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In this paper, we investigate the kinetic stability of classical, collisional plasma – that is,
plasma in which the mean-free-path λ of constituent particles is short compared with the
length scale L over which fields and bulk motions in the plasma vary macroscopically,
and the collision time is short compared with the evolution time. Fluid equations are
typically used to describe such plasmas, since their distribution functions are close to
being Maxwellian. The small deviations from the Maxwellian distribution are calculated
via the Chapman–Enskog (CE) expansion in λ/L � 1, and determine macroscopic
momentum and heat fluxes in the plasma. Such a calculation is only valid if the underlying
CE distribution function is stable at collisionless length scales and/or time scales. We
find that at sufficiently high plasma β, the CE distribution function can be subject to
numerous microinstabilities across a wide range of scales. For a particular form of the
CE distribution function arising in strongly magnetised plasma (viz. plasma in which the
Larmor periods of particles are much smaller than collision times), we provide a detailed
analytic characterisation of all significant microinstabilities, including peak growth rates
and their associated wavenumbers. Of specific note is the discovery of several new
microinstabilities, including one at sub-electron-Larmor scales (the ‘whisper instability’)
whose growth rate in certain parameter regimes is large compared with other instabilities.
Our approach enables us to construct the kinetic stability maps of classical, two-species
collisional plasma in terms of λ, the electron inertial scale de and the plasma β. This work
is of general consequence in emphasising the fact that high-β collisional plasmas can be
kinetically unstable; for strongly magnetised CE plasmas, the condition for instability is
β � L/λ. In this situation, the determination of transport coefficients via the standard CE
approach is not valid.
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1. Introduction

Answering the question of when a plasma can be described adequately by fluid
equations is fundamental for a comprehensive understanding of plasma dynamics. It is
well known that some physical effects in plasmas – for example, Landau damping –
specifically require a fully kinetic description in terms of distribution functions of
the plasma’s constituent particles (Landau 1946). However, for many other plasma
processes, a detailed description of the underlying particle distribution provides little
additional understanding of the essential physics governing that process. Characterising
such processes with fluid equations, which describe the evolution of macroscopic physical
quantities such as density, fluid velocity and temperature, often simplifies the description
and therefore aids understanding. Fluid equations are also easier to solve numerically
than kinetic equations: the latter reside in six-dimensional phase space (and time), with
three additional dimensions – the velocity space – when compared with the former. The
underlying difficulty associated with determining when a plasma is a fluid is finding
a closed set of equations in the macroscopic plasma variables. The derivation of fluid
equations from the Maxwell–Vlasov–Landau equations governing the evolution of the
plasma’s distribution functions is carried out by taking moments (that is, integrating
the governing equations and their outer products with velocity v over velocity space).
However, the resulting equations are not closed: the evolution equation of the zeroth-order
moment (density) requires knowledge of the evolution of the first-order moment, the
evolution equation for the first-order moment needs the second-order moment and so
on. For plasma-fluid equations to be able to describe the evolution of a plasma without
reference to that plasma’s underlying distribution functions, a closure hypothesis or an
approximation relating higher-order moments to lower ones is required.

For a collisional plasma – i.e. one in which the mean free paths λs and collision times
τs of the ions and electrons (s = i, e) are much smaller than the typical length scale L and
time scale τL on which macroscopic properties of the plasma change – there is a procedure
for achieving such a closure: the Chapman–Enskog (CE) expansion (Chapman & Cowling
1970; Enskog 1917; Cercignani 1988). It is assumed that, in a collisional plasma, the
small perturbations of the distribution functions away from a Maxwellian equilibrium
have typical size ε ∼ λs/L ∼ τs/τL � 1 (assuming sonic motions, and λi ∼ λe). Since the
perturbation is small, its form can be determined explicitly by performing an asymptotic
expansion of the Maxwell–Vlasov–Landau equations. Once the underlying distribution is
known, the relevant moments can be calculated – in particular, the momentum and heat
fluxes are the second- and third-order moments of the O(ε) non-Maxwellian component
of the distribution function. The CE expansion applied to a two-species magnetised
plasma was worked out by Braginskii (1965). Subsequent studies have refined and
extended various aspects of his calculation (Epperlein 1984; Mikhailovskii & Tsypin 1984;
Epperlein & Haines 1986; Helander, Krasheninnikov & Catto 1994; Simakov & Catto
2004). In this paper, we will refer to the distribution functions associated with the CE
expansion as CE distribution functions, and plasmas with particle distribution functions
given by CE distribution functions as CE plasmas.

However, the theory constructed as outlined above is incomplete. For the CE expansion
to provide an adequate fluid closure, the resulting distribution functions must be stable
to all kinetic instabilities with length scales shorter than the longest mean free path,
and time scales shorter than the macroscopic plasma time scale τL. Such instabilities
(if present) are known as microinstabilities. We emphasise that these microinstabilities
should be distinguished conceptually from instabilities describable by the closed set
of plasma-fluid equations: for example, Rayleigh–Taylor (Rayleigh 1883; Taylor 1950;
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Takabe et al. 1985; Kull 1991), magnetorotational (Balbus & Hawley 1991; Hawley &
Balbus 1991), magnetoviscous (Quataert, Dorland & Hammett 2002; Balbus 2004; Islam
& Balbus 2005) or magnetothermal/heat-flux-driven buoyancy instabilities (Balbus 2000,
2001; Quataert 2008; Kunz 2011). Kinetic microinstabilities should also be distinguished
from the small-scale instabilities that arise in solving higher-order (O(ε2)) fluid equations
obtained from the CE asymptotic expansion (for neutral fluids, these are called the Burnett
equations – see García-Colín, Velasco & Uribe 2008). Such instabilities are not physical
because they arise at scales where the equations themselves do not apply (Bobylev 1982).
Fluid instabilities do not call into question the validity of the fluid equations themselves;
in contrast, if microinstabilities occur, the plasma-fluid equations obtained through the
closure hypothesis are physically invalid, irrespective of their own stability.

Microinstabilities have been studied in depth for a wide range of classical plasmas by
many authors; see, for e.g. Davidson (1983), Gary (1993) and Hasegawa (2012) for three
different general perspectives on microinstability theory. Although it can be shown that
a Maxwellian distribution is always immune to such instabilities (Bernstein 1958; Krall
& Trivelpiece 1973), anisotropic distribution functions are often not (Kahn 1962; Furth
1963; Kalman, Montes & Quemada 1968). A notable example is the Weibel instability,
which occurs in counter-streaming unmagnetised plasmas (Fried 1959; Weibel 1959). The
linear theory of such instabilities is generally well known (for modern reviews, see Lazar,
Schlickeiser & Poedts 2009; Ibscher, Lazar & Schlickeiser 2012). Microinstabilities in
magnetised plasma have also been comprehensively studied. The ion firehose and mirror
instabilities are known to occur in plasmas with sufficient ion-pressure anisotropy and
large enough plasma β (Chandrasekhar, Kaufman & Watson 1958; Parker 1958; Vedenov
& Sagdeev 1958; Hasegawa 1969; Hall 1981; Hellinger 2007), while electron-pressure
anisotropy can also result in microinstabilities of various types (Kennel & Petschek 1966;
Hollweg & Völk 1970; Gary & Madland 1985).

A number of authors have noted that microinstabilities, if present, will have a significant
effect on the macroscopic transport properties of plasmas (Kahn 1964; Schekochihin et al.
2005, 2008; Melville, Schekochihin & Kunz 2016; Riquelme, Quataert & Verscharen
2016; Komarov et al. 2016, 2018; Roberg-Clark et al. 2018a; Drake et al. 2021). Typically
(although not always), once the small-scale magnetic and electric fields associated with
microinstabilities have grown, they will start to scatter particles, which in turn will alter
the plasma’s distribution functions. This has micro- and macroscopic consequences for
plasma behaviour. From the microscopic perspective, it changes the course of the evolution
of the microinstabilities themselves – by e.g. reducing the anisotropy of the underlying
particle distribution functions (Hellinger et al. 2014; Riquelme, Quataert & Verscharen
2018). From the macroscopic perspective, the changes to the distribution functions will
alter both heat and momentum fluxes in the plasma (which, as previously mentioned,
are determined by non-Maxwellian terms in the distribution function). In this picture, a
plasma subject to microinstabilities in some sense generates its own effective anomalous
collisionality (Schekochihin et al. 2008; Kunz, Schekochihin & Stone 2014; Mogavero &
Schekochihin 2014; Squire et al. 2017; Kunz et al. 2020). The typical values of the altered
fluxes attained must depend on the saturated state of microinstabilities (Schekochihin et al.
2010). Exploring the mechanisms leading to saturation of both unmagnetised, Weibel-type
instabilities (e.g. Davidson et al. 1972; Lemons, Winske & Gary 1979; Califano et al. 1998;
Califano, Cecchi & Chiuderi 2002; Kato 2005; Pokhotelov & Amariutei 2011; Ruyer et al.
2015) and magnetised instabilities (e.g. Kuznetsov, Passot & Sulem 2007; Pokhotelov et al.
2008; Rosin et al. 2011; Rincon, Schekochihin & Cowley 2015; Riquelme, Quataert &
Verscharen 2015) continues to be an active research area. Simulation results (Hellinger
et al. 2009; Guo, Sironi & Narayan 2014; Kunz et al. 2014; Melville et al. 2016; Riquelme
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et al. 2016; Guo, Sironi & Narayan 2018; Bott et al. 2021a) support the claim that the
saturation amplitude of such microinstabilities is typically such that the plasma maintains
itself close to marginality of the relevant instability.

