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Abstract
As space missions are needed in the future, the assembly volume of the space truss will become larger and larger,
and the advancing path of the on-orbit cellular robot to the mission target will become more and more complicated.
If the shortest moving path cannot be found in the truss environment, the climbing time of the robot on the truss
will be greatly increased. To improve the speed of the cellular robot moving to the target point on the large space
truss, this paper designs a cellular robot structure and configuration suitable for climbing on the truss and uses the
improved sparrow algorithm to solve the problem of robot motion path planning. By establishing a mathematical
model of the space truss, the improved sparrow algorithm is used to find the shortest path between the starting
point and the end point in the truss environment. Finally, the data of this algorithm are compared with the data of
other algorithms. The data results show that the improved sparrow algorithm is very effective in solving the optimal
path of the space truss. The improved sparrow algorithm keeps the same optimal path compared with the standard
sparrow algorithm, and the overall reaction time is increased by 51.60%, and the number of effective iterations is
increased by about 13.87%.

1. Introduction
In recent years, with the steady development of the space industry, the ability of human beings to explore
and develop space has been greatly improved, and human beings have begun to increase the exploration
and development of space resources, and the corresponding large-scale space structures have become
more and more. These large-scale space structures are generally assembled with trusses. Under the cir-
cumstances of a heavy workload, it is difficult to achieve the task of truss assembly only for astronauts
manually. Moreover, the space environment has potential safety hazards for astronauts who are working
outside the cabin, and the manual installation of space trusses by astronauts is limited. It costs a lot of
manpower and is dangerous. Therefore, some space control devices are needed to replace astronauts
to complete the task. The existing space manipulators are usually fixed in configuration and single in
function. It is necessary to launch a number of space control devices with different functions and con-
figurations, but at the same time, it leads to a lot of money consumption [1]. Moreover, most traditional
space robots are developed for the task of determining the scene, which has the disadvantages of high
cost, single function, and low redundancy [2]. In this context, a reconfigurable cellular robot working in
orbit in space has attracted researchers’ attention again. A space cell robot is a kind of robot that uses the
multilevel structure between organs, tissues, and cells to reconstruct various configurations according
to the requirements of space tasks. It originated from the concept of Cebot [3] put forward by Fukuda
T and others. With the rise of the concept of Cellular Satellites [4], the space cell robot has become
familiar to more researchers, and it has also become a popular research direction concept and a research
hotspot in the aerospace industry.
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In the aspect of cellular robot structure, many scholars have done relevant research. White et al. have
designed an Xbot module with telescopic ability, which relies on the connection of magnetic units dis-
tributed at four vertices to form a dynamic chain structure, which can shrink the overall size according
to the working environment and has high flexibility, but the whole telescopic movement is completed
by external drive, and its autonomy is greatly weakened [5]. Piranda et al. [6] proposed a spherical
module made of programmable substances, which realized the connection and movement between dif-
ferent modules by using human–computer interaction function and material characteristics, which broke
through the traditional module design idea and provided a reference for the design of new modules. Liu
[7] proposed a cubic reconfigurable modular robot. This module has a cubic structure, and each face has
a connection interface. The two connection interfaces on the opposite face are different: one is the active
connection interface and the other is the passive connection interface, which is a female head. When the
two modules are butted, the internal driving mechanism of the male-butted module drives the male head
to rotate and adjust the posture, and when the male head and the female head are coaxial, the female
head and the male head are pushed to finish butting. In order to ensure stable posture and easy operation,
a special base is designed for the cube module. The base is evenly distributed with female heads, which
can connect and support the module to ensure the stability of the module. Wen [8] designed three basic
cell units, namely connective cells, swing cells, and claw cells. In order to ensure the guiding function in
the process of cell unit reconstruction and docking, both active and passive connecting mechanisms are
designed as guide cone structures, which increases the efficiency and tolerance of cell unit docking, and
the active and passive docking mechanisms are mechanically locked by locking blocks, which increases
the connection reliability of cell unit. The connecting cell mainly undertakes the expansion function
of the robot, and its six surfaces can be active or passive connecting surfaces. In order to enable the
cellular robot to deform to meet different task requirements, we can consider changing the position of
the interface between adjacent cell units. Because the active and passive interfaces of these cell units
are all the same and the active and passive connecting mechanisms are all integrated on a panel, we can
change the position of the cube cell unit at will.

Many scholars have also studied path planning. In the realm of robot trajectory planning, researchers
have introduced various improvements and modifications to existing algorithms to optimize perfor-
mance. Wu et al. [9] proposed a bidirectional adaptive A∗ algorithm as an improved version of the
traditional A∗ algorithm with low search efficiency. To reduce the convergence time of this algorithm,
Fu et al. [10] added the variable step search node to the A∗ algorithm. On the other hand, Maurović
et al. [11] introduced a D∗ path planning algorithm that can find the optimal path even when the location
is unclear, and Wang et al. [12] further reduced the time of path planning by enhancing the D∗ algo-
rithm’s heuristic function. In another modification, Zhang et al. [13] added a collision factor to the D∗

