective set that is not prime intersective. Interestingly, the converse is false: every
prime intersective set must be intersective. Moreover, the next theorem shows that the same
is true if one replaces P by any infinite subset of N.

THEOREM D. For any infinite E ⊂ N, every E-intersective set is intersective.

Theorem D follows from a more general result regarding sets of multiple recurrence (see
Theorem 5.2). The idea is to use Furstenberg’s correspondence principle [15] to recast the
problem into a question about sets of recurrence. We then use Fatou’s lemma to show that
a set which is not a set of recurrence (for N) cannot be a set of recurrence for E.

1.6. Chromatic intersectivity versus density intersectivity. Additive combinatorics is
often concerned with the contrast between a structure arising from density and a structure
arising from partitions. In our setting, this leads to the following definition.

Definition 1.4. Given E ⊂ N, a set R ⊂ N is said to be chromatically E-intersective if for
every finite partition E = ⋃k

i=1 Ei , there exists i such that R ∩ (Ei − Ei) �= ∅.

Equivalently, R is chromatically E-intersective if for any finite coloring of E, there are
distinct m, n of the same color such that m − n ∈ R.

If E = N, we simply say that R is chromatically intersective. In dynamical systems
language, R is chromatically intersective if and only if for any minimal topological
dynamical system (X, T ) and any non-empty open set U ⊂ X, there exists n ∈ R such
that U ∩ T −nU �= ∅. (A topological dynamical system is a pair (X, T ), where X is a
compact Hausdorff space and T : X → X is a continuous map. Here, (X, T ) is minimal
if for every x ∈ X, the orbit {T nx : n ∈ N} is dense in X.) Due to this characterization, a
chromatically intersective set is also called a set of topological recurrence (in contrast to
measurable recurrence as defined in equation (1)).

In any partition N = ⋃�
i=1 Ai , one of the Ai has positive upper density, and so an

intersective set is always chromatically intersective. Therefore, N, {n2 : n ∈ N}, {n2 − 1 :
n ∈ N}, P − 1, and P + 1 are each chromatically intersective. However, Kříž [30] proved
that there exists a chromatically intersective set which is not intersective.

For a similar reason, for any E ⊂ N, an E-intersective set is chromatically
E-intersective. From Kříž’s example, it is natural to ask whether there exists a
chromatically E-intersective set which is not E-intersective. Our next result confirms
this is the case. In fact, Theorem E below strengthens Kříž’s example by showing that for
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any subset E ⊂ N, there exists a chromatically E-intersective set which is not intersective.
Calling this set R, Theorem D implies that R is not E-intersective and as a result, R is an
example of a chromatically E-intersective set which is not E-intersective.

THEOREM E. For any infinite E ⊂ N, there exists a chromatically E-intersective set which
is not intersective (and thus not E-intersective).

The proof of Theorem E is based on a recent refinement of the third author on Kříž’s
theorem [30]. Using Theorem E, we can find a set R that separates chromatic intersectivity
and density intersectivity of any infinite E. Nevertheless, it is hard to extract from the
construction any combinatorial properties of R. In contrast, in the special case when
E = P, we can take R to be thickly syndetic. Indeed, Theorem C says that there is a thickly
syndetic set R which is not prime intersective; however, our next theorem states that every
thick set is chromatically prime intersective. Therefore, the thickly syndetic set R found in
Theorem C is chromatically prime intersective but not prime intersective.

THEOREM F. For any finite partition P = ⋃k
i=1 Ei , the union

⋃k
i=1(Ei − Ei) is syndetic.

Equivalently, every thick set is chromatically prime intersective.

Piecewise syndeticity is a partition regular property. That is, if k ∈ N and A1, . . . , Ak ⊂
N have the property that

⋃k
i=1 Ai is piecewise syndetic, then one of the Ai is piecewise

syndetic. A proof of this standard fact can be found in [9, Lemma 1] or [17, Theorem
1.24]. Thus, for any partition P = ⋃k

i=1 Ei , there exists i ∈ {1, . . . , k} such that Ei − Ei

is piecewise syndetic. It remains unclear whether there is i such that Ei − Ei is syndetic.
The proof of Theorem F relies on Maynard and Tao’s famous results [38] on the
Hardy–Littlewood prime tuple conjecture. In fact, Theorem F follows from the more
general Theorem 6.3 below which says that for any set E which satisfies some ‘finite-tuple’
property, every thick set is chromatically E-intersective. This applies to a broad range of
sets, such as random sets, various subsets of the primes, and the set of sums of two squares.

A crucial property of P used in Theorem F is that there are infinitely many bounded gap
primes. The situation is different for an ambient set whose gaps tend to infinity.

THEOREM G. If E = {n1 < n2 < · · · } ⊂ N satisfies limi→∞(ni+1 − ni) = ∞, then
there is a partition E = E1 ∪ E2 such that (E1 − E1) ∪ (E2 − E2) is not syndetic. In
particular, there exists a thick set which is not chromatically E-intersective.

Theorem G applies, for instance, to E = {P(n) : n ∈ N}, where P is a polynomial of
degree at least 2 and E = {�n1+ε� : n ∈ N} for any ε > 0.

1.7. Diagrams. Figure 1 is a diagram of relations among thick sets, intersective sets,
prime intersective sets and their chromatic counterparts. The implications we prove are
marked with thick arrows; strike-out arrows mean ‘does not imply’.

Figure 2 displays the relations between intersective sets and E-intersective sets for
arbitrary subset E ⊂ N. Recall that ‘intersective’ is the same as ‘N-intersective’.

1.8. Outline of the paper. Theorems A, B, C, and D are proved in §§2, 3, 4, and 5,
respectively. We prove Theorem E in §6 by verifying that the examples constructed in [24,
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8 P.-Y. Bienvenu et al

FIGURE 1. Relations among thick sets, (chromatically) intersective sets, and (chromatically) prime
intersective sets.

FIGURE 2. Relations between (chromatically) intersective sets and (chromatically) E-intersective sets for
arbitrary E ⊂ N.

Theorem 1.2] are actually chromatically E-intersective. The rest of §6 is devoted to the
proofs of Theorems F and G. Section 7 collects questions suggested by our study. Lastly,
Appendix A supplements Theorem C by providing a list of subsets of N whose closures
have zero Haar measure in bZ.

2. Shifted Chen primes
2.1. Preliminaries. The goal of §2 is to prove Theorem A. First, we recall some
terminology and results from a recent paper by Bienvenu, Shao, and Teräväinen [7].

Let P′
Chen denote the set

{p ∈ P : p + 2 is a prime or a product of two primes p1p2 with p1, p2 ≥ p1/10}.
Note that P′

Chen is a subset of PChen = {p ∈ P : p+2 is a prime or a product of two primes}.
We define the following weighted indicator function of P′

Chen:

θ(n) := (log n)21P′
Chen

(n)1p|n(n+2) �⇒ p≥n1/10 .

Chen’s theorem [11] says ∑
n∈[N]

θ(n) � N .

Here, for two functions f , g : R>0 → R>0, f (N) � g(N) means that there exists a
positive constant C such that f (N) ≥ Cg(N) for all sufficiently large N. Alternatively,
we also use the notation g(N) � f (N) for the same meaning.

For any W ∈ N, the set of Chen primes is heavily biased toward the congruence classes
that are coprime to W. To remove this local obstruction, we use a standard procedure
called the ‘W-trick’. For any w ∈ N, let W = W(w) = ∏

p≤w,p∈P p. For b ∈ Z such that
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(b, W) = 1, define

θW ,b(n) =
(

φ(W)

W

)2

θ(Wn + b). (2)

Since our focus will be on PChen + 1, we will consider only b = −1.
For a function f : S → C on a finite set S, let En∈Sf (n) denote the average

1
|S|

∑
n∈S

f (n).

For a function f : ZN := Z/NZ → C and k ∈ N, the Gowers Uk-norm of f is defined by

‖f ‖Uk(ZN) =
(
Ex∈ZN

Eh∈(ZN)k

∏
ω∈{0,1}k

C|ω|f (x + ω · h)

)1/2k

,

where C means taking complex conjugates, |ω| = ∑
i∈[k] ωi , and ω · h is the dot product

of w and h.
We have the following proposition from [7].

PROPOSITION 2.1. There exists a constant δ > 0 such that the following holds: for any
k ∈ N, ε > 0, sufficiently large N = N(k, ε) and w = w(k, ε), letting W = ∏

p<w,p∈P p,
and θW ,−1 be defined as in (2), we can decompose

θW ,−1 = f1 + f2 on [N]

such that δ ≤ f1 ≤ 2 pointwise and ‖f2‖Uk+1(ZN) ≤ ε.

Proof. This proposition follows from the transference principle stated in [7, Proposition
3.9]. Propositions 4.2 and 5.2 in the same paper show that for large enough w, depending
only on the degree k + 1 and the quality ε of the required uniformity, the function
f = θW ,−1 satisfies the conditions in the hypothesis of [7, Proposition 3.9], and so proves
Theorem 2.1.

2.2. Intersectivity of shifted Chen primes. The fact that PChen + 1 is intersective follows
from a much more general result below, which says that PChen + 1 is a ‘set of multiple
polynomial recurrence for measure-preserving systems of commuting transformations’. In
other words, by Furstenberg’s correspondence principle [15, Theorem 1.1], the intersec-
tivity asserted in Theorem A corresponds to the case � = m = 1 and q1,1(n) = n of the
following proposition.

