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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC

IVANO CIARDELLI

Department of Philosophy, Sociology, Pedagogy, and Applied Psychology,
Università di Padova

Abstract. The notion of global supervenience captures the idea that the overall distribution of
certain properties in the world is fixed by the overall distribution of certain other properties. A
formal implementation of this idea in constant-domain Kripke models is as follows: predicates
Q1, ... , Qm globally supervene on predicates P1, ... , Pn in world w if two successors of w
cannot differ with respect to the extensions of the Qi without also differing with respect to
the extensions of the Pi . Equivalently: relative to the successors of w, the extensions of the Qi
are functionally determined by the extensions of the Pi . In this paper, we study this notion of
global supervenience, achieving three things. First, we prove that claims of global supervenience
cannot be expressed in standard modal predicate logic. Second, we prove that they can be
expressed naturally in an inquisitive extension of modal predicate logic, where they are captured
as strict conditionals involving questions; as we show, this also sheds light on the logical features
of global supervenience, which are tightly related to the logical properties of strict conditionals
and questions. Third, by making crucial use of the notion of coherence, we prove that the relevant
system of inquisitive modal logic is compact and has a recursively enumerable set of validities;
these properties are non-trivial, since in this logic a strict conditional expresses a second-order
quantification over sets of successors.

§1. Introduction. Many important debates in analytic philosophy revolve around
claims of supervenience. Among the different notions of supervenience considered in
the literature, an especially natural one is the notion of global supervenience [25]. The
idea is that a class of properties B globally supervenes on a class of properties A if the
overall distribution of theB-properties in the world is fully determined (metaphysically,
nomically, or in some other way) by the overall distribution of the A-properties.
Although the focus is traditionally on properties, an insightful example of global
supervenience can be given if we allow ourselves to consider binary relations: the
relation being a grandparent of globally supervenes on the relation being a parent of, as
the overall distribution of parent-of relations in the world fully determines the overall
distribution of grandparent-of relations (but not the other way around).

In this paper, we shall be interested in global supervenience from a logical perspective.
Thus, instead of focusing directly on properties and relations, we will focus on their
linguistic counterparts: predicates. In the setting of constant-domain Kripke models,
a natural notion of global supervenience among predicates can be defined: predicates
Q1, ... , Qm globally supervene on predicates P1, ... , Pn at a world w if two worlds that
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2 IVANO CIARDELLI

are possible from the point of view of w cannot differ in the extensions of the former
predicates without also differing in the extensions of the latter. As a special case, a single
predicate Q globally supervenes on a single predicate P at w in case two successors of
w cannot differ on the extension of Q without also differing on the extension of P.

This modal notion is a very natural one, both from a philosophical and from a purely
mathematical point of view. It thus seems relevant to ask whether global supervenience
claims can be expressed in some system of modal logic, so that we can formally
regiment and assess inferences involving such claims. Such inferences can be diverse
and non-trivial, as illustrated by the following examples:

(1) Necessarily, x is a grandparent of y just in case x is a parent of a parent of y.
Therefore, the grandparent-of relation globally supervenes on the parent-of
relation.

(2) For every x, the property being a sibling of x globally supervenes on the
properties being a brother of x and being a sister of x.
Therefore, the sibling-of relation globally supervenes on the brother-of and
sister-of relations.

Or, moving now to argument schemata for simplicity:

(3) P globally supervenes on Q and R.
P does not globally supervene on R.
Therefore, Q does not globally supervene on R.

(4) Q globally supervenes on P.
It is contingent whether there are any Q.
Therefore, it is not necessarily the case that every object is P.

The contribution of this paper is threefold. First, we show that global supervenience
claims cannot be regimented in standard modal predicate logic QML, the extension of
first-order predicate logic by modalities � and �. In fact, even the most basic example
of a global supervenience claim, namely, the claim that a single predicate Q globally
supervenes on a single predicate P, cannot be expressed by a QML-formula.

Second, we show that global supervenience claims can be regimented naturally in an
extension of modal predicate logic based on inquisitive semantics [12]. The language
of this system includes formulas corresponding to questions; for instance, if P is a
unary predicate, we have a formula ∀x?Px representing the question which objects are
P. The modal operator � is allowed to apply to arbitrary formulas in the language. In
this logic, global supervenience claims can be expressed as strict conditionals having as
their antecedent the question about the extension of the subvenient predicates, and as
their consequent the question about the extension of the supervenient predicates. Thus,
e.g., the global supervenience of Q on P will be expressed by the strict conditional

�(∀x?Px → ∀x?Qx)

having the question which objects are P as its antecedent, and the question which
objects are Q as its consequent. We will discuss how this regimentation sheds light on
the logical properties of global supervenience claims, which can be traced back to the
logical properties of strict conditionals and those of the relevant questions.

Third, we will prove some key meta-theoretic results about our inquisitive modal
predicate logic. In particular, we will show that the logic is recursively enumerable
and compact; this is non-trivial, since the semantics of implication in inquisitive logic
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 3

involves a second-order quantification over sets of worlds, which could in principle
lead to a logic with essentially second-order features. The proof strategy combines
ideas from Meißner & Otto [30] and from Ciardelli & Grilletti [10], making crucial use
of the technical notion of coherence [26] to give a translation of our modal logic into
classical two-sorted first-order logic. Essentially, we will show that the second-order
quantification over sets of worlds introduced by implication can be traded in each
particular formula for a sequence of first-order quantifications over single worlds, the
length of which depends on the particular formula at hand.

The paper may be seen as contributing to three different lines of work: work on the
logical analysis of supervenience; work on inquisitive modal logic; and work on logics
of dependence.

From the point of view of the literature on the logical analysis of supervenience,
what this paper contributes is a modal logic capable of regimenting inferences involving
global supervenience. In previous work, Lloyd Humberstone investigated some general
properties of supervenience relations [21, 22] and connected a version of individual
supervenience to a version of definability [23]. More recently, Goranko & Kuusisto
[16] as well as Fan [14] (building again on Humberstone [24]) introduced modal
logics of supervenience, but they focused on supervenience between the truth-values
of propositions. This kind of supervenience may be regarded as a special case of the
general notion of global supervenience considered in this paper (since a proposition
may be regarded as a relation with arity 0). But this special case is very special, because
propositions may only have two extensions at a world (truth and falsity), which allows
one to list all the possible ways in which the supervenience may be realized (each
“way” corresponding to a particular truth-function) and thereby to treat the logic
of supervenience in a purely combinatorial fashion; this is a non-starter in the case
of supervenience between relations of arity n ≥ 1, for which the number of possible
extensions at a world is not fixed a priori, and is possibly infinite.

From the viewpoint of the literature on inquisitive modal logic, the main finding is
an important, and perhaps surprising, difference between the propositional setting and
the predicate logic setting. In the propositional setting, the possibility of applying the
modality� to inquisitive formulas, while interesting for various reasons (e.g., it allows a
unified account of knowledge ascriptions: see [7, 11]), does not increase the expressive
power of the logic. Indeed, it was proved by Ciardelli [7] that in that setting, every
modal formula of the form �ϕ, where ϕ is allowed to contain inquisitive operators,
is equivalent to some Boolean combination of standard modal logic formulas: for
instance, the modal formula �?p, expressing the fact that all successors agree on the
truth-value of p, is equivalent to the formula �p ∨�¬p of standard modal logic. Our
results in this paper imply that things are different when we add the modality � to
inquisitive predicate logic: in particular, the strict conditional �(∀x?Px → ∀x?Qx) is
not equivalent to any formula in standard modal predicate logic. Thus, in this setting
allowing� to apply to inquisitive formulas leads to a more expressive modal logic—one
that can regiment claims over and above those expressible in standard modal predicate
logic.

Finally, from the point of view of the recent literature on the logic of dependence (see,
among others, [3, 15, 36]), this paper considers a salient but under-explored variety
of functional dependence: while most existing work focuses on functional dependence
between the values of variables, our focus is on functional dependence between the
extensions of predicates. We explore this notion guided by the idea, discussed in detail

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S175502032500005X
Downloaded from https://www.cambridge.org/core. IP address: 10.1.9.28, on 23 Jul 2025 at 20:34:26, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S175502032500005X
https://www.cambridge.org/core


4 IVANO CIARDELLI

by Ciardelli [6], that dependence is intimately related to question entailment, and thus
naturally regimented in a logical framework equipped with the resources to express
questions.

The paper is structured as follows: in Section 2 we introduce the target notion of
global supervenience and discuss some of its basic features; in Section 3 we prove that
global supervenience claims are not expressible in standard modal predicate logic; in
Sections 4 and 5 we introduce an inquisitive modal predicate logic and show that in
this logic, global supervenience claims are expressible as strict implications among
questions; we also discuss how this analysis sheds light on the logical features of global
supervenience; in Section 6 we prove that our inquisitive modal logic is compact and
has a recursively enumerable set of validities; Section 7 concludes the paper, outlining
several directions for future work.