algorithm, which contributed to finding the optimal route more effectively. In addition to these modifi-
cations, swarm intelligence algorithms like genetic algorithm (GA), particle swarm optimization (PSO),
and ant colony optimization (ACO) are also utilized in path planning. Yuan et al. [14] combined GA with
the artificial potential field method and successfully obtained the least-cost path in the two-dimensional
and three-dimensional grid environment. Pehlivanoglu [15] applied the clustering method to develop
a vibration GA that significantly reduced the operation time. Moreover, Shao et al. [16] proposed an
optimized PSO algorithm that relies on an improved particle mutation replacement strategy, Han [17]
introduced the unmanned aerial vehicle (UAV) cooperative task assignment model based on optimizing
PSO, and Reynoso [18] improved the mathematical matching method to solve the problem of optimal
trajectory planning and trajectory tracking control of robots. This involved the establishment of a com-
plete nonlinear dynamic model and parameter discretization, which yielded better results in trajectory
control accuracy through the adoption of the affine time-varying (ATV) control method. Similarly, Amir
et al. [19] proposed an adaptive GA that optimizes robot path planning in a two-dimensional complex
environment. This algorithm integrates traditional GAs and the Dijkstra algorithm to generate an initial
population, thus preventing premature convergence and ensuring population diversity for enhanced iter-
ative efficiency. Anh et al. [20] proposed a robot path coverage planning method relying on an improved
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A∗ algorithm to realize maximum path coverage of the target area while minimizing revisiting the cov-
ered area. This method generates path points to cover narrow spaces, adopts the zigzag approach to
address the limitations of the traditional algorithm, and improves the working efficiency of robot path
coverage. Nouri Rahmat Abadi et al. [21] use the neural network method to plan the motion of the
manipulator in the new class, and a neural network based on multilayer perceptron is used for training
data. Dharmawan et al. [22] introduce the sequential expanded Lagrangian homotopy (SELH) approach,
a method that offers the ability to sequentially determine the globally optimal robot’s motion while sat-
isfying the task constraints. Notably, SELH demonstrates superior planning execution speed compared
to alternative methodologies.

Many scholars have done research in the field related to the sparrow algorithm. Zhu [23] improved
the existing problems of the sparrow search algorithm (SSA) in the research of robot obstacle avoidance
and modeled the planning environment by a three-layer neural network. Halton sequence is introduced
to get the distribution of the first-generation population, and the more widely distributed and ergodic
individual positions are obtained, which improves the speed and efficiency of later optimization, and
the indexes of the improved algorithm are obviously optimized. Wang et al. [24] proposed the improved
sparrow search algorithm (ISSA) that leverages multi-strategy fusion to improve the quality and diversity
of the initial population through high-dimensional sine chaotic mapping while minimizing premature
convergence. Additionally, the attenuation factor is introduced in the algorithm to act on the discoverer
group to improve the local search ability while increasing the likelihood of jumping out of local optima.
Bai et al. [25] put forward an improved search strategy SSA ∗, which has a larger search range and faster
convergence speed and can generate an effective path within a specified number of iterations. ACO-SSA∗

algorithm is also proposed. The quality and stability of the initial paths play a crucial role in ensuring
the accuracy of pathfinding. An ACO algorithm is used by the individuals in the population to generate
effective initial paths, leading to high-quality solutions.

To complete truss handling and assembly tasks, space cellular robots need to navigate and climb to
the target point with speed and accuracy being paramount. Consequently, there is a pressing need to
explore advanced methodologies that can achieve this goal. Researching the path planning challenge for
cellular robots on trusses, this paper introduces a novel structure and configuration concept for cellular
robots that is specifically tailored to facilitate truss climbing. The paper also presents a truss path plan-
ning algorithm based on an enhanced sparrow algorithm, which greatly minimizes the time and power
consumption of robots traversing large space trusses. The proposed technique is designed to work seam-
lessly with various levels of complex truss environments, providing a path toward optimal mode of robot
operation and utilization. Furthermore, the successful implementation of this approach can significantly
enhance the overall efficiency of space truss handling and assembly tasks, with potential applications
in diverse settings such as construction, rescue, mining, and inspection. The extensive scope of this
research presents an opportunity for further exploration and insights into the challenges faced by space
cellular robots on trusses.

2. Structure and configuration design of cellular robot
2.1. Structural design of robot cell module
Aiming at the problem that the traditional manipulator has a single function and limited operating range,
which cannot better match the future on-orbit assembly tasks, this section designs four kinds of cell mod-
ules based on the self-reconfigurable modular theory. The truss cell robot adopts the idea of bionics, and
the most basic unit of the robot is called the cell. In the microgravity space environment, the cellular
robot is connected to a robot that can realize complex actions by combining different cellular modules,
which is called reconfiguration. Aiming at the on-orbit assembly task of space trusses with different
requirements and complex environments, researchers can use different reconstruction strategies to flex-
ibly complete the corresponding work objectives. A truss cell robot is a complex machine consisting of
diverse cell modules that carry out specific and unique functions. These cell modules work together in
harmony to achieve the overall goal of the robot, namely to navigate and operate effectively on trusses
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Figure 1. Structure diagram of cell unit module.

and other complex structures. In this paper, cell modules are divided into four categories: one is the
interstitial cell module that plays the role of connection and support, and the other three are the func-
tional cell modules that can perform the most basic actions, namely, the 180 swing cell module, the 360
rotation cell module, and the gripper cell module. The shapes of these four cell modules are all cubes
with a side length of 200 mm.

