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Abstract

Gabardo and Nashed [‘Nonuniform multiresolution analyses and spectral pairs’, J. Funct. Anal. 158(1)
(1998), 209–241] have introduced the concept of nonuniform multiresolution analysis (NUMRA), based
on the theory of spectral pairs, in which the associated translated set Λ = {0, r/N} + 2Z is not necessarily
a discrete subgroup of R, and the translation factor is 2N. Here r is an odd integer with 1 ≤ r ≤ 2N −
1 such that r and N are relatively prime. The nonuniform wavelets associated with NUMRA can be
used in signal processing, sampling theory, speech recognition and various other areas, where instead
of integer shifts nonuniform shifts are needed. In order to further generalize this useful NUMRA, we
consider the set Λ̃ = {0, r1/N, r2/N, . . . , rq/N} + sZ, where s is an even integer, q ∈ N, ri is an integer
such that 1 ≤ ri ≤ sN − 1, (ri, N) = 1 for all i and N ≥ 2. In this paper, we prove that the concept of
NUMRA with the translation set Λ̃ is possible only if Λ̃ is of the form {0, r/N} + sZ. Next we introduce
Λs-nonuniform multiresolution analysis (Λs-NUMRA) for which the translation set is Λs = {0, r/N} + sZ
and the dilation factor is sN, where s is an even integer. Also, we characterize the scaling functions
associated withΛs-NUMRA and we give necessary and sufficient conditions for wavelet filters associated
with Λs-NUMRA.
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1. Introduction

A multiresolution analysis, with dilation factor 2 [2, 3, 7], is an increasing sequence
of closed subspaces {Vj}j∈Z of L2(R) along with a φ ∈ V0 satisfying: {φ(· − k) : k ∈ Z}
is an orthonormal basis for V0, ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R) and f ∈ Vj if and only if
f (2·) ∈ Vj+1 for all j ∈ Z. The function φ is called a scaling function. Multiresolution
analysis (MRA) is an important tool, which was introduced by Mallat and Meyer, in
constructing a wavelet ψ ∈ L2(R) such that the collection {2 j/2ψ(2 jx − k) : j, k ∈ Z} is
an orthonormal basis for L2(R). The concept of MRA has been extended in several
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ways in past years, like generalizing to L2(Rn), allowing the subspaces of MRA to be
generated by a Riesz basis instead of an orthonormal basis, admitting a finite number
of scaling functions and replacing the dilation factor of two by an integer N ≥ 2. All
these concepts were developed such that the translation set is always a subgroup of R.
Gabardo and Nashed [4] considered a generalization of Mallat’s classical theory of
multiresolution analysis to nonuniform multiresolution analysis (NUMRA) based on
the theory of spectral pairs, in which the associated translated set Λ = {0, (r/N)} + 2Z
is not necessarily a discrete subgroup of R. Here r is an odd integer with 1 ≤ r ≤
2N − 1 such that r and N are relatively prime.

DEFINITION 1.1. Let N ∈ N and r be an odd integer relatively prime to N such that
1 ≤ r ≤ 2N − 1 and Λ = {0, (r/N)} + 2Z. An associated nonuniform multiresolution
analysis (NUMRA) is a collection {Vj}j∈Z of closed subspaces of L2(R) satisfying the
following conditions:

(i) there exists a φ ∈ V0, called a scaling function, such that {φ(· − λ) : λ ∈ Λ} is an
orthonormal basis for V0;

(ii) Vj ⊆ Vj+1 for all j ∈ Z;
(iii) f ∈ Vj if and only if f (2N·) ∈ Vj+1 for all j ∈ Z;
(iv) ∪j∈ZVj = L2(R);
(v) ∩j∈ZVj = {0}.

Note that if N = 1, one obtains the standard definition of multiresolution analysis
with dyadic dilation 2. In [5], Gabardo and Yu have constructed wavelets associated
with nonuniform multiresolution analysis; these wavelets are called nonuniform
wavelets. The main activity in signal processing is that of recovering signals from the
samples, but the traditional methods assume that the samples are of uniform spacing;
recently, much research has been dedicated to the case of nonuniform spacing of
the data samples. The problem of signal reconstruction [4, 9] from nonuniformly
sampled data arises in many applications, including sampling systems with sampling
jitter, the design of irregularly spaced antenna arrays, reconstruction of signals from
noisy samples and the processing of geophysical data. Some fundamental results
for nonuniform wavelets and wavelet sets related to spectral pairs can be found
in [9]. The nonuniform wavelet construction from the NUMRA could be used in
signal processing, sampling theory, speech recognition and various other areas, where
nonuniform translations are needed. This motivates us to consider the nonuniform
translation set Λ̃ = {0, r1/N, r2/N, . . . , rq/N} + sZ, where s is an even integer, q ∈ N,
ri is an integer such that 1 ≤ ri ≤ sN − 1 and N ≥ 2 instead of Λ = {0, (r/N)} + 2Z.
Now one can ask, is it possible to define a NUMRA with Λ̃ as a translation set? In
this paper we prove that the concept of nonuniform multiresolution analysis with the
translation set Λ̃ can be defined only if Λ̃ is of the form {0, (r/N)} + sZ. Hence, we
replace the translation set Λ = {0, (r/N)} + 2Z by Λs = {0, (r/N)} + sZ and the dilation
factor 2N by sN, where s is a positive even integer and r is an odd integer, to introduce
Λs-nonuniform multiresolution analysis with dilation factor sN. For a given φ ∈ L2(R),
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we define

Vj =

{
span{φ(· − λ) : λ ∈ Λ} if j = 0,
{ f : f ((2N)−j ·) ∈ V0} if j ∈ Z \ {0}.

(1-1)

We say that a function φ ∈ L2(R) generates a NUMRA if the spaces in (1-1)
together with φ form a NUMRA. Recently, in [7], the authors have characterized
the scaling functions that generate a NUMRA. This also motivates us to look for a
characterization for scaling functions associated with Λs-nonuniform multiresolution
analysis. This characterization is useful for the construction of wavelets associated
with a Λs-NUMRA.