§2. Global supervenience. Supervenience claims are at the heart of many debates
in various areas of philosophy, from metaphysics to philosophy of science, philosophy
of mind, and metaethics. The general idea behind the notion of supervenience is as
follows: given two classes of properties A and B, B supervenes on A if there cannot
be a difference with respect to B-properties without a corresponding difference in
A-properties. This idea can be made more precise in different ways. One approach
focuses on individuals: on this understanding, a supervenience relation holds when
two individuals cannot differ in their B-properties without also differing in their
A-properties; this leads to various notions of individual supervenience (weak or strong,
depending on whether we compare the two individuals in the same possible world,
or across different worlds). Another approach focuses on worlds as a whole: on this
more global understanding, supervenience holds when two worlds cannot differ in the
overall distribution of the B-properties without also differing in the overall distribution
of the A-properties. For an equivalent formulation, let us call two worlds A- (or B-)
indiscernible when they do not differ in the distribution of the A (or B) properties.
Then we can use the phrasing originally used by Kim [25]: B globally supervenes on A
in case any two possible worlds that are A-indiscernible are also B-indiscernible.

This second, global notion of supervenience can in turn be further specified in
different ways. Different formalizations have been discussed in the literature (see
[4, 27, 29, 34, 35]), and it has been debated which of them, if any, best captures
certain supervenience theses. The difficulty with giving a precise definition stems from
the fact that, when different worlds come with different domains of individuals, it is not
obvious what it means for two worlds to be A- (or B-) indiscernible; as Leuenberger
[27] emphasizes, this depends crucially on how individuals are identified across worlds.
While this issue is important, if our intention is to study the modal logic of global
supervenience, it seems advisable to start by setting aside the complications involved
with cross-world identification, focusing first on the case in which the domain of
individuals is simply fixed across worlds.1 In this setting, there is an obvious way to
cash out the idea of indiscernibility: two worlds are A-indiscernible if they agree on

1 Additionally, note that the idea of global supervenience is meaningful not just when the
relevant notion of possibility is metaphysical, but for many other notions of possibility as
well (epistemic, deontic, historical, etc.) For many applications, the domain of individuals
can indeed be held fixed. For instance, talking about the students in a given class, the property
being the tallest globally supervenes on properties of the form having height x; intuitively,
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 5

the extension of all the A-properties (and similarly for B).2 As a result, the claim that
B globally supervenes on A means that whenever two possible worlds agree on the
extension of all A-properties, they also agree on the extension of all B-properties.

This notion of supervenience can be made mathematically precise in the setting of
constant-domain Kripke models. Let us recall the relevant definition and fix some
notation.

Definition 2.1 (Constant-domain Kripke models). A constant-domain Kripke model
is a tupleM = 〈W,D,R, I 〉 whereW �= ∅ is the universe of possible worlds,D �= ∅ the
domain of individuals, R ⊆W ×W the accessibility relation, which determines for
each w ∈W the set of worlds R[w] = {v ∈W | wRv} which are possible relative to
w, and I an interpretation function which, relative to each w ∈W , assigns to each
n-ary predicate symbol P in the language a set of n-tuples Iw(P) ⊆ Dn. For readability,
we write Pw for Iw(P).3

Relative to a Kripke model, a unary predicate P expresses a property, viewed as a
function that maps each world w to a corresponding extensionPw . We could thus define
a notion of global supervenience as a relation between sets of unary predicates. In fact,
however, it is natural to give a more general definition, which applies to predicates
of arbitrary arity (cf. [28]). For instance, as mentioned in the introduction, we would
want to say that the binary predicate being a grandparent of globally supervenes on the
binary predicate being a parent of, since the extension of the latter fully determines the
extension of the former: once we fix who is a parent of whom, that determines who is a
grandparent of whom. We will thus define global supervenience as a relation between
sets of arbitrary predicates.4

this claim only requires us to consider situations in which the same students have different
heights—it need not involve situations in which the set of students is different.

2 Interestingly, this is also the understanding that Kim seems to have had in mind in the
original paper where the term global supervenience is introduced [25]. Using the class of all
psychological properties as an example, he writes:

to say that two worlds are psychologically indiscernible is to say that for every
psychological property P and every individual x, x has P in one just in case
x has P in the other.

Note that the quantification over individuals is not relativized to a particular world, and
so a fixed domain of individual seems to be presupposed. It is clear from the context that
this example is only intended to illustrate the general idea that, for an arbitrary class of
properties A:

to say that two worlds are A-indiscernible is to say that for every property P
in A and every individual x, x has P in one world just in case x has P in the
other.

This is logically equivalent to saying that two worlds are A-indiscernible if they agree on
the extension of each A-property.

3 For simplicity, we assume throughout the paper that our language contains only predicates
as non-logical symbols. Everything we say generalizes to the case in which the language
contains function symbols, in which case the interpretation function will have to interpret
these symbols as well.

4 The definition can be further extended to the case in which A and B are sets of open formulas
α(x1, ... , xn) of modal predicate logic, as such formulas, like predicates, also define n-ary
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6 IVANO CIARDELLI

Definition 2.2 (Global supervenience). Let A,B be sets of predicate symbols. We
represent the claim that B globally supervenes on A by the notation:

A � B.
We refer to the predicates in B as the supervenient predicates, and to the predicates
in A as the subvenient predicates. For readability, we drop the brackets and write
P1, ... , Pn � Q1, ... , Qm instead of {P1, ... , Pn} � {Q1, ... , Qm}.

Relative to a world w in a constant-domain Kripke model M = 〈W,D,R, I 〉, the
supervenience claim A � B is true if any two successors that agree on the extension of
all A-predicates also agree on the extension of all B-predicates. In symbols:

w |= A � B ⇐⇒ ∀v, u ∈ R[w] :

(Pv = Pu for all P ∈ A) implies (Qv = Qu for all Q ∈ B).

The special case of the claim P � Q, involving just one subvenient predicate P and
one supervenient predicate Q, will play a prominent role below. Therefore, we spell out
its truth-conditions explicitly:

w |= P � Q ⇐⇒ ∀v, u ∈ R[w] : Pv = Pu implies Qv = Qu

Let us illustrate the previous definition by means of an example.

Example 2.3. Suppose our language contains three unary predicates, P,Q,R. Let
N be the set of natural numbers, and let E,O be the sets of even and odd numbers
respectively. Consider a model where the domain of individuals is N, the universe is
W = {vX | X ⊆ N}, the accessibility relation is R =W ×W , and the interpretation
function is given by:

PvX = X QvX = X ∩ E RvX = X ∩O.
As the reader is invited to check, at any world w in this model, we have:

• Q and R both globally supervene on P: w |= P � Q and w |= P � R;
• P does not globally supervene on either Q or R:w �|= Q � P andw �|= R� P;
• P does globally supervene on both Q and R: w |= Q,R� P.

Global supervenience and functional dependency. From a logical point of view, global
supervenience is a form of functional dependency. For instance, P � Q means that,
relative to the successors of the evaluation world, the extension of Q is functionally
determined by the extension of P. More precisely, we have:

w |= P � Q ⇐⇒ there exists a function f such that ∀v ∈ R[w] : Qv = f(Pv).

More generally, if A and B are sets of predicates, A � B means that, relative to the
successors of the evaluation world, the extensions of the B-predicates are functionally
determined by the (joint) extensions of all the A-predicates. To make this precise, let
us define the extension of A at a world w (notation: Aw) to be the function mapping
each predicate P ∈ A to the corresponding extension Pw , and similarly for B. Then we
have:

w |= A � B ⇐⇒ there exists a function f such that ∀v ∈ R[w] : Bv = f(Av).

relations. We focus on predicate symbols for simplicity, but everything we will say generalizes
straightforwardly to open formulas.
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 7

The fact that global supervenience is a form of functional dependency is reflected by
the fact that it satisfies Armstrong’s famous axioms for functional dependency [2].
Defining logical entailment (Φ |= �), validity (|= ϕ), and equivalence (ϕ ≡ �) in the
obvious way with respect to all constant-domain Kripke models, Armstrong’s axioms
correspond to the following logical facts:

• Reflexivity: if B ⊆ A then |= (A � B);
• Augmentation: (A � B) |= (A ∪ C � B ∪ C) for any C;
• Transitivity: (A � B), (B � C) |= (A � C).

Global supervenience and definability. Global supervenience is also tightly con-
nected to the notion of definability. Recall the standard notion of definability in
first-order logic: a first-order theory Γ (a set of first-order sentences) defines an k-
ary predicate Q in terms of predicates P1, ... , Pn iff there is a formula ϕ(x) with
k free variables, in the language including only P1, ... , Pn and identity, such that
Γ |= ∀x(Qx ↔ ϕ(x)). Beth’s theorem states that Γ defines Q in terms of P1, ... , Pn
iff any two models of Γ that have the same domain and assign the same extension to
P1, ... , Pn also assign the same extension to Q. It then is only a small step to show the
following connection between definability and global supervenience.5

Proposition 2.4 (Global supervenience and definability). Let Γ be a set of (non-
modal ) first-order sentences and let �Γ = {�� | � ∈ Γ}. The following are equivalent:

1. Γ defines Q in terms of P1, ... , Pn;
2. �Γ |= (P1, ... , Pn � Q).

Proof. Note that with every world w of a constant domain Kripke model
M = 〈W,D,R, I 〉 we can associate a corresponding first-order structure Mw =
〈D, Iw〉. For a (non-modal) sentence � of first-order logic, truth at w in M according
to standard Kripke semantics simply coincides with truth in the structure Mw .

1⇒2 Suppose Γ defines Q from P1, ... , Pn. Consider a constant-domain Kripke
model and a world w that satisfies �Γ. We claim that w |= (P1, ... , Pn � Q).
To see this, consider two successors v, u ∈ R[w] that agree on the extensions
ofP1, ... , Pn. Since w satisfies�Γ, both v and u satisfy Γ; hence, the associated
first-order structures Mv and Mu are two models of Γ that assign the same
extensions to P1, ... , Pn; by Beth’s theorem, these structures must assign the
same extension to Q, which means that the worlds v and u assign the same
extension to Q.