As shown in Fig. 1, there are four kinds of cell modules. The whole connecting mechanism of the
interstitial cell module can be divided into the external butting surface part and the internal mechanical
transmission part, and the internal mechanical transmission part can be divided into translation move-
ment and rotation movement according to the movement mode. Its working principle is that the internal
motor controls the transmission part to make the clamping block assembly extend outward from the con-
nection surface through linear translation motion, and at the same time, the clamping block assembly
makes radial expansion motion along the bevel gear through rotary motion. The combination of the two
motions makes the clamping block assembly firmly stuck in the clamping groove of the external dock-
ing surface and finally realizes the bidirectional connection function of interstitial cells. The connecting
mechanism used in this design occupies a small space, and each interstitial cell module can have two sets
of active connecting mechanisms; that is, the internal space layout of the module is reasonable so that
the two sets of active connecting mechanisms can work at the same time and do not interfere with each
other, further improving the docking efficiency of interstitial cells. Moreover, the current design utilizes
a mechanical slot connection approach, which offers numerous benefits. One of the major advantages of
this method is its high connection stability, ensuring a secure and reliable connection. Additionally, the
slot connection design features strong connection strength and can withstand high levels of mechanical
stress and heavy loads. In general, the mechanical slot connection design employed in this design pro-
vides exceptional durability and robustness, making it an ideal choice for a range of applications. The
swing cell module consists of two rotating shells. The main components installed in the upper rotating
shell are the motor, gear, worm gear, and rotating shaft. The power is output from the motor, transmitted
to the worm gear through the gear and finally transmitted to the worm gear shaft. The lower shell is
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connected with the upper rotating shaft, and the power of the upper rotating shell can be transmitted
to the lower rotating shell through the rotating shaft of the worm wheel, so as to realize the swinging
movement of 180◦. The worm wheel and worm can make the cell module mechanism realize the self-
locking function, which is more effective and stable in the rotation process. Each component is fixed
on the rotator, and when the swing cell module rotates, the internal components can operate stably and
effectively without being affected by the rotation. The internal structure of the 360◦ rotating cell module
consists of an upper rotating shell and a lower rotating shell, and its working principle is similar to that
of the swinging cell module. The worm gear transmission mode is adopted, and the power of the upper
rotating body is output through the rotating shaft, and the lower rotating body is connected with the
rotating shaft through the connecting disk to realize the rotation of the lower rotating body. The motor
shaft in the rotating module is connected with the hole on the worm, and the worm is directly connected
with the motor shaft through an interference fit to drive the worm to rotate, thus eliminating the gear
transmission part in the swing cell module. Functionally, the advantage of the rotating cell module is
that it can rotate 360◦, which increases the freedom of rotation. The worm gear structure has stable
transmission and good self-locking performance, which can stop the lower rotating shell from rotating
at any position. The gripper cell module can be used in many aspects, such as gripping objects, building
trusses, transporting trusses, and so on. In the robot design in this paper, the clamping function is to meet
the needs of the truss climbing task of an on-orbit truss cell robot. The linear movement of the lead screw
nut is caused by the rotational motion of the servo motor, which drives the lead screw. Subsequently,
the connecting parts transmit this linear motion to the short arm of the gripper, enabling it to move ver-
tically, so that the long arm can be driven to open and close, so that the whole gripper has two actions
of clamping and opening, and the truss can be clamped and loosened. The servo motor can control the
output torque more accurately, and it is more conducive to the digital control of the gripper cell module.

2.2. Configuration design of cellular robot
In this section, the serial configuration of cellular robots is designed. The requirements for a recon-
structed cellular robot undertaking the on-orbit assembly task of space trusses include various abilities.
Firstly, the robot must be capable of performing stable grasping, transporting, and assembling actions on
the truss components. Additionally, the robot should be able to move smoothly from its initial position
to the designated target location with high precision and reliability. The above-mentioned abilities are
imperative to ensure that the robot can execute its tasks effectively in a challenging and complex space
environment, where accuracy, stability, and safety are of utmost importance. Achieving these require-
ments will enhance the robot’s performance and flexibility, opening up new possibilities for space truss
handling and on-orbit assembly. This requires the reconstructed robot to have enough freedom to support
it to complete various grasping and climbing actions in the process of performing tasks.

In the space environment, the cellular robot needs at least 3 degrees of freedom to climb and walk on
the truss. Moreover, because the end effector needs one swing degree of freedom to adjust the posture
when the cellular robot carries out the truss installation task, the cellular robot needs at least four degrees
of freedom to ensure the ability to assemble the truss after reconstruction, including two rotational
degrees of freedom at both ends and two swing degrees of freedom in the middle. The number of degrees
of freedom of the robot should be suitable for its configuration. Too many degrees of freedom, such as
a seven-degree-of-freedom redundant cell robot, will waste the resources of cell modules.

Therefore, based on the perspective of human bionics, this paper designs a six-degree-of-freedom
cell robot, as shown in Fig. 2. The robot configuration is similar to the human body, and the first joint
uses a rotating cell module to output rotating action, which is similar to the human core. The second
and third joints use swing cell modules to output swing action, which is similar to human big and small
arms. The fourth and fifth joints use swing cell modules, and the sixth joint uses rotating cell modules.
These three joints are similar to human wrists. This configuration is not limited by the rotation angle of
the joint module and can assemble truss rods in any position and posture in the space truss environment,
which ensures that the robot can stably and flexibly accomplish the target task on the truss and has strong
on-orbit assembly efficiency.
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Figure 2. Six-DOF in-orbit truss cell robot.

3. Improved sparrow search algorithm
The SSA is a meta-heuristic algorithm that draws inspiration from sparrows’ foraging and anti-predation
behaviors [26]. Sparrow individuals are categorized as discoverers and entrants, working together to
determine the foraging direction and search range of the population. Additionally, certain individuals
within the population exhibit warning behavior, simulating the natural dangers that sparrows face and
ensuring the safety of the foraging process. SSA is characterized by simple parameters and high solv-
ing efficiency. However, when tackling complex optimization problems, issues arise such as reduced
population diversity and local optimal solutions. To address these challenges, this study proposes an
enhanced version of the standard SSA algorithm.