2. NUMRA with translation set Λs

In this section, we consider a set Λ̃ = {r0/N, r1/N, r2/N, . . . , rq/N} + sZ, where r0 =

0, q, ri, N ∈ N, (ri, N) = 1, i = 1, 2, . . . , q and s ∈ 2N. We prove that the nonuniform
multiresolution analysis with the translation set Λ̃ can be defined only if Λ̃ is of the
form {0, (r/N)} + sZ, where 1 ≤ r ≤ sN − 1 is an odd integer such that r and N are
relatively prime. We denote the dilation and translation operators on L2(R) by

(D j f )(x) = (sN) j/2 f ((sN) jx) and (Tλ f )(x) = f (x − λ),

respectively. For φ ∈ L2(R), the following theorem gives a characterization for the
translation system {Tλφ : λ ∈ Λ̃} to be an orthonormal system in L2(R).

THEOREM 2.1. For φ ∈ L2(R), {Tλφ : λ ∈ Λ̃} is an orthonormal system if and only if

sN−1∑
p=0

e2πi(p/s)((ri−rj)/N)w
(
ξ +

p
s

)
= sδij a.e. ξ ∈ R,

where w(ξ) =
∑

k∈Z |̂φ(ξ + kN)|2, i, j ∈ {0, 1, 2, . . . , q}.

PROOF. Suppose that {Tλφ : λ ∈ Λ̃} is an orthonormal system. Then

δλσ = 〈Tλφ, Tσφ〉
= 〈T̂λφ, T̂σφ〉

=

∫
R

|̂φ(ξ)|2e−2πiξ(λ−σ) dξ.

Suppose that λ = (rj/N) + sm and σ = (ri/N) + sn, i, j ∈ {0, 1, . . . , q}, m, n ∈ Z. Then

δijδmn =

∫
R

|̂φ(ξ)|2e−2πiξ(sm+(rj/N))e2πiξ(sn+(ri/N)) dξ

=

∫
R

|̂φ(ξ)|2e−2πiξs(m−n)e−2πiξ((rj−ri)/N) dξ
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=
∑
k∈Z

∫ (k+1)N

kN
|̂φ(ξ)|2e−2πiξs(m−n)e−2πiξ((rj−ri)/N) dξ

=

∫ N

0

∑
k∈Z
|̂φ(η + kN)|2e−2πiηs(m−n)e−2πiη((rj−ri)/N) dη

=

sN−1∑
p=0

∫ (p/s)+(1/s)

p/s
w(η)e−2πiηs(m−n)e−2πiη((rj−ri)/N) dη

=

∫ 1/s

0

sN−1∑
p=0

w
(
ξ +

p
s

)
e−2πiξs(m−n)e−2πi(ξ+(p/s))((rj−ri)/N) dξ

=

∫ 1/s

0
e−2πiξ((rj−ri)/N)

sN−1∑
p=0

e−2πi(p/s)((rj−ri)/N)w
(
ξ +

p
s

)
e−2πiξs(m−n) dξ.

Since {
√

se−2πiξsl : l ∈ Z} is an orthonormal basis for L2([0, 1/s)),

e−2πiξ((rj−ri)/N)
sN−1∑
p=0

e−2πi(p/s)((rj−ri)/N)w
(
ξ +

p
s

)
= sδij a.e. ξ ∈ R.

Thus,

sN−1∑
p=0

e−2πi(p/s)((rj−ri)/N)w
(
ξ +

p
s

)
= sδij a.e. ξ ∈ R

and so

sN−1∑
p=0

e2πi(p/s)((ri−rj)/N)w
(
ξ +

p
s

)
= sδij a.e. ξ ∈ R.

The converse of the proof follows by just retracing the steps. �

THEOREM 2.2. If {Tλφ : λ ∈ Λ̃} is an orthonormal system in L2(R), then Λ̃ =
{0, (r/N)} + sZ and 1 ≤ r ≤ sN − 1 is an odd integer.

PROOF. Suppose that {Tλφ : λ ∈ Λ̃} is an orthonormal system. Then, from
Theorem 2.1,

sN−1∑
p=0

∑
k∈Z

e2πi(p/s)((ri−rj)/N)
∣∣∣∣∣̂φ(ξ + p

s
+ kN

)∣∣∣∣∣2 = sδij. (2-1)
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Now let Cp(ξ) =
∑

k∈Z |̂φ(ξ + (p/s) + kN)|2, 0 ≤ p ≤ sN − 1. Then, by (2-1), for i = j,

s =
sN−1∑
p=0

Cp(ξ)

=

(sN/2)−1∑
p=0

Cp(ξ) +
sN−1∑

p=(sN/2)

Cp(ξ)

=

(sN/2)−1∑
p=0

(Cp(ξ) + C(sN/2)+p(ξ)). (2-2)

Again from (2-1), for i � j,

0 =
sN−1∑
p=0

e2πi(p/s)((ri−rj)/N)Cp(ξ)

=

(sN/2)−1∑
p=0

e2πi(p/s)((ri−rj)/N)Cp(ξ) +
sN−1∑

p=(sN/2)

e2πi(p/s)((ri−rj)/N)Cp(ξ)

=

(sN/2)−1∑
p=0

e2πi(p/s)((ri−rj)/N)(Cp(ξ) + eπi(ri−rj)C(sN/2)+p(ξ)).

If ri − rj is even, then

(sN/2)−1∑
p=0

e2πi(p/s)((ri−rj)/N)(Cp(ξ) + C(sN/2)+p(ξ)) = 0.