1⇒2 Suppose Γ does not define Q from P1, ... , Pn. By Beth’s theorem there are
two models of Γ, M1 = 〈D, I1〉 and M2 = 〈D, I2〉, which assign the same
extension to each Pi but a different extension to Q.
We can then consider the Kripke model with two worlds w1, w2, constant
domain D, total accessibility relation, and interpretation defined so that
Iwi = Ii . Since both M1 and M2 satisfy Γ, both worlds w1 and w2 satisfy Γ
in M, and therefore both also satisfy �Γ. Sincew1 andw2 agree on P1, ... , Pn
but disagree on Q, both worlds falsify P1, ... , Pn � Q. Hence, either of these
worlds provides a counterexample to the entailment�Γ |= (Q1, ... , Qn � P).

5 In a similar spirit, a connection between a notion of individual supervenience and a more
demanding notion of definability is discussed by Humberstone [23].
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8 IVANO CIARDELLI

As an illustration of the connection we just established, consider the inference in
Example (1) from the introduction, repeated below:

(5) Necessarily, to be a grandparent is to be a parent of a parent.
So, the grandparent-of relation globally supervenes on the parent-of relation.

This argument can be regimented as follows:

�∀x∀y(Gxy ↔ ∃z(Pxz ∧ Pzy)) ∴ P � G.
Since the first-order formula ∀x∀y(Gxy ↔ ∃z(Pxz ∧ Pzy)) defines G in terms of P,
Proposition 2.4 ensures that the inference is logically valid.

Decomposing global supervenience? The global supervenience claims of the form
P1, ... , Pn � Q1, ... , Qm that we introduced in this section express interesting modal
propositions. It is then natural to ask whether these claims can be expressed in terms
of the unary modalities � and �, along with first-order quantifiers and connectives.
If so, the logical properties of global supervenience claims could be analyzed in terms
of the familiar properties of the logical primitives involved in the definition. In the
following sections we will see that the answer to this question is negative in the context
of standard modal predicate logic, but positive in the context of inquisitive modal
predicate logic.

§3. Global supervenience is not definable in standard modal predicate logic. Consider
standard modal predicate logic QML, i.e., the extension of predicate logic by modal
operators � and �, interpreted over constant-domain Kripke models in the usual way.
In this section we show that no formula of QML expresses the claim that predicates
Q1, ... , Qm globally supervene on predicates P1, ... , Pn. In fact, already the claim that
a single unary predicate Q globally supervenes on a single unary predicate P is not
expressible in QML.

Theorem 3.1. Let P,Q be two unary predicates. No sentence α of QML has the same
truth-conditions as P � Q.

In order to prove this theorem, we first recall the notion of bisimilarity for QML,
which is a natural combination of the standard notion of bisimulation for propositional
modal logic with the notion of back-and-forth equivalence for first-order predicate
logic.6

Definition 3.2 (Bisimilarity for QML) (see [37]). Let M1 = 〈W1, D1, R1, I1〉 and
M2 = 〈W2, D2, R2, I2〉 be two constant-domain Kripke models. Let D∗

1 and D∗
2 be

the sets of finite sequences of elements from D1 and D2, respectively. A relation
Z ⊆ (W1 ×D∗

1 ) × (W2 ×D∗
2 ) is called a bisimulation if whenever (w, a)Z(v, b) holds,

the tuples a = (a1, ... , an) and b = (b1, ... , bn) have the same length and the following
conditions hold:

• Atomic: for all atomic formulas ϕ(x1, ... , xn) with free variables in {x1, ... , xn},

M1, w |= ϕ(a1, ... , an) ⇐⇒ M2, v |= ϕ(b1, ... , bn);

• �-forth: for every w ′ ∈ R1[w] there is a v′ ∈ R2[v] such that (w ′, a)Z(v′, b);

6 Essentially the same notion in the setting of intuitionistic Kripke models is studied in [31].
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 9

• �-back: for every v′ ∈ R2[v] there is a w ′ ∈ R1[w] such that (w ′, a)Z(v′, b);
• ∃-forth: for every an+1 ∈ D1 there is a bn+1 ∈ D2 such that (w, aan+1)Z(v, bbn+1);
• ∃-back: for every bn+1 ∈ D2 there is a an+1 ∈ D1 such that (w, aan+1)Z(v, bbn+1).

We say that two worlds w ∈W1 and v ∈W2 are bisimilar (notation:M1, w ∼M2, v)
if there is a bisimulation Z with (w, �)Z(v, �), where � is the empty sequence.

It is straightforward to show that bisimilarity implies QML-equivalence, i.e., that
two bisimilar worlds satisfy the same QML-sentences.

Proposition 3.3 (Zoghifard & Pourmahdian [37]). If M1, w ∼M2, v, for every
sentence α of QML we haveM1, w |= α ⇐⇒ M2, v |= α.

Equipped with this background, we are now ready to prove Theorem 3.1.7

Proof of Theorem 3.1. We give a model that contains two worldsw0, w1 which agree
on the truth of all QML-sentences, and yet they disagree about the truth ofP � Q.

Our model has the set N of natural numbers as its domain. Let E and O be the sets of
even and odd numbers respectively, and consider the following family of subsets of N:

X = {X ⊆ N | X ∩ E is finite and X ∩O is co-finite}.
The universe of possible worlds of our model includes, in addition tow0 andw1, worlds
of the form vXi where X ∈ X and i ∈ {0, 1}. At world vXi , the extension of P is X,
while the extension of Q is either ∅ or N depending on the Boolean value i:

PvXi = X, QvXi =
{
N if i = 1
∅ if i = 0.

At worlds w0 and w1, the extension of both predicates is empty.8

Next, we define a function � : X → {0, 1} as follows, where #(X ∩ E) denotes the
cardinality of the set X ∩ E:

�(X ) =
{

0 if #(X ∩ E) is even
1 if #(X ∩ E) is odd.

Note that the function is well-defined: for X ∈ X , the intersection X ∩ E is finite by
definition of X , and so the cardinality #(X ∩ E) is a natural number, either even or
odd.

Finally, the accessibility relation of our model is defined as follows:

• R[w0] = {vXi | X ∈ X and i ∈ {0, 1}};
• R[w1] = {vXi | X ∈ X and i = �(X )};
• R[v] = ∅ for any world v distinct from w0, w1.

The basic idea behind the model we just defined is illustrated visually in Figure 1.
We have w1 |= P � Q: suppose vXi and vYj are successors of w1 that assign the

same extension to P; then X = PvXi = PvYi = Y , and so by the definition of R[w1] we

7 The idea for the proof of this theorem was developed in collaboration with Gianluca Grilletti.
8 For simplicity, we proceed under the assumption that P and Q are the only predicates in the

language, along with identity. If this is not the case, it suffices to assume that the extension of
other predicates is empty at every world in our model; the argument below then generalizes
straightforwardly.
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10 IVANO CIARDELLI

Figure 1. Basic idea behind the model used in the proof of Theorem 3.1. The two shaded areas
represent the sets of successors of the worlds w0 and w1. The key aspect of the model is that,
for each set X ∈ X , both worlds vX0 and vX1 are successors of w0, while only one of them is a
successor of w1.

have i = �(X ) = �(Y ) = j, which implies that the extension of Q is the same in vXi as
in vYj .

By contrast, w0 �|= P � Q: indeed, for an arbitrary set X ∈ X , the worlds vX0 and
vX1 are both successors of w0, and they assign the same extension X to P, but they
disagree on the extension of Q.

It remains to be shown that w0 and w1 satisfy the same sentences of QML. Given
Proposition 3.3, it suffices to show that w0 and w1 are bisimilar. For this, we define a
relation Z which consists of the following pairs:

• all pairs of the form ((w0, a), (w1, a));
• all pairs of the form ((vXi , a), (vYj, b)) such that, if n is the size of a and b, the

following three conditions hold:
1. i = j;
2. for all k ≤ n : ak ∈ X ⇐⇒ bk ∈ Y ;
3. for all k, h ≤ n : (ak = ah) ⇐⇒ (bk = bh).

We are going to show that Z so defined is a bisimulation. We need to show that
for each pair, all the five conditions in the definition of a bisimulation are satisfied.
Consider first a pair of the form ((w0, a), (w1, a)), where a = (a1, ... , an). For such a
pair, the only condition that is not straightforward to verify is �-forth (we leave it to
the reader to check the other conditions).

• �-forth. Take any vXi ∈ R[w0]. If i = �(X ) then we have vXi ∈ R[w1] and
obviously (vXi , a)Z(vXi , a). So we may suppose i �= �(X ). In this case, let e
be an even number which is not in X and which is distinct from each element
ak for k ≤ n. We know such an e exists, since X contains only finitely many
even numbers. Now let Y = X ∪ {e}. Then #(Y ∩ E) = #(X ∩ E) + 1, and
since i �= �(X ) it follows that i = �(Y ). This means that vYi ∈ R[w1], and we
have that (vXi , a)Z(vYi , a): the first and third condition of the definition of Z
are obviously satisfied; as for the second condition, the fact that ak ∈ X ⇐⇒
ak ∈ Y is guaranteed by the fact that X and Y only differ on the individual e,
which is distinct from each of the ak .
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 11

Next, consider a pair of the form ((vXia), (vYj, b)) in Z. In this case, the �-forth and
�-back conditions are trivial since both worlds vXi and vYj have no successors. For
the other three conditions, we reason as follows.