3.1. Improved sparrow search algorithm design
Within the SSA algorithm, the discoverer plays a crucial role in determining the foraging direction for the
entire population. Consequently, it is essential for the discoverer to possess a higher fitness value and a
broader search range. Additionally, the initial position of the individual population significantly impacts
the optimization performance of the algorithm. To enhance global exploration capabilities during the
update of the discoverer’s position and mitigate the negative impact of local optimal solutions in later
iterations, it introduces chaotic mapping for the initialization of the sparrow population. The update
process for the discoverer’s location is described as follows:

Xt+1
i,j =

⎧⎪⎨
⎪⎩

Xt
i,j · exp

(
− i

α · itermax

)
if R2 < ST

Xt
i,j + Q · L if R2 ≥ ST

(1)

In the given context, the variables and notations are described as follows: t denotes the current iter-
ation number, and j takes integer values from 1 to d representing the dimension information, where d
signifies the dimensionality. itermax is a constant that signifies the maximum number of iterations. Xij

denotes the position information of the ith sparrow in the jth dimension. α represents a random number
sampled from the uniform distribution in the interval (0, 1]. R2(R2 ∈ [0, 1]) and ST(ST ∈ [0.5, 1]) repre-
sent the early warning value and safety value, respectively. Q is a random number following a normal
distribution. L denotes a 1×d matrix, where all elements in the matrix are equal to 1.
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Figure 3. Distribution histogram of chaotic mapping.

To ensure a random and regular distribution of the sparrow population, it is necessary to apply a chaos
operator that maps the initial sparrow population. This ensures that the sparrow individuals traverse all
positions within the search range. The comparative analysis shown in Fig. 3 demonstrates the superior
distribution characteristics of the cubic map compared to the classical logistic map. Notably, the cubic
map significantly enhances the diversity of the sparrow algorithm, especially in the later stages. Based
on this observation, we include the chaotic operator from the cubic map in the SSA, aiming to maximize
global search efficiency.

Chaos operator has the advantages of randomness and regularity, and the cubic chaotic map has better
uniform distribution performance between [0,1]. Chaos operator has the advantages of randomness and
regularity, and the cubic chaotic map has better uniform distribution performance between [0,1]. The
formula for the cubic mapping is defined as follows:

y (i + 1) = 4y (i)3 − 3y (i)

−1 < y (i) < 1, y (i) �= 0, i = 0, 1, . . . , n
(2)

According to formula (1), M×d sparrows form an initial population, and the concrete steps of initial-
izing the sparrow population by using the cubic mapping chaos operator are as follows: To initialize the
sparrow population, each sparrow undergoes iterative computations using the formula (2) to generate
novel variable values within each dimension. Subsequently, these values are mapped to the sparrow pop-
ulation employing the function defined by formula (3). This procedure ensures the effective initialization
of the sparrow population:

Xi = Xlb + (Xlb − Xub) × (yi + 1) × 0.5 (3)

In the context provided, Xlb and Xub represent the lower and upper boundaries, respectively, of the
search dimension for each sparrow individual. The variable Xi denotes the resulting value of the individ-
ual variable after undergoing chaotic mapping. yi represents cubic sequences, a set of chaotic operators,
and the cubic sequence can be mapped to sparrow individuals according to formula (3).

For the entrants, their foraging behavior mainly depends on the optimal position of the discoverer, and
some entrants will always monitor the latter. Once the predation conditions are met, sparrows promptly
displace themselves from their current positions to engage in competitive foraging for sustenance. The
process of updating the location for an entrant is detailed as follows:

Xt+1
i,j =

⎧⎪⎨
⎪⎩

Q · exp

(
Xworst − Xt

i,j

i2

)
if i > n/2

Xt+1
p + ∣∣Xt

i,j − Xt+1
P

∣∣ · A+ · L otherwise
(4)

Within the given context, the notation and variables are described as follows: Xt
p represents the posi-

tion of an individual with the best fitness value in the t-th iteration, while Xworst corresponds to the
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position with the lowest global fitness value at the present moment. A denotes a 1×d matrix, and A+

is the transpose of A multiplied by the inverse of the transpose, denoted as AT(AT)−1. When i > n/2, it
means that the participant has a low fitness value and has no right to fight for food. Consequently, they
are obliged to explore new locations in search of foraging opportunities. Conversely, participants with
an index i less than or equal to n/2 pursue foraging opportunities in proximity to the optimal position.

During the simulation experiment, a subset of sparrows, commonly known as “watchmen,” typi-
cally comprise approximately 10% to 20% of the total sparrow population. These watchmen fulfill the
ongoing responsibility of diligently observing the sparrow population, promptly conveying early warn-
ing signals whenever perilous situations are detected. The primary objective behind these cautionary
signals is to guide the entire population toward adopting anti-predation behaviors. The convergence
rate of the standard vigilante position updating formula is reduced in the later period, and there is a
local optimal constraint. Therefore, the number of vigilantes is dynamically adjusted by using an adap-
tive factor, and the search range is expanded by a larger number of vigilantes at the beginning of the
algorithm. Toward the conclusion of the algorithm, reducing the number of watchmen can have advan-
tageous effects, promoting algorithmic accuracy and facilitating enhanced local exploration capabilities.
The dynamic decreasing formula of the number of watchmen is as follows:

Num = int

((
1 − t

tmax

)
× Numini

)
+ 1 (5)

where Num is the number of current watchmen, the symbol “t” represents the ongoing iteration count,
“tmax” denotes the maximum allowable number of iterations, and “Numini” represents the initial count
of watchmen.