Since {e2πi(p/s)((ri−rj)/N) : p ∈ {0, 1, . . . , (sN/2) − 1}} is linearly independent in
L2(ZsN/2), Cp(ξ) + C(sN/2)+p(ξ) = 0 for almost every (a.e.) ξ ∈ R and for all
p ∈ {0, 1, . . . , (sN/2) − 1}, that is a contradiction to (2-2). Thus, ri − rj is an odd
integer for all i � j and hence ri = ri − r0 is an odd integer for all i = 1, 2, . . . , q. Using
the fact that ri and ri − rj, i � j, i = 1, 2, . . . , q, j = 0, 1, . . . , q are odd integers, we can
observe that the cardinality of {r1, r2, . . . , rq} is 1. Suppose not. Then there exist rm and
rn, m � n, such that rm, rn and rm − rn are odd integers, which is not possible. Thus,
the cardinality of {r1, r2, . . . , rq} is 1. Hence, Λ̃ = {0, (r/N)} + sZ. �

DEFINITION 2.3. Let N ∈ N, s be an even positive integer and 1 ≤ r ≤ sN − 1 be
an odd integer relatively prime to N. An associated Λs-nonuniform multiresolution
analysis (Λs-NUMRA) with dilation factor sN is a collection {Vj}j∈Z of closed
subspaces of L2(R) satisfying the following conditions:

(i) there exists a φ ∈ V0, called a scaling function, such that {Tλφ : λ ∈ Λs} is an
orthonormal basis for V0, where Λs = {0, (r/N)} + sZ;

(ii) Vj ⊆ Vj+1 for all j ∈ Z;
(iii) f ∈ Vj if and only if f (sN·) ∈ Vj+1 for all j ∈ Z;
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(iv) ∩j∈ZVj = {0};
(v) ∪j∈ZVj = L2(R).

When s = 2, it gives NUMRA and for N = 1 and s = 2 it gives classical MRA. The
following theorem gives an equivalent condition for a system {Tλφ : λ ∈ Λs} to be an
orthonormal system in L2(R).

THEOREM 2.4. Let φ ∈ L2(R), s ∈ 2N and 1 ≤ r ≤ sN − 1 be an odd integer. Then
{Tλφ : λ ∈ Λs} is an orthonormal system in L2(R) if and only if

(sN/2)−1∑
p=0

∑
k∈Z

∣∣∣∣∣̂φ(ξ + p
s
+ kN

)∣∣∣∣∣2 = s
2

a.e. ξ ∈ R. (2-3)

PROOF. Suppose that {Tλφ : λ ∈ Λs} is an orthonormal system. Then, from
Theorem 2.1,

sN−1∑
p=0

∑
k∈Z

∣∣∣∣∣̂φ(ξ + p
s
+ kN

)∣∣∣∣∣2 = s a.e. ξ ∈ R (2-4)

and
sN−1∑
p=0

∑
k∈Z

e2πi(p/s)(r/N)
∣∣∣∣∣̂φ(ξ + p

s
+ kN

)∣∣∣∣∣2 = 0 a.e. ξ ∈ R. (2-5)

Let Cj(ξ) =
∑

k∈Z |̂φ(ξ + (j/s) + kN)|2, 0 ≤ j ≤ sN − 1. Then Cj(ξ) = CsN+j(ξ) for 0 ≤
j ≤ sN − 1. From (2-4),

s =
sN−1∑
p=0

Cp(ξ) =
(sN/2)−1∑

p=0

Cp(ξ) +
sN−1∑

p=(sN/2)

Cp(ξ)

=

(sN/2)−1∑
p=0

[Cp(ξ) + C(sN/2)+p(ξ)]. (2-6)

From (2-5),

0 =
sN−1∑
p=0

e2πi(p/s)(r/N)Cp(ξ)

=

(sN/2)−1∑
p=0

e2πi(p/s)(r/N)Cp(ξ) +
sN−1∑

p=(sN/2)

e2πi(p/s)(r/N)Cp(ξ)

=

(sN/2)−1∑
p=0

e2πi(p/s)(r/N)Cp(ξ) + e2πi(r/sN)((sN/2)+p)C(sN/2)+p(ξ)

=

(sN/2)−1∑
p=0

e2πi(p/s)(r/N)[Cp(ξ) + eπirC(sN/2)+p(ξ)].
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Since r is an odd integer, say r = 2l + 1,

(sN/2)−1∑
p=0

e2πi(p/s)2l[Cp(ξ) − C(sN/2)+p(ξ)]e2πi(p/sN) = 0. (2-7)

Observe that the left-hand side of (2-7) is a discrete Fourier series on the group
Z/((sN/2)Z) and so

Cp(ξ) = C(sN/2)+p(ξ).

Hence, from (2-6),

(sN/2)−1∑
p=0

∑
k∈Z

∣∣∣∣∣̂φ(ξ + p
s
+ kN

)∣∣∣∣∣2 = s
2

a.e. ξ ∈ R.

By retracing the steps, we obtain the converse part and hence the proof is complete. �

3. Characterization of scaling functions for Λs-NUMRA

In this section, we characterize the functions φ ∈ L2(R) that generateΛs-nonuniform
multiresolution analysis. For φ ∈ L2(R), define

Vj =

{
span{φ(· − λ) : λ ∈ Λs} if j = 0,
{ f : f ((sN)−j ·) ∈ V0} if j � 0.

(3-1)

Then it is clear that f ∈ Vj if and only if f (sN·) ∈ Vj+1 for all j ∈ Z. One can observe
that, if {Tλφ : λ ∈ Λs} is an orthonormal basis for V0, then {D jTλφ : λ ∈ Λs} is an
orthonormal basis for Vj, j ∈ Z.

DEFINITION 3.1. A function φ ∈ L2(R) is said to generate a Λs-NUMRA if the spaces
Vj defined in (3-1) together with φ form a Λs-NUMRA.

THEOREM 3.2. Let φ ∈ L2(R) be such that {Tλφ : λ ∈ Λs} is an orthonormal system
and the spaces Vj be as defined in (3-1). Then Vj ⊆ Vj+1 for all j ∈ Z if and only if there
exist (1/s)-periodic functions m1

0 and m2
0 such that

φ̂(sNξ) = (m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N))φ̂(ξ) a.e. ξ ∈ R.