• Atomic condition. The atomic formulas we need to consider are of three forms:
(i) Qxk for k ≤ n; (ii) Pxk for k ≤ n; (iii) (xk = xh) for h, k ≤ n. Agreement
with respect to these formulas is guaranteed precisely by the three conditions
1-3 in the definition of Z for such pairs. More specifically:

– by condition 1 we have i = j, and therefore the extension of Q is either
empty in both worlds, or the entire domain in both worlds; this guarantees
that vXi |= Qak ⇐⇒ vYj |= Qbk ;

– by condition 2 we have for every k ≤ n that ak ∈ X ⇐⇒ bk ∈ Y , which
means that vXi |= Pak ⇐⇒ vYj |= Pbk ;

– by condition 3 we have for every k, h ≤ n that (ak = ah) ⇐⇒ (bk = bh),
which guarantees agreement about identity atoms (xk = xh).

• ∃-forth. Consider any object an+1 ∈ D. If an+1 = ak for some k ≤ n we may
take bn+1 = bk and it is straightforward to check that (vXi , aan+1)Z(vYj, bbn+1).
If on the other hand an+1 is distinct from each ak for k ≤ n, we may take
bn+1 to be any number distinct from each bk for k ≤ n, with the condition
that bn+1 ∈ Y ⇐⇒ an+1 ∈ X . Since both Y and its complement N – Y are
infinite, picking such a bn+1 is always possible. It is then easy to verify that
(vXi , aan+1)Z(vXj, bbn+1).

• ∃-back. The reasoning is analogous to the one for ∃-forth.

Thus, Z is indeed a bisimulation. Since (w0, �)Z(w1, �) (where � is the empty sequence),
the worlds w0 and w1 are bisimilar, and so by Proposition 3.3, w0 and w1 satisfy the
same sentences of QML. This completes the proof of the theorem. �

The proof we just saw can be generalized straightforwardly to show the following
result.

Theorem 3.4. For any predicate symbols P1, ... , Pn and Q1, ... , Qm (with n,m ≥ 1),
there is no sentence α of QML equivalent to (P1, ... , Pn � Q1, ... , Qm).

Proof sketch. We define a model M in the same way as above, except that we assign
the following extensions to the predicates relative to a world vXi :

• for j ≤ n, (Pj)vXi = Xk where k is the arity of Pj

• for j ≤ m, (Qj)vXi =
{
N
k if i = 1

∅ if i = 0
where k is the arity of Qj

Crucially, we still have that two worldsvXi andvYj agree on the extension ofP1, ... , Pn iff
X = Y , and they agree on the extension ofQ1, ... , Qm iff i = j. Thus, the supervenience
claim P1, ... , Pn � Q1, ... , Qm still amounts to the claim that for two successors vXi
and vYj , X = Y implies i = j. This is true at w1 but false at w0. The rest of the proof
then proceeds as above, with obvious adjustments.

The discussion in this section shows that standard modal predicate logic QML is not
sufficiently expressive to regiment global supervenience claims. We are now going to
see that a simple inquisitive extension of QML does provide us with the resources to
express these claims in a logically perspicuous way.
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12 IVANO CIARDELLI

§4. Adding questions to modal predicate logic. In this section we introduce an
inquisitive extension of modal predicate logic, denoted InqQML–

�, obtained by adding
the modality � to a fragment of inquisitive predicate logic.9

Syntax. As usual, the definition starts with a signature Σ. For simplicity, we focus
on the case in which Σ is a relational signature, i.e., consists only of a set of predicate
symbols, each with an associated arity; however, our discussion extends naturally to
the case in which Σ contains also individual constants and function symbols (see [9],
for the details in the setting without modalities).

The language of InqQML–
� is given by the following definition:

ϕ := Px1 ... xn | x1 = x2 | ⊥ | ϕ ∧ ϕ | ϕ → ϕ | ∀xϕ | �ϕ | ϕ �

ϕ,

where P is an n-ary predicate symbol in Σ and x or xi stand for first-order variables.
The operator

�

, called inquisitive disjunction, is regarded as a question-forming
operator. Thus, for instance, the formula Px

� ¬Px is interpreted intuitively as the
question whether or not x is P. In order to express such yes/no questions more
succinctly, it is useful to introduce an inquisitive operator ‘?’, defined as follows:

?ϕ := ϕ

� ¬ϕ.
The

�

-free fragment of the language can be identified with the language of standard
modal predicate logic QML, with a particular choice of primitives. The other logical
operators, namely, negation, classical disjunction, and the existential quantifier, can
then be defined as follows:

¬ϕ := ϕ → ⊥ ϕ ∨ � := ¬(¬ϕ ∧ ¬�) ∃xϕ := ¬∀x¬ϕ.

Below, we will also consider InqQML?
�, a fragment of InqQML–

� where the only
inquisitive operator is ‘?’. More explicitly, the syntax of this fragment is given by:

ϕ := Px1 ... xn | x1 = x2 | ⊥ | ϕ ∧ ϕ | ϕ → ϕ | ∀xϕ | �ϕ | ?ϕ.

As we will see, while InqQML?
� is much less expressive than InqQML–

�, it already
includes the resources needed to express global supervenience claims.

Semantics. Models for InqQML–
� are standard constant-domain Kripke models, as

given by Definition 2.1. However, following the basic idea of inquisitive semantics, the
interpretation of formulas is not given by a recursive definition of truth at a possible
world; instead, it is given by a definition of a relation of support relative to an information
state, where an information state is defined as a set of worlds s ⊆W .

Definition 4.1 (Semantics of InqQML–
�). LetM = 〈W,D,R, I 〉 be a constant-domain

Kripke model. The relation s |=g ϕ of support between an information state s ⊆
W and a formula ϕ of InqQML–

� relative to an assignment g : Var → D is defined
inductively by the following clauses:10

9 Full inquisitive predicate logic also contains an inquisitive existential quantifier ∃∃, which
we leave out of consideration here; this omission is the reason for the superscript ‘–’ in the
notation InqQML–

�. For an introduction to inquisitive predicate logic, the reader is referred
to [9]; for a study of the properties of � in the context of inquisitive propositional logic, see
[7].

10 In inquisitive predicate logic, a more general treatment of identity is typically considered [9].
We stick with the present clause for simplicity, as the motivations for the generalization are
largely orthogonal to our present concerns.
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 13

• M, s |=g Rx1, ... , xn ⇐⇒ for all w ∈ s : 〈g(x1), ... , g(xn)〉 ∈ Rw ;
• M, s |=g (x1 = x2) ⇐⇒ s = ∅ or g(x1) = g(x2);
• M, s |=g ⊥ ⇐⇒ s = ∅;
• M, s |=g ϕ ∧ � ⇐⇒ M, s |=g ϕ andM, s |=g �;
• M, s |=g ϕ

�

� ⇐⇒ M, s |=g ϕ orM, s |=g �;
• M, s |=g ϕ → � ⇐⇒ ∀t ⊆ s :M, t |=g ϕ impliesM, t |=g �;
• M, s |=g ∀xϕ ⇐⇒ for all d ∈ D :M, s |=g[x �→d ] ϕ;
• M, s |=g �ϕ ⇐⇒ for all w ∈ s :M,R[w] |=g ϕ.

As usual, g[x �→ d ] is the assignment that maps x to d and agrees with g on other
variables. When the model M is clear from the context, we suppress reference to it.

We will come back to the clause for � below; all the other clauses are the standard
ones from inquisitive predicate logic (see [9] for discussion).

As customary in inquisitive logic, the relation of support has two basic features:

• Persistency: if t ⊆ s andM, s |=g ϕ, thenM, t |=g ϕ;
• Empty state property:M, ∅ |=g ϕ for every formula ϕ.

As usual, the interpretation of a formula ϕ only depends on the values that g assigns
to the free variables in ϕ; in particular, if ϕ is a sentence, its interpretation does not
depend on the assignment, and we may omit reference to it.

Entailment is defined in the obvious way: a set of formulas Φ entails � (notation:
Φ |= �) if relative to every model and assignment, every state that supports all formulas
in Φ also supports �. We say that ϕ and � are equivalent (ϕ ≡ �) if they entail each
other, i.e., if they are supported by the same states in every model. We say that � is
valid (notation: |= �) if it is entailed by the empty set of premises—in other words, if
it is supported by every state in every model relative to every assignment. We say that
� is consistent if it does not entail ⊥—i.e., if it is supported by some non-empty state
in some model relative to some assignment.11

Although the basic notion in inquisitive logic is support at an information state, a
notion of truth at a world is retrieved in the following way.

Definition 4.2 (Truth at a world). ϕ is true at a world w ∈W relative to assignment
g, denoted M,w |=g ϕ, if ϕ is supported by the singleton state {w}. In symbols:
M,w |=g ϕ ⇐⇒ M, {w} |=g ϕ.

For certain formulas ϕ, support at a state s boils down to truth at each world in s. If
this is the case, the semantics of ϕ is fully determined by its truth conditions; we then
say that ϕ is truth-conditional.