PROPOSITION 2.2. Let � ∈ N, (X, B, μ) be a probability space and let T1, . . . , T� :
X → X be commuting measure-preserving transformations (i.e. μ(T −1

i B) = μ(B) for
all i ∈ [�] and B ∈ B). Let m ∈ N and qi,j : Z → Z be polynomials with qi,j (0) = 0 for
i ∈ [�] and j ∈ [m]. For any A ∈ B with μ(A) > 0, the set

{
n ∈ N : μ

(
A ∩

( �∏
i=1

T
−qi,1(n)

i A

)
∩ · · · ∩

( �∏
i=1

T
−qi,m(n)

i A

))
> 0

}

has non-empty intersection with PChen + 1.
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Proof. Define

α(n) = μ

(
A ∩

( �∏
i=1

T
−qi,1(n)

i A

)
∩ · · · ∩

( �∏
i=1

T
−qi,m(n)

i A

))
.

By [14, Corollary 4.2] (see also [3, Theorem 3.2]), there is a constant c > 0 depending only
on μ(A), m and the polynomials qi,j such that for all W in N and all sufficiently large N,

En∈[N]α(Wn) ≥ c. (3)

Let δ be the constant found in Theorem 2.1 and let ε > 0 be very small compared with cδ.
By Theorem 2.1, for sufficiently large N = N(k, ε) and w = w(k, ε), we have

En∈[N]θW ,−1(n)α(Wn) = En∈[N]f1(n)α(Wn) + En∈[N]f2(n)α(Wn), (4)

where f1, f2 satisfy the conclusion of Theorem 2.1 with respect to the aforementioned δ

and ε.
Since f1 is bounded below pointwise by δ, equation (3) implies that

En∈[N]f1(n)α(Wn) ≥ cδ. (5)

However, by [14, Lemma 3.5], there exists an integer k that depends only on the maximum
degree of the polynomials qi,j and the integers �, m such that

En∈[N]f2(n)α(Wn) � ‖f2 · 1[N]‖Uk(ZkN ) + oN→∞(1) � ‖f2‖Uk(ZN) + oN→∞(1),

where the term oN→∞(1) is independent of W. Therefore, for sufficiently large N,

En∈[N]f2(n)α(Wn) ≤ ε. (6)

Combining equations (4), (5), and (6), we deduce that for sufficiently large N and w,

En∈[N]θW ,−1(n)α(Wn) � 1,

where the implicit constant depends only on μ(A), �, m, and the qi,j . Thus, there exists
n ∈ N such that α(Wn) > 0 and θW ,−1(n) > 0.

Observe that θW ,−1(n) > 0 implies θ(Wn − 1) > 0, which in turn implies Wn − 1 ∈
PChen. Therefore, the fact that α(Wn) > 0 and θW ,−1(n) > 0 implies Wn ∈ {m ∈ N :
α(m) > 0} ∩ (PChen + 1). In particular, this intersection is non-empty and our theorem
follows.

2.3. Prime-intersectivity of shifted Chen primes. As in the preceding subsection, we
will derive the prime intersectivity of PChen + 1 (the second part of Theorem A) from a
more general result concerning multiple recurrence.

PROPOSITION 2.3. Let A ⊂ P be such that dP(A) > 0. Then, for every k ∈ N, there exists
p ∈ PChen such that

a, a + (p + 1), . . . , a + k(p + 1) ∈ A.

Proof. The idea is similar to the proof of Theorem 2.2. The main difference is that we
will use the Green–Tao theorem [21] on arithmetic progressions in primes instead of the
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uniform Bergelson–Leibman polynomial multiple recurrence theorem ([14, Corollary 4.2],
[3, Theorem 3.2]).

For this part of the proof, w and N will be parameters to be chosen later, with N very
large compared with W = ∏

p<w,p∈P p.
Suppose dP(A) = ρ > 0. For b ∈ [W ] coprime to W, define fW ,b(n) := φ(W)/W log

(Wn + b)1A(Wn + b). Note that

dP(A) = lim sup
N→∞

|A ∩ P ∩ [N]|
|P ∩ [N]| = lim sup

N→∞
En∈[N] log(n)1A(n)

= lim sup
N→∞

E b∈[W ]
(b,W)=1

En∈[N/W ]fW ,b(n),

where the second equality follows from the prime number theorem and the fact that
log n = (1 + O(η)) log N for all n ∈ [N1−η, N], where η tends to 0 sufficiently slowly
with N, e.g. η = (log log N)−1. Thus, there is a b ∈ [W ] coprime to W such that
lim supN→∞ En∈[N]fW ,b(n) ≥ ρ. Define

αW ,N(n) = Ea∈[N]fW ,b(a)fW ,b(a + n) · · · fW ,b(a + kn).

By [21, Theorem 3.5 and Proposition 9.1] (or see p. 524 in that paper), there exists a
positive constant c = c(k, ρ) such that

En∈[N]αW ,N(n) ≥ c − ow,N→∞(1), (7)

where ow,N→∞(1) means a quantity that approaches 0 as w and N approach infinity. Define
θW ,−1 as in equation (2). Let δ be the constant found in Theorem 2.1 and let ε be very small
compared with cδ. In view of Theorem 2.1 and by increasing w and N if necessary, θW ,−1

can be decomposed on [N] as

θW ,−1 = f1 + f2,

where δ ≤ f1 ≤ 2 pointwise and ‖f2‖Uk+1(ZN) ≤ ε. It follows from equation (7) that

En∈[N]f1(n)αW ,N(n) ≥ cδ − ow,N→∞(1). (8)

Now we want to show

En∈[N]f2(n)αW ,N(n) = En∈[N]f2(n)Ea∈[N]

k∏
j=0

fW ,b(a + jn) = Ok(ε) + ow,N→∞(1),

(9)

where Ok(ε) means a quantity bounded by Cε in which C only depends on k. To do
this, we will use the generalized von Neumann theorem (van der Corput lemma) (see
[21, Proposition 5.3], [22, Proposition 7.1], or [7, Proposition 3.8]), which says that if
the integers aj , bj satisfy aibj �= ajbi for all i �= j and if |fj | ≤ ν + 2 for all j, where ν

is a ‘pseudorandom measure’ on [N], then

Em,n∈[N]

k∏
j=0

fj (ajm + bjn) = O
(

inf
0≤j≤k

‖fj‖Uk(ZN)

)
+ ow,N→∞(1),
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where the implicit constant depends only on k, aj , bj . By [21, Theorem 9.1], |fW ,b| is
bounded by a pseudorandom measure ν. It remains to check that |f2| ≤ ν + 2. Since
f2 = θW ,−1 − f1 and 0 ≤ f1 ≤ 2, it suffices to check that 0 ≤ θW ,−1 ≤ ν. This in turn
was shown in [7, Proposition 4.2].

Putting equations (8) and (9) together, we obtain

En∈[N]θW ,−1(n)αW ,N(n) ≥ cδ − Ok(ε) − ow,N→∞(1).

Thus, by choosing ε very small compared with cδ, there exist large w and N such that

En∈[N]θW ,−1(n)αW ,N(n) > 0.

As a result, there exist a, n ∈ [N] such that

Wa − 1, W(a + n) − 1, . . . , W(a + kn) − 1 ∈ A

and Wn ∈ PChen + 1. Thus, Wa − 1, Wa − 1 + Wn, . . . , Wa − 1 + k(Wn) ∈ A, where
Wn ∈ PChen + 1.

Remark 1. In this remark, we explain why the proofs of Propositions 2.2 and 2.3 do not
work for PChen − 1. A main ingredient in these proofs is Theorem 2.1, which in turn uses
[7, Proposition 5.2]. The hypothesis of [7, Proposition 5.2] requires both b and b + 2 to
be coprime to W, where W = ∏

p∈P,p<w p comes from the W-tricked weighted indicator
function of Chen primes θW ,b. (This requirement is due ultimately to the fact that θW ,b

is supported on {n : Wn + b is a Chen prime}.) If we work with PChen + 1, then b = −1
and b + 2 = 1, both of which are coprime to W. However, if we work with PChen − 1, then
b = 1 and so b + 2 = 3, which is not coprime to W. At the moment, we do not know how
to remove this local obstruction.

3. A quantitative approach and Proof of Theorem B
3.1. Proof of Theorem B. For two functions f , g : R>0 → R>0, the expression f (x) =
o(g(x)) means limx→∞ f (x)/g(x) = 0. Theorem B will be a simple consequence of the
following proposition.

PROPOSITION 3.1. Let E ⊂ N be an infinite set and E(x) = |E ∩ [1, x]| its counting
function. Let Em(x) = |{n ∈ E ∩ [1, x] : n + m ∈ E}|. Assume that there is a thick set
T ⊂ N and an increasing bijection f : R>0 → R>0 such that the following hold as x tends
to infinity:
(1) f −1(x) = o(E(x));
(2) max{Em(x) : m ∈ T , m ≤ f (x)} = o(E(x)).
Then, there exists A ⊂ E of relative density 1 such that A − A is not syndetic.

If both conditions are satisfied as x tends to infinity along a common subsequence, then
there exists A ⊂ E of upper relative density 1 such that A − A is not syndetic.

Remark 2. The hypothesis of Proposition 3.1 is cumbersome, but certainly some condition
on Em(x) is necessary. We discuss this issue in §3.2.
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Proof of Proposition 3.1. By definition, the thick set T contains a set of the form
R = ⋃

k∈N Ik , where Ik = N ∩ [g(k) − k, g(k)] and g : R>0 → R>0 is an increasing
bijection. We may choose g to grow as fast as we like, and we will determine a suitable
rate of growth later.