Do these kinetic instabilities afflict the CE distribution function? Naively, it might be
assumed not, since it is ‘almost’ Maxwellian. However, it turns out that, provided the
plasma β is sufficiently high, small distortions from a Maxwellian can be sufficient to
lead to instability. Instabilities of a CE distribution function in an unmagnetised plasma
were first explored by Kahn (1964), who considered a collisional electron plasma (mean
free path λe) with macroscopic variations in density, temperature and velocity (scale
∼L). He showed that the CE distribution function in such a plasma would have two
non-Maxwellian terms of order λe/L – an antisymmetric term associated with heat flux,
and another term associated with velocity shear – and that the latter term would result in
the so-called transverse instability. Kahn (1964) also claimed that this instability would
lead to a significant change in the plasma viscosity, and other transport coefficients.
Albright (1970a,b) further developed the theory of the transverse instability, including
a quasi-linear theory resulting in isotropisation of the underlying electron distribution
function.

The stability of the CE distribution function was later considered by Ramani & Laval
(1978). They found that in an initially unmagnetised two-species plasma supporting
a fluid-scale electron-temperature gradient (scale LT , no flow shear), the second-order
terms (in λ/LT) in the electron distribution function could result in the formation
of unstable waves, with typical real frequencies � ∝ λe/LT , and growth rates γRL ∝
(λe/LT)2. Similarly to Kahn (1964), they argued that the presence of such instabilities
would suppress the macroscopic heat flux in the plasma (which in a collisional plasma
is carried predominantly by electrons). This particular instability has also been proposed
as an explanation for the origin of the cosmic magnetic field (Okabe & Hattori 2003).
Subsequent authors have explored further the idea that non-Maxwellian components of
the electron distribution function required to support a macroscopic heat flux can lead
to kinetic instability. Levinson & Eichler (1992) considered the effect of introducing
a uniform, macroscopic magnetic field into the same problem, and found that a faster
instability feeding off first-order heat-flux terms in the CE distribution function – the
whistler instability – arose at the electron-Larmor scale, with γwhistler,T ∝ λe/LT . A
quasi-linear theory of this instability was subsequently constructed by Pistinner & Eichler
(1998). Both Levinson & Eichler (1992) and Pistinner & Eichler (1998) proposed that the
instability at saturation would result in a suppressed heat flux (see also Gary & Li 2000).
More recently, the whistler instability has been studied in simulations of high-β plasma –
with two groups independently finding both the onset of instability at electron scales,
and evidence of a suppression of heat flux (Roberg-Clark et al. 2016, 2018a; Komarov
et al. 2018; Roberg-Clark et al. 2018b). Drake et al. (2021) constructed a theoretical model
for whistler-regulated heat transport based on a set of reasonable assumptions that were
motivated by these prior simulations.

The possibility of microinstabilities associated with the ion CE distribution function
was also considered by Schekochihin et al. (2005), who found that weakly collisional,
magnetised plasma undergoing subsonic, turbulent shearing motions can be linearly
unstable to firehose and mirror instabilities at sufficiently high βi (where βi is the ion
plasma beta). This is because the shearing motions give rise to an ion-pressure anisotropy
Δi ∼ λ2

i /L2
V , where LV is the length scale associated with the shearing motions. For

|Δi| � β−1
i , the mirror- and firehose-instability thresholds can be crossed (the mirror

instability is trigged by sufficiently positive pressure anisotropy, the firehose instability
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by negative pressure anisotropy). Beyond its threshold, the maximum firehose-instability
growth rate γfire was found to satisfy γfire ∝ |Δi + 2/βi|1/2, whilst for the mirror instability,
the maximum growth rate was γmirr ∝ Δi − 1/βi. Such destabilisation of shearing motions
was confirmed numerically by Kunz et al. (2014), followed by many others (e.g. Riquelme
et al. 2015, 2016, 2018; Melville et al. 2016).

In this paper, we examine the criteria for the CE distribution function to be stable to
microinstabilities at collisionless scales – i.e. at kλs � 1 (where k is the microinstability
wavenumber), and γ τL � 1. In a two-species plasma with a fixed mass ratio μe ≡
me/mi, Te = Ti and an ion charge Zi that is not very large, these criteria turn out to be
relationships between three dimensionless parameters: λ/L, de/L and β, where λ ≡ λe =
Z2

i λi is the mean free path for both ions and electrons in a hydrogen plasma, and de is
the electron inertial scale. The first criterion (which we refer to as the β-stabilisation
condition) is that the ratio λ/L be much smaller than the reciprocal of the plasma β, viz.
λβ/L � 1. This condition arises because the microinstabilities discussed in this paper
are stabilised (usually by Lorentz forces) at sufficiently low β. The second criterion
(the collisional-stabilisation condition) is that the characteristic wavenumber kpeak of the
fastest-growing microinstability in the absence of collisional effects be comparable to (or
smaller than) the reciprocal of the mean free path: kpeakλ � 1. Unlike the β-stabilisation
condition, we do not justify this condition rigorously, because our calculations are only
valid for wavenumbers k such that kλ� 1; thus, we cannot say anything definitive about
the kλ � 1 regime. We do, however, show that another, more restrictive stabilisation
condition that one might naively expect to exist on account of collisions – that
microinstabilities cannot occur if their growth rate γ is smaller than the collision frequency
(viz. γ τs � 1) – does not, in fact, apply to the most significant microinstabilities in CE
plasma. There are good physical reasons to believe that the CE distribution function
is stable against collisionless microinstabilities if the collisional-stabilisation condition
kpeakλ � 1 is satisfied: not least that the typical growth time of the fastest microinstability
in CE plasma (calculated neglecting collisional damping of microinstabilities) becomes
comparable to the macroscopic evolution time scale τL. We thus assume the validity
of the collisional-stabilisation condition throughout this paper. How kpeak relates to the
other physical parameters is in general somewhat complicated; however, typically, the
collisional-stabilisation condition can be written as a lower bound on the ratio de/L. For
example, in the limit of very high β, it is de/L > (me/mi)

−1/6(λ/L)2/3 (see § 4.2).
If both the β-stabilisation and collisional-stabilisation conditions are violated, we

demonstrate that CE plasma will be subject to at least one microinstability, and
quite possibly multiple microinstabilities across a wide range of scales. Some of
these microinstabilities are thresholdless – that is, without including collisional effects,
they will occur for CE distributions departing from a Maxwellian distribution by an
asymptotically small amount. Note that all significant microinstabilities associated with
the CE distribution function are ‘low frequency’: their growth rate γ satisfies γ � kvths,
where k is the typical wavenumber of the instability, and vths the thermal velocity of the
particles of species s. This property enables a small anisotropy of the distribution function
to create forces capable of driving microinstabilities (see § 2.5).

In this paper, we characterise all significant microinstabilities that arise at different
values of λ/L, β and de/L for a particular form of the CE distribution function
appropriate for a strongly magnetised plasma – that is, a plasma where the Larmor
radii of ions and electrons are much smaller than the corresponding mean free paths of
these particles. We treat this particular case because of its importance to astrophysical
systems, which almost always possess macroscopic magnetic fields of sufficient strength to
magnetise their constituent particles (Schekochihin & Cowley 2006). Our characterisation
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of microinstabilities focuses on providing the maximum microinstability growth rates,
as well as the wavenumbers at which this growth occurs. We find that there exist two
general classes of microinstabilities: those driven by the non-Maxwellian component
of the CE distribution associated with temperature gradients, and those driven by the
non-Maxwellian component associated with bulk velocity gradients (‘shear’). We refer
to these two non-Maxwellian terms (which exist for both the ion and electron CE
distribution functions) as the CE temperature-gradient terms and the CE shear terms,
respectively. Microinstabilities driven by the CE temperature-gradient terms are called
the CE temperature-gradient-driven (CET) microinstabilities, while those driven by the
CE shear terms are the CE shear-driven (CES) microinstabilities.