Definition 4.3 (Truth-conditionality). A formula ϕ is truth-conditional if for every
model M, state s and assignment g:

M, s |=g ϕ ⇐⇒ for all w ∈ s :M,w |=g ϕ.
We can define a syntactic fragment of our language that contains only and, up

to equivalence, all truth-conditional formulas. This fragment consists of declaratives,
defined as follows.

11 The restriction to nonempty states is crucial, since in any model, the empty state supports
any formula, including ⊥.
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14 IVANO CIARDELLI

Definition 4.4 (Declaratives). A formula of InqQML–
� is a declarative if every

occurrence of

�

(and, thus, of ‘?’) is within the scope of a modality �.

Thus, for instance, �?Px is a declarative, while ?�Px is not. We can then show the
following fact (the proof is left to the reader; essentially the same result for propositional
modal logic is proved in Ciardelli [7, Corollary 6.3.11]).

Proposition 4.5. Every declarative is truth-conditional. Moreover, every truth-
conditional formula in InqQML–

� is equivalent to some declarative.

Note that the declarative fragment includes all formulas of standard modal predicate
logic,QML, as such formulas do not contain any occurrence of the inquisitive operators.
This means that, in particular, all formulas of QML are truth-conditional, i.e., their
semantics is completely determined by their truth conditions. Moreover, using the
previous proposition, it is easy to show that these truth conditions are just the familiar
ones given by Kripke semantics. This means that InqQML–

� is in a precise sense a
conservative extension of QML: for all formulas of QML, the results of our semantics
are essentially equivalent to those of standard Kripke semantics, and entailment among
standard modal formulas coincides with entailment in QML.

Now let us come back to the semantics of modal formulas �ϕ in InqQML–
�.

Proposition 4.5 ensures that such formulas are always truth-conditional, regardless
of the argument ϕ. Thus, in order to understand their semantics, it suffices to consider
their truth conditions, which are as follows:

M,w |=g �ϕ ⇐⇒ M,R[w] |=g ϕ

In words: �ϕ is true at a world w iff ϕ is supported by the set of successors of w. If ϕ
is truth-conditional (and, in particular, if ϕ is a QML-formula) this further boils down
to ϕ being true at each successor of w—and thus to the familiar clause for � in Kripke
semantics. However, below we will be especially interested in the case in which the
argument ϕ is not truth-conditional; in that case, the condition that ϕ be supported at
R[w] does not simply boil down to ϕ being true at each world in R[w].

As an example of a formula that is not truth-conditional, take ∀x?Px, where P is a
unary predicate. Keeping in mind that ?Px := Px

� ¬Px and that standard formulas
are truth-conditional with the usual truth-conditions, we have:

s |= ∀x?Px ⇐⇒ ∀d ∈ D : s |=[x �→d ] ?Px

⇐⇒ ∀d ∈ D : (s |=[x �→d ] Px) or (s |=[x �→d ] ¬Px)

⇐⇒ ∀d ∈ D : (∀w ∈ s : d ∈ Pw) or (∀w ∈ s : d �∈ Pw)

⇐⇒ ∀d ∈ D ∀w, v ∈ s : (d ∈ Pw ⇐⇒ d ∈ Pv)
⇐⇒ ∀w, v ∈ s ∀d ∈ D : (d ∈ Pw ⇐⇒ d ∈ Pv)
⇐⇒ ∀w, v ∈ s : Pw = Pv.

That is, the sentence ∀x?Px is supported at a state s iff all worlds in s agree on the
extension of P. Intuitively, this formula may be seen as regimenting the question which
objects are P, which asks for a specification of the extension of predicate P.

As we will now show, global supervenience claims can be expressed in InqQML–
� as

strict conditionals involving such questions.
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 15

§5. Global supervenience in inquisitive modal logic.

Expressing global supervenience. We saw in Section 3 that the claim that a predicate
Q globally supervenes on a predicate P is not expressible in QML. We will now show
that, by contrast, this claim is expressible in InqQML–

�, by means of the following
sentence:

�(∀x?Px → ∀x?Qx).

Note that this is a strict conditional having the question which objects are P (∀x?Px)
as its antecedent, and the question which objects are Q (∀x?Qx) as its consequent.
Intuitively, the formula may be read as: relative to the set of successors of the world
of evaluation, settling which objects are P implies settling which objects are Q. This is
exactly what the global supervenience claim amounts to.

Proposition 5.1. Let P,Q be unary predicates. For every constant-domain Kripke
model M and world w we have:

M,w |= �(∀x?Px → ∀x?Qx) ⇐⇒ M,w |= P � Q.

Proof. If s is an information state, let us say that “P is constant in s” in case P has
the same extension in every world in s, i.e.,Pv = Pu for all v, u ∈ s . Recall that we have:
s |= ∀x?Px ⇐⇒ P is constant in s (and similarly for Q). We then have the following
chain of equivalences:

w |= �(∀x?Px → ∀x?Qx) ⇐⇒ R[w] |= ∀x?Px → ∀x?Qx

⇐⇒ ∀s ⊆ R[w] : s |= ∀x?Px implies s |= ∀x?Qx

⇐⇒ ∀s ⊆ R[w] : (P constant in s) implies (Q constant in s)

⇐⇒ ∀v, u ∈ R[w] : (Pv = Pu) implies (Qv = Qu)

⇐⇒ w |= P � Q.

For the crucial equivalence between the third and the fourth line we may argue as
follows. Suppose the condition on the third line holds, i.e., every state s ⊆ R[w] in
which P is constant is one in which Q is constant. Consider two successors v, u ∈ R[w]:
if Pv = Pu , this means that P is constant in the state {v, u} ⊆ R[w]; therefore Q is also
constant in this state, which means that Qv = Qu . Hence, the fourth line holds.

Suppose now the condition on the third line does not hold, i.e., there is a state
s ⊆ R[w] on which P is constant but Q is not. Since Q is not constant in s, there are
two worlds v, u ∈ s with Qv �= Qu . And since P is constant in s, we have Pv = Pu . So,
there are two successors of P which agree on P but not on Q, which means that the
fourth line does not hold.

In case we want to express the global supervenience of several (not necessarily unary)
predicates Q1, ... , Qm on several other predicates P1, ... , Pn, the strategy generalizes
straightforwardly: it suffices to conjoin all questions about the extensions of the Pi in
the antecedent, and all questions about the extensions of the Qi in the consequent.

Proposition 5.2. LetP1, ... , Pn,Q1, ... , Qm be arbitrary predicate symbols. The strict
conditional

�(
n∧
i=1

∀xi?Pixi →
m∧
i=1

∀yi?Qiyi),
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16 IVANO CIARDELLI

where xi and yj denote sequences of variables whose size matches the arity of the
corresponding predicate Pi or Qj , has the same truth-conditions as the supervenience
claim P1, ... , Pn � Q1, ... , Qm.

The proof is a straightforward adaptation of the one given for the case n = m = 1.12

In sum, global supervenience claims can be expressed in the modal logic InqQML–
� as

strict conditionals having as their antecedents the questions about the extensions of the
subvenient predicates, and as their consequents the questions about the extensions of
the supervenient predicates. Note that in the formulas expressing global supervenience,
inquisitive disjunction occurs only via the operator ‘?’. Therefore, these formulas in
fact belong to the fragment InqQML?

�. This is interesting since we will see in Section 6
that formulas of InqQML?

� have some special semantic properties.
Finally, it is worth pointing out that Ciardelli [8] argued in detail for a general analysis

of dependence claims as strict conditionals involving questions. Global supervenience
is a special kind of dependence, and accordingly, our analysis fits this general pattern.13

Expressive power considerations. As we mentioned in the introduction, in the
propositional setting, questions in the scope of � do not add to the expressive power
of the system: any formula of the form �ϕ, where ϕ possibly contains inquisitive
operators, is equivalent to a disjunction of modal formulas �α where α does not
contain inquisitive operators—and, therefore, to a formula of standard modal logic
(see [7, Corollary 6.3.11]). The results we have seen in this paper imply that the same
is not true in the predicate logic setting.

Corollary 5.3. In InqQML–
�, there are formulas of the form �ϕ which are not

equivalent to any formula of standard modal predicate logic QML. In particular, the
formula �(∀x?Px → ∀x?Qx) is not equivalent to any QML-formula.

Proof. By Proposition 5.1, the given formula is true at a world iff Q globally
supervenes on P. By Theorem 3.1, no formula of QML has these truth conditions.

Thus, in the domain of predicate logic, generalizing the modality � to inquisitive
arguments leads to a more expressive modal logic, one in which we may regiment
interesting modal claims that cannot be expressed in standard modal logic.

The logic of global supervenience. To conclude this section, we now illustrate how
analyzing global supervenience in terms of inquisitive strict conditionals sheds light
on the logical properties of this notion, allowing us to trace them back to logical
properties of strict conditionals and questions. An extensive discussion of the validities
of inquisitive predicate logic would take us too far afield (see [9] for a survey). Let us
just recall that declaratives obey classical predicate logic, while formulas involving

12 The strategy further generalizes in the obvious way to express the global supervenience of
arbitrary open formulas �1(y1), ... , �m(ym) on other open formulas α1(x1), ... , αn(xn). For
instance, the fact that the property being either R or S globally supervenes on the property
of being both P and Q is expressed by the formula:

�(∀x?(Px ∧Qx) → ∀x?(Rx ∨ Sx)).

