
SUMS OF FRACTIONS WITH BOUNDED NUMERATORS 

B. M. STEWART AND W. A. WEBB 

1. Introduction. The general problem considered in this paper is that of 
sums of a finite number of reduced fractions whose numerators are elements 
of a finite set 5 of integers, and whose denominators are distinct positive 
integers. Egyptian, or unit, fractions are merely the case 5 = {1}. Problems 
concerning these fractions have been treated extensively. Another specific case 
5 = {1, — 1} has been treated by Sierpinski (2). 

2. General results. The following theorem completely characterizes those 
sets S — {ai, . . . , an] for which every rational number can be expressed in 
the form 

(i) £ + £+... + £ , , l 6 5 , 

where the bt are distinct positive integers such that (a'*, bt) = 1. The bt are 
taken to be positive, since allowing them to be negative is equivalent to 
including — a* in 5. 

THEOREM 1. If S = {ai, . . . , an}, then every rational number a/b can be 
expressed in the form (1) if and only if (ai, . . . , an) = 1 and not all of the at 

are of the same sign. Moreover, a/b can be expressed in this way using each a* 
equally often. 

Proof. For the sufficiency proof we construct integers A * by specifying their 
prime factorizations. 

Let gi, . . . , qn be distinct primes such that (gx g2 . . . qn, ba± a^. . . an) = 1, 
and let qi\At. To be definite, let 2*11-4*. Note that the qt may be chosen 
arbitrarily large. 

If p is a prime that divides at least one of b, au . . . , am then since 
(ai, . . . , an) — 1, there is at least one j such that p K dj. To be definite, let 

j be minimal. 
(i) If p*\\b, a > 1, let pa\\Aj and p\ Aui?± f. 
(ii) lip Kb, let £ p y and £|,4*, i ^ j . 

Define A = Ax A2. . . An and K = a^A/Ax) + . . . + an{A/An). 
If a > 0, we want K > 0. (We assume b > 0.) There is at least one au say 

ak, that is positive. Since the qt may be chosen arbitrarily large, we choose 
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gi, . . . , g*_i, g*+i, . . . , gn so large that 

k i | M i + . . . + lafc-.il/-4t_i + \ak+i\/Ak+1 + . . . + \an\/An < ak/Ak. 

This guarantees K > 0. Similarly, if a < 0, we choose the qt such that i£ < 0. 
For each p defined above we have p \ aj(A/'Aj), but p\a% (A/Ai), i ?- jy so 

p \ K. Thus (auK) = 1, i = 1,. . . , w. By construction (a*, .4 *) = 1. Hence 
(di,AiK) = 1, z = 1, . . . , n. Also by construction if pa\\b, then £a||^4y (for 
some j ) ; therefore b\A, and we write A = be. 

Combining the above we see that 

be A AXK^ ' " ^ AnK' 

If a > 0, express ac as a finite sum of distinct unit fractions whose denom­
inators are elements of the arithmetic progression \a,\. . . an\qi . . . qn x + 1 
with x > 0. This is possible by a theorem of P. J. van Albada and J. H. van 
Lint (5, p. 172, Theorem 3.4); see also R. L. Graham (1). If a < 0, express 
— ac in this form. Thus 

N j 

ac = ^2 " 

where the Vj are of the same sign as a. Then 

(2) 6 = 6^ = S V4^\S ^ / / ' 
Note that, for either a > 0 or a < 0, all denominators are positive when the 
sums are multiplied out, since all A t > 0, and both K and ^ are of the same 
sign as a. 

Since (auVj) = 1 for all i and j , and since {auAiK) — 1, each fraction in (2) 
is reduced. The denominators are distinct: for if i ^- k, then A t Kvr ^ Ak Kvs 

because q_J\Ax but qt\ AkKvs; and if r ?- s, then 4̂ ^ i^^r ^- AtKvs, because 
2;r ?- vs. We also note that each at is used the same number of times, namely N. 

It remains to discuss the case a = 0. By the above arguments if a ?- 0, then 
a/6 can be represented in the form (2) with each numerator repeated N times. 
Similarly, it is possible to represent —a/b in the form (2) with each numerator 
repeated N' times, using primes q't so large that every denominator used in 
representing —a/b exceeds every denominator used in representing a/b. Hence 
a representation of 0 = a/b + ( — a/b) in the form (1) is available with each 
numerator repeated N + Nf times. 