As expected, within this general microinstability classification scheme, we recover a
number of previously identified microinstabilities, including the (electron-shear-driven)
transverse instability (which we discuss in §§ 4.3.3 and 4.4.9), the whistler instability
(§ 4.3.2), the electron mirror instability (§ 4.3.4), the electron firehose instability (§§ 4.4.6
and 4.4.7), the ordinary-mode instability (§ 4.4.11), the (electron-temperature-gradient-
driven) whistler heat-flux instability (§§ 3.3.1 and 3.3.2) and the (ion-shear-driven)
mirror (§ 4.3.1) and firehose (§§ 4.4.1, 4.4.2, 4.4.3, 4.4.4 and 4.4.5) instabilities.
We also find four microinstabilities that, to our knowledge, have not been
previously discovered: two ion-temperature-gradient-driven ones at ion Larmor
scales – the slow-hydromagnetic-wave instability (§ 3.3.3) and the long-wavelength
kinetic-Alfvén wave instability (§ 3.3.4) – and two electron-shear-driven ones –
the electron-scale-transition (EST) instability (§ 4.4.8) and the whisper instability
(§ 4.4.10) – at electron-Larmor and sub-electron-Larmor scales, respectively. Of these
microinstabilities, the whisper instability seems to be of particular significance: it has
an extremely large growth rate in certain parameter regimes, and is associated with
a new high-β wave in a Maxwellian plasma, which also appears to have previously
escaped attention. For convenience, a complete index of microinstabilities discussed in
this paper is given in table 1, while the peak growth rates of these microinstabilities
and the scales at which they occur (for a hydrogen CE plasma) are given in table 2.
There do exist microinstabilities in CE plasma that are not represented in tables 1 and 2;
however, we claim that the instabilities discussed in this paper are the most significant, on
account of their large growth rates and/or low β-stabilisation thresholds compared with
the unrepresented ones.

Having systematically identified all significant microinstabilities, we can construct
‘stability maps’ of strongly magnetised CE plasma using ‘phase diagrams’ over a
two-dimensional (λ/L, de/L) parameter space at a fixed β. An example of such a map (for
a hydrogen plasma with equal ion and electron temperatures) is shown in figure 1. The
entire region of the (λ/L, de/L) space depicted in figure 1 could naively be characterised
as pertaining to classical, collisional plasma, and thus describable by fluid equations,
with transport coefficients given by standard CE theory. However, there is a significant
region of the parameter space (which is demarcated by boundaries corresponding
to the β-stabilisation and collisional-stabilisation conditions) that is unstable to
microinstabilities. In fact, in strongly magnetised plasma, the collisional-stabilisation
condition is never satisfied, because there exist microinstabilities whose characteristic
length scales are the ion- and electron-Larmor radii, respectively; this being the case, only
the β-stabilisation condition guarantees kinetic stability.

The effect of microinstabilities being present in CE plasma would be to change
the non-Maxwellian components of the distribution function, and therefore to alter the
CE-prescribed resistivity, thermal conductivity and/or viscosity. Identifying the dominant
microinstability or microinstabilities in such plasmas (as is done in figure 1 for a hydrogen
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Microinstability name Section(s)
Other names

occurring in literature Driving CE term

Mirror instability 4.3.1 — Ion-velocity shear

Firehose instability
4.4.1, 4.4.2,
4.4.3, 4.4.4,

4.4.5

Garden-hose
instability Ion-velocity shear

Slow-hydromagnetic- 3.3.3 — Ion-temperature
wave instability* gradient

Long-wavelength kinetic-Alfvén 3.3.4 — Ion-temperature
wave (KAW) instability* gradient

CES whistler 4.3.2 Electron-cyclotron Electron-velocity shear
instability (whistler) instability

Electron 4.3.4 KAW, field-swelling Electron-/ion-
mirror instability instability velocity shear

Electron 4.4.6, 4.4.7 KAW instability Electron-/ion-
firehose instability velocity shear

Electron-scale-transition 4.4.8 — Electron-velocity
(EST) instability* shear

Whisper instability* 4.4.10 — Electron-velocity
shear

Transverse instability 4.3.3, 4.4.9 Small-anisotropy
Weibel instability

Electron-velocity
shear

Ordinary-mode 4.4.11 — Electron-velocity
instability shear

CET whistler 3.3.1, 3.3.2 Whistler heat Electron-temp.
instability flux instability gradient

TABLE 1. Index of microinstabilities. The microinstabilities listed here are those discussed
in the main text, with the relevant sections indicated. We also indicate whether these
microinstabilities are driven by macroscopic electron-/ion-temperature gradients associated with
the CE distribution function, or by macroscopic electron/ion velocity gradients (shears): see
§ 2.2.1 for a discussion of this classification. Newly identified microinstabilities are indicated
with an asterisk.

plasma) is then necessary for calculating the true transport coefficients, which are likely
determined by the effective collisionality associated with the saturated state of the
dominant microinstability rather than by Coulomb collisions. Although such calculations
are not undertaken in this paper, it seems possible that the modified transport coefficients
could be determined self-consistently in terms of macroscopic plasma properties such
as temperature gradients or velocity shears. We note that the calculation presented here
assumes that the CE distribution function is determined without the microinstabilities
and thus is only correct when the plasma is stable. Therefore, strictly speaking, the only
conclusion one can make when the CE plasma is unstable is that the naive CE values of
transport coefficients should not be taken as correct.

We emphasise that kinetic instability of CE plasmas is a phenomenon of practical
importance as well as academic interest. We illustrate this in tables 3 and 4, where
the possibility of microinstabilities is considered for a selection of physical systems
composed of classical, collisional plasma. We find that, while there exist some systems
where CE plasmas are immune to microinstabilities – for example, the photosphere
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Microinstability Growth rate
name Wavenumber scale (×Ωe) β-threshold

Mirror k‖ρi � k⊥ρi ∼ 1 μeε εβ ∼ 1
instability

Parallel firehose k‖ρi ∼ k⊥ρi ∼ ε1/2, k⊥ � ε1/4k‖ μeε εβ ∼ 1
instability

Oblique firehose k‖ρi ∼ ε1/4, k⊥ ∼ k‖ μeε
3/4 εβ ∼ 1

instability
Critical-line firehose k‖ρi ≈ √

3/2 k⊥ρi < 1 μeε
1/2 εβ ∼ 1

instability (ε � 10−6)
Critical-line firehose k‖ρi ≈ √

3/2 k⊥ρi ∼ ε1/12 μeε
7/12 εβ ∼ 1

instability (ε � 10−6)
Slow-hydro.-wave k⊥ρi � k‖ρi ∼ 1 μ

5/4
e ε εβ ∼ μ

−1/4
e

instability
Long-wavelength KAW k‖ρi < k⊥ρi ∼ 1 μ

5/4
e εk‖/k⊥ εβ ∼ μ

−1/4
e

instability
CES whistler k⊥ρe � k‖ρe ∼ 1 μ

1/2
e ε εβ ∼ μ

−1/2
e

instability
Electron mirror k‖ρe � k⊥ρe ∼ 1 μ

1/2
e ε εβ ∼ μ

−1/2
e

instability
Parallel electron k⊥ρe � k‖ρe ∼ 1 μeε εβ ∼ μ

−1/2
e

firehose instability
Oblique electron k‖ρe � k⊥ρe ∼ 1 μ

1/2
e ε εβ ∼ μ

−1/2
e

firehose instability
EST instability k‖ρe < 1 � k⊥ρe ∼ ε1/2β1/2μ

1/4
e μ

5/4
e ε5/2β3/2 εβ ∼ μ

−1/2
e

(εβ5/7 � μ
−1/2
e )

EST instability k‖ρe < 1 � k⊥ρe ∼ ε1/5μ
1/10
e μ

1/5
e ε2/5 εβ ∼ μ

−1/2
e

(εβ5/7 � μ
−1/2
e )