13 Crucially, however, expressing supervenience claims requires the resources of modal predicate
logic. Previous work in inquisitive modal logic, including the cited paper, has focused on the
propositional case.
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 17

inquisitive vocabulary obey intuitionistic logic, with

�

in the role of intuitionistic
disjunction, plus some additional principles. In particular, the constant domain
assumption leads to the validity of the equivalence

∀x(ϕ(x)

�

�) ≡ ∀xϕ �

�,

where x does not occur free in � (this equivalence is familiar from constant-domain
intuitionistic logic, cf. [17]).

As for the modality �, the following proposition states some of its key properties
(we leave the straightforward verification to the reader; cf. [7, Chapter 6], for analogous
results in propositional modal logic).

Proposition 5.4. For any formulas ϕ,� of InqQML–
� and set of formulas Φ, the

following hold.

• →-distributivity: �(ϕ → �) |= �ϕ → ��;
• ∧-distributivity: �(ϕ ∧ �) ≡ �ϕ ∧��;
•

�

-pseudo-distributivity: �(ϕ

�

�) ≡ �ϕ ∨��;
• ∀-distributivity: �∀xϕ ≡ ∀x�ϕ;
• Monotonicity: Φ |= � implies �Φ |= ��, where �Φ = {�ϕ | ϕ ∈ Φ}.

The third item in the list captures the interaction of�with inquisitive disjunction: an
inquisitive disjunction under � matches a classical disjunction over �. The other items
are familiar from standard constant-domain modal logic.14 Note that in the statement
of Monotonicity, Φ may be empty, which gives Necessitation as a special case: |= �
implies |= ��.

Let us now examine how several properties of global supervenience, and interesting
inferences involving this notion, can be analyzed in the light of our inquisitive
regimentation of supervenience claims.

Example 5.5 (Armstrong’s axioms). We saw in Section 2 that some important
properties of supervenience are captured by Armstrong’s axioms for functional
dependence. Under our analysis, these properties emerge as special cases of familiar
facts about the logic of strict implication.15 For readability, we write �P and �Q for
sequences of predicates P1, ... , Pn and Q1, ... , Qm.

• Reflexivity: |= ( �P, �Q � �P).
Given our regimentation, this amounts to the validity of the formula

�(ϕ ∧ � → ϕ),

where ϕ is the conjunction of all the questions about the extensions of the
Pi (i.e., ∀xi ?Pixi ) and � is the conjunction of all the questions about the

14 Note that these items imply that � can be pushed through all other logical operators of our
language, except for implication, where the entailment holds only in one direction. In view
of this, it is not surprising that a witness for Corollary 5.3, i.e., a formula �ϕ which cannot
be reduced to a formula of QML, has the form �(	 → �).

15 The analogy between Armstrong’s axioms and the properties of implication has beed noticed
multiple times in the literature (see, a.o., [13, 32, 33]), though an explanation of this analogy
has been largely missing. An exception is the work of Abramsky & Väänänen [1] who,
analogously to us, regiment certain dependence claims in terms of an implication operator
very much related to our →.
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18 IVANO CIARDELLI

extensions of the Qi . Since every formula of the form ϕ ∧ � → ϕ is a logical
validity, so is the above formula by Necessitation.

• Augmentation: ( �P � �Q) |= ( �P, �R � �Q, �R).
Given our regimentation, this amounts to the entailment

�(ϕ → �) |= �(ϕ ∧ 	 → � ∧ 	),

whereϕ and� are as in the previous item and 	 the conjunction of the questions
about theRi . Since the entailment ϕ → � |= ϕ ∧ 	 → � ∧ 	 is valid, the above
entailment is valid by the monotonicity of �.

• Transitivity: ( �P � �Q), ( �Q � �R) |= ( �P � �R).
Given our regimentation, this amounts to the entailment

�(ϕ → �),�(� → 	) |= �(ϕ → 	),

where ϕ,�, and 	 are as in the previous item. The validity of the entailment
follows immediately from the transitivity of → and the monotonicity of �.

Example 5.6. For another example of inference that relies only on the properties of
strict conditionals, consider the reasoning in (3) from the introduction, repeated below
along with its formalization in InqQML–

�.

(6) P globally supervenes on Q and R. �(∀x?Qx ∧ ∀x?Rx → ∀x?Px)
P does not globally supervene on Q. ¬�(∀x?Qx → ∀x?Px)
Therefore, R does not globally supervene on Q. ∴ ¬�(∀x?Qx → ∀x?Rx)

To see that this inference is valid, note that by the basic properties of conjunction
and implication we have for any formulas ϕ,�, 	

ϕ ∧ � → 	, ϕ → � |= ϕ → 	
whence by the monotonicity of � we have

�(ϕ ∧ � → 	), �(ϕ → �) |= �(ϕ → 	)

and then by classical reasoning with declaratives:

�(ϕ ∧ � → 	), ¬�(ϕ → 	) |= ¬�(ϕ → �).

Clearly, the validity of the above inference is an instance of this general fact.

The inferences we considered so far are valid based only on the properties of strict
conditionals. We now turn to a couple of examples where the logical properties of
questions also play a central role.

Example 5.7. Consider the inference in (4) from the introduction, repeated below
along with its formalization:

(7) Q globally supervenes on P. �(∀x?Px → ∀x?Qx)
It is contingent whether there are any Q. ¬�∃xQx ∧ ¬�¬∃xQx
Therefore, it is not necessarily the case that every object is P. ∴ ¬�∀xPx

To see that this inference is valid, we may start from the following (inquisitive)
instance of modus ponens:

∀x?Px, ∀x?Px → ∀x?Qx |= ∀x?Qx.

By intuitionistic reasoning we have the entailment ∀xPx |= ∀x?Px (intuitively: the
information that all objects are P settles the question which objects are P); by
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 19

intuitionistic reasoning and the constant domain principle we have ∀x?Qx |= ?∃xQx
(intuitively: the information which objects are Q settles the question whether there are
any Q).16 Putting these facts together, we have:

∀xPx, ∀x?Px → ∀x?Qx |= ?∃xQx.
By the monotonicity of �, this implies:

�∀xPx,�(∀x?Px → ∀x?Qx) |= �?∃xQx.
Recall that ?∃xQx abbreviates ∃xQx � ¬∃xQx. By

�

-pseudo-distributivity of � over
this formula, the above entailment can be rewritten as

�∀xPx,�(∀x?Px → ∀x?Qx) |= �∃xQx ∨�¬∃xQx
and finally, by classical reasoning with declaratives, this is equivalent to

�(∀x?Px → ∀x?Qx),¬�∃xQx ∧ ¬�¬∃xQx |= ¬�∀xPx
which amounts to the validity of the argument in 5.7. Thus, the validity of this argument
can be traced back to certain facts about the logic of questions, together with the
monotonicity of � and its pseudo-distributivity over

�

.

Example 5.8. Next, consider the inference in (2) from the introduction, repeated
below:

(8) For every person x, the property being a sibling of x globally supevenes on the
properties being a brother of x and being a sister of x.

Therefore, the sibling-of relation globally supervenes on the brother-of and
sister-of relations.

Let B, S,G be three binary predicates standing respectively for ‘brother of’, ‘sister
of’, ‘sibling of’. Given our regimentation, this inference has the following form:

∀x�(∀y?Bxy ∧ ∀y?Sxy → ∀y?Gxy) ∴ �(∀x∀y?Bxy ∧ ∀x∀y?Sxy → ∀x∀y?Gxy).

To see that this inference is valid, it suffices to note that for any formulas ϕ,�, 	, the
following holds:

∀x(ϕ ∧ � → 	) |= ∀xϕ ∧ ∀x� → ∀x	.
From this, by the monotonicity of � and the commutation of � with ∀ we obtain:

∀x�(ϕ ∧ � → 	) |= �(∀xϕ ∧ ∀x� → ∀x	).

The validity of the above inference is an instance of this general scheme.

Finally, let us consider again the connection between definability and global
supervenience established by Proposition 2.4, in light of our inquisitive analysis.

Example 5.9 (Global supervenience and definability). It is immediate to check (and
a well-known fact, see [5]) that definability is an instance of question entailment, in

16 For the interested reader, here are the details. Since Qx |= ∃xQx, by standard disjunc-
tive reasoning we have Qx

� ¬Qx |= ∃xQx � ¬Qx, whence we have ∀x(Qx

� ¬Qx) |=
∀x(∃xQx � ¬Qx). By definition of ? the premise is just ∀x?Qx, and by the constant domain
principle the conclusion entails ∃xQx � ∀x¬Qx. The latter is equivalent to ∃xQx � ¬∃xQx
(since ∀x¬Qx ≡ ¬∃xQx as declaratives obey classical logic), which is nothing but ?∃xQx.
Cf. the natural proof of a similar entailment in Ciardelli [9, ex. 6.2.2].
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20 IVANO CIARDELLI

the following sense. If Γ is a set of standard (non-inquisitive) first-order formulas, the
following are equivalent:17

• Γ defines Q in terms of P1, ... , Pn;
• Γ,∀x1?P1x1, ... ,∀x1?P1x1 |= ∀y?Qy.

By the properties of implication in inquisitive logic, the latter is equivalent to:

• Γ |= ∀x1?P1x1 ∧ ··· ∧ ∀x1?P1x1 → ∀y?Qy.

By the monotonicity of �, this is equivalent to the following entailment, whose right-
hand side is the formula expressing the global supervenience P1, ... , Pn � Q:

• �Γ |= �(∀x1?P1x1 ∧ ··· ∧ ∀x1?P1x1 → ∀y?Qy).

