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Abstract

We define and study properties of implied volatility for American perpetual put options.
In particular, we show that if the market prices are derived from a local volatility model
with a monotone volatility function, then the corresponding implied volatility is also
monotone as a function of the strike price.
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1. Introduction

In Black–Scholes theory, the standard textbook approach is to specify a model for an under-
lying asset, and then derive an arbitrage-free value of derivative securities. One reason for the
great success of Black–Scholes theory is that the above procedure can be inverted. In fact, if a
model based on geometric Brownian motion is assumed, and if a market price of a European
call option is given, then we can determine the unique volatility of the underlying asset which
would give that particular price. This particular value is referred to as the implied volatility,
and it provides an efficient way of quoting option prices.

The standard notion of implied volatility refers to the inversion of the Black–Scholes for-
mula for the pricing of call options. If the implied volatility is inferred for several different
options on the same underlying asset and maturity but with different strike prices, the notion
‘volatility smile’ refers to the implied volatility decreasing for small strikes and increasing
for larger strikes; similarly, an implied volatility that is monotone as a function of the strike
is referred to as a ‘volatility skew’. The occurrence of volatility smiles and skews shows
that the use of a constant volatility is too simplistic for modeling purposes, and that more
advanced models are needed. In [6], a discussion of which models give rise to volatility skews
is provided. In particular, it is argued that decreasing volatility skews may be obtained in (i)
spectrally negative jump models, (ii) stochastic volatility models with negative correlation, and
(iii) local volatility models with decreasing volatility functions. However, these are not neces-
sarily precise mathematical results, but should rather be viewed as rules of thumb based on
numerical evidence. In fact, it is shown in [9] that spectrally negative jump models exhibit
the opposite monotonicity (i.e. increasing implied volatility) for short-time implied volatility.
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302 E. EKSTRÖM AND E. MELLQUIST

Similarly, numerical plots of implied volatility in stochastic volatility models often exhibit a
non-monotone dependence of the implied volatility in the strike price, cf., e.g., [4]. For an inter-
esting study of the dependence between local volatility and implied volatility see [3], where a
nonlinear partial differential equation for the implied volatility is derived; a closer inspection
of this equation strongly indicates that models of type (iii) above always give rise to decreasing
implied volatilities, but a full study of this case is still missing. For other qualitative results on
implied volatility see [1], where Malliavin calculus is used to derive asymptotic properties of
at-the-money implied volatility for short maturities in various models.

While the notion of implied volatility, as discussed above, is usually defined for European
options, it makes sense to also quote prices of other types of financial products in terms
of volatility. In this paper, we discuss implied volatility inferred from prices of perpetual
American put options, and we study its properties. In comparison with the definition of implied
volatility for European options, the inversion of the pricing formula for perpetual options is eas-
ier, and therefore allows for more explicit calculations. In particular, we show that if the market
uses a local volatility model with a decreasing volatility function, then the implied volatility is
also decreasing, thus verifying claim (iii) above within our setup. Similarly, if the market uses
a local volatility model with an increasing volatility function, then the corresponding implied
volatility is increasing in the strike price.

2. Setup and main result

On a complete filtered probability space (�,F , P, (Ft)0≤t<∞), let X be the solution of a
stochastic differential equation

dXt = rXt dt + σ (Xt)Xt dWt (1)

with initial condition x0 ∈ (0, ∞). Here, r > 0 is the constant interest rate and σ (·) : (0, ∞) →
(0, ∞) is a given function. We will assume that the local volatility function σ (·) is continuous
and bounded at infinity so that (1) has a unique strong solution up to the first hitting time of 0;
we also assume that X is regular so that any point y ∈ (0, ∞) can be reached in finite time, and
we let 0 be an absorbing state so that if X reaches 0 in finite time, then it remains at 0 at all
times.

For any given strike price K ≥ 0, consider the price P(K) := supτ E[e−rτ (K − Xτ )+] of a
perpetual American put option with strike K, where the supremum is taken over all stopping
times. Note here that the discounting rate r is the same as in the drift of X in (1), so by standard
arbitrage theory, P(K) is the unique arbitrage-free price of the put option. The following result
is immediate (and well known, cf. [8]).

Lemma 1. The function P : [0, ∞) → [0, ∞)

• is non-decreasing and convex;

• satisfies P(K) > 0 for K > 0;

• satisfies (K − x0)+ ≤ P(K) ≤ K.