Whisper k‖ρe < 1 � k⊥ρe ∼ ε1/2β1/2μ
1/4
e μ

3/8
e ε3/4β1/4 εβ ∼ β2/7μ

−1/2
e

instability
Parallel transverse k⊥ρe � k‖ρe ∼ ε1/2β1/2μ

1/4
e μ

3/4
e ε3/2β1/2 εβ ∼ μ

−1/2
e

instability
Oblique transverse 1 � k‖ρe � k⊥ρe ∼ ε1/2β1/2μ

1/4
e μ

3/4
e ε3/2β1/2 εβ ∼ μ

−1/2
e

instability
Ordinary-mode k‖ = 0, k⊥ρe ∼ ε1/2β1/2μ

1/4
e μ

3/4
e ε3/2β1/2 εβ ∼ β2/3μ

−1/2
e

instability
CET whistler k⊥ρe � k‖ρe ∼ ε1/5β1/5μ

1/20
e μ

1/4
e ε εβ ∼ μ

−1/4
e

instability

TABLE 2. Properties of microinstabilities. Typical wavenumbers and maximum growth rates
of microinstabilities in strongly magnetised hydrogen CE plasma, and their β-stabilisation
thresholds. Here, μe = me/mi. We assume scalings (2.55) to relate the magnitude of CE
temperature-gradient-driven and CE shear-driven microinstabilities. These scalings lead to the
non-Maxwellian component of the ion distribution function having magnitude ∼ε = Ma λ/LV ,
where λ = λe = λi, LV is the length scale of the CE plasma’s bulk fluid motions in the direction
parallel to the guide magnetic field (see (2.13d)) and Ma is the Mach number of those bulk
motions. The quoted wavenumbers and growth rates apply when the β-stabilisation threshold is
exceeded by an order-unity or much larger factor.
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FIGURE 1. Stability map for the CE distribution function. Idealised illustration of the stability
of strongly magnetised, classical, collisional hydrogen plasma to microinstabilities for different
(non-dimensionalised) values of the mean free path λ = λe = λi and the electron inertial
scale de. Here, the length scale LV to which λ and de are normalised is the length scale of the
CE plasma’s bulk fluid motions in the direction parallel to the guide magnetic field (see (2.13d));
we assume scalings (2.55) to relate the magnitude of CE temperature-gradient-driven and CE
shear-driven microinstabilities, so the CE expansion parameter is ε = Ma λ/LV (see the caption
of table 2 for definitions). The white region of the (de/LV , Ma λ/LV ) stability map is stable; the
coloured regions are not. In the unstable regions, the fastest-growing microinstability is indicated
by colour according to the figure’s legend; in the regions where multiple microinstabilities could
be operating simulataneously, multiple colours have been employed. The plasma beta β here was
taken to be β = 104, and the Mach number Ma = 1.

and chromosphere – there are many other astrophysical plasma systems that are
likely susceptible to them. Similar considerations apply to a range of laser plasmas,
including plasmas generated in inertial-confinement-fusion and laboratory-astrophysics
experiments. Indeed, a recent experiment carried out on the National Ignition Facility
(NIF) – part of a wider programme of work exploring magnetic-field amplification in
turbulent laser plasmas (Tzeferacos et al. 2018; Bott et al. 2021c,b, 2022) – found evidence
for the existence of large-amplitude local temperature fluctuations over a range of scales,
a finding that was inconsistent with Spitzer thermal conduction (Meinecke et al. 2022).
This claim was corroborated by magnetohydrodynamic (MHD) simulations (with the code
FLASH) of the experiment that modelled thermal conduction either using the Spitzer
model, or no explicit thermal conduction model: the latter simulations were found to
be much closer to the actual experimental data. Because the plasma created in the NIF
experiment is also anticipated by our theory to be susceptible to CE microinstabilities,
observations of a discrepancy with CE-derived transport coefficients are tantalising. We
note that the idea of microinstabilities emerging in both collisional astrophysical plasmas
and laser plasmas is not a new one: see, e.g. Schekochihin et al. (2005) or Hellinger &
Trávníček (2015) in the former context; in the latter, Epperlein & Bell (1987) or Bell
et al. (2020). However, to our knowledge there does not exist a systematic treatment of the
general kinetic stability of CE plasmas. This is the gap that this paper attempts to fill.
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Environment Te (eV) Ti (eV) ne (cm−3) B (G) L (cm)

Warm intergalactic medium (WIGM) 102 102 10−5 10−8 3 × 1024

Intracluster medium (ICM) 104 104 10−2 10−5 3 × 1023

IGM post reionisation 1 1 10−6 10−19 3 × 1024

Solar photosphere 1 1 1017 500 107

Solar chromosphere 1 1 1012 10 107

Burning ICF hot spot (NIF) 104 104 2 × 1025 8 × 107 5 × 10−3

Laser-ablated plasma (long pulse) 103 5 × 102 4 × 1021 106 10−2

NIF ‘TDYNO’ laser plasma 103 103 5 × 1020 106 10−2

TABLE 3. Plasma parameters for some physical systems composed of classical, collisional
plasma. The values of temperature and density of the WIGM given here are from Nicastro,
Mathur & Elvis (2008), while those of the ICM come from Fabian (1994). The estimates of the
typical magnetic-field strengths and scale lengths for both the WIGM and the ICM are from Ryu
et al. (2008). For simplicity, we have assumed equal ion and electron temperatures; however,
we acknowledge that there is some uncertainty as to the validity of this assumption (see, e.g.
Yoshida, Furlanetto & Hernquist 2005). Barkana & Loeb (2001) is the source of estimates for the
IGM post reionisation. Estimates for typical solar parameters are from Wiegelmann, Thalmann &
Solanki (2014) and Stix (2012). The values of the temperature, electron density and scale length
for ICF hot spots are from Abu-Shawareb (2022), who reported the first DT experiments carried
out on the NIF to exceed the Lawson criterion for ignition; the estimates of the magnetic-field
strength come from numerical simulations of a burning ICF hot spot with a similar fusion energy
yield (Sadler et al. 2022). The parameters for the laser-ablated carbon-hydrogen plasma are from
an experiment on the OMEGA laser facility, with a 1 ns, 500 J pulse with a 0.351 μm wavelength
(Li et al. 2007); we assume that the measured fields are found in front of the critical-density
surface when estimating the density. The ‘TDYNO’ laser plasma is a turbulent carbon-hydrogen
plasma that was produced as part of a recent laboratory astrophysics experiment on the NIF
which found evidence of suppressed heat conduction (Meinecke et al. 2022). Naturally, the
systems described here often support a range of density, temperatures and magnetic fields, so
the values provided should be understood as representative, but negotiable.

This paper has the following structure. In § 2, we discuss kinetic and fluid descriptions
of classical plasma. We then describe the CE expansion in collisional plasma: we work
out the CE distribution function arising in a two-species strongly magnetised plasma,
evaluate the friction forces, heat and momentum fluxes necessary to construct a closed
set of plasma-fluid equations and systematically estimate the size of the non-Maxwellian
components of this distribution. Next, we discuss qualitatively the existence and nature
of microinstabilities potentially arising in CE plasma, before presenting the methodology
that we later use to perform the full linear, kinetic stability calculation. We provide an
overview of this methodology in § 2.4, and then a much more detailed exposition of
it in § 2.5: in particular, we describe in the latter how a simple form of the dispersion
relation for the fastest microinstabilities can be obtained by considering the low-frequency
limit γ � kvths of the hot-plasma dispersion relation, and how this simplified dispersion
relation can be solved analytically. Readers who are uninterested in the technical details
of this calculation are encouraged to pass over § 2.5; knowledge of its contents is not a
pre-requisite for subsequent sections. In §§ 3 and 4, we construct stability maps (analogous
to figure 1) showing the parameter ranges in which the CE distribution function is stable,
to CET and CES microinstabilities, respectively. The parameters are β and λ/L, and we
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Environment λe/L λi/L de/L β βλe/L ρe/λe ρi/λi kpeakλe

WIGM 2 × 10−3 2 × 10−3 2 × 10−17 104 20 10−12 10−11 1012

ICM 10−2 10−2 10−17 102 1 10−14 10−13 1014

Reion. IGM 10−7 10−7 10−16 1022 1015 0.5 20 105

Photosphere 6 × 10−12 6 × 10−12 2 × 10−10 30 10−10 110 4 × 103 10−4

Chromosphere 2 × 10−7 2 × 10−7 5 × 10−8 1 10−7 0.2 6 0.2
ICF hot spot 5 × 10−3 3 × 10−2 2 × 10−5 3 × 103 15 0.2 20 6
Laser-abl. pl. 7 × 10−3 3 × 10−4 8 × 10−4 200 1 0.4 800 2.5
NIF TDYNO 6 × 10−2 2 × 10−2 2 × 10−3 45 2.5 0.1 200 10