In this way, the connection between definability and global supervenience expressed by
Proposition 2.4 can be traced back—via the logic of the strict conditional—to a more
fundamental connection between definability and the logic of questions.

§6. Meta-theoretic results. In the previous section we saw that moving from
standard modal predicate logic to an inquisitive extension leads to an enhanced
expressive power. One may wonder if this greater expressive power leads to a difference
in the key meta-theoretic properties of the logic. In particular, one may ask the following
questions for our logic InqQML–

�.

• Effectivity
Is the set of validities recursively enumerable?

• Compactness
Is it generally the case that if Φ entails �, some finite subset of Φ entails �?

The answer to these questions is not obvious. After all, the semantics of implication
involves a quantification over subsets, and thus introduces a second-order element
into the semantics, which may in principle lead to a loss of effectivity or compactness.
Nevertheless, we will show that the above questions both have a positive answer.18

The proof strategy combines ideas recently pioneered by Meißner & Otto [30] and by
Ciardelli & Grilletti [10], making crucial use of the notion of coherence (first introduced
by [26], in the setting of team semantics).

6.1. Finite coherence. For n ∈ N, we call a formula ϕ of InqQML–
� n-coherent if, in

order to check whether ϕ is supported by a state s, it suffices to check if it is supported
by every n-small subset of s, where a subset counts as n-small if its cardinality is at

17 ten Cate & Shan [5] relied on this connection to axiomatize a predecessor of inquisitive logic,
the logic of interrogation [19]. This logic contains questions of the form ?xα(x), where α
is a standard first-order formula, which have the same semantics as formulas ∀x?α(x) in
inquisive logic. However, the logic of interrogation does not allow questions to be embedded
under logical operators, and so the analysis of supervenience we are proposing would not be
possible in that framework.

18 As mentioned in Footnote 9, standard inquisitive first-order logic includes, in addition to
inquisitive disjunction

�

, also an inquisitive existential quantifier ∃∃. It is an open question
whether the answer to the above questions remains positive if we add this quantifier to
InqQML–

�. Indeed, the above questions are open for the (non-modal) inquisitive first-order
logic InqBQ. See Ciardelli [9] for discussion.
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 21

most n. More formally ϕ is n-coherent if for any model M, state s, and assignment g
we have:

M, s |=g ϕ ⇐⇒ ∀t ⊆ s with #t ≤ n :M, t |=g ϕ.
We say that ϕ is finitely coherent if it is n-coherent for some n ∈ N. Note that the left-
to-right direction of the above biconditional holds for every formula ϕ by persistency,
and so the condition really amounts to the right-to-left direction. Also, note that 1-
coherence is nothing but the notion of truth-conditionality defined above. Moreover, it
will be useful to remark the following fact explicitly.

Remark 6.1. If ϕ is n-coherent, then ϕ is m-coherent for all m > n.

Following Ciardelli & Grilletti [10], we show that every formula ϕ of InqQML–
� is

nϕ-coherent for a number nϕ that can be computed from the syntax of ϕ.19

Definition 6.2. We assign to each formula ϕ of InqQML–
� a number nϕ as follows:

• np = 1 if α is an atom or ⊥
• nϕ∧� = max{nϕ, n�}
• nϕ→� = n�

• nϕ �

� = nϕ + n�
• n∀xϕ = nϕ
• n�ϕ = 1.

Proposition 6.3. For every formula ϕ of InqQML–
�, ϕ is nϕ-coherent.

Proof. Essentially the same as that of Ciardelli & Grilletti [10, Proposition 5.3]. The
only new case is the one for modal formulas �ϕ, which is immediate.

Thus, in particular, every formula of InqQML–
� is finitely coherent. For the language

InqQML?
�, where the only inquisitive operator is ‘?’, we can prove something stronger.

Proposition 6.4. For every formula ϕ of InqQML?
�, ϕ is 2-coherent.

Proof. The proof is by induction on ϕ. If ϕ is atomic, ⊥, or a modal formula ��,
then ϕ is truth-conditional (i.e., 1-coherent), and thus also 2-coherent by Remark 6.1.
It remains to be shown that if ϕ and � are 2-coherent, so are ϕ ∧ �, ϕ → �, ∀xϕ, and
?ϕ. We only spell out the case for ?ϕ, since the other cases are straightforward.

Suppose ϕ is 2-coherent. We claim that ?ϕ is 2-coherent as well. To see this, take an
arbitrary model M, state s, and assignment g, and supposeM, s �|=g ?ϕ: we must show
that there is a t ⊆ s with #t ≤ 2 such thatM, t �|=g ϕ. We distinguish two cases.

• Case 1: for some w ∈ s , w �|=g ϕ. In this case let w– ∈ s be a world with
w– �|=g ϕ. There must also be a world w+ ∈ s with w+ |=g ϕ, otherwise by the
semantics of negation we would have s |=g ¬ϕ, and so also s |=g ?ϕ.
Now consider the substate t = {w+, w–} ⊆ s . We cannot have t |=g ϕ,
otherwise by persistency we would have w– |=g ϕ, contrary to assumption;
similarly, we cannot have t |=g ¬ϕ, otherwise we would have w+ �|=g ϕ. Thus,
we have t �|=g ϕ and t �|=g ¬ϕ, which means that t �|=g ?ϕ, and clearly #t ≤ 2.

• Case 2: for all w ∈ s , w |=g ϕ. Since s �|=g ϕ and ϕ is 2-coherent, there is
some t ⊆ s with #t ≤ 2 and t �|=g ϕ. Note in particular that this means that
t �= ∅ (since the empty state supports every formula), and thus there is a world

19 This does not hold, in general, for formulas including the inquisitive existential quantifier ∃∃.
See Ciardelli & Grilletti [10].
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22 IVANO CIARDELLI

w0 ∈ t. We also have that t �|=g ¬ϕ: for if we had t |=g ¬ϕ, by the semantics of
negation we would have w0 �|=g ϕ, contradicting the assumption that ϕ is true
at all worlds in s. Thus, we have t �|=g ϕ and t �|=g ¬ϕ, whence t �|=g ?ϕ.

In either case, we have found that there is a substate t of s of cardinality at most 2 with
t �|=g ?ϕ, which is what we had to show to prove that ?ϕ is 2-coherent.

6.2. Translation to classical first-order logic. In the previous section, we have shown
that for a formula ϕ of InqQML–

�, it is possible to compute a number nϕ for which ϕ is
coherent. We will now show, building on ideas from Meißner & Otto [30] and Ciardelli
& Grilletti [10], that this makes it possible to give a translation from InqQML–

� to two-
sorted first-order predicate logic. The existence of this translation will then allow us to
give a positive answer to the key meta-theoretic questions discussed at the beginning
of this section.

First, we associate to a signature Σ a corresponding signature Σ∗ over two sorts: w, for
worlds, and e, for individuals. For each n-ary predicate symbol P in Σ, the signature Σ∗

contains a corresponding predicate symbol P∗ of arity n + 1, where the first argument
is of sort w and the remaining arguments of sort e. In addition, Σ∗ contains a binary
predicate R∗, both arguments of which are of type w.

Next, to each constant-domain Kripke modelM = 〈W,D,R, I 〉 for Σ we associate
a corresponding two-sorted relational structureM ∗ = 〈W,D, I ∗〉 for the signature Σ∗,
where the domain of sort w is W, the domain of sort e is D, and the interpretation
function I ∗ is defined as follows:

• I ∗(R∗) = R;
• I ∗(P∗) = {〈w, d1, ... , dn〉 ∈W ×Dn | 〈d1, ... , dn〉 ∈ Iw(P)} for an n-ary
P ∈ Σ.

Note that the map M �→M ∗ yields a one-to-one correspondence between constant-
domain Kripke models for Σ and two-sorted relational structures for Σ∗.

Now let 2FOL denote the language of two-sorted first-order predicate logic over the
signature Σ∗. Let us use w0,w1, ... as well as v0, v1, ... to denote first-order variables of
sort w (worlds), and let us usew and v to denote non-empty sequences of such variables.
We write v � w to mean that v is a subsequence of w in the sense that, if w = w1 ...wn,
then v is a sequence of the form wi1 ...wik with 1 ≤ i1 < ··· < ik ≤ n (thus, for example,
we have w1w3 � w1w2w3, but not w3w1 � w1w2w3).

For each sequence w = w1 ...wn of world-variables, we define a corresponding map
trw from formulas of InqQML–

� to formulas of 2FOL, as follows.

trw(Px1 ... xk) =
∧n
i=1 P

∗wix1 ... xk
trw(⊥) = ⊥
trw(ϕ ∧ �) = trw(ϕ) ∧ trw(�)
trw(ϕ

�

�) = trw(ϕ) ∨ trw(�)
trw(ϕ → �) =

∧
v�w(trv(ϕ) → trv(�))

trw(∀xϕ) = ∀x trw(ϕ)
trw(�ϕ) =

∧n
i=1 ∀v1 ... vnϕ ((

∧nϕ
j=1R

∗wivj) → trv(ϕ)) with v = v1 ... vnϕ.

Note that the translation of �ϕ makes use of the number nϕ given by Definition 6.2.
The translations preserve the semantics of InqQML–

� in the following sense.