For the necessity proof, first we assume that (_i, . . . , an) = d > 1. Suppose 
a/b to be represented in the form (1). Let B be the least common multiple of 
the bf. Note that (_, B) = 1 because d\a't and (a!u bi) = 1. From a/b = dC/B 
we have dbC = aB. Since (_, B) = 1, it follows that d\a. Hence if d \ a, then 
a/b cannot be represented in the form (1). 
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Secondly, even if (ax, . . . , an) = 1, but the at are all of one sign, it is obvious 
that fractions a/b of the other sign cannot be represented by (1). 

COROLLARY, If all the at are positive (negative), then any fraction a/b > 0 
(a/b < 0) can be expressed in the form (1) if and only if (ah . . . , an) = 1. 

Proof. The proof is exactly the same as for Theorem 1, except that the sign 
of K becomes irrelevant. 

3. The number of summands. Theorem 1 tells us when a fraction a/b 
can be expressed in the form (1). The next question that might be asked is: 
How many fractions of the desired type are necessary to express a given 
fraction? Obviously the number used in the proof of Theorem 1 is very large. 
The number of fractions necessary clearly depends on 5, but we might ask if 
there is any set S such that for some fixed n0 all fractions in some interval 
can be expressed in the form (1) using fewer than n0 summands. In Theorem 2 
we prove that no such set S exists. 

Let Am(S) be the set of all a/b which can be expressed in the form (1) using 
m or fewer fractions. 

LEMMA 1. The set Am(S) is nowhere dense. 

Proof. Our original proof for any S followed the method of Sierpinski (2) for 
the case S = {1, —1}. For the case 5 = {1} this method can be traced to the 
work of H. J. S. Smith (3). The referee has suggested an alternative proof, 
which we present here. 

If A is a set of real numbers, let L (A) = Ll(A) be the set of limit points of A. 
Define LS+1(A) = L(L8(A)), s > 1. For the sets A and B define 

A + B = {a + b\a G A, b G B}. 

It can be shown that if at least one of the sets A or B is bounded, and if 
LS(A) = 0 and U(B) = 0, then Ls+l~l{A + B) = 0. 

Let Hx = {0, ± 1 , ± 1 / 2 , ± 1 / 3 , . . .} and let 

Hk = {dx + d, + ... +dk\dte Hx), k>l. 

Since L2(Hi) = 0 and Hk+i = Hi + Hk, it follows from the above result, by 
induction on k, that Lk+1(Hk) — 0. 

For the set S = {ai, . . . , an) let M be the maximum value of \a/\. Then 
Am(S) C HmM. Since LmM+l(HmM) = 0, it follows that Am(S) is nowhere dense. 

THEOREM 2. For any given set 5, in every interval there exist rational numbers 
a/b whose representation in the form (1) requires arbitrarily many fractions. 

Proof. If all rational numbers in an interval were expressible in the form (1) 
using m or fewer fractions, then Am(S) would include the set of all rational 
numbers in the interval. But by Lemma 1 we know that Am(S) is nowhere 
dense, while the rational numbers are dense. 
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4. A specific case. In this section we consider the case S = {1, —1}. 

LEMMA 2. a/b is expressible in the form (dzl/ri) + (±l/r2) if and only if 
there exist dh d2 such that di\b, d2\b, and di ± d2 = ka, k 9^ 0. 

Proof. If such dx and d2 exist, then a/b = (1 /&0M)) ± (l/k(b/d2)). 
Conversely, since a/b and — a/b are both expressible, or both not expressible, 

we consider only the signs in the case a/b = \/r ± 1/s. Let (V, s) = d, r = r'd, 
s = sfd, so that a/b = (5' ± rr)/r's'd. Since ( / , s') = 1, it follows that 
(V ± / , rV) = 1. Let k = (sf ± r', d). Since we may assume a/b to be 
reduced, it follows that a = (sf zh r')/& and b = r's'(d/k). Thus we have 
s' dz r' = &a, & ^ 0, and rV|è, in agreement with the lemma. 