PROOF. Suppose that Vj ⊆ Vj+1 for all j ∈ Z. Then, by (3-1), it is clear that f ∈ Vj if and
only if f (sN·) ∈ Vj+1 for all j ∈ Z. Since φ ∈ V0 ⊆ V1, φ(·/sN) ∈ V0. As {Tλφ : λ ∈ Λs}
is an orthonormal basis for V0,

φ
( x
sN

)
=
∑
λ∈Λs

aλφ(x − λ).
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Taking the Fourier transform on both sides,

φ̂(sNξ) =
1

sN

∑
λ∈Λs

aλφ̂(ξ)e−2πiξλ

=

( 1
sN

∑
λ∈sZ

aλe−2πiξλ +
1

sN

∑
λ∈(r/N)+sZ

aλe−2πiξλ
)
φ̂(ξ)

=

( 1
sN

∑
l∈Z

asle−2πiξsl +
1

sN

∑
l∈Z

a(r/N)+sle−2πiξ((r/N)+sl)
)
φ̂(ξ).

Thus,

φ̂(sNξ) = (m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N))φ̂(ξ),

where m1
0(ξ) = (1/sN)

∑
l∈Z asle−2πiξsl and m2

0(ξ) = (1/sN)
∑

l∈Z a(r/N)+sle−2πiξsl are
(1/s)-periodic functions in L2([0, 1/s)). By reversing the steps above, we get the
converse part. �

THEOREM 3.3. Let φ ∈ L2(R) be such that {φ(· − λ) : λ ∈ Λs} is an orthonormal system
and the Vj are the spaces as defined in (3-1). Then ∪j∈ZVj = L2(R) if and only if
limj→∞ |̂φ((sN)−jξ)|2 = c, c > 0, a.e. ξ ∈ [−(1/2s), (1/2s)).

PROOF. Assume that limj→∞ |̂φ((sN)−jξ)|2 = c, c > 0. Let f ∈ (∪j∈ZVj)⊥ and Pj be the
orthogonal projection onto Vj, j ∈ Z. For ε > 0, there exists a g ∈ L2(R) with ĝ ∈ Cc(R)
such that

‖ f − g‖ ≤ ε. (3-2)

Also note that ‖Pjg‖ = ‖Pj(g − f )‖ ≤ ε for all j ∈ Z.
Let us take Λs = {r0/N, r1/N} + sZ, where r0 = 0 and r1 = r, for simplicity. For

j ∈ Z,

‖Pjg‖2 =
∑
λ∈Λs

|〈g, D jTλφ〉|2

=
∑
λ∈Λs

|〈̂g, D̂ jTλφ〉|2

=
∑
λ∈Λs

∣∣∣∣∣
∫
R

(sN)−(j/2)ĝ(ξ)e2πiξλ(sN)−j
φ̂
(

ξ

(sN) j

)
dξ
∣∣∣∣∣2

=

1∑
m=0

∑
l∈Z

∣∣∣∣∣
∫
R

(sN)−(j/2)ĝ(ξ)e2πiξ((rm/N)+sl)(sN)−j
φ̂
(

ξ

(sN) j

)
dξ
∣∣∣∣∣2.

Next, by changing the variable ξ = (sN) jη,

‖Pjg‖2 = (sN) j
1∑

m=0

∑
l∈Z

∣∣∣∣∣
∫
R

ĝ((sN) jη)e2πiη(rm/N)e2πiηslφ̂(η) dη
∣∣∣∣∣2.
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Since ĝ has compact support, we can choose j large enough such that supp (̂g((sN) j·)) ⊂
[(−1/2s), (1/2s)]. As {

√
se2πiξsl : l ∈ Z} is an orthonormal basis for L2([−1/2s, 1/2s)),

‖Pjg‖2 =
(sN) j

s

1∑
m=0

∑
l∈Z

∣∣∣∣∣
∫ 1/2s

−1/2s
ĝ((sN) jξ)e2πiξ(rm/N) √se2πiξslφ̂(ξ) dξ

∣∣∣∣∣2

=
(sN) j

s

1∑
m=0

∫ 1/2s

−1/2s
| ĝ((sN) jξ)φ̂(ξ)|2 dξ

=
2(sN) j

s

∫
R

| ĝ((sN) jξ)φ̂(ξ)|2 dξ.

By change of variable,

‖Pjg‖2 =
2
s

∫
R

| ĝ(ξ)φ̂((sN)−jξ)|2 dξ

=
2
s

∫ 1/2s

−1/2s
| ĝ(ξ)φ̂((sN)−jξ)|2 dξ.

Since limj→∞ |̂φ((sN)−jξ)|2 = c a.e. ξ ∈ [−(1/2s), (1/2s)),

lim
j→∞
‖Pjg‖2 = lim

j→∞

2
s

∫ 1/2s

−1/2s
| ĝ(ξ)φ̂((sN)−jξ)|2 dξ

=
2c
s

∫
R

| ĝ(ξ)|2 dξ.

Note that ‖Pjg‖2 ≤ ε2 for all j and hence

‖ ĝ‖2 = ‖g‖2 ≤ sε2

2c
.