We shall construct a set C ⊂ E of relative density 1 in E such that B = (C + R) ∩ E is
relatively sparse in E. Then, A := C \ B satisfies A ∩ (A+R) ⊂ (C +R) ∩ (E \ B) =∅,
so (A − A) ∩ R = ∅, in particular, A − A is not syndetic.

Observe that for any C ⊂ E, we have

C + R =
⋃

s∈C,k∈N
g(k)≤f (s)

(s + Ik) ∪
⋃

s∈C,k∈N
g(k)>f (s)

(s + Ik).

Now we try to construct C such that
⋃

s∈C,k∈N
g(k)≤f (s)

(s + Ik) does not meet E.

Define

C := {s ∈ E : (s + Ik) ∩ E = ∅ for all k such that g(k) ≤ f (s)}.
Let E′(x) := |(E \ C) ∩ [x]| be the counting function of E \ C. If s ∈ E \ C, then by
definition of C, there exists k ∈ N such that g(k) ≤ f (s) (so k ≤ g−1(f (s)) ) and m ∈
Ik ⊂ T such that s + m ∈ E. Therefore,

E′(x) ≤
∑

k:g(k)≤f (x)

∑
m∈Ik

Em(x)

< g−1(f (x))2 · max{Em(x) : m < f (x), m ∈ T } = o(E(x))

if g grows sufficiently quickly, using hypothesis (2).
Then, (C + R) ∩ E ⊂ ⋃

s∈E,k∈N
g(k)>f (s)

(s + Ik) =: D. We show that this set is sparse.

Observe that if g(k) > f (s), then s < f −1(g(k)) and s + Ik ⊂ [g(k) − k, g(k) +
f −1(g(k))]. Therefore,

D ⊂
⋃
k

[g(k) − k, g(k) + f −1(g(k))].

In particular, D ∩ [1, x] ⊂ ⋃
g(k)<x[g(k) − g−1(x), g(k) + f −1(x)], whose cardinality is

at most

g−1(x) · ((f −1(x) + g−1(x)) = o(E(x))

if g grows sufficiently quickly (in terms of f and E), in view of hypothesis (1).
It follows that the counting function B(x) of B = (C + R) ∩ E satisfies B(x) =

o(E(x)), as desired, and we are done.
If the hypotheses only hold for x in an increasing sequence (xn)n∈N of integers, we

still have E′(xn) = o(E(xn)) and also B(xn) = o(E(xn)) as n tends to infinity, which
concludes the proof.

Proof of Theorem B. To prove Theorem B, it suffices to check the hypotheses of
Proposition 3.1 for the set of primes. In this case, one may take T = N and f : x �→ x2.
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The counting function of the primes, E(x), is asymptotic to x/ log x by the prime number
theorem, so the first hypothesis is satisfied.

By definition, Em(x) is the number of primes p ≤ x such that p + m is prime. We
know, by Selberg’s sieve, that

Em(x) � x

log2 x

∏
p|m

(1 + 1/p),

where the implied constant is absolute; see for instance [26]. Furthermore, denoting the
number of distinct prime factors of m by ω(m) and observing that ω(m) ≤ log2 m and∏

p≤n(1 + 1/p) � log n, we have

∏
p|m

(1 + 1/p) ≤
∏

p≤ω(m)

(1 + 1/p) � log log m.

Thus, for any m ≤ x2, we have Em(x) � (x log log x/log2 x) = o(E(x)), confirming the
second hypothesis.

Proposition 3.1 also applies to E = {P(n) : n ∈ N}, where P ∈ Z[x] with a positive
leading coefficient and d = deg(P ) ≥ 2. In this case, we take T = N and f : x → xd+1.
Since P(x) = o(xd+1), we have f −1(x) = x1/(d+1) = o(E(x)). For m ∈ N, Em(x) �
d(m), where d(m) is the number of divisors of m. Applying the divisor to the bound
d(m) = mo(1), it is easy to see the second hypothesis is true in this case. For the same
reason, we can show that Proposition 3.1 also applies to E = {P(p) : p ∈ P}, where
P ∈ Z[x] having a positive leading coefficient and degree ≥ 2.

3.2. A discussion on Proposition 3.1. Here, we discuss the necessity of certain hypothe-
ses of Proposition 3.1.

As mentioned in the introduction, if d(E) > 0 and A ⊂ E satisfies dE(A) > 0, then
A − A is syndetic. The hypothesis d(E) = 0 is therefore necessary in Proposition 3.1.
However, d(E) = 0 is not sufficient to guarantee the conclusion of Proposition 3.1, as we
shall see. In fact, even d∗(E) = 0 is not sufficient, as we shall see.

First, recall the notation E(x) and Em(x) from Proposition 3.1. If for some m ∈ N and
constant cm > 0 and every x > 0 we have Em(x) ≥ cmE(x), then every A ⊂ E such that
m �∈ A − A must have dE(A) < 1 − cm/2. Indeed, for every pair {n, n + m} ⊂ E, at least
one element of the pair must be outside of A; and any element of E may be in at most two
such pairs. This observation already makes the condition on Em(x) in Proposition 3.1 less
surprising and will be implicitly at the core of the next proposition.

PROPOSITION 3.2. Let E be the set of all positive integers which have the same number of
zeros and ones in their binary expansions; that is,

E =
∞⋃

k=0

{
22k+1 +

∑
i∈I

2i : I ⊂ [0, 2k], |I | = k

}
.

Then, E has the following properties:
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(i) d∗(E) = 0;
(ii) if E′ ⊂ E is such that dE(E′) = 1, then E′ − E′ = Z.

Proof. First we prove property (i). Note that

|E ∩ [1, 22n+2]| =
n∑

k=0

(
2k

k

)
= O(22n/

√
n), (10)

so E has upper density 0.
We will now prove the stronger statement that E has upper Banach density 0. It suffices

to show that as n → ∞, for every u ∈ N, we have |E ∩ [u, u + 2n)| = o(2n). Also, we
may assume that u is divisible by 2n. We consider two cases.

Case 1: u = 0. In this case, the claim follows from the estimate in equation (10).
Case 2: u ≥ 2n. We write

u =
�∑

s=1

2js ,

where n ≤ j1 < · · · < j�. Suppose v ∈ E ∩ [u, u + 2n). By the definition of E,

v = 22k+1 +
k∑

r=1

2ir

for some 0 ≤ i1 < · · · < ik ≤ 2k. Therefore,

v = 22k+1 +
k∑

r=1

2ir =
�∑

s=1

2js + y

for some 0 ≤ y < 2n. We necessarily have 2k + 1 = j� (in particular, k is uniquely
determined in terms of u). Furthermore, ik = j�−1, . . . , ik−�+2 = j1 and these exponents
are also uniquely determined. Hence,

y =
k−�+1∑
r=1

2ir .

Therefore,

|E ∩ [u, u + 2n)| ≤
(

n

k − � + 1

)
= o(2n).

We now proceed to prove property (ii). Let a ∈ N be arbitrary. Suppose a = ∑
i∈A 2i

is the binary representation of a. Then, we have

a =
∑

i∈A+1

2i −
∑
i∈A

2i .

Let |A| = m and � = max A. By equation (10), there exists a constant c�,m > 0 such that
for all n sufficiently large, we have(

2n − � − 1
n − m

)
> c�,m|E ∩ [1, 22n+4]|.
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Since dE(E′) = 1, we have |E′ ∩ [1, x]| ≥ (1 − c�,m/2)|E ∩ [1, x]| for infinitely many
x ∈ N. Let x be any such number and let n be such that 22n+2 < x ≤ 22n+4.

Note that for any subset J ⊂ [� + 2, 2n] with |J | = n − m, we have

a = s1 − s2 =
(

22n+1 +
∑

i∈J∪(A+1)

2i

)
−

(
22n+1 +

∑
i∈J∪A

2i

)

is a difference of two elements s1, s2 ∈ E ∩ [1, 22n+2] ⊂ E ∩ [1, x]. The number of such
representations is(

2n − � − 1
n − m

)
> c�,m|E ∩ [1, 22n+4]| ≥ c�,m|E ∩ [1, x]|

if n is sufficiently large.
Since |E′ ∩ [1, x]| ≥ (1 − c�,m/2)|E ∩ [1, x]|, the number of representations a =

s1 − s2, with s1, s2 ∈ E ∩ [1, x] and at least one of them not belonging in E′ ∩ [1, x],
is at most c�,m|E ∩ [1, x]|. Thus, there exists a representation a = s1 − s2, where
s1, s2 ∈ E′ ∩ [1, x]. This shows that E′ − E′ = Z, and we are done.

With the notation from Proposition 3.1, in Proposition 3.2, we just proved Ea(x) ≥
caE(x) for some ca > 0, for any a, and for x large enough in terms of a. Yet for many a,
the constant ca may be expected to be very small, in view of Cusick’s conjecture and partial
results toward it such as [13]. When ca is positive but indeed very small on a sufficiently
large set of integers a, we have the following relaxation of Proposition 3.1 (in which both
hypothesis and conclusion are slightly weaker compared with Proposition 3.1).

PROPOSITION 3.3. Let E be a set of positive integers and E(x) = |E ∩ [1, x]| its counting
function. Let Em(x) = |{n ∈ E ∩ [1, x] : n + m ∈ E}|. Assume that there is a sequence
(cm)m∈N and an increasing bijection f : R>0 → R>0 such that the following hold:
(1) f −1(x) = o(E(x)) as x tends to infinity;
(2) for all m ∈ N, for all x > f −1(m), one has Em(x) ≤ cm · E(x).
Assume additionally that there is a thick set T ⊂ N such that limm∈T ,m→∞ cm = 0. Then,
for every ε > 0, there exists A ⊂ E of lower relative density at least 1 − ε such that A − A

is not syndetic.