2.1. Constant volatility and implied volatility

In the special case of constant volatility, σ (·) ≡ γ > 0, it is well known that Pγ (K) := P(K)
is given by

Pγ (K) =
{

(K − z(K))(zγ (K)/x0)2r/γ 2
, K < K̂γ ,

K − x0, K ≥ K̂γ ,
(2)
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where zγ (K) := 2rK/(2r + γ 2) and K̂γ := (2r + γ 2)K/2r. Moreover,

τzγ (K) := inf{t ≥ 0 : Xt ≤ zγ (K)}
is an optimal stopping time, so that Pγ (K) =E[e−rτzγ (K) (K − Xτzγ (K) )

+]. Using the explicit for-
mula (2), it is straightforward to check that the price is monotonically increasing in volatility: if
Pγ1 (K) is the price corresponding to a volatility γ1 > 0 and Pγ2 (K) is the price corresponding to
a volatility γ2 > 0, then γ1 ≤ γ2 =⇒ Pγ1 (·) ≤ Pγ2 (·). Furthermore, if Pγ1 (K) > (K − x0)+, then
Pγ2 (K) > Pγ1 (K) for γ2 > γ1, i.e. the price is strictly increasing in volatility in the continuation
region.

Remark 1. Monotonicity of perpetual options with respect to volatility holds true for a much
larger class of local volatility models; see [2] and [7].

2.2. Main result

Now assume that a volatility function σ (·) is given, and let P(·) be the corresponding option
price; recall that P(·) has the properties specified in Lemma 1. We write

K̂ := inf{K ≥ 0 : P(K) = (K − x0)+}.
Then K̂ ∈ (x0, ∞], P(K) > (K − x0)+ for K < K̂, and P(K) = (K − x0)+ for K ≥ K̂. By the
strict monotonicity of the function Pγ (K) with respect to γ (recall that Pγ (K) is the price
of a put option if the volatility is a constant γ ), for each K ∈ (0, K̂) there exists a unique
γ = γ (K) > 0 such that P(K) = Pγ (K). This value is referred to as the implied volatility.

Remark 2. In contrast to the standard notion of implied volatility (defined by inverting the
Black–Scholes formula for options with a finite horizon), which is well defined for all strikes,
the implied volatility γ (·) is uniquely determined only for K < K̂.

We now present our main result.

Theorem 1. Let a volatility function σ (·) be given, let P(·) be the corresponding option value,
and let K̂ = inf{K ≥ 0 : P(K) = (K − x0)+}.

(i) If σ (·) : (0, ∞) → (0, ∞) is non-increasing, then the implied volatility γ (·) is non-
increasing on (0, K̂).

(ii) If σ (·) : (0, ∞) → (0, ∞) is non-decreasing, then the implied volatility γ (·) is non-
decreasing on (0, K̂).

A geometric approach to implied volatility is provided in Section 3, and the proof of
Theorem 1 is then given in Section 4.

3. A geometric approach to option pricing and implied volatility

While the classical method to determine the price P (along with an optimal stopping time)
would be to make a Markovian embedding by varying the initial point x0 and then study an
associated free-boundary problem, it is more convenient for our purposes to follow a geometric
approach as presented in [8]. As we will see, this geometric approach is well aligned with the
inversion of the pricing function in (2) that is needed to calculate the implied volatility.

Let ϕ : (0, ∞) → (0, ∞) be a non-increasing solution of

σ 2(x)x2

2
ϕ′′(x) + rxϕ′(x) − rϕ(x) = 0. (3)
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304 E. EKSTRÖM AND E. MELLQUIST

This function is unique up to multiplication with a positive constant, cf. [5, pp. 18, 19]; we will
for simplicity (and without loss of generality) assume that ϕ(x0) = 1. It is straightforward to
check that

ϕ(x) = Dx
∫ ∞

x

1

y2
exp

{
−

∫ y

x0

2r

zσ 2(z)
dz

}
dy,

where

D = 1

x0
∫ ∞

x0
y−2 exp

{− ∫ y
x0

2r/(zσ 2(z)) dz
}

dy
.