Since ‖ f ‖ ≤ ε + ‖g‖, we have ‖ f ‖ ≤ ε + ε
√

s/2c, which proves that f = 0 and hence⋃
j∈Z Vj = L2(R).
Conversely, suppose that

⋃
j∈Z Vj = L2(R). Then ‖ f − Pj f ‖2 → 0 as j→ ∞ for all

f ∈ L2(R). If f ∈ L2(R) is such that f̂ (ξ) = χ[−(1/2s),1/2s) (ξ), then ‖ f ‖2 = ‖ f̂ ‖2 = 1/s. Thus
‖Pj f ‖2 → ‖ f ‖2 = 1/s as j→ ∞. Now

‖Pj f ‖2 =
∑
λ∈Λs

|〈 f , D jTλφ〉|2

=
∑
λ∈Λs

|〈 f̂ , D̂ jTλφ〉|2

=
∑
λ∈Λs

∣∣∣∣∣
∫
R

f̂ (ξ)(sN)−(j/2)e2πiξλ(sN)−j
φ̂
(

ξ

(sN) j

)
dξ
∣∣∣∣∣2
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=
∑
λ∈Λs

∣∣∣∣∣
∫ 1/2s

−1/2s
(sN)−(j/2)e2πiξλ(sN)−j

φ̂
(

ξ

(sN) j

)
dξ
∣∣∣∣∣2

=

1∑
m=0

∑
l∈Z

∣∣∣∣∣
∫ 1/2s

−1/2s
(sN)−(j/2)e2πiξ((rm/N)+sl)(sN)−j

φ̂
(

ξ

(sN) j

)
dξ
∣∣∣∣∣2.

By changing the variable ξ = (sN) jη,

‖Pj f ‖2 = (sN) j
1∑

m=0

∑
l∈Z

∣∣∣∣∣
∫ 1/2s(sN) j

−(1/2s(sN) j)
e2πiη(rm/N)e2πiηslφ̂(η) dη

∣∣∣∣∣2.

For j ≥ 0, Ωj := [−(1/(2s(sN) j)), (1/(2s(sN) j))] ⊆ [−(1/2s), (1/2s)]. Hence,

‖Pj f ‖2 = (sN) j
1∑

m=0

∑
l∈Z

∣∣∣∣∣
∫ 1/2s

−1/2s
χ
Ωj

(ξ)e2πiξ(rm/N)e2πiξslφ̂(ξ) dξ
∣∣∣∣∣2.

Since {
√

se2πiξsl : l ∈ Z} is an orthonormal basis for L2([−(1/2s), (1/2s))),

‖Pj f ‖2 = (sN) j

s

1∑
m=0

∫ 1/2s

−1/2s

∣∣∣∣∣χΩj
(ξ)φ̂(ξ)

∣∣∣∣∣2 dξ

=
2
s

∫ 1/2s

−1/2s
|̂φ((sN)−jξ)|2 dξ.

Taking the limit as j→ ∞,

1
s
= lim

j→∞

2
s

∫ 1/2s

−1/2s
|̂φ((sN)−jξ)|2 dξ

and hence

lim
j→∞

∫ 1/2s

−1/2s
|̂φ((sN)−jξ)|2 dξ =

1
2

.

From (2-3), and since
∫ 1/2s
−1/2s((s/2) − limj→∞ |̂φ((sN)−jξ)|2) dξ = 0,

lim
j→∞
|̂φ((sN)−jξ)|2 = s

2
a.e. ξ ∈

[
− 1

2s
,

1
2s

)
. �

THEOREM 3.4. Let φ ∈ L2(R) and the Vj be as defined in (3-1). Then φ generates
Λs-nonuniform multiresolution analysis with dilation factor sN if and only if:

(1)
∑(sN/2)−1

p=0
∑

k∈Z |̂φ(ξ + (p/s) + kN)|2 = s/2 a.e. ξ ∈ R;

(2) limj→∞ |̂φ((sN)−jξ)|2 = c, c > 0, a.e. ξ ∈ [−(1/2s), 1/2s);

https://doi.org/10.1017/S1446788721000203 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000203


[11] Λs-nonuniform multiresolution analysis 369

(3) there exist (1/s)-periodic functions m1
0 and m2

0 such that

φ̂(sNξ) = (m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N))φ̂(ξ).

The proof follows from Theorems 2.4, 3.2 and 3.3.

Next we construct an example of a Λs-NUMRA with dilation factor sN using some
results of spectral pairs [4].

DEFINITION 3.5. Let A be a measurable subset of R and |A| the Lebesgue measure of
A such that 0 < |A| < ∞ and Λ ⊂ R is a discrete set. Then the pair (A,Λ) is said to be
a spectral pair if the collection {|A|−1/2e2πiξλχA (ξ) : λ ∈ Λ} is a complete orthonormal
system for L2

A, where L2
A is the subspace of L2(R) that consists of functions vanishing

outside of A almost everywhere.

PROPOSITION 3.6 [4]. Let V0 be a closed subspace of L2(R) and suppose that there
exist φ ∈ V0 and a discrete set Λ ⊂ R such that {Tλφ : λ ∈ Λ} is an orthonormal
basis for V0. Then, given a measurable set A ⊂ R with 0 < |A| < ∞, the mapping F :
V0 → L2

A defined by F(Tλφ) = |A|−1/2e2πiξλχA (ξ) is unitary if and only if the collection
{|A|−1/2e2πiξλχA (ξ) : λ ∈ Λ} is an orthonormal basis for L2

A.

The above proposition says that (A,Λ) is a spectral pair if and only if the mapping
F : V0 → L2

A defined by F(Tλφ) = |A|−1/2e2πiξλχA (ξ) is unitary, where V0 is the space
defined as in Proposition 3.6. The following result gives an equivalent condition for a
spectral pair.

THEOREM 3.7. LetΛ ⊂ R be discrete and A ⊆ R be measurable such that 0 < |A| < ∞.
Then (A,Λ) is a spectral pair if and only if∑

λ∈Λ
|̂χA (ξ − λ)|2 = |A|2 ∀ξ ∈ R.

For the proof, we refer to [4].
Let r be a positive odd integer and s = 2r. Let Λ = Λs = {0, (r/N)} + sZ and A =

[0, 1/s) ∪ [N/s, (N + 1)/s). To show that (A,Λ) is a spectral pair, we have to prove that∑
λ∈Λ
|̂χA (ξ − λ)|2 = |A|2 ∀ξ ∈ R.