We omit the proof since it is extremely close to that of Proposition 3.1. Note that given
a sequence (cm) of positive real numbers, the negation of the statement that there exists
a thick set T such that limm∈T ,m→∞ cm = 0 is the statement that there exists η > 0 such
that {m ∈ N : cm > η} is syndetic.

In practice, Proposition 3.3 is unwieldy because hypothesis (2) is difficult to prove.
A more manageable hypothesis would be limx→∞ Em(x)/E(x) ≤ cm, but it is not clear
whether such a hypothesis is sufficient. However, the negation of an hypothesis of this
form leads to a conclusion of a positive upper Banach density, as stated in the proposition
below.

PROPOSITION 3.4. Let E ⊂ N. Suppose cm := lim infx→∞ Em(x)/E(x) is such that {m :
cm > η} is syndetic (or even has positive lower density) for some η > 0. Then, d∗(E) > 0.
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Proof. Let η > 0 be such that M := {cm > η} has d(M) > 0. Enumerating M as m1 <

m2 < m3 < · · · , we have dS(S − mi) ≥ η for every i. Let ν be a finitely additive
probability measure on N such that ν(S − m) ≥ dS(S − m) for every m. Such a ν can
be obtained as a weak∗-limit of the probability measures

νN := 1
|S ∩ [N]|

∑
x∈S∩[N]

δx ,

where δx is the Dirac point mass at x. We then have ν(S − m) ≥ η for all m ∈ M . By
Bergelson’s intersectivity lemma [2, Theorem 1.1], there is a subset I ⊂ N with d̄(I ) > 0
such that by letting M ′ := {mi : i ∈ I }, we have

ν

( ⋂
m∈F

(S − m)

)
> 0

for any finite set F ⊂ M ′. (Bergelson’s intersectivity lemma was originally stated for
countably additive measures. However, the proof of [2, Theorem 2.1] shows that it applies
to finitely additive measures, as well.) In particular,⋂

m∈F

(S − m) �= ∅ for all finite F ⊂ M ′. (11)

The assumption that d(M) > 0 and d̄(I ) > 0 imply that d̄(M ′) > 0. Equation (11) implies
S contains a translate of every finite subset of M ′, so d∗(S) > 0.

4. Bohr compactification and proof of Theorem C
Let T = R/Z be the one-dimensional torus and Td be T endowed with the discrete
topology. The Bohr compactification of Z is the Pontryagin dual of Td and denoted by
bZ. Then, bZ is a compact abelian group. For every n ∈ Z, let τ(n) ∈ bZ be the character
on Td defined by τ(n)(χ) = χ(n), for every χ ∈ T ∼= Ẑ. Then, τ(Z) is dense in bZ (for
a proof, see [45, Theorem 1.8.2]). We use mbZ to denote the normalized Haar measure
on bZ. We remark that (bZ, τ) has the following universal property: if K is any compact
Hausdorff topological group and φ : Z → K is a homomorphism, then there is a unique
continuous homomorphism φ̃ : bZ → K such that φ = φ̃ ◦ τ .

We say a sequence E = {cn : n ∈ N} ⊂ N with c1 < c2 < · · · is good for the pointwise
ergodic theorem if for any measure-preserving system (X, B, μ, T ) and any f ∈ L∞(X),
the pointwise limit limN→∞(1/N)

∑N
n=1 f (T cnx) exists for almost all x ∈ X.

Work of Bourgain [8], Wierdl [50], and Nair [40] provides examples of sequences which
are good for the pointwise ergodic theorem: {P(n) : n ∈ N}, {�Q(n)� : n ∈ N}, {pn : n ∈
N}, {P(pn) : n ∈ N}. Here, P is any polynomial in Z[x], Q is any polynomial in R[x], pn

is the nth prime, and �·� denotes the integer part.
Theorem C follows from a more general result.

PROPOSITION 4.1. Let E ⊂ N be such that its closure in bZ has measure 0, i.e.
mbZ(τ (E)) = 0. Then, for every ε > 0, there exist A ⊂ E with dE(A) > 1 − ε such that
E − A is not piecewise syndetic. In particular, R := Z \ (E − A) is thickly syndetic, while
R ∩ N is not E-intersective.
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Furthermore, if the natural enumeration of E is good for the pointwise ergodic theorem,
then dE(A) can be replaced by dE(A).

In [12], Dressler and Pigno showed that the closures of the following sets in bZ have
measure zero.
(1) The set of prime powers {pn : p ∈ P, n ∈ N}. This explains why Theorem C follows

from Theorem 4.1.
(2) The set of sums of two squares {x2 + y2 : x, y ∈ Z}.
(3) The set of square-full numbers, that is, the set of numbers n so that every exponent

in the prime factorization of n is at least two.
In Appendix A, we give more examples of such sets.
(4) The set of values of a polynomial of degree ¿1, i.e. {P(n) : n ∈ Z}, where P ∈

Z[x], deg P > 1.
(5) The set of values of a binary quadratic form, i.e. {ax2 + bxy + cy2 : x, y ∈ Z},

whose discriminant D = b2 − 4ac is not a perfect square.
(6) More generally, the set of integers represented by a norm form, e.g. {x3 + 2y3 +

4z3 − 6xyz : x, y, z ∈ Z}. (A norm form is a homogeneous form F(x1, . . . , xd) =
NK/Q(x1ω1 + · · · + xdωd), where K is an algebraic number field of degree d ≥
2, {ω1, . . . , ωd} is a basis of the ring of integers of K as a Z-module, and NK/Q

denotes the norm.)
All the examples presented above have zero Banach density, and this is not a coinci-

dence: if E ⊂ Z, we always have mbZ(τ (E)) ≥ d∗(E), and so if E has positive upper
Banach density, it will not satisfy the hypothesis of Theorem 4.1.

As mentioned above, Theorem 4.1 applies to E = {P(n) : n ∈ N}, where P ∈ Z[x] has
degree ≥ 2. Note that for such sets, we also have Theorem G, which says that there exists
a thick set (however, not thickly syndetic) that is not chromatically E-intersective.

In the proof of Theorem 4.1, we make use of the following two lemmas from [23]. For
completeness, we include the short proofs. Note that the compact abelian groups appearing
in this section are not assumed to be metrizable.

The first lemma says that we can create sumsets with large measure and empty interior
in a separable compact abelian group.

LEMMA 4.2. [23, Lemma 2.7] Let K be a separable compact abelian group with the
normalized Haar measure mK and let E ⊂ K be a compact set with mK(E) = 0. For
all ε > 0, there exists a compact set F ⊂ K with mK(F) > 1 − ε such that E + F has
empty interior.

Proof. Let X = {xn}∞n=1 be a dense, countable subset of K. By taking G = K \⋃∞
n=1(xn − E), we have xn �∈ E + G for all n and since mK(E) = 0, mK(G) = 1. By

regularity of the Haar measure on a compact group, G contains a compact set F of
measure more than 1 − ε, and (E + F) ∩ X ⊂ (E + G) ∩ X = ∅. Thus, E + F has
empty interior.

The next lemma says that the set of return times to a closed nowhere dense set is not
piecewise syndetic.
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LEMMA 4.3. [23, Lemma 4.1] Let K be a compact abelian group and τ : Z → K be a
homomorphism such that τ(Z) is dense in K. Let E be a compact subset of K with empty
interior. Then, the set R := {n ∈ Z : τ(n) ∈ E} is not piecewise syndetic.

Proof. Suppose for a contradiction that the set R defined above is piecewise syndetic. Then
there is a finite set A ⊂ N such that R′ := ⋃

a∈A(R + a) is thick. Note that R′ = {n ∈ Z :
τ(n) ∈ ⋃

a∈A(E + τ(a))}.
We claim that K = ⋃

a∈A(E + τ(a)). Suppose this is not true. Then, V := K \⋃
a∈A(E + τ(a)) is non-empty and open (since E is compact). Since τ(Z) is dense in

K, the action of Z on K given by Tn(x) = x + τ(n) for all x ∈ K defines a minimal
topological dynamical system. By the uniform recurrent property of minimal dynamical
systems (for example, see [17, Theorem 1.15]), the set Z \ R′ = {n ∈ Z : τ(n) ∈ V } is
syndetic. However, this contradicts the fact that R′ is thick.

Hence, K = ⋃
a∈A(E + τ(a)), so one of the E + τ(a) has a non-empty interior and E

has a non-empty interior. This is a contradiction.

To prove Theorem 4.1, we need a new lemma.

LEMMA 4.4. Let K be a compact abelian group and τ : Z → K an arbitrary map. Then,
for every E ⊂ N and every measurable set D ⊂ K , there exists z ∈ K such that

dE({n ∈ N : z − τ(n) ∈ D}) ≥ mK(D).

Proof. Enumerate E as the sequence 1 ≤ c1 < c2 < · · · . Let f = 1D , the indicator
function of D, and for N ∈ N, define the function fN : K → [0, 1] by

fN(z) := 1
N

N∑
n=1

f (z − τ(cn)).

Since mK is translation invariant,
∫
K

fN dmK = ∫
K

f dmK . Because fN is bounded,
Fatou’s lemma implies∫

K

lim sup
N→∞

fN dmK ≥ lim sup
N→∞

∫
K

fN dmK =
∫

K

f dmK = mK(D).