TABLE 4. Derived plasma parameters for systems composed of classical, collisional plasma.
All parameters are calculated using Huba (1994), except for kpeakλe. This is calculated
by considering all possible instabilities, and then finding the magnitude of kpeakλe for the
fastest-growing instability satisfying kpeakλe � 1. Depending on the values of other parameters,
the fastest-growing instability varies between systems; in the WIGM, ICM, ICF, laser-ablation
and TDYNO plasmas, the whistler heat-flux instability is the fastest-growing one, while in the
reionised IGM, the transverse instability is. Formulae for λe and λi are also given by (2.14a,b).

construct separate stability maps for CET and CES microinstabilities in order to take into
account the fact that L is in general not the same in the situations where these two types
of microinstabilities occur. In § 3, we also discuss the significant CET microinstabilities
that can occur (or not) at different values λ/L and β, and provide simple analytic
characterisations of them; in § 4, we do the same for significant CES microinstabilities.
Finally, in § 5, we discuss the general implications of these instabilities for classical,
collisional plasmas, and consider future research directions. Throughout this paper, most
lengthy calculations are exiled to appendices; a glossary of mathematical notation is given
in Appendix A.

2. Problem set-up
2.1. Kinetic vs fluid description of classical plasma

The evolution of classical plasma is most generally described by kinetic theory, via
the solution of Maxwell–Vlasov–Landau equations for the distribution functions of
constituent particles. More specifically, in a kinetic description of a (non-relativistic)
plasma, the distribution function fs(r, v, t) of the particle of species s satisfies

∂fs

∂t
+ v · ∇fs + Zse

ms

(
E + v × B

c

)
· ∂fs

∂v
=
∑

s′
C( fs, fs′), (2.1)

where t is time, r spatial position, v the velocity, e the elementary charge, Zse the charge
and ms the mass of species s, E the electric field, B the magnetic field, c the speed of
light and C( fs, fs′) the collision operator for interactions between species s and s′. Here,
we do not yet give a specific form for C( fs, fs′); in general, an appropriate choice is
the full Landau collision operator (Helander & Sigmar 2005), but to aid tractability of
some calculations that we carry out subsequently (see § 2.4.2), we will in some instances
adopt simpler models such as the Krook operator (Bhatnagar, Gross & Krook 1954).
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Equation (2.1) is coupled to Maxwell’s equations:

∇ · E = 4π
∑

s

Zse
∫

d3v fs, (2.2a)

∇ · B = 0, (2.2b)

∇ × E = −1
c

∂B
∂t

, (2.2c)

∇ × B = 1
c

∂E
∂t

+ 4π

c

∑
s

Zse
∫

d3v v fs. (2.2d)

Together, (2.1) and (2.2) form a closed set of governing equations.
The density ns, bulk fluid velocity V s and temperature Ts of species s can be formally

defined in terms of moments of the distribution function:

ns ≡
∫

d3v fs, (2.3a)

V s ≡ 1
ns

∫
d3v v fs, (2.3b)

Ts ≡ 1
ns

∫
d3v

1
3

ms|v − V s|2 fs. (2.3c)

Governing ‘fluid’ equations are then derived by integrating (2.1) or outer products of (2.1)
and the velocity variable v with respect to v:

Dns

Dt

∣∣∣∣
s

+ ns∇ · V s = 0, (2.4a)

msns
DV s

Dt

∣∣∣∣
s

= −∇ps − ∇ · πs + Zsens

(
E + V s × B

c

)
+ Rs, (2.4b)

3
2

ns
DTs

Dt

∣∣∣∣
s

+ ps∇ · V s = −∇ · qs − πs : ∇V s + Qs, (2.4c)

where
D
Dt

∣∣∣∣
s

≡ ∂

∂t
+ V s · ∇ (2.5)

is the convective derivative with respect to the fluid motions of species s, ps the pressure,
πs the viscosity tensor and qs the heat flux of species s, Rs the friction force on this
species due to collisional interactions with other species, and Qs the heating rate due
to inter-species collisions. The latter quantities are formally defined in terms of the
distribution function as follows:

ps ≡
∫

d3v
1
3

ms|v − V s|2 fs = nsTs, (2.6a)

πs ≡ −psI +
∫

d3v ms (v − V s) (v − V s) fs, (2.6b)

qs ≡
∫

d3v
1
2

ms|v − V s|2 (v − V s) fs, (2.6c)
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Rs ≡
∑

s′

∫
d3v msv C( fs, fs′), (2.6d)

Qs ≡ −Rs · V s +
∑

s′

∫
d3v

1
2

ms|v|2 C( fs, fs′). (2.6e)

The distribution function only appears in Maxwell’s equations via its zeroth and
first moments; namely, Gauss’ law (2.2a) and the Maxwell–Ampère law (2.2d) can be
written as

∇ · E = 4π
∑

s

Zsens, (2.7a)

∇ × B = 1
c

∂E
∂t

+ 4π

c

∑
s

ZsensV s. (2.7b)

Unlike the kinetic description, the fluid equations (2.4) combined with Maxwell’s
equations (2.2b), (2.2d), (2.7a) and (2.7b) are not a closed system: knowledge of the
distribution function, not just of ns, V s or Ts, is required to calculate momentum and heat
fluxes, as well as the friction force or heating.

As discussed in the Introduction, solving fluid equations as opposed to kinetic equations
is advantageous in many cases of interest. Since the dimensionality of the kinetic system
is greater (a six-dimensional phase space vs three-dimensional position space), solving the
kinetic system introduces both significant numerical and conceptual complexity. However,
the system of fluid equations (2.4) is only usable if some type of closure can be introduced
to calculate πs, qs, Rs and Qs in terms of ns, V s and Ts. For classical plasmas, such a
closure is generally not possible, except in the case of strongly collisional plasmas.

2.2. The Chapman–Enskog expansion
2.2.1. The CE distribution functions

For a classical, collisional plasma – i.e. a plasma where the mean free path λs of
particles of species s satisfies λs/L � 1 for all s, L being the length scale over which
the macroscopic properties of the plasma vary – a formal procedure exists for deriving a
closed system of fluid equations from a kinetic description of the plasma. This procedure
is the CE expansion, which gives distribution functions that are close to, but not exactly,
Maxwellian. We call them CE distribution functions. The non-Maxwellian components
of the CE distribution functions of particle species s are proportional to λs/L, and must
be present in order to support gradients of ns, V s and Ts on O(L) length scales, because
(2.6b–e) are all zero for a Maxwellian plasma.

We consider a collisional electron–ion plasma (in which, by definition, μe ≡ me/mi �
1) with the property that all constituent particle species are strongly magnetised by the
macroscopically varying magnetic field B: that is, the Larmor radius ρs ≡ msvthsc/|Zs|e|B|
satisfies ρs � λs both for the ions and for the electrons (here, vths ≡ √

2Ts/ms is the
thermal speed of species s). Equivalently, a strongly magnetised plasma is one in which
the Larmor frequency Ωs ≡ e|Zs|/msc satisfies Ωsτs � 1, where τs is the collision time
of species s. In such a plasma, the macroscopic variation of the fluid moments is locally
anisotropic with respect to B; L is the typical length scale of variation in the direction
locally parallel to B. It can then be shown that, to first order of the CE expansion in
λs/L � 1, and to zeroth order in ρs/λs � 1, the CE distribution functions of the electrons
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and ions are

fe(ṽe‖, ṽe⊥) = ne

v3
theπ

3/2
exp

(−ṽ2
e

)
×
{

1 + [
ηT

e AT
e (ṽe) + ηR

e AR
e (ṽe) + ηu

eAu
e(ṽe)

]
ṽe‖ + εeCe(ṽe)

(
ṽ2

e‖ − ṽ2
e⊥
2

)}
,

(2.8a)

fi(ṽi‖, ṽi⊥) = ni

v3
thiπ

3/2
exp

(−ṽ2
i

)
×
{

1 + ηiAi(ṽi)ṽi‖ + εiCi(ṽi)

(
ṽ2

i‖ − ṽ2
i⊥
2

)}
. (2.8b)

Let us define the various symbols employed in (2.8), before discussing the origin of these
expressions and their significance for formulating fluid equations (see § 2.2.2).