Proposition 6.5 (Translating InqQML–
� semantics). Let M be a constant-comain

Kripke model, g an assignment, and s a finite nonempty state. Now let w be a sequence
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GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 23

w1 ...wn of world-variables with n ≥ #s , and let g∗ be an assignment for the variables of
2FOL which agrees with g on all variables of sort e and such that g∗[{w1, ... ,wn}] = s .
Then for any formula ϕ of InqQML–

� we have:

M, s |=g ϕ ⇐⇒ M ∗ |=g∗ trw(ϕ).

Proof. Most of the proof is a tedious but straightforward case-by-case verification:
the given translation just states in first-order logic the semantic clauses for InqQML–

�, as
given in Definition 4.1. The one exception is given by formulas of the form �ϕ, whose
semantic clause does not directly match their translation. The claim that s |=g �ϕ
amounts to the condition:

for all w ∈ s : R[w] |=g ϕ,

whereas the claim thatM ∗ |=g∗ trw(�ϕ) amounts (via the definition of the translation
and the induction hypothesis) to the condition:

for all w ∈ s, for all v1, ... , vnϕ ∈ R[w] : {v1, ... , vnϕ} |=g ϕ.

We need to show that these two conditions are equivalent. For this, it suffices to show
that for any world w we have

R[w] |=g ϕ ⇐⇒ for all v1, ... , vnϕ ∈ R[w] : {v1, ... , vnϕ} |=g ϕ.

But note that, as we let the variables v1, ... , vnϕ range over R[w], the set {v1, ... , vnϕ}
ranges over all and only the subsets of R[wi ] of size at most nϕ . Thus the above
equivalence amounts to the claim

R[w] |=g ϕ ⇐⇒ for all t ⊆ R[w] with #t ≤ nϕ : t |=g ϕ

and this holds because ϕ is nϕ-coherent by Proposition 6.3.

Using the result we just proved, we may show that entailment claims in InqQML–
�

can be translated to entailment claims in 2FOL.

Proposition 6.6 (Translating InqQML–
�-entailments). Let Φ ∪ {�} be a set of

formulas in InqQML–
�. For any sequencew = w1 ...wn of world variables of length n ≥ n�,

we have

Φ |= � ⇐⇒ trw(Φ) |=2FOL trw(�),

where |= on the left-hand side denotes entailment in InqQML–
�, |=2FOL denotes entailment

in two-sorted first-order logic, and trw(Φ) = {trw(ϕ) | ϕ ∈ Φ}.

Proof. Suppose Φ �|= �. Then there exists a constant domain Kripke model M, a
state t, and an assignment g such that M, t |=g ϕ for all ϕ ∈ Φ but M, t �|=g �. Since
� is n�-coherent, we may find some s ⊆ t with #s ≤ n� such that M, s �|=g �; by
persistency, we also have M, s |=g ϕ for all ϕ ∈ Φ. Now let g∗ be any assignment
on our two-sorted language that matches g on variables of type e and such that
g∗[{w1, ... ,wn}] = s : crucially, such an assignment exists since #s ≤ n� ≤ n. By the
previous proposition we have M ∗ |=g∗ trw(ϕ) for all ϕ ∈ Φ (since M, s |=g ϕ) but
M ∗ �|=g∗ trw(�) (sinceM, s �|=g �), which shows that trw(Φ) �|=2FOL trw(�).

For the converse, suppose trw(Φ) �|=2FOL trw(�). Then there is a model N of the
signature Σ∗ and an assignment h such that N |=h trw(ϕ) for all ϕ ∈ Φ but N �|=h
trw(�). Now take a constant domain Kripke model M such that M ∗ = N (which
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exists since the mapM �→M ∗ is a bijection between constant domain Kripke models
for the signature Σ and first-order structures for the signature Σ∗), and consider the
state s = {h(w1), ... , h(wn)}. Consider the assignment g which is just the restriction of
h to variables of sort e. By the previous proposition we haveM, s |=g ϕ for all ϕ ∈ Φ,
butM, s �|=g �. Thus, Φ �|= �.

Finally, using this result, it is easy to show that InqQML–
� (and thus also its fragment

InqQML?
�) is effective and compact.

Theorem 6.7 (Effectiveness). The set of valid formulas in InqQML–
� is r.e.

Proof. By Proposition 6.6, the task of deciding whether ϕ ∈ InqQML–
� is a validity

can be (computably) reduced to the task of deciding whether its translation trw(ϕ)
relative to a set of variables w of size nϕ is a validity of 2FOL. As the latter task is
semi-decidable, so is the former.

Theorem 6.8 (Compactness). Let Φ ∪ {�} be a set of formulas in InqQML–
�. If Φ |= �,

then Φ0 |= � for some finite Φ0 ⊆ Φ.

Proof. Immediate from Proposition 6.6 and the compactness of first-order logic.

Note that the compactness property we just proved also implies the following
compactness property, obtained as the special case in which � = ⊥: for any set of
InqQML–

�-formulas Φ, if every finite subset of Φ is consistent, then Φ is consistent.20

We can thus conclude this section with a positive answer to the questions posed at the
beginning: while extending QML with inquisitive disjunction increases the expressive
power of our logic, this expressive power does not result in a loss of the core meta-
theoretic properties of QML.

§7. Further work. We close by outlining some salient directions for future work.
First, given our meta-theoretical results on InqQML–

�, it is natural to aim for a complete
proof system. The main obstacle in this respect is that, at present, there is no established
proof system for InqBQ–, the non-modal fragment of InqQML–

�. Ciardelli & Grilletti
[10] provide a proof system for inquisitive first-order logic InqBQ which is complete
relative to the fragment InqBQ–, but this is not a proof system for InqBQ–, as proofs of
validities in InqBQ– may make use of formulas which are not in InqBQ–. Provided this
obstacle is removed, and a proper proof system for InqBQ– is established, we conjecture
that extending this system with modal axioms or rules capturing (some of) the facts in
Proposition 5.4 will lead to a complete system for InqQML–

�.
A second research direction concerns the expressive power of the system InqQML–

�.
We have seen in this paper that InqQML–

� can express properties which are not invariant
under the standard notion of first-order bisimulation, such as those expressed by global
supervenience claims. It is then natural to ask if the expressive power of InqQML–

� can
be characterized by means of a more demanding simulation game. Besides providing
insight into the expressive power of our logic, such a game would furnish a precious

20 In inquisitive logic the version of compactness formulated in terms of entailment is usually
stronger than the version formulated in terms of consistency: while the consistency of Φ
reduces to the validity of the entailment Φ |= ⊥, the validity of an arbitrary entailment Φ |= �
does not reduce to the consistency of Φ ∪ {¬�}. In the setting of InqQML–

�, however, the
two versions of compactness are indeed equivalent, since it is easy to show that the validity
of Φ |= � reduces to the consistency of �Φ ∪ {¬��}.
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tool to show that certain properties are not expressible in it. A starting point for this
enterprise may be the Ehrenfeucht–Fraı̈ssé-style game described by Grilletti & Ciardelli
[18] for inquisitive first-order logic.

Finally, a third line of research concerns the logical analysis of supervenience. As
we mentioned in Section 2, the general idea of supervenience can be made precise in
different ways. Besides global supervenience, we also have the notion of individual
supervenience: a class of properties B supervenes on a class of properties A in this
sense if two individuals cannot differ with respect to the B-properties without also
differing with respect to the A-properties. This notion further branches into weak and
strong individual supervenience, depending on whether we compare individuals within
the same possible world, or across possibly different worlds. Thus, for instance, the
weak/strong individual supervenience of a single property Q on another property P
relative to a world w amounts to the following conditions.

• Weak:
∀d, d ′ ∈D∀v ∈R[w] : (d ∈ Pv ⇐⇒ d ′ ∈Pv) implies (d ∈Qw ⇐⇒ d ′ ∈Qw).

• Strong:
∀d, d ′∈D∀v, v′ ∈R[w] : (d ∈Pv ⇐⇒ d ′ ∈Pv′) implies (d ∈Qv ⇐⇒ d ′ ∈Qv′).

It is not hard to see that these claims, unlike claims of global supervenience, are
expressible in QML, by means of the following formulas (the point generalizes to
supervenience claims involving more than one supervenient and subvenient property):

• Weak: �(∀x(Qx ↔ Px) ∨ ∀x(Qx ↔ ¬Px) ∨ ∀xQx ∨ ∀x¬Qx);21

• Strong: �∀x(Qx ↔ Px) ∨�∀x(Qx ↔ ¬Px) ∨�∀xQx ∨�∀x¬Qx.
Following the main idea of the present paper, however, it would be natural to pursue an
analysis of weak and strong individual supervenience as inquisitive strict conditionals,
so as to bring out a common logical core of supervenience claims, facilitating a
comparison of the different varieties of supervenience. Such an inquisitive analysis
of individual supervenience seems natural; after all, the individual supervenience of Q
on P is naturally formulated as a condition involving questions, namely: for an arbitrary
object x, the question whether x is Q is fully determined by the question whether x is
P (globally across all successors, in the case of strong supervenience, or locally in each
individual successor, in the case of weak supervenience). Pursuing this formalization,
however, requires the resources to ask questions about arbitrary objects—resources
which are not available in the logic InqQML–

�. To make such questions expressible, we
may extend InqQML–

� with resources from team semantics [20], and with a quantifier
[x] that creates one possibility for each possible value of the variable x, in a way which is
familiar from work on dependence logic [36]. We leave the exploration of this extension
for future work.
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