Therefore, the set

S : =
{
z ∈ K : lim sup

N→∞
fN(z) ≥ mK(D)

}

=
{
z ∈ K : lim sup

N→∞
1
N

N∑
n=1

1D(z − τ(cn)) ≥ mK(D)

}

has positive measure; in particular, this set is non-empty.
Let z be a point in S and A := {n ∈ N : z − τ(n) ∈ D}. Then,

|A ∩ {c1, . . . , cN }| =
N∑

n=1

1D(z − τ(cn)).
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Therefore,

dE(A) : = lim sup
N→∞

|A ∩ {c1, . . . , cN }|
N

= lim sup
N→∞

1
N

N∑
n=1

1D(z − τ(cn)) ≥ mK(D).

Equipped with these intermediate results, we may prove Proposition 4.1.

Proof of Theorem 4.1. Let E ⊂ N be such that mbZ(τ (E)) = 0 and let ε > 0. By applying
Lemma 4.2 for K = bZ, there exists a compact set F ⊂ bZ such that mbZ(F ) > 1 − ε and
τ(E) + F has an empty interior. Lemma 4.3 implies that for all z ∈ bZ,

Ez := {n ∈ Z : z + τ(n) ∈ τ(E) + F }
is not piecewise syndetic.

In view of Lemma 4.4, we can choose z ∈ bZ so that A := {n ∈ N : z − τ(n) ∈ F } ∩ E

satisfies

dE(A) ≥ mbZ(F ) > 1 − ε.

Fixing this z, for any e ∈ E and a ∈ A, we have

z + τ(e − a) = τ(e) + z − τ(a) ∈ τ(E) + F .

Therefore, E − A ⊂ Ez and so E − A is not piecewise syndetic.
Under the additional assumption that E is good for the pointwise ergodic theorem, then

the upper relative density dE in Lemma 4.4 can be replaced by the relative density dE . We
may then conclude that dE(A) > 1 − ε in the construction of A above.

Remark 3. In the proof of Proposition 4.1, all we need is a compact abelian group K and
a group homomorphism τ : Z → K such that τ(Z) is dense in K, and bZ is not the only
choice for K. See [27] and [25, §3] for a construction of all such groups K. However, as
observed by Dressler and Pigno [12, Theorem 1], mK(τ(E)) is minimized when K = bZ

(where mK is the probability Haar measure on K). Therefore, the choice K = bZ is optimal
in the statement of Theorem 4.1.

5. The converse: E-intersectivity implies intersectivity
The goal of this section is to prove Theorem D. It follows from a more general theorem
below regarding sets of multiple recurrence.

Definition 5.1. Let E be an infinite subset of N. For k ∈ N, a set S ⊂ Nk is called a
k-intersective set for E if for any A ⊂ E such that dE(A) > 0, there exists (n1, . . . , nk)

∈ S such that

A ∩ (A − n1) ∩ · · · ∩ (A − nk) �= ∅.

For example, Szemerédi’s theorem [48] says that for any k, the set {(n, 2n, . . . , kn) :
n ∈ N} ⊂ Nk is k-intersective for N. The polynomial Szemerédi theorem [4] says
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that if P1, . . . , Pk ∈ Z[x] are polynomials without constant term, then the set
{(P1(n), . . . , Pk(n)) : n ∈ N} is k-intersective for N.

Theorem D corresponds to the case k = 1 of the next proposition.

PROPOSITION 5.2. Let E ⊂ N be an infinite set and k ∈ N. Every k-intersective set for E
is a k-intersective set for N.

Proof. Suppose S ⊂ Nk is not a k-intersective set for N. We will prove S is not a
k-intersective set for E.

Since S is not a k-intersective set for N, there exists B ⊂ N such that d(B) > 0 and

B ∩ (B − n1) ∩ · · · ∩ (B − nk) = ∅ for all (n1, . . . , nk) ∈ S. (12)

By Furstenberg’s correspondence principle [15, Theorem 1.1], there exist a measure-
preserving system (X, B, μ, T ) and a set A ⊂ X with μ(A) = d(B) such that

μ(A ∩ T −h1A ∩ · · · ∩ T −hkA)

≤ d(B ∩ (B − h1) ∩ · · · ∩ (B − hk)) for all (h1, . . . , hk) ∈ Nk .

Therefore, equation (12) implies

μ(A ∩ T −n1A ∩ · · · ∩ T −nkA) = 0 for all (n1, . . . , nk) ∈ S.

Define A′ = A \ ⋃
(n1,...,nk)∈S(A ∩ T −n1A ∩ · · · ∩ T −nkA). Then, we have μ(A′) =

μ(A) > 0 and

A′ ∩ T −n1A′ ∩ · · · ∩ T −nkA′ = ∅ for all (n1, . . . , nk) ∈ S.

Therefore, by replacing A with A′, we can assume

A ∩ T −n1A ∩ · · · ∩ T −nkA = ∅ for all (n1, . . . , nk) ∈ S.

It follows that for every x ∈ X, the set Ax := {n ∈ N : T nx ∈ A} satisfies

Ax ∩ (Ax − n1) ∩ · · · ∩ (Ax − nk) = ∅ for all (n1, . . . , nk) ∈ S.

Enumerate E = {c1, c2, . . .} in increasing order. Let f = 1A ∈ L∞(X). For N ∈ N,
define the function

fN(x) = 1
N

N∑
n=1

f (T cnx).

Since μ is T-invariant,
∫
X

fN dμ = ∫
X

f dμ. By Fatou’s lemma,∫
X

lim sup
N→∞

fN dμ ≥ lim sup
N→∞

∫
X

fN dμ =
∫

X

f dμ = μ(A).

Therefore, the set

R :=
{
x ∈ X : lim sup

N→∞
fN(x) ≥ μ(A)

}

has positive measure; in particular, R is non-empty.
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Let x ∈ R. Then,

|Ax ∩ {c1, . . . , cN }| =
N∑

n=1

1A(T cnx).

Therefore,

dE(Ax) = lim sup
N→∞

|Ax ∩ {c1, . . . , cN }|
N

= lim sup
N→∞

fN(x) ≥ μ(A) > 0.

In other words, B := Ax ∩ E is a subset of E of positive upper density. However,

B ∩ (B − n1) ∩ · · · ∩ (B − nk) ⊂ Ax ∩ (Ax − n1) ∩ · · · ∩ (Ax − nk) = ∅

for all (n1, . . . , nk) ∈ S. In other words, S is not a k-intersective set for E.

Remark 4. We remark that the chromatic analogues of Theorems 5.2 and D are obvious:
because for every E ⊂ N, a partition of N automatically induces a partition of E, a
chromatically E-intersective set is chromatically intersective.

6. Chromatic intersectivity versus density intersectivity
6.1. For an arbitrary ambient set. Theorem E is a corollary of the next proposition,
which in turn was implicitly proved in [24, Theorem 1.2]. Since the concept of
E-intersectivity is not mentioned in [24], we prove it explicitly here.

PROPOSITION 6.1. For every infinite set E ⊂ N and δ ∈ (0, 1/2), there exists a set S ⊂ N

which is chromatically E-intersective and a set A ⊂ N of upper density at least δ such that
S ∩ (A − A) = ∅.

Remark 5. As mentioned in the introduction, the strength of Proposition 6.1 and
Theorem E is in their generality. The price for this generality is the lack of understanding
of the chromatically E-intersective set S found in these results. This is in contrast with the
special case E = P, where we can take S to be thickly syndetic. In this remark, we discuss
another difference between the general case and the case E = P.

For every δ ∈ (0, 1/2), Proposition 6.1 gives a set S which is chromatically
E-intersective and a subset A ⊂ N such that d(A) > δ and S ∩ (A − A) = ∅ (in particular,
S is not intersective). To show that S is not E-intersective, we apply the proof of Theorem
5.2, which produces a set Ax ⊂ E such that dE(Ax) ≥ d(A) > δ and S ∩ (Ax − Ax) = ∅.
Thus, we only know that the upper relative density of Ax is bounded below by δ < 1/2.
However, when E = P, we can produce a subset having relative density 1 whose difference
set is disjoint from a certain chromatically prime intersective set. Indeed, as a consequence
of Theorem B, there are a thick set S and a subset A ⊂ P such that dP(A) = 1 and
S ∩ (A − A) = ∅. Furthermore, Theorem F, which we will prove shortly, says that this
set S (more generally, every thick set) is chromatically prime intersective.

Proof of Proposition 6.1. Let E ⊂ N be infinite and let δ < 1
2 . Theorem 1.2 of [24]

proves that there is a set S ⊂ E − E which is chromatically intersective, and such that
(A − A) ∩ S = ∅ for some A ⊂ N with d̄(A) > δ. We will explain how a modification
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of the proof of [24, Theorem 1.2] shows that the S constructed there is chromatically
E-intersective.

First, note that the set S is constructed as a union of finite subsets provided by [24,
Lemma 4.1]. These are the sets denoted H̃ (α, 2k + 1, ε) ∩ (E − E); we will abbreviate
them here as Sk . Using [24, Lemma 5.1], it is proved that the Cayley graph determined
by Sk has chromatic number at least k. Lemma B.1 has the same hypothesis as [24,
Lemma 5.1], but permits the stronger conclusion that the graph with vertex set E and
edge set {{a, b} : a, b ∈ E, a − b ∈ Sk ∪ (−Sk)} has chromatic number at least k. Since
S = ⋃∞

k=1 Sk , this implies that the graph with vertex set E and edge set {{a, b} : a, b ∈
E, a − b ∈ S ∪ (−S)} has infinite chromatic number. In other words, S is chromatically
E-intersective.