Moreover, straightforward differentiation yields

ϕ′′(x) = 2rD

σ 2(x)x2
exp

{
−

∫ x

x0

2r

zσ 2(z)
dz

}
> 0,

so ϕ is strictly convex. Furthermore, denoting by τz := inf{t ≥ 0 : Xt ≤ z} the first passage time
below a level z ∈ (0, ∞), we have, for any x ≥ z, Ex[e−rτz ] = ϕ(x)/ϕ(z). In particular, using
ϕ(x0) = 1,

Ex0 [e−rτz ] = 1

ϕ(z)
(4)

for z ∈ (0, x0]. Moreover, the above formulae also extend to z = 0 as ϕ(0) = ∞ in the case when
0 is unattainable.

The following result was provided in [8]; for completeness of the presentation, we include
its proof.

Proposition 1. The value function P : [0, ∞) → [0, ∞) satisfies

P(K) = sup
z≤K∧x0

K − z

ϕ(z)
.

Proof. Denote the required right-hand side by

P̂(K) := sup
z≤K∧x0

K − z

ϕ(z)
.

We clearly have

P(K) = sup
τ

E[e−rτ (K − Xτ )+] ≥ sup
z≤K∧x0

E[e−rτz (K − Xτz )
+] = sup

z≤K∧x0

K − z

ϕ(z)
= P̂(K),

where the second equality uses that Xτz = z on {τz < ∞}, P-almost surely, and (4).

For the reverse inequality, first assume that K ≤ K′ := −x0/ϕ
′(x0). For such K, we have

P̂(K) = sup
z

K − z

ϕ(z)
,

so that P̂(K)ϕ(z) ≥ (K − z)+. Consequently,

P(K) = sup
τ

E[e−rτ (K − Xτ )+] ≤ P̂(K) sup
τ

E[e−rτ ϕ(Xτ )] ≤ P̂(K)ϕ(x0) = P̂(K),

where the second inequality uses that {e−rtϕ(Xt), 0 ≤ t ≤ ∞} is a supermartingale.
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FIGURE 1. For a given K ≤ K̂, the put price P(K) equals the negative reciprocal of the slope of the tangent
line to ϕ which passes through (K, 0).

Finally, the above argument gives that P(K′) = (K′ − x0); hence P(K) = (K − x0) ≤ P̂(K)
for all K ≥ K′ by Lemma 1, which completes the proof. �
Remark 3. For a given K, the convexity of ϕ yields the existence of a unique straight line
through the point (K, 0) that is tangent to the graph {(z, ϕ(z)), z ≤ K ∧ x0}. Denoting by
(z(K), ϕ(z(K))) the tangent point (which is unique by the strict convexity of ϕ), the price P(K)
is given by P(K) = (K − z(K))/ϕ(z(K)). Thus, P(K) equals the negative reciprocal of the slope
of this tangent line, cf. Figure 1.

Moreover, z(K) is non-decreasing in K, and it follows from the proof of Proposition 1 that
τz(K) is an optimal stopping time.

Remark 4. In contrast to the standard embedding approach, where an option price is pro-
duced for a fixed strike K but for any initial stock price x, the geometric approach presented in
Proposition 1 produces prices for all K, but for a fixed initial stock price x0. This feature will
turn out useful for us when comparing implied volatility for different strike prices.

We now return to the problem of determining the implied volatility, assuming that market
prices are calculated using a local volatility function σ (·) with corresponding function ϕ(·) as
above. For a given K > 0, let lK be the unique straight line through (K, 0) that is tangent to
{(z, ϕ(z)), z ≤ K ∧ x0}. Denoting the tangent point by (z(K), ϕ(z(K))), we have

lK(z) = − ϕ(z(K))

K − z(K)
(z − K).
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To describe how to determine the implied volatility in the local volatility model σ (·), note
that, for a given constant volatility γ > 0, the decreasing positive solution of 1

2γ 2x2f ′′(x) +
rxf ′(x) − rf (x) = 0 on (0, ∞), also imposing the normalizing condition f (x0) = 1, is given by

f (x) := fγ (x) :=
(

x

x0

)−2r/γ 2

. (5)

Clearly, on (0, x0), fγ is strictly decreasing in γ . Consequently, given a strike price K > 0 and
the corresponding tangent line lK(·) (constructed from σ (·) and ϕ(·) as above) with lK(x0) < 1
(equivalently, z(K) < x0), there exists a unique γ = γ (K) such that l(·) is also a tangent line to
fγ (·). By Proposition 1, γ (K) is the implied volatility of the option.

