BULL. AUSTRAL. MATH. SOC. VOL. 8 (1973), 393-395.

Some inequalities in trigonometric approximation Chin-Hung Ching and Charles K. Chui

For a nonconstant $L^2(-\pi, \pi)$ function f, we prove that $\frac{1}{\pi} \omega_2 \left(\frac{\pi}{n+1}; f \right) < \|\sigma_n(f) - f\|_2 < \frac{1}{\sqrt{2}} \omega_2 \left(\frac{\pi}{n+1}; f \right)$ and that the inequalities are sharp.

Let $s_n(f)$ be the *n*-th partial sum and $\sigma_n(f)$ the *n*-th Cesàro means of the Fourier series of an $L^2 = L^2(-\pi, \pi)$ function f. Extend f periodically to the real line and let $\omega_2(\delta; f)$ denote the L^2 integral modulus of continuity of f. For nonconstant f, Černyh [1] proved that

(1)
$$\|s_n(f) - f\|_2 < \frac{1}{\sqrt{2}} \omega_2 \left(\frac{\pi}{n+1}; f\right)$$

and that the constant $1/\sqrt{2}$ cannot be made smaller. In this note, we show that Černyh's proof can be improved to give

(2)
$$\frac{1}{\pi} \omega_2 \left(\frac{\pi}{n+1}; f \right) < \|\sigma_n(f) - f\|_2 < \frac{1}{\sqrt{2}} \omega_2 \left(\frac{\pi}{n+1}; f \right)$$

for all nonconstant $f \in L^2$ and all n. We also note that the constant $1/\pi$ cannot be made larger, and hence, the inequalities in (2) are best possible. In general, it is well-known that $\|\sigma_n(f)-f\|_p < C_p \omega_p \left(\frac{\pi}{n+1}; f\right)$. However, the best constants C_p , $p \neq 2$, do not seem to be known to our knowledge.

Received 11 January 1973.

To prove the inequalities in (2), we write

$$\|\sigma_{n}(f) - f\|_{2}^{2} = \sum_{|k| \le n} \left(\frac{k}{n+1}\right)^{2} |a_{k}|^{2} + \sum_{|k| > n} |a_{k}|^{2}$$

and

$$\omega_{2}^{2}\left(\frac{\pi}{n+1}; f\right) = \sup_{\substack{0 \le t \le \frac{\pi}{n+1}}} \sum_{k=-\infty}^{\infty} 4|a_{k}|^{2} \sin^{2}\left(\frac{kt}{2}\right) ,$$

where the a_k are the Fourier coefficients of $f \in L^2$. It can be shown that

$$\sum_{\substack{|k| \le n+1}} \left(\frac{k}{n+1}\right)^2 |a_k|^2 \le \sup_{\substack{0 \le t \le \frac{\pi}{n+1}}} \sum_{\substack{|k| \le n+1}} |a_k|^2 \sin^2\left(\frac{kt}{2}\right);$$

and following the proof of the theorem in [1], we have

$$\sum_{\substack{|k|>n+1}} |a_k|^2 < \sup_{\substack{0 \le t \le \frac{\pi}{n+1}}} \sum_{\substack{|k|>n+1}} 2|a_k|^2 \sin^2\left(\frac{kt}{2}\right)$$

for nonconstant f. This gives the second inequality in (2). The other inequality in (2) also follows, since if f is not constant, then

$$\begin{split} \omega_{2}^{2} \Big(\frac{\pi}{n+1}; f \Big) &\leq \sup_{\substack{0 \leq t \leq \frac{\pi}{n+1}}} \sum_{|k| \leq n} 4|a_{k}|^{2} \sin^{2} \Big(\frac{kt}{2} \Big) + 4 \sum_{|k| > n} |a_{k}|^{2} \\ &< \pi^{2} \sum_{|k| \leq n} \left(\frac{k}{n+1} \right)^{2} |a_{k}|^{2} + 4 \sum_{|k| > n} |a_{k}|^{2} \\ &\leq \pi^{2} ||\sigma_{n}(f) - f||_{2}^{2} . \end{split}$$

That the constant $1/\pi$ cannot be made larger follows simply from the example $f(e^{it}) = e^{it}$

394

Reference

[1] Н.И. Черных [N.I. Černyh], "О неравенстве Джексона в L₂", [On Jackson's inequality in L₂], Trudy Mat. Inst. Steklov. 88 (1967), 71-74; quoted from Proc. Steklov Inst. Math. (Amer. Math. Soc.) 88 (1969), 75-78.

Department of Mathematics, Texas A&M University, College Station, Texas, USA and Department of Mathematics, University of Melbourne, Parkville, Victoria; Department of Mathematics, Texas A&M University, College Station, Texas,. USA.