6.2. For P as the ambient set. Theorem B says that there is a thick set R which is not
P-intersective. However, we may wonder whether it is at least chromatically P-intersective.
Theorem F answers this question positively and we prove it here. In fact, we prove two
different enhancements of Theorem F: the first one is a quantitative version of Theorem F,
whereas the second one is qualitative and applies to a vast collection of sets, beyond the
set of all primes.

6.2.1. A quantitative enhancement of Theorem F. A set A ⊂ N is a �∗
r -set if

A ∩ (S − S) �= ∅ for every subset S of Z with |S| = r .
The N-syndeticity index of a set A ⊂ N is the smallest cardinality of a set S ⊂ Z such

that A + S ⊃ N. If A is a �∗
r -set, then A has N-syndeticity index at most r − 1. To see

this, choose t1 ∈ N arbitrary and choose t2, t3, . . . ∈ N recursively such that tk > tk−1 and
tk �∈ ⋃k−1

i=1 (ti + A) for any k ≥ 2. Since A ∩ {tj − ti : 1 ≤ i < j ≤ k} = ∅ for all k, this
process must stop at some k ≤ r − 1. Then, N \ ⋃k

i=1(ti + A) is finite and let m be the
greatest integer in this set. It follows that N ⊂ ⋃k

i=1(ti − m + A).
A set H = {h1, . . . , hk} of integers is said to be admissible if for every prime p, the

elements of H do not occupy all the residues modulo p. The Hardy–Littlewood conjecture
says that if H is admissible, then there are infinitely many n ∈ N such that all elements
of n + H are primes. The Maynard–Tao theorem [38] says that for any r > 0, if H
is any admissible set with |H | � r2e4r , there exists infinitely many n ∈ N such that
|(n + H) ∩ P| ≥ r .

Pintz [41, Theorem 2] proved that P − P has finite N-syndeticity index; however, his
proof does not give a bound on the N-syndeticity index. Huang and Wu [28] proved that
P − P is a �∗

721-set. The next proposition extends Huang and Wu’s result to any coloring
of P.

PROPOSITION 6.2. For each r ≥ 1, there is a number m = m(r) � r3e4r such that the
following holds. For any partition P = ⋃r

i=1 Pi , the set
⋃r

i=1(Pi − Pi) ∩ N is �∗
m and so

has N-syndeticity index � r3e4r . Consequently,
⋃r

i=1(Pi − Pi) is syndetic.

Proposition 6.2 directly implies Theorem F.

Proof. To begin with, we recall the following observation of Huang and Wu [28].
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CLAIM. If A ⊂ Z, |A| = m ≥ k
∏

p∈P,
p≤k

(1 − 1/p)−1 (i.e. k � m/log m), then A contains

an admissible set B of cardinality k.

Proof of the claim. By sieving out one residue modulo p, for each p ≤ k, we have a
set B ⊂ A of cardinality ≥ m

∏
p∈P,
p≤k

(1 − 1/p) ≥ k which has the property that for each

p ∈ P, p ≤ k, B misses at least one residue modulo p. By removing additional elements
from B, we may assume |B| = k. Clearly, for each p ∈ P, p > k, B does not occupy all the
residues modulo p. Hence, B is admissible and so the claim is proved.

Returning to Proposition 6.2, let A be any set of cardinality m � r3e4r , then A
contains an admissible set B of cardinality k � r2e4r . By the Maynard–Tao theorem,
there are infinitely many translates x + B that contain at least r + 1 primes. Two of
these primes must have the same color, so (B − B) ∩ ⋃r

i=1(Pi − Pi) �= {0} and therefore,
(A − A) ∩ ⋃r

i=1(Pi − Pi) �= {0}. Thus,
⋃r

i=1(Pi − Pi) is �∗
m and so has N-syndeticity

index � r3e4r . Since
⋃r

i=1(Pi − Pi) is symmetric, it is syndetic.

6.2.2. A generalization of Theorem F to other sets. The next theorem gives a criterion on
E ⊂ N for every thick set to be chromatically E-intersective. Its proof is partially inspired
by Pintz [41]. Its statement involves a generalization of the notion of admissible sets.

PROPOSITION 6.3. Let E be a set of positive integers. Suppose that there exists a family F
of finite sets of positive integers, called generalized admissible sets, satisfying the following
two properties.
(1) For every k ∈ N, there exists � ∈ N such that for all F ∈ F of cardinality at least �,

the set |{n ∈ N : |(n + F) ∩ E| ≥ k}| is infinite.
(2) For every � ∈ N, there exists C ∈ N such that for every family I1, . . . , I� of intervals

of length at least C, there exists F = {f1, . . . , f�} ∈ F such that fj ∈ Ij for all
j ∈ [�].

Then every thick set is chromatically E-intersective.

Proof. Consider a partition E = ⋃r
i=1 Ei . Applying condition (1) with k = r + 1, letting

� ∈ N be given by this condition, we infer that for every generalized admissible set F ∈ F
of cardinality �, the set X of n ∈ N such that |(n + F) ∩ E| ≥ r + 1 is infinite. Then, by
pigeonholing, for every n ∈ X, there is i ∈ [r] such that |(n + F) ∩ Ei | ≥ 2. Pigeonholing
again, we find an i ∈ [r] such that the set Y of integers n for which |(n + F) ∩ Ei | ≥ 2 is
infinite.

Let T ⊂ N be a thick set. We need to show that T ∩ ⋃
i∈r (Ei − Ei) �= ∅. By definition

of T, there exists a sequence (Nc)c∈N of integers such that T ⊇ ⋃
c[Nc, Nc + c]. Upon

extracting a sequence of c, we may in fact suppose that T ⊇ ⋃
k≥1 Ik , where Ik =

[Mk , Mk + Ck] and Mk > Ck > 4Mk−1; also C1 > 0 may be chosen arbitrarily large.
Let � be given by condition (1) for k = r + 1. Consider the intervals I ′

j = [Mj +
Cj/2, Mj + Cj ] for j ∈ [�]. By condition (2), there exists a generalized admissible set
F = {f1, . . . , f�} ∈ F , where fj ∈ I ′

j for each j ∈ [�], if C1 is large enough. Thus,
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there exists i ∈ [r] such that |(n + F) ∩ Ei | ≥ 2 for some n ∈ N. Therefore, fj − fm ⊂
Ei − Ei for some 1 ≤ m < j ≤ �.

By assumption, 0 ≤ fm ≤ 2Mm ≤ 2Mj−1, so fj − fm ∈ [Mj + Cj/2 − 2Mj−1, Mj +
Cj ] ⊂ Ij . We infer Ij ∩ (Ei − Ei) �= ∅, and hence T ∩ (Ei − Ei) �= ∅.

Many sets E satisfy the hypothesis of Proposition 6.3. Here are some examples.
(1) The set of primes, with F being the family of all admissible sets in the usual sense.

Indeed, property (1) is satisfied by Maynard’s theorem [38]. Property (2) is satisfied
with C = ∏

p≤� p for instance, because whenever F = {f1, . . . , f�} is such that
(fi , C) = 1, we have |F mod p| < p for every p ≤ �, and |F mod p| ≤ � < p for
every p > �. Therefore, Theorem 6.3 implies Theorem F.

More generally, still by Maynard’s theorem, the set of all primes of the form an +
b, for any given coprime integers a and b satisfies the hypothesis of Theorem 6.3.
Since the set E of all sums of two squares contain the set of all primes of the form
4n + 1, Theorem 6.3 also applies to E.

(2) Subsets of the primes which retain some of the equidistribution enjoyed by the
primes, in the form of a Siegel–Walfisz and a Bombieri–Vinogradov theorem, also
satisfy the hypothesis of Theorem 6.3, as shown by Benatar [1] and Maynard [39],
with F being again the family of all admissible sets in the usual sense. These authors
respectively mention sets of the form P ∩ g−1((0, d)), where g ∈ R[x] satisfies some
diophantine conditions and d is a positive real, and Chebotarev sets, i.e. primes with
a prescribed value of the Artin symbol respective to a Galois number field extension.
See also [49] for the latter example.

(3) Almost all sets of integers, by [6, Lemma 5]. Here, F is the family of all finite subsets
of N. ‘Almost all’ refers to the probability measure on (non-cofinite) sets of integers
induced by the Lebesgue measure on [0, 1] through the bijection provided by the
binary expansion of real numbers.

6.3. Ambient sets whose gaps go to infinity. Here, we prove Theorem G, demonstrating
the necessity of the gaps between consecutive primes not tending to infinity in Theorem F.

Proof of Theorem G. Let R = ⋃
n≥2 In where In = [f (n), f (n) + n], where f (n) is a

sufficiently quickly increasing sequence of elements of E. In particular, the intervals In

may be assumed to be pairwise disjoint and so R is thick.

CLAIM. Given a ∈ E, there exists at most one integer b < a in E such that a − b ∈ R.

Proof of the claim. Consider a ∈ E. Assume there exists such an integer b ∈ E, and let
n ∈ N such that a − b ∈ In; n is unique given a − b. By hypothesis, there exists a function
g : E → N increasing to infinity such that a − c > g(a) for any c ∈ E with c < a, in
particular, for c = b. Thus, a − b ∈ [g(a), a − 1]. If f grows sufficiently quickly in terms
of g, there is at most one n ∈ N such that [g(a), a − 1] ∩ In �= ∅.