The location update of the vigilante is described as follows:

Xt+1
i,j =

⎧⎪⎪⎨
⎪⎪⎩

Xt
best + β · ∣∣Xt

i,j − Xt
best

∣∣ if fi > fg

Xt
i,j + K ·

(∣∣Xt
i,j − Xt

worst

∣∣
(fi − fw) + ε

)
if fi = fg

(6)

Given the context, the notation and variables are defined as follows: Xbest represents the current global
optimal position. β is employed as the step control parameter. K is a random number sampled from the
interval [−1,1], and fi represents the fitness value of the current sparrow. Additionally, fg and fw are
utilized to denote the best and worst fitness values, respectively. ε denotes a minimal constant value.

Upon reaching a stagnation point in the algorithm, a Gaussian random walk strategy is employed to
generate fresh individuals. The generation formula for determining the position is as follows:

Xt+1
i = Gaussian

(
Xt

i , s
)

(7)

σ = cos

(
π × t

2tmax

)
× (

Xt
i − X∗

r (t)
)

(8)

where X∗
r is a random individual in the discoverer population, and the step size is adjusted by a cosine

function. As the number of iterations increases, there is a gradual reduction in disturbance, leading to
an enhanced ability to adjust the optimization direction of the algorithm. Consequently, this results in
an improvement in the search efficiency of sparrows.

The schematic representation of the enhanced SSA is illustrated in Fig. 4.

3.2. Example experiment and result analysis
To validate the efficacy of the enhanced chaotic sparrow search algorithm (CSSA), comparative experi-
ments were conducted, involving the ACO algorithm [27], PSO algorithm [28], and SSA algorithm [29].
To maintain fairness and consistency across the algorithms, a population size N = 30 and a maximum
iteration count T = 500 were set. Table I provides a comprehensive overview of the specific algorithm
parameters.
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Figure 4. Flowchart of the algorithm.

Table II provides a comprehensive overview of the essential details of each test function used.

(1) Optimization and comparison of the unimodal test function.

F1 and F2 are unimodal test functions that have the ability to test the local development of the algo-
rithm. To evaluate the performance of each algorithm, independent runs were conducted 50 times, with
the average value and standard deviation serving as evaluation metrics. The optimization outcomes are
presented in Table III, and the search space is shown in Fig. 5. It can be seen that, compared with the
classical algorithm, CSSA is greatly improved, and the global optimal solution can be found for F1, and
it performs better than other algorithms. The result obtained by CSSA for F2 is closer to the theoretical
optimal solution, and the optimization result is more stable. Obviously, CSSA has stable performance
and a better convergence effect, ranking first among these algorithms, and the improvement is of great
significance. CSSA can enhance the quality and distribution uniformity of the initial population by intro-
ducing chaotic sequence mapping, which is helpful for the algorithm to conduct a more comprehensive
search in the search space and achieve the purpose of improving the convergence accuracy and opti-
mization performance of the algorithm. Chaos operators can usually better explore the search space and
help to jump out of the local optimal solution by introducing randomness and nonlinear characteristics,
which is very important for unimodal test functions. This balance of exploration and development ability
is very important for finding the global optimal value in unimodal function.

(2) Optimize the comparison on multimodal test function.

In addition to that, F3 and F4 represent multimodal test functions, characterized by a significant
number of local extreme points. These test functions serve as suitable benchmarks for evaluating the
algorithm’s optimization capability. Each algorithm was independently executed 50 times, and the opti-
mization results are detailed in Table IV, while the convergence behavior is visually represented in Fig. 6.
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Table I. Algorithm parameters.

Algorithm Parameter setting
ACO α = 1, β = 5, τ0 = 0.55, ρ = 0.3
PSO c1 = c2 = 1.49445, ω = 0.729
SSA SD = 0.2, ST = 0.8, PD = 0.2
CSSA SD = 0.2, ST = 0.8, PD = 0.2

Table II. Test function information table.

Serial Testing Dimension Hunting Optimal
number function d zone value

1 F1(x) =
n∑

i=1

x2
i 30 [−100,100] 0

2 F2(x) =
n∑

i=1

|xi| +∏n
i=1 |xi| 30 [−10,10] 0

3 F3(x) =
n∑

i=1

−xi sin (
√|xi|) 30 [−500,500] −418.9829×d

4 F4(x) =
n∑

i=1

[x2
i − 10 cos (2πxi) + 10] 30 [−5.12,5.12] 0

5 F5 (x) =
11∑

i=1

[
ai − x1(b2+bix2)

b2
i +bix3+x4

]2

4 [−5,5] 0.0003

6 F6(x) =
4∑

i=1

−ci exp ( −
3∑

j=1

aij(xj − pij)2) 3 [0,1] −3.86

Table III. The optimization results of the single-peak test function.

Single-peak test function ACO PSO SSA CSSA
F1 Average value 1.34E-05 7.41E-44 1.89E-257 0.00E+00

Standard deviation 1.19E-20 1.32E-43 0.00E+00 0.00E+00

F2 Average value 1.42E-05 1.24E-23 1.63E-93 9.54E-129
Standard deviation 8.55E-21 7.66E-24 8.49E-93 5.02E-128

Figure 5. Search space of F1 and F2.