LEMMA 3. a/b is expressible as a/b = (=Ll/fi) + . . . + (=bl/rm) if there 
exist di, . . . , dm, divisors of b, such that 

(±d1) + . . . + ( ± 0 = ka, k^ 0. 

Proof. From the hypotheses a/b = (zhl/ife(6/di)) + . . . + ( ± l / £ ( 6 / 4 J ) -

THEOREM 3. If S = {1, —1} /Aen a/Z> G A2(S) for a fixed a > 0 a?zd a// Z> 
sufficiently large if and only if a = 1, 2, 3, 4, or 6. 

Proof. If a ^ 1, 2, 3, 4, or 6, there exists an r such that (r, a) = 1 and 
r ^ ± 1 (mod a). By Dirichlet's theorem there exist infinitely many k such 
that p = a& + r is a prime. Then for a/£ the only divisors of the denominator 
are ± 1 and ±p. Since r ^ =1=1 (mod a), no combination of these divisors has 
a sum which is a non-zero multiple of a. By Lemma 2 it follows that 
a/p g A2(S). 

Conversely, if a = 1, then 1/6 G ̂ 4i(5); hence \/b G -4 2 (S) trivially. If 
a = 2, 3, 4, or 6, we may assume a/b to be reduced; hence we may express 
b = ok + r, with r = =j=l. Both di = b and d2 = r divide b and di — d2 = 
b — r = ka, with & 3̂  0 if b > 1. Since di 5^ d2, it follows from Lemma 2 that 
a/£ G A2(S) whenever (a, b) = 1 and 6 > 1. 

THEOREM 4. 7/ 5 = {1, —1}, /Aew a/b G -4 3 (S) /or a fixed a > 0 awd a// 6 
sufficiently large if a < 36. 

Proof. Using a different method, Sierpinski (2) was able to show Theorem 4 
for a < 20. However, the result is easily obtained for a < 30 by the use of 
Lemma 2. We illustrate the method for a = 22. 

We suppose that we have completed the proof of Theorem 4 for 0 < a < 22. 
Hence we may assume that (22, b) = 1 and we write b = 22g ± r , r = 1, 3, 5, 
7, or 9. We note that 22/6 = \/q =F r/qb. We complete the proof by showing 
that r/qb is in A2(S) if q > 1, hence if b > 31. 

The hypothesis q > 1 implies that 1, g, 6, gô are distinct divisors of qb. If 
r < 8, we may consider the possibilities of q (mod r) and show that the sum 
or difference of some two of these divisors is a non-zero multiple of r. Hence 
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Lemma 2 applies to show that r/qb is in A2(S). (When r < 8, this argument 
using combinations of 1, q, b = aq, bq = aq2 (mod r) is applicable for all a) . 

If r = 9, we consider the possibilities of q (mod 9). If q = 0, 3, or 6 (mod 9), 
then qb = 0 (mod 9); hence 9/qb reduces to a unit fraction that is in A2(S) 
trivially. If g = 1 (mod 9), then 9\q - 1. If q == 2 (mod 9), then 9|£ + 1. If 
g = 4 or 5 (mod. 9), then 9\qb - 1. If q = 7 (mod 9), then 9|6 - 1. If 
q = 8 (mod 9), then 9|g + 1. Hence Lemma 2 applies to show that 9/qb is in 
A2(S). This completes the proof for a = 22. 

For some of the cases in Theorem 4 there are new difficulties, but these 
may be circumvented by using q + 1 or q — 1, in place of q, in the first step 
of obtaining a representation. 

Notice the difference between this case S = {1, — 1} and the case of 
Egyptian fractions 5 = {1}. For Egyptian fractions it is known that 
a/b G Aa(S) for b sufficiently large; but this is known to be a best possible 
result only for a = 2 and a = 3. It seems almost certain that a/b Ç A t(S) for 
some t < a if a > 3. For a discussion of the Erdôs conjecture 4/6 6 4̂ 3(5) 
and the Sierpinski conjecture h/b G A 3(5) see (4). 

In contrast, for the case S = {1, —1}, Theorem 4 shows that the first 
unresolved situation appears at a considerably later stage, namely, a = 36. 
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