So there is a unique n such that there exists c < a, c ∈ E such that a − c ∈ In.
In particular, a > f (n). Since f (n) ∈ E, we infer a ≥ f (n) + g(f (n)). Since a − b ≤
f (n) + n, this implies in turn that b ≥ f (g(n)) − n.
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However, then for any integer c ∈ E, c �= b, we have |c − b| ≥ g(b) ≥ g(f (g(n)) −
n) > n if f grows sufficiently quickly in terms of g. Thus, a − c �∈ In. This means that
a − c �∈ R. Whence the uniqueness of b ∈ E such that a − b ∈ R, which completes the
proof of the claim.

Now the claim above implies that there exists a two-coloring of c : N → {1, 2} such that

for all {a, b} ⊂ E, a − b ∈ R ⇒ c(a) �= c(b). (13)

This is a standard deduction in graph theory (the chromatic number is at most one plus
the degeneracy), but we provide it briefly here. We construct c(en) inductively, where e1 <

e2 < · · · is the increasing sequence of the elements of E. Suppose c(e1), . . . , c(en) have
been constructed and satisfy

for all k, � ∈ [n], ek − e� ∈ R ⇒ c(ek) �= c(e�).

Then, we color en+1. Since there is at most one k < n + 1 such that en+1 − ek ∈ R, it
suffices to take c(en+1) �= c(ek) if such a k exists, and c(en+1) ∈ {1, 2} arbitrary otherwise.

Now the coloring c induces a bipartition E = E1 ∪ E2 defined by Ei = {e ∈ E :
c(e) = i} for i ∈ [2]. In view of equation (13), we have R ∩ (Ei − Ei) = ∅ for any i ∈ [2],
as desired.

7. Open questions
We present some questions suggested by our study. The first four questions involve the set
of primes and the last two are about arbitrary sets of zero Banach density.

In Theorem F, we prove that for any finite partition P = ⋃k
i=1 Ei , the union⋃k

i−1(Ei − Ei) is syndetic. It follows that Ei − Ei is piecewise syndetic for some i ∈ [k].
It is not clear whether we can upgrade from piecewise syndeticity to syndeticity.

Question 7.1. For any partition P = ⋃k
i=1 Ei , does there exist i ∈ [k] such that Ei − Ei

is syndetic?

Note that the density analogue of Question 7.1 is false, as shown in Theorems B and C.
A natural approach to answer Question 7.1 is to use Theorem B, in which we found

a partition P = A ∪ B where A − A is not syndetic and dP(B) = 0. Since B is a sparse
subset of P, it would be plausible to expect that B − B is not syndetic, and thus gives a
negative answer to Question 7.1. However, assuming the Hardy–Littlewood conjecture (see
§6.2), we can prove that B − B is syndetic.

Indeed, Theorem B is a special case of Proposition 3.1 when E = P, T = N and f (x) =
x2. First, observe that B = P \ A ⊃ P \ C =: P′, where C is the set defined in the proof
of Proposition 3.1. In turn, P′ ⊃ {p ∈ P : p ≥ √

g(2), (p + [g(2) − 2, g(2)]) ∩ P �= ∅}.
Certainly, [g(2) − 2, g(2)] contains an even number m. So B ⊃ {p ∈ P : p ≥ g(2),
p + m ∈ P} =: Pm. Let k ∈ N and H = {0, m, 6k, m + 6k}. Since m is even, H is
admissible. By the Hardy–Littlewood conjecture, there are infinitely many n such that
n + H ⊂ P. Hence, there are infinitely many n ∈ Pm such that n + 6k ∈ Pm. We conclude
that 6 · Z ⊂ Pm − Pm and therefore Pm − Pm is syndetic.
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The next question is about the chromatic analog of Theorems B and C. More precisely,
it follows from these theorems that that there are intersective sets which are not prime
intersective. Therefore, we ask the following question.

Question 7.2. Must every chromatically intersective set be chromatically prime
intersective?

For the density counterpart of Question 7.2, we produce thick sets (and so an intersective
set) which are not prime intersective. However, the same idea will not work for Question
7.2: it has been shown in Theorem F that every thick set is chromatically prime intersective.
We also remark that the converse of Question 7.2 is true; it is easy to see that every
chromatically prime intersective set is chromatically intersective.

In the next question, we upgrade chromatic intersectivity to density intersectivity.

Question 7.3. Must every intersective set be chromatically prime intersective?

Questions 7.2 and 7.3 are related to the next conjecture. It is widely believed
that P − P ⊃ 2 · Z. If this conjecture is true, then for every intersective set R,
R ∩ (P − P) �= ∅. The following conjecture seeks to prove the second clause
unconditionally.

Conjecture 7.4. For every intersective set R, we have R ∩ (P − P) �= ∅.

This conjecture is equivalent to the statement that P − P contains a set of the form
E − E where d∗(E) > 0. Pintz [41] shows that P − P is syndetic, proving the special
case of the conjecture where R is thick. However, as proved in Theorem B, the analog of
the conjecture where P is replaced by a set A with dP(A) = 1 is false. Among the previous
three questions/conjectures, Conjecture 7.4 is the weakest in the following sense: a positive
answer to Question 7.2 implies a positive answer to Question 7.3, which in turn implies
Conjecture 7.4.

In Proposition 3.2, we show that one cannot replace P in Theorem B with an arbitrary
set E having d∗(E) = 0. More precisely, there exists E ⊂ N such that d∗(E) = 0 and if
dE(A) = 1, then A − A = Z (in particular, syndetic). Currently, we do not know if the
same is true for Theorem C. Likewise, the following slightly stronger statement is open.

Question 7.5. Does there exist E ⊂ N such that d∗(E) = 0 and if dE(A) > 0, then is
A − A syndetic?

Nevertheless, Propositions 3.3 and 3.4 tend to suggest that the answer is no, perhaps
even with the condition dE(A) > 1 − ε instead of dE(A) > 0.

Our last question aims to generalize the fact that there is an intersective set which is not
prime intersective to an arbitrary set of zero Banach density.

Question 7.6. Suppose d∗(E) = 0. Does there exist an intersective set which is not
E-intersective?

Note that the converse of Question 7.6 is false according to Theorem D.
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A. Appendix. Subsets of Z whose closures in bZ have measure zero
In this appendix, we exhibit some subsets of Z whose closures in bZ have measure 0.
Recall from §4 that bZ is the Bohr compactification of Z with normalized Haar measure
mbZ, and that τ : Z → bZ is a one-to-one homomorphism such that τ(Z) is topologically
dense in bZ. We now identify Z with its image τ(Z) in bZ, and we identify a subset A ⊂ Z

with its image τ(A) ⊂ bZ. With this identification, we let A denote the closure of A in bZ.
To estimate mbZ(A), we follow the approach of Dressler and Pigno [12], which relies on
the following observations.

LEMMA A.1.
(1) For all c ∈ N, d ∈ Z, we have mbZ(c · Z + d) = 1/c.
(2) For any sets A, E ⊂ Z with E finite, we have mbZ(A ∪ E) = mbZ(A).
(3) Suppose c1, . . . , ck ∈ N are pairwise coprime and A ⊂ Z is such that, except for

a finite number of exceptions, every a ∈ A misses c′
i residues(mod ci) for each

1 ≤ i ≤ k. Then, mbZ(A) ≤ ∏k
i=1(1 − c′

i/ci).

Proof. The first statement simply follows from the fact that c · Z is a closed subgroup
of index c in bZ, and mbZ is translation invariant. The second statement holds because
A ∪ E = A ∪ E = A ∪ E, and mbZ(E) = 0. The third statement follows from the first
two and the Chinese remainder theorem.

Let pi be the ith prime. Then, except for pi , all primes miss one residue (mod pi).
Hence, Lemma A.1 implies that for any k, mbZ(P) ≤ ∏k

i=1(1 − 1/pi). Letting k go to
infinity, we conclude that mbZ(P) = 0. All of our examples are obtained in this way, by
taking {ci} to be an appropriate sequence of moduli. More precisely, they will be dense
subsets of P and {p2 : p ∈ P}. The fact that these subsets are dense follows from various
instances of Chebotarev’s density theorem. We refer the reader to [35] for the statement
and an account of Chebotarev’s density theorem.

Our first example is the set of values of a polynomial P. It was proved by Kunen and
Rudin [31, Theorem 5.6] in the case deg P = 2 or 3. It was also pointed out to them by
David Boyd (see [31, footnote 1]) that the results hold whenever deg P ≥ 2, though no
proof was given. We will now supply a proof.

PROPOSITION A.2. Let P ∈ Z[x] have degree ≥ 2 and A = {P(n) : n ∈ Z}. Then,
mbZ(A) = 0.

Proof. Suppose deg P = n > 1. The polynomial f (x, y) = P(x) + y is clearly irre-
ducible in Z[x, y]. By the Hilbert irreducibility theorem (see e.g. [18, Theorem 4]), there
exists infinitely many r ∈ Z such that f (x, r) = P(x) + r is irreducible in Z[x]. Since
mbZ is translation invariant, we may assume that P is irreducible in Z[x].
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Let K be a splitting field of P and X be the set of all roots of P in K. Let G = Gal(K/Q)

be the Galois group of P. Then G is a subgroup of Sn that acts transitively on X.

CLAIM. G has an element without fixed points.