That is, we have to prove that∑
n∈Z
|̂χA (ξ − sn)|2 +

∑
n∈Z

∣∣∣∣∣̂χA

(
ξ − r

N
− sn
)∣∣∣∣∣2 = |A|2 ∀ξ ∈ R. (3-3)

If g = χA ∗ χ̃A , where χ̃A (x) = χA (−x), then ĝ = |̂χA |2 ∈ L1(R).
Hence, by the Fourier inversion theorem, if ĝ ∈ L1(R) and b > 0, then

F −1
(∑

n∈Z
ĝ(ξ − bn)

)
=

1
b

∑
n∈Z

g
(n
b

)
δn/b(ξ).
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Using the above fact, we see that (3-3) is equivalent to

1
s

∑
n∈Z

(1 + e2πi(r/N)(n/s))(χA ∗ χ̃A )
(n

s

)
δn/s = |A|2δ0.

Since s = 2r,

1
s

∑
n∈Z

(1 + eπi(n/N))(χA ∗ χ̃A )
(n

s

)
δn/s = |A|2δ0. (3-4)

Thus, we have to prove (3-4) for A = [0, 1/s) ∪ [N/s, (N + 1)/s). Note that

(χA ∗ χ̃A )(n/s) = |A ∩ (A + (n/s))| = 0

for all n � 0, N,−N. Next, for n = N,−N, we have 1 + eπi(n/N) = 0. Thus,

1
s

∑
n∈Z

(1 + eπi(n/N))(χA ∗ χ̃A )
(n

s

)
δn/s =

2
s
|A|δ0 = |A|2δ0.

Hence, (A,Λs) is a spectral pair.

EXAMPLE 1. Let N ∈ N and 1 ≤ r ≤ sN − 1 be an odd integer such that r and
N are relatively prime, and s = 2r. Now define φ ∈ L2(R) by φ̂(ξ) = χB (ξ), where
B = [−(1/2s), 1/2s) ∪ [(2N − 1)/2s, (2N + 1)/2s). Since B = A − (1/2s), (B,Λs) is a
spectral pair. Let

V0 = span{φ(· − λ) : λ ∈ Λs},

where Λs = {0, (r/N)} + sZ, and define the spaces Vj as in (3-1). Since the Fourier
transform of φ(· − λ) is e−2πiξλχB (ξ) and (B,Λs) is a spectral pair, {φ(x − λ) : λ ∈ Λs} is
an orthonormal system in L2(R). Then, from Theorem 2.4,

(sN/2)−1∑
p=0

∑
k∈Z

∣∣∣∣∣̂φ(ξ + p
s
+ kN

)∣∣∣∣∣2 = s
2

a.e. ξ ∈ R.

Now limj→∞ |̂φ((sN)−jξ)|2 = limj→∞ |χB ((sN)−jξ)|2 = limj→∞ |χ(sN) jB
(ξ)|2 = 1 for all ξ ∈

[−(1/2s), (1/2s)). Next we find the (1/s)-periodic functions m1
0 and m2

0 such that

φ̂(sNξ) = (m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N))φ̂(ξ).

To compute m1
0 and m2

0, we use the relation

φ̂(sNξ) = χB (sNξ) = χC (ξ)

= (m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N))χB (ξ),

where C = [−(1/2s2N), 1/2s2N) ∪ [(2N − 1)/2s2N, (2N + 1)/2s2N). Fixing ξ ∈
[−(1/2s2N), 1/2s2N),

m1
0(ξ) + m2

0(ξ)e−2πiξ(r/N) = χC (ξ)
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on the interval [−(1/2s2N), 1/2s2N). Note that

χC

(
ξ +

1
s2

)
= χC (ξ), ξ ∈

[
− 1

2s2N
,

1
2s2N

)
.

Hence, one can choose m1
0(ξ) = χC (ξ) and m2

0(ξ) = 0 so that m1
0 and m2

0 are
(1/s)-periodic functions such that m1

0(ξ) + m2
0(ξ)e−2πiξ(r/N) = χC (ξ). Hence, from

Theorem 3.4, {Vj, φ}j∈Z is a Λs-NUMRA.

4. Condition for Λs-NUMRA wavelet filters

Suppose that the closed subspaces {Vj}j∈Z of L2(R) form a Λs-NUMRA with scaling
function φ ∈ L2(R). Then there is a function m0(ξ) of the form

m0(ξ) = m1
0(ξ) + e−2πiξr/Nm2

0(ξ),

where m1
0, m2

0 are (1/s)-periodic functions in L2([0, 1/s)) such that

φ̂(sNξ) = m0(ξ)φ̂(ξ).

Now define the functions ψk ∈ L2(R), k = 1, 2, . . . , sN − 1, by

ψ̂k(sNξ) = mk(ξ)φ̂(ξ), (4-1)

where

mk(ξ) = m1
k(ξ) + e−2πiξr/Nm2

k(ξ), k = 1, 2, . . . , sN − 1. (4-2)

The functions m1
k and m2

k , k = 1, 2, . . . , sN − 1, are called Λs-NUMRA wavelet fil-
ters. In this section, we prove the conditions on mk, k = 1, . . . , sN − 1 such that
{(sN) j/2ψk((sN) j · −λ) : k = 1, 2, . . . , sN − 1, j ∈ Z, λ ∈ Λs} is an orthonormal basis for
L2(R); we call the set of functions {ψk : k = 1, 2, . . . , sN − 1} as Λs-NUMRA wavelets.
Let us take ψ0 = φ for notational simplicity. The following proposition gives the
equivalent conditions for the system {ψk(· − λ) : k = 0, 1, . . . , sN − 1, λ ∈ Λs} to be an
orthonormal set in L2(R). When s = 2, these equivalent conditions coincide with the
conditions in [4, 5, 9]. Now we prove the following results using similar arguments as
in [4].