The particle velocity v (with the corresponding speed v = |v|) is split into components
parallel and perpendicular to the macroscopic magnetic field B = Bẑ as v = v‖ẑ + v⊥,
and the perpendicular plane is in turn characterised by two vectors x̂ and ŷ chosen so
that {x̂, ŷ, ẑ} is an orthonormal basis. The perpendicular velocity is related to these basis
vectors by the gyrophase angle φ:

v⊥ = v⊥
(
cos φ x̂ − sin φ ŷ

)
. (2.9)

The non-dimensionalised peculiar velocity ṽs in the rest frame of the ion fluid is defined
by ṽs ≡ (v − V i)/vths, ṽs ≡ |ṽs|, ṽs‖ ≡ ẑ · ṽs and ṽs⊥ ≡ |ṽs − ṽs‖ẑ|. The number densities
satisfy the quasi-neutrality condition

Zini = ne, (2.10)

where we have utilised Ze = −1. We emphasise that ns, {x̂, ŷ, ẑ} and vths all vary over
length scales L in the plasma, but not on shorter scales (at least not in the direction
locally parallel to B). The functions AT

e (ṽe), AR
e (ṽe), Au

e(ṽe), Ce(ṽe), Ai(ṽi) and Ci(ṽi) are
isotropic functions whose precise forms depend only on the collision operator assumed in
the original kinetic equation. Their magnitude is O(1) when ṽe ∼ 1 or ṽi ∼ 1, for electrons
and ions, respectively. Finally, the parameters ηT

e , ηR
e , ηu

e , ηi, εe and εi are defined as follows:

ηT
e = λe∇‖ log Te = sgn(∇‖ log Te)

λe

LT
, (2.11a)

ηR
e = λe

Re‖
pe

, (2.11b)

ηu
e = λe

meuei‖
Teτe

, (2.11c)

ηi = λi∇‖ log Ti = sgn(∇‖ log Ti)
λi

LTi

, (2.11d)

εe = λe

vthe

(
ẑẑ − 1

3
I

)
:W e = sgn

[(
ẑẑ − 1

3
I

)
:W e

]
Ve

vthe

λe

LVe

, (2.11e)

εi = λi

vthi

(
ẑẑ − 1

3
I

)
:W i = sgn

[(
ẑẑ − 1

3
I

)
:W i

]
Vi

vthi

λi

LV
, (2.11f )
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where λe is the electron mean free path, λi the ion mean free path, τe the electron
collision time, Re‖ ≡ ẑ · Re the parallel electron-friction force, uei ≡ V e − V i the relative
electron–ion velocity, uei‖ ≡ ẑ · uei,

W s = ∇V s + (∇V s)
T − 2

3 (∇ · V s) I (2.12)

the traceless rate-of-strain tensor of species s, Ve (Vi) the bulk electron-(ion-)fluid speed
and

LT ≡ ∣∣∇‖ log Te

∣∣−1
, (2.13a)

LTi ≡ ∣∣∇‖ log Ti

∣∣−1
, (2.13b)

LVe ≡ Ve

∣∣(ẑẑ − 1
3 I
)

:W e

∣∣−1
, (2.13c)

LV ≡ Vi

∣∣(ẑẑ − 1
3 I
)

:W i

∣∣−1
, (2.13d)

are, respectively, the electron and ion temperature and the electron- and ion-flow length
scales parallel to the background magnetic field. The mean free paths are formally defined
for a two-species plasma by

λe ≡ vtheτe, (2.14a)

λi ≡ vthiτi, (2.14b)

and the collision times τe and τi are given in terms of macroscopic plasma parameters by

τe ≡ 3m1/2
e T3/2

e

4
√

2πZ2
i e4ni log ΛCL

, (2.15a)

τi ≡ 3m1/2
i T3/2

i

4
√

2πZ4
i e4ni log ΛCL

, (2.15b)

where log ΛCL is the Coulomb logarithm (Braginskii 1965).1 In a collisional plasma, ηT
e ,

ηR
e , ηu

e , ηi, εe and εi are assumed small. We note that all these parameters can be either
positive or negative, depending on the orientation of temperature and velocity gradients.

It is clear from their definitions that each of the non-Maxwellian terms associated with
the parameters ηT

e , ηR
e , ηu

e , ηi, εe and εi is linked to a different macroscopic physical
quantity. Thus, ηT

e and ηi are proportional to the electron- and ion-temperature gradients,
respectively; we will therefore refer to the associated non-Maxwellian terms as the CE
electron-temperature-gradient term and the CE ion-temperature-gradient term. We refer
to the non-Maxwellian term proportional to ηR

e as the CE electron-friction term, to
the non-Maxwellian term proportional to ηu

e as the CE electron–ion-drift term, and the
non-Maxwellian terms proportional to εe and εi as the CE electron-shear term and the
CE ion-shear term. The friction and electron–ion-drift terms appear in the electron CE
distribution function but not the ion CE distribution function because of our choice to
define all velocities in the ion-fluid rest frame. We note that, while macroscopic variation
of both the electron and ion densities is a priori allowed in our plasma, the derivation of
the CE distribution functions reveals that such variation does not directly give rise to a
non-Maxwellian perturbation to the CE distribution function (see Appendix B.1).

1Braginskii defined his ion collision time as equal to (2.15b) multiplied by a factor of
√

2; for the sake of species
equality, we remove this factor.
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The derivation of the CE distribution functions (2.8) for a two-species strongly
magnetised plasma undergoing sonic motions (that is, Vi ∼ vthi) from the kinetic equation
(2.1) was first completed by Braginskii (1965) for arbitrary values of ρs/λs. We do not
reproduce the full derivation in the main text, but, for the reader’s convenience, we provide
a derivation of (2.8) in Appendix B.1. The gist of the full derivation is to assume that
the distribution function is close to a Maxwellian, with parameters that only evolve on
a slow time scale t′ ∼ tL/λe ∼ tL/λi � t. The kinetic equation (2.1) is then expanded
and solved order by order in λe/L ∼ λi/L � 1, allowing for the calculation of the (small)
non-Maxwellian components of the distribution function. The small parameters ηT

e , ηR
e , ηu

e ,
ηi, εe and εi, as well as the isotropic functions AT

e (ṽe), AR
e (ṽe), Au

e(ṽe), Ce(ṽe), Ai(ṽi) and
Ci(ṽi) emerge during this calculation. In Appendix B.2, we provide a simple illustration of
how the isotropic functions are determined by the specific choice of collision operator; in
Appendices B.2.1 and B.2.2, we calculate them explicitly for Krook and Lorentz collision
operators, respectively. For the full Landau collision operator, the equivalent calculation
is more complicated, but can be performed (for example) by expanding the isotropic
functions in Sonine polynomials (see Helander & Sigmar 2005).

2.2.2. Closure of fluid equations (2.4)
Once the CE distribution function has been calculated, the desired fluid closure can be

obtained by evaluating the heat fluxes, the friction forces, and the momentum fluxes (2.6)
associated with the non-Maxwellian components of the CE distribution functions. These
calculations were carried out in full for arbitrary values of ρs/λs by Braginskii (1965).

We do not reproduce the full fluid closure relations here; instead, we illustrate how the
non-Maxwellian terms in the CE distribution functions (2.8) give rise to the friction force
and heat fluxes parallel to the macroscopic magnetic field, as well as to the viscosity tensor.
In a strongly magnetised two-species plasma (where ρs � λs), parallel friction forces and
heat fluxes are typically much larger than their perpendicular or diamagnetic counterparts.