Proof of the claim. By Burnside’s lemma, the number of orbits in X is 1/|G| ∑
g∈G |Xg|,

where Xg is the set of all elements of X fixed by g. Since the action is transitive, we have∑
g∈G |Xg| = |G|. Since |Xe| = n > 1, there must be some g ∈ G such that |Xg| = 0,

and the claim is proved.

We now recall Frobenius’s theorem (see [35, p. 11]), which is a precursor of
Chebotarev’s density theorem. Let p be a prime not dividing the discriminant of P.
Then in Fp[x], P factors as a product of distinct irreducible polynomials of degrees
n1, . . . , nk , where n1 + · · · + nk = n. Frobenius’s theorem says that the density of primes
p with given decomposition pattern (n1, . . . , nk) exists, and is equal to m/|G|, where
m is the number of permutations σ ∈ G with cycle pattern (n1, . . . , nk).

Let Q be the set of all primes p such that p � P(n) for all n ∈ Z. Applying Frobenius’s
theorem with n1 = 1, we see that dP(Q) = m/|G|, where m is the number of permutations
σ ∈ G without a fixed point. Hence, dP(Q) > 0.

Let {ci}∞i=1 be all the elements of Q. Applying Lemma A.1 with c′
i = 1, we have that

mbZ(A) ≤ ∏k
i=1(1 − 1/ci) for all k. Letting k go to infinity, we have mbZ(A) = 0, as

desired.

Our second example generalizes Dressler and Pigno’s example of sums of two squares.

PROPOSITION A.3. Let a, b, c ∈ Z such that D = b2 − 4ac is not a perfect square, and
let A = {ax2 + bxy + cy2 : x, y ∈ Z}. Then, mbZ(A) = 0.

Proof. According to [32, Lemma 2.8], we have mbZ(A) ≤ 4|a|mbZ(4a · A) = 4|a|mbZ

(4a · A). Since

4a(ax2 + bxy + cy2) = (2ax + by)2 − Dy2,

it suffices to show that mbZ(A′) = 0, where A′ = {z2 − Dt2 : z, t ∈ Z}. Let p be a prime
number such that D is not a quadratic residue modulo p. If p|(z2 − Dt2), then we must
have p|z and p|t , so p2|(z2 − Dt2). Therefore, elements of A′ cannot be congruent to
p, 2p, . . . , (p − 1)p(mod p2).

Let Q = {qi}∞i=1 be all the primes for which D is not a quadratic residue. We claim
that dP(Q) > 0. Indeed, since D is not a perfect square, there exists a prime p such that
D = pkm, where k is an odd positive integer and (p, m) = 1. Consider two cases.

Case 1: p = 2 (and m is odd). Let Q′ = {q ∈ P : q ≡ 5(mod 8), q ≡ 1(mod m)} and
let q ∈ Q′. Then, 2 is not a quadratic residue mod q, while q is a quadratic residue of every
prime divisor of m. By the law of quadratic reciprocity and the fact that q ≡ 1(mod 4),
every prime divisor of m is a quadratic residue(mod q). Hence, m is a quadratic residue
(mod q) (this remains true if m < 0, since −1 is a quadratic residue(mod q)). It follows
that D is not a quadratic residue mod q.
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Case 2: p > 2. Let q ′ be a quadratic non-residue mod p. Let Q′ = {q ∈ P : q ≡ q ′
(mod p), q ≡ 1(mod 8m)} and let q ∈ Q′. Since q ≡ 1(mod 8), 2 is a quadratic residue
(mod q). By the law of quadratic reciprocity, every odd prime divisor of m is a quadratic
residue(mod q) while p is not a quadratic residue(mod q). Also, −1 is a quadratic residue
(mod q). It again implies that D is not a quadratic residue mod q.

Both of the sets Q′ defined above satisfy Q′ ⊂ Q and by Dirichlet’s theorem,
dP(Q′) > 0. Therefore, we always have dP(Q) > 0; our claim is proved.

Applying Lemma A.1 with ci = q2
i and c′

i = qi − 1, we have that mbZ(A′) ≤ ∏k
i=1(1 −

(qi − 1)/q2
i ) for all k. Letting k go to infinity, we have mbZ(A′) = 0, as desired.

Our third example generalizes the second one.

PROPOSITION A.4. Let K be an algebraic number field of degree n > 1. Let OK

be the ring of integers of K and {ω1, . . . , ωn} be an integral basis of OK . Let
F(x1, . . . , xn) = NF/Q(x1ω1 + · · · +xnωn) and A = {F(x1, . . . , xn) : x1, . . . , xn ∈Z}.
Then, mbZ(A) = 0.

Proof. Similarly to the proof of Proposition A.3, there is a set Q of primes with
dP(Q) > 0, such that whenever q ∈ Q, a ∈ A, and q|a, we have q2|a. Such primes q
can be characterized by the residual degrees of prime ideals p ⊂ OK lying above q (i.e.
p ∩ Z = qZ). This was done in detail by Glasscock [19, Main Theorem (I)], so we will
just sketch the idea.

Recall that the norm N(I) of an ideal I ⊂ OK is the index [OK : I ], and for x ∈ OK ,
N(xOK) = |NK/Q(x)|. Any ideal I ⊂ OK has a unique factorization as

I = pe1
1 · · · pek

k ,

where p1, . . . , pk are prime ideals in OK .
In particular, when q is a rational prime and I = qOK , then p1, . . . , pk are all the prime

ideals of OK lying above q. For each i = 1, . . . , k, OK/pi is a finite field extension of Zq ;
its dimension fi is called the residual degree of pi . In particular, N(pi ) = qfi .

CLAIM. Let q be a prime and with the property that all prime ideals of OK lying above q
have residual degrees > 1. Suppose a ∈ A and q|a. Then, q2|a.

Proof of the claim. Suppose a = NK/Q(x) for some x ∈ OK . Then, factoring xOK as a
product of prime ideals and taking norms, we have

|a| = N(xOK) =
k∏

i=1

N(pi )
ei

for some prime ideals p1, . . . , pk ∈ OK . Since q|a, there exists i such that q | N(pi )

and therefore pi lies above q. Since the residual degree of pi is greater than 1, we have
q2 | N(pi ) | a, as desired.

To finish the proof of Proposition A.4, one has to show that the set Q of primes satisfying
the claim has positive density in P. This follows from an application of the Chebotarev
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density theorem, and the fact that a finite group cannot be covered by the conjugates of a
proper subgroup. We refer the reader to [19, Lemma 4.1] for details.

B. Appendix. Proof of Proposition 6.1
Here, we prove the modification of [24, Lemma 5.1] required for our proof of
Proposition 6.1. We first recall some standard terminology for graphs.

A graph G is a set V whose elements are called vertices, together with a set E
of unordered pairs of elements of V, called edges. A k-coloring of G is a function
f : V → {1, . . . , k}. We say f is proper if f (v1) �= f (v2) for every edge (v1, v2) ∈ E.
The chromatic number of G is the smallest k ∈ N such that there is a proper k-coloring of
G. If there is no such k ∈ N, we say the chromatic number of G is infinite.

Given an abelian group G and subsets V , S ⊂ G, the Cayley graph based on V , S,
denoted Cay(V , S), is the graph whose vertex set is V, with two vertices x, y joined by
an edge if x − y ∈ S or y − x ∈ S. It follows from the definitions that S is chromatically
E-intersective if and only if the chromatic number of Cay(E, S) is infinite. If the vertex set
is the ambient group, i.e. V = G, we abbreviate Cay(V , S) = Cay(S).

The next lemma is essentially [24, Lemma 5.1], modified to conclude that the copy of
the graph G found in Cay(ρ−1(U) ∩ (E − E)) has vertex set E rather than vertex set Z.

LEMMA B.1. Let G be a discrete abelian group, K be a Hausdorff abelian topological
group K, and ρ : G → K be a homomorphism. Assume E ⊂ G is such that ρ(E) is dense
in K. If U ⊂ K is open, then every finite subgraph contained in Cay(U) has an isomorphic
copy in Cay(E, ρ−1(U) ∩ (E − E)).

Consequently, if Cay(U) has a finite subgraph with chromatic number k, then

Cay(E, ρ−1(U) ∩ (E − E))

has chromatic number ≥ k.

Proof. To prove the first statement of the lemma, it suffices to prove that if V is a finite
subset of K, then there exists {gv : v ∈ V } ⊂ E such that for each v, v′ ∈ V , we have

v − v′ ∈ U ⇒ gv − g′
v ∈ ρ−1(U). (B.1)

So let V be a finite subset of K. Let S := (V − V ) ∩ U , and let W be a neighborhood of 0 in
K so that S + W ⊂ U (one may take W = ⋂

s∈S(U − s), since S ⊂ U is finite). Choose
a neighborhood W ′ of 0 so that W ′ − W ′ ⊂ W . For each v ∈ V , choose gv ∈ E so that
ρ(gv) ∈ v + W ′; this is possible since ρ(E) is dense in K. Also, since K is Hausdorff, we
can ensure that gv �= gv′ if v �= v′ by choosing W ′ small enough that the neighborhoods
{v + W ′ : v ∈ V } are mutually disjoint. We now prove that the implication in equation
(B.1) holds with these gv . Assuming v − v′ ∈ U , we have

ρ(gv) − ρ(g′
v) ∈ v + W ′ − (v′ + W ′) = (v − v′) + (W ′ − W ′) ⊂ v − v′

+ W ⊂ S + W ⊂ U ,
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so gv − g′
v ∈ ρ−1(U). This proves equation (B.1). Since the chromatic number is invariant

under isomorphism of graphs, the second assertion of the lemma follows immediately from
the first.
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