PROPOSITION 4.1. Let ψk ∈ L2(R), k = 0, 1, . . . , sN − 1. Then the system

{ψk(· − λ) : k = 0, 1, . . . , sN − 1, λ ∈ Λs}

is orthonormal if and only if

sN−1∑
p=0

wkl

(
ξ +

p
s

)
= sδkl (4-3)
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and

sN−1∑
p=0

αpwkl

(
ξ +

p
s

)
= 0, (4-4)

where α = e−2πir/sN and

wkl(ξ) =
∑
j∈Z

ψ̂k(ξ + jN)ψ̂l(ξ + jN), ξ ∈ R. (4-5)

PROOF. Suppose that {ψk(· − λ) : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is an orthonormal sys-
tem. Then

δklδλσ =

∫
R

ψk(x − λ)ψl(x − σ) dx

=

∫
R

ψ̂k(ξ)ψ̂l(ξ)e−2πiξ(λ−σ) dξ

=
∑
j∈Z

∫ N

0
ψ̂k(ξ − jN)ψ̂l(ξ − jN)e−2πi(ξ−jN)(λ−σ) dξ

=

∫ N

0

∑
j∈Z

ψ̂k(ξ − jN)ψ̂l(ξ − jN)e−2πiξ(λ−σ) dξ

=

∫ N

0
wkl(ξ)e−2πiξ(λ−σ) dξ

=

∫ 1/s

0

sN−1∑
p=0

wkl

(
ξ +

p
s

)
e−2πiξ(λ−σ)e−2πi(p/s)(λ−σ) dξ.

Letting λ = sm and σ = sn, m, n ∈ Z,

δmnδkl =

∫ 1/s

0

sN−1∑
p=0

wkl

(
ξ +

p
s

)
e−2πiξs(m−n) dξ.

Since {
√

se−2πiξsl : l ∈ Z} is an orthonormal basis for L2([0, 1/s)),

sN−1∑
p=0

wkl

(
ξ +

p
s

)
= sδkl.

Letting λ = (r/N) + sm and σ = sn, m, n ∈ Z,

0 =
∫ 1/s

0
e−2πiξs(m−n)e−2πiξr/N

sN−1∑
p=0

wkl

(
ξ +

p
s

)
e−2πip(r/sN) dξ.
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Since {
√

se−2πiξsl : l ∈ Z} is an orthonormal basis for L2([0, 1/s)),

sN−1∑
p=0

αpwkl

(
ξ +

p
s

)
= 0,

where α = e−2πir/sN . By reversing the steps above, we get the converse part. �

Now define an 2sN × 2sN matrix U(ξ) with entries Upq(ξ), 0 ≤ p, q ≤ 2sN − 1,
defined by

Upq(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1
q

(
ξ +

p

s2N

)
0 ≤ p ≤ sN − 1, 0 ≤ q ≤ sN − 1,

m2
q

(
ξ +

p − sN
s2N

)
sN ≤ p ≤ 2sN − 1, 0 ≤ q ≤ sN − 1,

αpm1
q−sN

(
ξ +

p

s2N

)
0 ≤ p ≤ sN − 1, sN ≤ q ≤ 2sN − 1,

αpm2
q−sN

(
ξ +

p − sN
s2N

)
sN ≤ p ≤ 2sN − 1, sN ≤ q ≤ 2sN − 1.

The following proposition characterizes when {Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is
an orthonormal system in terms of the matrix U(ξ).

PROPOSITION 4.2. Let ψk ∈ L2(R), k = 0, 1, . . . , sN − 1. Then the system

{Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs}

is orthonormal if and only if the matrix U(ξ) is unitary a.e. ξ ∈ R.

PROOF. Using (4-1) and (4-5),

wkl(sNξ) =
∑
j∈Z

mk

(
ξ +

j
s

)
ml

(
ξ +

j
s

)∣∣∣∣∣̂φ(ξ + j
s

)∣∣∣∣∣2.

By the (1/s)-periodicity of m1
k , m2

k , m1
l and m2

l ,

wkl(sNξ) = (m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ))
∑
j∈Z

∣∣∣∣∣̂φ(ξ + j
s

)∣∣∣∣∣2

+ m1
k(ξ)m2

l (ξ)
∑
j∈Z

e2πi(ξ+(j/s))r/N
∣∣∣∣∣̂φ(ξ + j

s

)∣∣∣∣∣2

+ m2
k(ξ)m1

l (ξ)
∑
j∈Z

e−2πi(ξ+(j/s))r/N
∣∣∣∣∣̂φ(ξ + j

s

)∣∣∣∣∣2.
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By writing j = p + (sN)q, p ∈ {0, 1, . . . , sN − 1}, q ∈ Z,

wkl(sNξ) = (m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ))
sN−1∑
p=0

w00

(
ξ +

p
s

)

+ m1
k(ξ)m2

l (ξ)
sN−1∑
p=0

α−pw00

(
ξ +

p
s

)

+ m2
k(ξ)m1

l (ξ)
sN−1∑
p=0

αpw00

(
ξ +

p
s

)
.

Next, using (4-3) and (4-4),

wkl(sNξ) = s(m1
k(ξ)m1

l (ξ) + m2
k(ξ)m2

l (ξ)). (4-6)

From (4-3) and (4-6),

sN−1∑
p=0

(
m1

k

(
ξ +

p

s2N

)
m1

l

(
ξ +

p

s2N

)
+ m2

k

(
ξ +

p

s2N

)
m2

l

(
ξ +

p

s2N

))
= δkl, (4-7)

0 ≤ k, l ≤ sN − 1. From (4-4) and (4-6),

sN−1∑
p=0

αp
(
m1

k

(
ξ +

p

s2N

)
m1

l

(
ξ +

p

s2N

)
+ m2

k

(
ξ +

p

s2N

)
m2

l

(
ξ +

p

s2N

))
= 0, (4-8)

0 ≤ k, l ≤ sN − 1.
Conditions (4-7) and (4-8) together are equivalent to saying that the matrix U(ξ) is

unitary a.e. ξ ∈ R. It is easy to observe that {Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is an
orthonormal system if and only if U(ξ) is unitary a.e. ξ ∈ R. �

The solvability of the system (4-7) and (4-8), given in [4] for the case s = 2, can
be extended for any even number s. The following theorem generalizes the result of
Gabardo and Nashed [4, Lemma 3.2].