(i) Heat fluxes. Recalling (2.6c), the parallel heat flux qs‖ ≡ ẑ · qs associated with
species s is given by

qs‖ = 1
2

∫
d3v′

s ms

∣∣v′
s

∣∣2 v′
s‖ fs, (2.16)

where v′
s ≡ v − V s. Noting that the electron distribution function (2.8a) is specified

in the rest frame of the ions, not electrons, it is necessary first to calculate the electron
distribution function in the electron rest frame before calculating the parallel electron
heat flux. An expression for this quantity is given by (B18) in Appendix B.1 as part
of our derivation of (2.8a):

fe(v
′
e‖, v

′
e⊥) = ne

v3
theπ

3/2
exp

(
−|v′

e|2
v2

the

)
×
{

1 +
[
ηT

e AT
e

( |v′
e|

vthe

)
+ ηR

e AR
e

( |v′
e|

vthe

)
+ ηu

e

(
Au

e

( |v′
e|

vthe

)
− 1

)]
v′

e‖
vthe

+ εeCe

( |v′
e|

vthe

)(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
. (2.17)

Now substituting (2.17) into (2.16) (with s = e), we find that the parallel electron
heat flux is

qe‖ = −neTevthe
[AT

e ηT
e + AR

e η
R
e + (Au

e − 1
2

)
ηu

e

]
, (2.18)
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where

AT,R,u
e = − 4

3
√

π

∫ ∞

0
dṽe ṽ6

e AT,R,u
e (ṽe) exp

(−ṽ2
e

)
. (2.19)

The minus signs in the definitions of AT,R,u
e have been introduced so that AT,R,u

e � 0
for a typical collision operator (determining that these constants are indeed positive
for any given collision operator is non-trivial, but it is a simple exercise to show
this for a Krook collision operator, using the expressions for AT

e (ṽe), AR
e (ṽe) and

Au
e(ṽe) given in Appendix B.2.1). Expression (2.18) for the electron heat flux can be

rewritten as

qe‖ = −κ‖
e ∇‖Te −

[
Au

e − 1
2

− AR
e

ÃR
e

(
Ãu

e − 1
2

)]
neTeuei‖, (2.20)

where the parallel electron heat conductivity is defined by

κ‖
e = 2

(
AT

e − AR
e

ÃR
e

ÃT
e

)
neTeτe

me
, (2.21)

and

ÃT,R,u
e = − 4

3
√

π

∫ ∞

0
dṽe ṽ4

e AT,R,u
e (ṽe) exp

(−ṽ2
e

)
. (2.22)

Numerical evaluation of the coefficients AT,R,u
e and ÃT,R,u

e for the Landau collision
operator gives (Braginskii 1965)

qe‖  −3.16
neTeτe

me
∇‖Te + 0.71neTeuei‖. (2.23)

The ion heat flux can be calculated directly from (2.16) (s = i) using (2.8b):

qi‖ = −niTivthiAiηi, (2.24)

where

Ai = − 4
3
√

π

∫ ∞

0
dṽi ṽ

6
i Ai(ṽi) exp

(−ṽ2
i

)
. (2.25)

This becomes

qi‖ = −κ
‖
i ∇‖Ti, (2.26)

where the parallel ion heat conductivity is

κ
‖
i = −2Ai

niTiτi

mi
 −3.9

niTiτi

mi
. (2.27)

The last equality is for the Landau collision operator (Braginskii 1965). Note that the
absence of a term proportional to the electron–ion-drift in the ion heat flux (2.24) is
physically due to the smallness of the ion–electron collision operator (Helander &
Sigmar 2005).
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(ii) Friction force. We evaluate the friction force by considering the electron–ion-drift
associated with electron CE distribution function. Namely, noting that

uei‖ = v4
the

ne

∫
d3ṽe ṽe‖fe, (2.28)

it follows from (2.8a) that

uei‖ = vthe

(
ÃT

e ηT
e + ÃR

e η
R
e + Ãu

eη
u
e

)
. (2.29)

This expression can in turn be used to relate the parallel electron-friction force Re‖,
defined in (2.6d), to electron flows and temperature gradients

Re‖ = −
(

2Ãu
e + 1

2ÃR
e

)
nemeuei‖

τe
− ÃT

e

ÃR
e

ne∇‖Te. (2.30)

Evaluating the coefficients ÃT
e , ÃR

e and Ãu
e for the full Landau collision operator,

one finds (Braginskii 1965)

Re‖  −0.51
nemeuei‖

τe
− 0.71ne∇‖Te. (2.31)

(iii) Viscosity tensor. For gyrotropic distributions such as the CE distribution functions
(2.8), the viscosity tensor πs of species s defined by (2.6b) – which is the momentum
flux excluding the convective terms and isotropic pressure – is given by

πs = (
ps‖ − ps⊥

) (
ẑẑ − 1

3 I
)
, (2.32)

where the parallel pressure ps‖ and the perpendicular pressure ps⊥ are defined by

ps‖ ≡
∫

d3v′
s ms|v′

s‖|2fs = nsTs

(
1 − 2

3
εsCs

)
, (2.33a)

ps⊥ ≡ 1
2

∫
d3v′

s ms|v′
s⊥|2fs = nsTs

(
1 + 1

3
εsCs

)
, (2.33b)

with the last expressions having been obtained on substitution of the CE distribution
function (2.8), and

Cs = − 8
5
√

π

∫ ∞

0
dṽs ṽ6

s Cs(ṽs) exp
(−ṽ2

s

)
. (2.34)

The sign of the constant Cs is again chosen so that Cs > 0 for typical collision
operators; for the Landau collision operator, Ce  1.1 and Ci  1.44 (Braginskii
1965). We note for reference that the parameter εs (see (2.11e–f )) has a simple
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relationship to the pressure anisotropy of species s: utilising (2.33), one finds

Δs ≡ ps⊥ − ps‖
ps

= Csεs. (2.35)

Using (2.33), the viscosity tensor (2.32) can be written

πs = −μvs

2

(
ẑẑ − 1

3
I

)(
ẑẑ − 1

3
I

)
:W s, (2.36)

where the dynamic viscosity of species s is

μvs ≡ 2CsnsTsτs. (2.37)

(iv) Thermal energy transfer between species. It can be shown that for the CE
distribution functions (2.8), the rate of thermal energy transfer from electrons to
ions Qe is simply

Qe = −Re · uei, (2.38)

while the rate of thermal energy transfer from ions to electrons vanishes: Qi ≈ 0.
This is because the ion–electron collision rate is assumed small (by a factor of the
mass ratio) compared with the ion–ion collision rate when deriving (2.8b), and is
thus neglected. Braginskii (1965) shows that, in fact, there is a non-zero (but small)
rate of transfer

Qi = −Qe − Re · uei = 3neme

miτe
(Te − Ti) . (2.39)

The time scale on which the ion and electron temperatures equilibrate is the
ion–electron temperature equilibration time

τ
eq
ie ≡ 1

2μ
−1/2
e τi. (2.40)

In summary, the non-Maxwellian components of the CE distribution function are
essential for a collisional plasma to be able to support fluxes of heat and momentum.
More specifically, (2.20) demonstrates that the electron heat fluxes in a CE plasma are
proportional to both temperature gradients and electron–ion drifts, and are carried by the
electron-temperature-gradient, friction and electron–ion-drift terms of the CE distribution
function. In contrast, the ion heat fluxes (2.26) are proportional only to ion temperature
gradients (and carried by the CE ion-temperature-gradient term). Momentum fluxes (2.36)
for electrons and ions are carried by the CE electron- and ion-shear terms, respectively,
and are proportional to components of the rate-of-strain tensor.

2.2.3. Relative size of non-Maxwellian terms in the CE distribution function
In the case of magnetised, two-species plasma satisfying Ti ∼ Te, (2.11) can be used

to estimate the size of the small parameters ηT
e , ηR

e , ηu
e , ηi, εe and εi. Although these

parameters are a priori proportional to λs/L for both ions and electrons, their precise
magnitudes are, in fact, subtly different. Namely, the terms associated with ηT

e , ηR
e , ηu

e and
ηi are gradients of the electron and ion temperatures and electron–ion relative parallel drift
velocities, whereas terms associated with εe and εi involve gradients of the bulk flows
(cf. (2.11)) – and these gradients do not necessarily occur on the same length scale.
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Recalling that the (electron) temperature and the (ion) flow length scales parallel to the
macroscopic magnetic field are defined by (cf. (2.13))

LT = ∣∣∇‖ log Te

∣∣−1
, (2.41a)

LV = 1
Vi

∣∣∣∣(ẑẑ − 1
3

I

)
:W i

∣∣∣∣−1

, (2.41b)

where W i is the ion rate-of-strain tensor (2.12), and assuming that LTi = |∇‖ log Ti|−1 ∼ LT
(an assumption we will check a posteriori), it follows from (2.11) that

ηT
e ∼ λe

LT
, (2.42a)

ηR
e ∼ λe

Re‖
pe

∼ λe

LT
∼ ηT

e , (2.42b)

ηu
e ∼ uei‖

vthe
∼ λe

LT
∼ ηT

e , (2.42c)

ηi ∼ λi

LT
∼ 1

Z2
i
ηT

e , (2.42d)

εe ∼ Vi

vthe

λe

LV
∼ Ma μ1/2

e
LT

LV
ηT

e , (2.42e)

εi ∼ Vi

vthi

λi

LV
∼ Ma

LT

Z2
i LV

ηT
e , (2.42f )

where Ma ≡ Vi/vthi is the Mach number. Note that, to arrive at (2.42b), we assumed that
Re‖ ∼ pe/LT and uei‖ ∼ vtheλe/LT , justified by (2.30) and (2.29), respectively. The relative
magnitudes of ηT

e , ηR
e , ηu

e , ηi, εe and εi therefore depend on the Mach number of the plasma,
as well as on the length scales LT and LV .