4. Monotone local volatility functions

In this section we provide a result regarding the function ϕ corresponding to non-increasing
local volatility functions (Proposition 2). For its proof we will use a monotonicity result
(Lemma 2) with respect to the local volatility functions; its proof is adapted from a similar
situation in [7]. Using Proposition 2, the proof of Theorem 1 then follows.

Lemma 2. Assume that σi : (0, ∞) → (0, ∞), i = 1, 2, satisfy σ1(·) ≤ σ2(·). Let hi, i = 1, 2, be
the solutions of

⎧⎨
⎩

1

2
σ 2

i (x)x2h′′
i(x) + rxh′

i(x) − rhi(x) = 0, x ∈ (a, b),

hi(a) = A, hi(b) = B,

for 0 < a < b < ∞ and A, B ≥ 0. If A/a ≥ B/b, then h1(·) ≤ h2(·) on [a, b].

Proof. Denoting by ϕ1 the decreasing fundamental solution corresponding to σ1, the general
solution of the ordinary differential equation for h1 is h1(x) = Cx + Dϕ1(x), where C and D are
constants. Imposing the boundary conditions h1(a) = A and h2(b) = B yields

D = bA − aB

bϕ1(a) − aϕ1(b)
,

which is positive by assumption. Consequently, the function h1 is convex.

Next, for x ∈ (a, b), let X2 be the solution of dX2
t = rX2

t dt + σ2(X2
t )X2

t dWt with X2
0 = x. By

Itô’s formula, the process Yt := e−rth1(X2
t ) satisfies

dYt = e−rt
(1

2
σ 2

2 (X2
t )(X2

t )2h′′
l(X

2
t ) + rX2

t h′
l(X

2
t ) − rh1(X2

t )
)

dt + e−rtσ 2(X2
t )X2

t h′
l(X

2
t ) dWt

= e−rt 1

2
(σ 2

2 (X2
t ) − σ 2

1 (X2
t ))(X2

t )2h′′
l(X

2
t ) dt + e−rtσ 2(X2

t )X2
t h′

l(X
2
t ) dWt

for t ≤ τab := inf{s ≥ 0 : X2
s /∈ (a, b)}. Since 0 < σ1 ≤ σ2 and h1 is convex, Yt is a submartin-

gale. Similarly, the process e−rth2(X2
t ) is a martingale. Consequently, optional sampling gives
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h1(x) ≤Ex
[
e−rτab h1(X2

τab
)
] =Ex

[
e−rτab h2(X2

τab
)
] = h2(x),

which completes the proof. �
Remark 5. The monotonicity result in Proposition 2 also extends to the case of b = ∞ and
B = 0. In that case, the function hi coincides with the decreasing fundamental solution ϕi

(possibly scaled with a positive constant).

Proposition 2. Assume that σ (·) : (0, ∞) → (0, ∞) is a given volatility function, and let ϕ(·)
be the corresponding decreasing solution of (3). For a constant volatility γ > 0, let fγ be as in
(5). Moreover, assume that fγ (a) = ϕ(a) for some a ∈ (0, x0).

(i) If σ (·) is non-increasing, then fγ (·) ≤ ϕ(·) on [a, x0].

(ii) If σ (·) is non-decreasing, then fγ (·) ≥ ϕ(·) on [a, x0].

Proof. Assume that σ (·) is non-increasing. Then we have σ (x0) ≤ σ (a); we consider the
three cases γ ≤ σ (x0), σ (a) ≤ γ , and σ (x0) < γ < σ (a) separately.

First, assume that γ ≤ σ (x0). Then γ ≤ σ (x) for all x ∈ [a, x0], and Lemma 2 immediately
yields fγ (·) ≤ ϕ(·) on [a, x0].

Second, assume that σ (a) ≤ γ . If γ = σ (x0), then σ (·) ≡ γ on [a, x0], and ϕ(·) ≡ fγ (·) on
[a, x0]. Therefore, we may assume that γ > σ (x0). Note that σ (·) ≤ γ on [a, ∞), so Lemma 2
and Remark 5 give ϕ(·) ≤ fγ (·) on [a, ∞). Since fγ (x0) = 1 = ϕ(x0) and fγ (·) ≥ ϕ(·) on [a, ∞),
we then must have f ′

γ (x0) = ϕ′(x0) and f ′′
γ (x0) ≥ ϕ′′(x0). Therefore,

0 = 1

2
σ 2(x0)x2

0ϕ
′′(x0) + rx0ϕ

′(x0) − rϕ(x0) ≤ 1

2
σ 2(x0)x2

0f ′′
γ (x0) + rx0f ′

γ (x0) − rfγ (x0)