A noteworthy observation is that CSSA consistently converges toward the global optimal solution when
dealing with F3, demonstrating superior stability compared to other algorithms. Notably, ACO exhibits
the highest level of instability. Moreover, CSSA showcases improved stability and convergence speed in
addressing the challenges posed by F4.
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Table IV. The optimization results of the multi-peak test function.

Multi-peak test function ACO PSO SSA CSSA
F3 Average value −5.65E+02 −9.87E+02 −1.02E+03 −1.26E+03

Standard deviation 2.75E-12 3.09E+02 2.36E+01 8.86E-08

F4 Average value 1.41E+01 3.31E-02 1.01E-04 0.00E+00
Standard deviation 0.00E+00 1.81E-02 0.00E+00 0.00E+00

Figure 6. Optimization curve of F3 and F4.

(3) Optimize the comparison on the fixed-dimension test function.

F5 and F6 are fixed-dimension test functions, which are suitable for comprehensive verification of
global search and local exploration capability. Each algorithm has been independently run 50 times,
and the optimization outcomes of the aforementioned algorithm are presented in Table V, while Fig. 7
depicts its convergence behavior. A close analysis of the data reveals that the convergence speed of CSSA
on F5 is absolutely superior, and it effectively converges to the global optimal value, which is obviously
superior to ACO, PSO, and SSA. On F6, CSSA can quickly converge to the optimal value.

In a single-peak test function, traditional sparrow algorithms may excessively rely on collective intel-
ligence, leading to suboptimal performance in the global search process. In contrast, the improved
sparrow algorithm introduces individual exploration behavior, enabling better local search and faster
convergence to the extreme value of the unimodal function. Compared to ACO and PSO algorithms, the
improved sparrow algorithm can adjust the level of cooperation among sparrows more flexibly, allowing
the algorithm to better adapt to problem characteristics. In multimodal functions, there are multiple local
optima. The improved sparrow algorithm has the ability to escape local optima to some extent. This is
because the improved sparrow algorithm incorporates the cubic mapping chaotic operator into the basic
sparrow algorithm, facilitating better initialization of the sparrow population. This ensures that sparrow

https://doi.org/10.1017/S0263574723001480 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001480


358 Ye Dai et al.

Table V. The optimization results of the fixed-dimension test functions.

Fixed-dimension
test function ACO PSO SSA CSSA
F5 Average value 1.36E-03 4.41E-04 3.34E-04 3.23E-04

Standard deviation 4.39E-19 3.01E-04 2.36E-04 0.97E-06

F6 Average value −4.64E-01 3.08E-12 −2.89E-01 −3.91E+00
Standard deviation 2.17E-03 −3.86E+00 2.50E-03 2.64E-04

Figure 7. Optimization curve of F5 and F6.

individuals traverse all positions, thereby enhancing the robustness and optimization performance of the
algorithm.

To sum up, the improved sparrow algorithm performs better in both unimodal and multimodal func-
tions, primarily due to its diverse search strategies and a balance between collective intelligence and
individual exploration. To sum up, CSSA has good optimization performance and obvious competitive
advantage regardless of unimodal, multimodal, and fixed-dimension test functions.

4. Path planning based on improved sparrow algorithm
This section focuses on employing the improved CSSA to optimize path planning for in-orbit cel-
lular robots navigating within a space truss environment. Specifically, the objective is to determine
the shortest path from the robot’s starting point to the target point within a known space coordinate
environment.
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Figure 8. Truss mathematical model.

4.1. Construction of truss space model
The spatial truss is composed of truss rods and truss joints. We take the geometric centers of 96 truss
joints as path nodes and input the coordinate data of these nodes into Matlab to generate the mathematical
model of the spatial truss and establish the three-dimensional spatial coordinate system of the model,
as shown in Fig. 8. The coordinates of some truss joints are shown in Table VI. The starting point of
setting path optimization is truss joint No.1, and the target point is truss joint No.96. Then the target
task is to find the shortest path from node 1 to node 96 in the three-dimensional space model.

4.2. Path planning algorithm flow
In this section, CSSA is used to solve the three-dimensional path planning problem and find out the
shortest path of the climbing movement of the in-orbit cellular robot in a truss environment. The specific
algorithm flow steps based on CSSA are as follows:

Step 1: Import the coordinate information of each node and establish the coordinate model of the
space truss.

Step 2: Initialize parameters and set the maximum number of iterations of the algorithm, safety
threshold, etc.

Step 3: Set the number of population discoverers, watchmen, and participants.
Step 4: Set the starting point and target point.
Step 5: Update the positions of discoverer, vigilante, and entrant to get the target path.
Step 6: Conduct a comparison between the current path and the previous path. In the event that the

current path proves to be shorter, update the optimal path accordingly.
Step 7: Evaluate whether the termination condition has been met. If not, proceed to repeat steps 5

and 6. Conversely, if the termination condition is satisfied, the optimal path is to be presented as the
final output.
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Table VI. Coordinates of some truss joints.