THEOREM 4.3. If s = 2r and {Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is an orthonormal
system, then {Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is complete in V1.

PROOF. Suppose that {Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs} is an orthonormal system.
Then, from Proposition 4.2, U(ξ) is unitary for almost every ξ ∈ R. From condition
(iii) of Definition 2.3, it is enough to prove that{ 1

sN
ψk

( x
sN
− λ
)

: λ ∈ Λs, k = 0, 1, . . . , sN − 1
}

is complete in V0. For any f ∈ V0, there exists m f (ξ) =
∑
λ∈Λs

bλe−2πiλξ, where∑
λ∈Λs
|bλ|2 < ∞, such that f̂ (ξ) = m f (ξ)φ̂(ξ). Let us define a map V0 −→ L2

A, where
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A = [0, 1/s) ∪ [N/s, (N + 1)/s), by f �→ m fχA . Then, by Proposition 3.6, the above
map is unitary. Hence, it is enough to prove that

S := {e−2πi(sN)ξλmk(ξ)χA (ξ) : λ ∈ Λs, k = 0, 1, . . . , sN − 1}

is complete in L2
A. Let g ∈ L2

A be such that g ⊥ S. Since {e2πiλξχA (ξ) : λ ∈ Λs} is an
orthonormal basis for L2

A,

g(ξ) =
∑
λ∈Λs

aλe−2πiλξχA (ξ)

= (g1(ξ) + g2(ξ)e−2πiξ r
N )χA (ξ), (4-9)

where g1(ξ) =
∑

l∈Z asle−2πislξ and g2(ξ) =
∑

l∈Z a(r/N)+sl e
−2πislξ are (1/s)-periodic func-

tions. As g ⊥ S, for any λ ∈ Λs and any k ∈ {0, 1, . . . , sN − 1},

0 =
∫ 1/s

0
e−2πisNξλmk(ξ)g(ξ) dξ +

∫ (N+1)/s

N/s
e−2πisNξλmk(ξ)g(ξ) dξ

=

∫ 1/s

0
e−2πisNξλ

{
mk(ξ)g(ξ) + mk

(
ξ +

N
s

)
g
(
ξ +

N
s

)}
dξ.

Using (4-2) and (4-9),∫ 1s

0
e−2πiξsNλ[2{m1

k(ξ)g1(ξ) + m2
k(ξ)g2(ξ)} + e2πiξ(r/N)m1

k(ξ)g2(ξ)(1 + e2πi(r/s))

+ e−2πiξ(r/N)m2
k(ξ)g1(ξ)(1 + e−2πi(r/s))] dξ = 0.

Since s = 2r and r is an odd integer,∫ (1/s)

0
e−2πiξsNλ{m1

k(ξ)g1(ξ) + m2
k(ξ)g2(ξ)} dξ = 0. (4-10)

Now taking hk(ξ) = m1
k(ξ)g1(ξ) + m2

k(ξ)g2(ξ) and letting λ = sm, m ∈ Z,

sN−1∑
j=0

∫ ((j+1)/s2N)

(j/s2N)
hk(ξ)e−2πiξs2Nm dξ = 0.

Next, by changing the variable,∫ 1/s2N

0

sN−1∑
j=0

hk(ξ + (j/s2N))e−2πiξs2Nm dξ = 0.

Since {e−2πiξs2Nm : m ∈ Z} is an orthonormal basis for L2([0, 1/s2N)),

sN−1∑
j=0

hk

(
ξ +

j
s2N

)
= 0 a.e. ξ ∈ R. (4-11)
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Similarly, by letting λ = sm + (r/N) and using (4-10),

sN−1∑
j=0

α jhk

(
ξ +

j
s2N

)
= 0 a.e. ξ ∈ R. (4-12)

Consider the vector u(ξ) ∈ C2sN defined by

uk(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
g1

(
ξ +

k
sN

)
k = 0, 1, . . . , sN − 1,

g1

(
ξ +

k − sN
2sN

)
k = sN, sN + 1, . . . , 2sN − 1.

Thus, from (4-11) and (4-12),

U∗(ξ)u(ξ) = 0 a.e. ξ ∈ R.

As U(ξ) is unitary for almost every ξ ∈ R, we get u(ξ) = 0 and hence g = 0. This proves
completeness. �

Assume that s = 2r and let W0 = V⊥0 in V1. Then V1 = V0 ⊕W0. Writing Vj+1 =

Vj ⊕Wj, where Wj is the orthogonal complement of Vj in Vj+1, we obtain from (ii), (iv)
and (v) of Definition 2.3 that

L2(R) =
⊕
j∈Z

Wj.

Choose m1
k , m2

k , k = 1, 2, . . . , sN − 1, that satisfy (4-7) and (4-8) and define

ψk, k = 1, 2, . . . , sN − 1,

as in (4-1). Then, by Proposition 4.2 and Theorem 4.3,

{Tλψk : k = 0, 1, . . . , sN − 1, λ ∈ Λs}

is an orthonormal basis for V1. Since {Tλψ0 : λ ∈ Λs} is an orthonormal basis for V0,
{Tλψk : k = 1, . . . , sN − 1, λ ∈ Λs} is an orthonormal basis for W0. Also, it is easy to
observe that, for every j ∈ Z, {(sN) j/2ψk((sN) j · −λ) : k = 1, . . . , sN − 1, λ ∈ Λs} is an
orthonormal basis for Wj. Hence,

{(sN) j/2ψk((sN) j · −λ) : k = 1, . . . , sN − 1, j ∈ Z, λ ∈ Λs}

is an orthonormal basis for L2(R).
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