<
1

2
γ 2x2

0f ′′
γ (x0) + rx0f ′

γ (x0) − rfγ (x0) = 0,

which shows that the point a ∈ (0, x0) with fγ (a) = ϕ(a) cannot exist.
Third, assume that σ (x0) < γ < σ (a). We first show that fγ (·) < ϕ(·) in a left-neighborhood

(x0 − ε, x0) of x0 (for some ε > 0). To see this, note that σ (·) ≤ γ on (x0, ∞), so
Lemma 2 yields ϕ(·) ≤ fγ (·) on (x0, ∞). Since ϕ(x0) = 1 = fγ (x0), we have ϕ′(x0) ≤ f ′

γ (x0);
consequently,

0 = 1

2
σ 2(x0)x2

0ϕ
′′(x0) + rx0ϕ

′(x0) − rϕ(x0) <
1

2
γ 2x2

0ϕ
′′(x0) + rx0f ′

γ (x0) − rfγ (x0)

= 1

2
γ 2x2

0(ϕ′′(x0) − f ′′
γ (x0)),

so ϕ′′(x0) > f ′′
γ (x0). This inequality, together with ϕ(x0) = fγ (x0) and ϕ′(x0) ≤ f ′

γ (x0), imply that
fγ (·) < ϕ(·) in a left-neighborhood of x0.

If the set {x ∈ (a, x0) : fγ (x) > ϕ(x)} is empty, then fγ (·) ≤ ϕ(·) on [a, x0] and there is noth-
ing to prove. Instead, assume that fγ (x) > ϕ(x) for some x ∈ (a, x0), and let c := sup{x ∈
(a, x0) : fγ (x) > ϕ(x)}. Since fγ (·) < ϕ(·) in a left-neighborhood of x0, we then have c ∈ (a, x0).
Also note that, by continuity, fγ (c) = ϕ(c).

Now, if γ ≥ σ (c), then γ ≥ σ (·) on (c, x0). Thus, Lemma 2 gives ϕ(·) ≤ fγ (·) on (c, x0),
which contradicts that fγ (·) < ϕ(·) in a left-neighborhood of x0. On the other hand, if γ < σ (c),
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then γ ≤ σ (·) on (a,c), and Lemma 2 yields fγ (·) ≤ ϕ(·) on (a, c). Since we also have fγ (·) ≤
ϕ(·) on (c, x0) by the definition of c, this shows that fγ (·) ≤ ϕ(·) on (a, x0).

Next, assume that σ (·) is non-decreasing. Again, three cases are considered, namely σ (x0) ≤
γ , γ ≤ σ (a), and σ (a) < γ < σ (x0).

First, if σ (x0) ≤ γ , then γ ≥ σ (·) on [a, x0], and Lemma 2 yields fγ (·) ≥ ϕ on [a, x0].
Second, if γ ≤ σ (a), then γ ≤ σ (·) on [a, ∞), so Lemma 2 implies that fγ (·) ≤ ϕ(·) on

[a, ∞). If γ = σ (a) = σ (x0), then fγ (·) = ϕ(·) on [a, x0], and there is nothing to prove. Thus, we
may assume that γ ≤ σ (a) < σ (x0); in this case, however, fγ (x0) = 1 = ϕ(x0) and fγ (·) ≤ ϕ(·)
imply that

0 = 1

2
σ 2(x0)x2

0ϕ
′′(x0) + rx0ϕ

′(x0) − rϕ(x0) ≥ 1

2
σ 2(x0)x2

0f ′′
γ (x0) + rx0f ′

γ (x0) − rfγ (x0)

>
1

2
γ 2x2

0f ′′
γ (x0) + rx0f ′

γ (x0) − rfγ (x0) = 0,

which is impossible.
Third, assume that σ (a) < γ < σ (x0). We then have γ ≤ σ (·) on [x0, ∞), so fγ (·) ≤ ϕ(·) on

[x0, ∞). Since fγ (x0) = 1 = ϕ(x0), this implies that f ′
γ (x0) ≤ ϕ′(x0), so

0 = 1

2
σ 2(x0)x2

0ϕ
′′(x0) + rx0ϕ

′(x0) − rϕ(x0) >
1

2
γ 2x2

0ϕ
′′(x0) + rx0f ′

γ (x0) − rfγ (x0)

= 1

2
γ 2x2

0(ϕ′′(x0) − f ′′
γ (x0)).