Node x y z Node x y z
1 0 0 0 79 4957.20 497.61 449.61
2 0 995.21 0 80 4957.20 1492.83 449.61
3 0 1990.42 0 81 4957.20 2488.05 449.61
4 0 2985.63 0 82 4957.20 3483.27 449.61
5 0 3980.84 0 83 4957.20 4478.49 449.61
6 0 4976.05 0 84 4957.20 5473.71 449.61
7 991.44 0 0 85 5948.64 497.61 449.61
8 991.44 995.21 0 86 5948.64 1492.83 449.61
9 991.44 1990.42 0 87 5948.64 2488.05 449.61
10 991.44 2985.63 0 88 5948.64 3483.27 449.61
11 991.44 3980.84 0 89 5948.64 4478.49 449.61
12 991.44 4976.05 0 90 5948.64 5473.71 449.61
13 1990.42 0 0 91 6940.08 497.61 449.61
14 1990.42 995.21 0 92 6940.08 1492.83 449.61
15 1990.42 1990.42 0 93 6940.08 2488.05 449.61
16 1990.42 2985.63 0 94 6940.08 3483.27 449.61
17 1990.42 3980.84 0 95 6940.08 4478.49 449.61
18 1990.42 4976.05 0 96 6940.08 5473.71 449.61

Table VII. Initial parameter settings.

Algorithm name Initial parameter setting
CSSA n = 50, I = 50, ST = 0.8, PD = 0.2, SD = 10
SSA n = 50, I = 50, ST = 0.8, PD = 0.2, SD = 10
ACO α= 1, β = 5, Nc = 50, I = 50
PSO c1 = c2 = 1.49445, ω = 0.729

4.3. Path planning simulation and analysis
In this section, Matlab is used to simulate the path planning of an on-orbit cellular robot. To evaluate
the performance of the enhanced SSA, we utilized the ACO algorithm, the PSO algorithm, and the
conventional SSA for on-orbit cellular robot path planning.

As shown in Table VII, for CSSA and SSA, the population size was set to n = 50, with a maximum
of 50 iterations. The safety threshold (ST ) was determined as 0.8, and the discoverer accounted for
20% of the population size, while the number of sparrows aware of danger was set to 10. ACO utilized
parameters “α = 1” and “β = 5,” with a population size of Nc = 50 and a maximum iteration count of 50.
As for PSO, the inertia weight was assigned as 0.729, while the social learning factor (c1) and individual
learning factor (c2) were both set to 1.49445. The starting point of the path planning was designated as
truss joint 1, with truss joint 96 serving as the target point. In order to enhance path planning efficiency,
this simulation study disregarded the actual volume of the robot, resulting in simulation-obtained paths
that align with the truss model.

The optimization outcomes of the ACO path planning are presented in Fig. 9. The simulation results
demonstrate that the algorithm yielded the shortest path nodes as follows: “1 → 49 → 55 → 56 → 62
→ 63 → 69 → 70 → 76 → 77 → 83 → 84 → 90 → 96,” with an optimal path length of 12,628.74 mm.
Figure 10 exhibits the optimization results of PSO path planning, illustrating that the shortest path nodes
acquired by this algorithm are “1 → 8 → 15 → 22 → 29 → 36 → 42 → 48 → 96,” with an optimal path
length of 9719.42 mm. Moreover, the results of the SSA path planning optimization (Fig. 11) indicate
that the shortest path nodes obtained by this algorithm align with the previous PSO path, namely “1 →
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Figure 9. ACO path planning finder results.

0
0 1

1000 8

2000 15

223000

x

294000
36

5000
42

200

6000
48

y

7000
6000500040003000200010000

z

400

96

Optimal path

Figure 10. PSO path planning finder results.

8 → 15 → 22 → 29 → 36 → 42 → 48 → 96,” and the optimal path length remains at 9719.42 mm.
Finally, Fig. 12 showcases the optimization outcomes of CSSA path planning, revealing that the shortest
path nodes derived from this algorithm coincide with the path obtained by PSO and SSA, specifically
“1 → 8 → 15 → 22 → 29 → 36 → 42 → 48 → 96.” The optimal path length remains unchanged at
9719.42 mm.

Through comparative analysis, it is evident that PSO, SSA, and CSSA all demonstrate the capability
to identify an optimal path. However, ACO tends to find an optimal path that is characterized by a pro-
longed distance. This discrepancy arises due to the ACO algorithm’s susceptibility to getting trapped in
local optimal solutions during the early stages, impeding its ability to escape. The convergence behav-
ior of each algorithm’s robot path planning is depicted in Fig. 13. Notably, from Fig. 13, it is apparent
that CSSA exhibits a faster convergence rate compared to PSO and SSA. Moreover, the curve exhibits
smooth variations with minimal amplitude.

To ascertain the effectiveness and superiority of CSSA, the iteration times and population number
are selected as independent variables, and the standard SSA is set as the experimental control group.
The optimal path and reaction time are comprehensively evaluated, and the running results are shown
in Table VIII.

Based on the findings in Table VIII, it is evident that the optimal path index exhibits significant
improvement as the number of iterations and population increases. Specifically, when the number of
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0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5
× 104

ACO

PSO

SSA

CSSA

Iterations

O
p
ti

m
al

 p
a
th

 l
e
n
g
th

/m
m

Figure 13. Iterative curves of algorithms.

https://doi.org/10.1017/S0263574723001480 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001480


Robotica 363

Table VIII. Algorithm comparison.

Optimal path index Reaction time index
Population Optimal Average Standard Optimal Average Standard

Iterations quantity Algorithm value value deviation value value deviation
5 5 SSA 9910.23 9970.35 34.56 0.45 0.62 0.05

CSSA 9880.35 9882.01 0.67 0.51 0.67 0.05
10 10 SSA 9842.29 9865.21 10.31 2.31 2.61 0.16

CSSA 9753.66 9754.29 0.34 0.38 2.60 0.17
15 15 SSA 9739.21 9749.61 2.53 5.61 6.74 0.27

CSSA 9726.53 9727.55 0.53 6.01 6.69 0.28
20 20 SSA 9721.93 9724.31 0.48 8.23 13.62 0.41

CSSA 9719.42 9719.42 0.00 7.31 13.73 0.41
25 25 SSA 9720.12 9721.03 0.37 20.63 22.41 1.14

CSSA 9719.42 9719.42 0.00 20.32 22.41 1.12
30 30 SSA 9719.42 9719.42 0.00 25.53 28.37 2.15

CSSA 9719.42 9719.42 0.00 25.43 28.77 2.14

Table IX. Comparison of SSA and CSSA indicators.

Parameter index SSA CSSA
Shortest route/mm 9719.42 9719.42
Reaction time/s 28.37 13.73
The times of iteration to obtain the optimal path for the first time 30 20
Iteration times of population convergence 30 20
Effective iteration times/% 67.65 77.03

iterations and population reaches approximately 20, CSSA successfully generates the shortest path for
the in-orbit cellular robot traversing the truss structure. At this point, the shortest path length measures
9719.42 mm, with an average path length of the same value. The corresponding reaction time is 7.31 s,
surpassing SSA by 0.05% in this regard while achieving an 11.18% reduction in the optimal reflection
time. Conversely, SSA only converges to an optimal path when the number of iterations and population
is approximately 30.

Analyzing the standard deviation index of the optimal path reveals a notable issue with the standard
SSA algorithm when confronted with path optimization challenges. Specifically, the algorithm is prone
to local optimal solutions, resulting in substantial deviation of the optimal path data for the in-orbit
cellular robot on the truss when the iteration number and population are set at lower values, which leads
to a large deviation of the optimal path data of the in-orbit cellular robot on the truss when the iteration
number and population number are low, and CSSA effectively avoids this problem. According to the
reaction time index, it can be seen that the introduction of CSSA-improved strategies increases part
of the running time, but it does not introduce additional time error to the overall performance of path
optimization and still maintains high optimization stability.

In order to show the performance gap between CSSA and SSA in more detail, the optimization results
are shown in Table IX.

From Table IX, it can be observed that the optimal path obtained by CSSA for in-orbit cellular robots
remains consistent with the standard SSA. The overall reaction time has increased by 51.60%, and the
effective iteration count has increased by approximately 13.87% compared to the standard SSA.

In conclusion, the enhanced SSA has achieved improvements in convergence speed and optimization
stability to a certain extent, significantly reducing the number of iterations required to obtain the optimal
path for in-orbit cellular robots compared to the standard SSA. The introduction of enhanced algorithmic
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strategies has had no additional impact on time complexity and space complexity, maintaining their
consistency. Consequently, it can be inferred that the enhanced strategies effectively enhance the search
performance and optimization efficiency of the algorithm, making the ISSA well suited for addressing
the path search problem in on-orbit truss cellular robots.

5. Conclusions
This study presents a novel structure and configuration for a cell robot specifically designed for climbing
on trusses, based on the current path planning problem of cell robots in truss climbing. Furthermore,
an ISSA is proposed. The three-dimensional truss is mathematically modeled using MATLAB, and the
improved SSA is employed to solve the optimal path problem for the robot during truss climbing. The
improved sparrow algorithm proposed in this paper has many advantages. The introduction of chaotic
operators can increase the diversity of the search process, which helps improve the global search ability
of the algorithm. Usually, the random performance of chaotic operators can make the algorithm expand
the search scope, help the algorithm solve the problem of falling into local optimal solution, thus improv-
ing the performance on complex problems and enabling the improved sparrow algorithm to solve various
optimization problems. However, the chaos operator also introduces an additional calculation process,
including generating a chaotic sequence and integrating with the search process, which may increase the
calculation cost of the algorithm, and some problems are not sensitive to chaos, so the improved sparrow
algorithm proposed in this paper is not suitable for such problems. Generally speaking, using chaotic
operators to improve the sparrow algorithm can increase the global search performance and diversity, but
it also needs to deal with additional parameters and calculation costs, and it needs to carefully balance
chaos and search efficiency to adapt to different types of optimization problems.

The main findings and conclusions of this research are as follows:

1. A modular structure and robot configuration for a reconfigurable space cell robot are designed
in this study. This cell robot can achieve truss climbing motion in space and accomplish truss
assembly and transportation tasks. The design of the cell robot structure is sophisticated, enabling
rich functionality and offering significant scientific and practical value.

2. An ISSA is proposed in this study. Specifically, the algorithm’s initial population quality and con-
vergence speed are enhanced by introducing chaotic and adaptive factors. The improved SSA is
compared with other algorithms using different test functions. The results indicate that CSSA
exhibits excellent optimization performance and a notable competitive advantage, regardless
of whether the test functions are unimodal, multimodal, or fixed-dimension. This confirms the
superiority of CSSA.

3. A path planning method suitable for three-dimensional trusses is proposed in this study. The
experimental results are compared with those of the ACO algorithm, PSO algorithm, and stan-
dard SSA. It is observed that CSSA outperforms ACO, PSO, and SSA in terms of convergence
speed, with smoother curve changes and smaller variations. Compared to the standard SSA,
CSSA shows an overall improvement of 51.60% in response time and an approximate increase
of 13.87% in effective iteration count. The experimental results validate the rationality and
superiority of the ISSA in solving the optimal path problem during truss climbing.
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