Therefore, f ′′
γ (x0) > ϕ′′(x0), and fγ (·) > ϕ(·) in a left-neighborhood (x0 − ε, x0) of x0.

Now, assume that there exists at least one point x ∈ (a, x0) with fγ (x) < ϕ(x), and define
c := sup{x ∈ (a, x0) : fγ (x) < ϕ(x)}. Since fγ (·) > ϕ(·) in a left-neighborhood of x0, we then
have c ∈ (a, x0). If γ ≤ σ (c), then γ ≤ σ (·) on [c, x0]. Lemma 2 then yields fγ (·) ≤ ϕ(·) on
[c, x0], which contradicts fγ (·) > ϕ(·) in a left-neighborhood of x0. On the other hand, if γ >

σ (c), then Lemma 2 yields fγ (·) ≥ ϕ(·) on [a, c] and, by the definition of c, we also find that
fγ (·) ≥ ϕ(·) on [a, x0]. �

Proposition 3. Assume that K < K̂, and denote by z(K) the optimal stopping boundary for
the volatility σ (·). Let γ = γ (K) be the corresponding implied volatility, and let zγ (K) be the
corresponding optimal stopping boundary. Then z(K) ≤ zγ (K) (z(K) ≥ zγ (K)) provided σ (·) is
non-increasing (non-decreasing).

Proof. First assume that σ (·) is non-increasing, and (for a contradiction) that z(K) > zγ (K).
Then, by the convexity of ϕ(·) and fγ (·), there exists a point a ∈ (zγ (K), z(K)) such that ϕ(a) =
fγ (a). By Proposition 2, fγ ≤ ϕ on [a, x0], which contradicts fγ (z(K)) > lK(z(K)) = ϕ(z(K)).
Consequently, z(K) ≤ zγ (K).

Next, assume that σ (·) is non-decreasing, and that z(K) < zγ (K). Then, by convexity, there
exists a unique a ∈ (z(K), zγ (K)) with ϕ(a) = fγ (a) (where γ := γ (K) is again the implied
volatility). Proposition 2 then gives fγ ≥ ϕ on [a, x0], which is a contradiction of fγ (zγ (K)) =
lK(z(K)) < ϕ(zγ (K)). �

Proof of Theorem 1. For i = 1, 2, let Ki be given strike prices with K1 < K2, denote by
(z(Ki), ϕ(z(Ki))) the tangent point of the tangent line lKi of ϕ through the point (Ki, 0), and let
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FIGURE 2. The function ϕ, together with two strike prices K1 < K2, the corresponding tangent lines lK1

and lK2 , and their intersection point ẑ.

γi := γ (Ki) be the corresponding implied volatilities. Then the lines

lKi(z) = − ϕ(z(Ki))

Ki − z(Ki)
(z − Ki), i = 1, 2,

are tangent lines to the functions

fγi(z) =
(

z

x0

)−2r/γ 2
i

,

respectively, with unique tangent points with z-coordinates z′
i := zγi(Ki), for which fγi (z

′
i) =

lKi(z
′
i). We denote by ẑ the z-coordinate of the intersection point between lK1 and lK2 . For a

graphical illustration, see Figure 2.

Now assume that σ (·) is non-increasing. By Proposition 3, we then have z(Ki) ≤ z′
i,

i = 1, 2. If z′
1 > ẑ, then automatically γ1 ≥ γ2 since fγ is decreasing in γ on (0, x0). On the

other hand, if z′
1 ∈ [z(K1), ẑ] then, by convexity, there is a unique point a ∈ [z(K1), z′

1] such that
fγ1 (a) = ϕ(a). By Proposition 2, we then have fγ1 (·) ≤ ϕ(·) on [a, x0]. Consequently, at z(K2)
we have fγ1 (z(K2)) ≤ ϕ(z(K2)) = lK2 (z(K2)). Since fγ is decreasing in γ on (0, x0), it follows
that γ1 ≥ γ2.

Next, assume that σ (·) is non-decreasing. Then z′
1 ≤ z(K1) by Proposition 3, so by convexity

there exists a point a ∈ [z′
1, z(K1)] with f1(a) = ϕ(a). By Proposition 2, we must have fγ1 (·) ≥

ϕ(·) ≥ lK2 (·) on [a, x0], and it follows that γ1 ≤ γ2. �
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