In the work of Braginskii (1965), who a priori presumes all ‘fluid’ quantities in
the plasma to vary on just a single scale L ∼ LT ∼ LV , with sonic ordering Ma � 1,
determining the relative size of these parameters for a hydrogen plasma (Zi = 1) is
simple:

εe ∼ μ1/2
e εi � εi ∼ ηi ∼ ηT

e ∼ ηR
e ∼ ηu

e . (2.43)

However, in most interesting applications, this single-scale ordering is incorrect. In a
plasma with λs/L � 1 under Braginskii’s ordering, motions on many scales naturally
arise. The fluid Reynolds number in such a plasma is given by

Re ≡ V0L0

ν
, (2.44)

where V0 is the typical fluid velocity at the scale L0 of driving motions and ν ≡ μvi/mini ∼
vthiλi is the kinematic viscosity (see (2.37)). Typically, this number is large:

Re ∼ V0

vthi

L0

λi
� 1

εi
� 1, (2.45)

where we have assumed Ma0 ≡ V0/vthi � 1, in line with Braginskii’s sonic ordering.
Therefore, such a plasma will naturally become turbulent and exhibit motions across a
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range of scales. As a consequence, velocity and temperature fluctuations on the smallest
(fluid) scales must be considered, since the associated shears and temperature gradients
are the largest. To estimate ηT

e , ηR
e , ηu

e , ηi, εe and εi accurately, we must determine the
magnitude of these gradients.

First, let �ν be the smallest scale on which the velocity varies due to turbulent
motions (the Kolmogorov scale), with velocity fluctuations on scales � � �ν being
suppressed by viscous diffusion. Then it follows that Re�ν

∼ 1, where Re� ≡ V(�)�/ν is
the scale-dependent Reynolds number and V(�) is the typical fluid velocity on scale �. For
Kolmogorov turbulence,

V(�)

V0
∼
(

�

L0

)1/3

∼
(

Re�

Re

)1/4

, (2.46)

and �/L0 ∼ (Re�/Re)3/4, which gives V(�)/� ∼ (V0/L0)(Re�/Re)−1/2, and thus, from
(2.45),

V(�ν)

�ν

∼ V0

L0

(
Re�ν

Re

)−1/2

∼ Ma1/2
0

(
λi

L0

)−1/2 V0

L0
. (2.47)

We therefore conclude that

LV ∼ �ν

V0

V(�ν)
∼ L0Ma−1/2

0

(
λi

L0

)1/2

. (2.48)

Next, the smallest scale on which the electron temperature varies, �χ , is the scale below
which temperature fluctuations are suppressed by thermal diffusion; it satisfies Pe�χ

∼ 1,
where Pe� ≡ V(�)�/χ is the scale-dependent Péclet number and χ ≡ 2κ‖

e /3ne ∼ vtheλe is
the (parallel) thermal diffusivity (see (2.21)). Because temperature is passively advected
by the flow, the temperature fluctuation T(�) at any scale � > �χ obeys the same scaling
as the bulk velocity:

T(�)

T(L0)
∼ V(�)

V0
∼
(

Pe�

Pe

)1/4

. (2.49)

In addition, the magnitude of temperature fluctuations at the driving scale is related to
the mean temperature by the Mach number of the driving-scale motions, T(L0) ∼ T0Ma0,
which then gives

T(�)

T0
∼ Ma0

(
Pe�

Pe

)1/4

, (2.50)

where Pe ≡ PeL0 . It follows from an analogous argument to that just given for the velocity
fluctuations that

T
(
�χ

)
�χ

∼ T0

L0
Ma0Pe1/2. (2.51)

Under Braginskii’s ordering, the Prandtl number of CE plasma is

Pr ≡ ν

χ
= Pe

Re
∼ vthiλi

vtheλe
∼ μ1/2

e � 1, (2.52)

and, therefore,

LT ∼ �χ

T0

T
(
�χ

) ∼ L0μ
−1/4
e Ma−3/2

0

(
λi

L0

)1/2

. (2.53)

Thus, LV ∼ Ma0μ
1/4
e LT � LT under the assumed ordering.
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Finally, we consider whether our a priori assumption that LTi ∼ LT is, in fact, justified.
A sufficient condition for ion-temperature gradients to be the same as electron-temperature
gradients is for the evolution time τL of all macroscopic motions to be much longer than
the ion–electron equilibration-time τ

eq
ie defined by (2.40). Since τL � �ν/V(�ν), it follows

that

τL

τ
eq
ie

∼
(

mi

me

)1/2

Ma3/2
0

(
λi

L0

)1/2

∼ εi

(
mi

me

)1/2

. (2.54)

Thus, if εi � μ1/2
e , we conclude that collisional equilibration of ion and electron

temperatures might be too inefficient to regulate small-scale ion-temperature fluctuations,
in which case it would follow that LTi < LT . However, it has been previously demonstrated
via numerical solution of the Vlasov–Fokker–Planck equation that the CE expansion
procedure breaks down due to non-local transport effects if λe/L is only moderately small
(Bell, Evans & Nicholas 1981); thus, the only regime in which there is not ion–electron
equilibration over all scales is one where the CE expansion is not valid anyway. In short,
we conclude that assuming LTi ∼ LT is reasonable.

Bringing these considerations together with (2.42), we find that

ηT
e ∼ μ1/4

e Ma0
λi

LV
∼ Ma3/2

0 μ1/4
e

(
λi

L0

)1/2

∼ ηR
e ∼ ηu

e ∼ ηi, (2.55a)

εe ∼ μ1/2
e Ma0

λi

LV
∼ μ1/2

e Ma3/2
0

(
λi

L0

)1/2

, (2.55b)

εi ∼ Ma0
λi

LV
∼ Ma3/2

0

(
λi

L0

)1/2

. (2.55c)

Thus, we conclude that the largest distortions of the ion CE distribution are due to flow
gradients, while temperature gradients cause the greatest distortions of the electron CE
distribution function.

In deriving the estimates (2.55) of the small parameters ηT
e , ηR

e , ηu
e , ηi, εe and εi,

we assumed that the motions of the plasma (including those at the Kolmogorov scale)
satisfied Kolmogorov’s statistical theory of turbulence. There are several reasonable
grounds on which this assumption could be questioned. First of these is intermittency:
it is a long-standing result that the distribution of turbulent velocities at a given scale in
hydrodynamic turbulence becomes increasingly non-Gaussian as that scale decreases (see,
e.g. Davidson 2015). This has the consequence that (2.55) may overestimate the size of
the non-Maxwellian terms in the CE distribution function for the majority of the plasma’s
volume, but underestimate it significantly in localised regions. Another objection is the
now generally accepted finding that turbulent fluids with sufficiently strong magnetic
fields do not behave like hydrodynamic fluids: instead, turbulent motions tend to become
anisotropic with respect to the background magnetic field if the latter’s energy becomes
greater than the former (Goldreich & Sridhar 1995; Schekochihin et al. 2009). When
applied to turbulent motions at the Kolmogorov scale where motions are assumed to
behave as we have proposed, this condition becomes

miniV(�ν)
2/2

B2/8π
∼ miniV2

0/2
B2/8π

V(�ν)
2

V2
0

∼ Ma3/2
0

(
λi

L0

)1/2

βi ∼ εiβi, (2.56)

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


Kinetic stability of Chapman–Enskog plasmas 23

where

βs ≡ 8πnsTs

B2
(2.57)

is the plasma beta of species s. So, whenever βi � ε−1
i , the assumption that the turbulence

is unmagnetised is unlikely to be a good one, whereas if βi is sufficiently large (βi � ε−1
i ),

it is more reasonable. As we have already outlined in the introduction (cf. figure 1), the
case in which βi is large will tend to be our focus in this paper; so we conclude that the
scalings (2.55) will generally be the pertinent ones.

2.3. Kinetic stability of classical, collisional plasma
2.3.1. Overview

We have seen that the CE expansion provides a procedure for the calculation of the
distribution functions arising in a classical, collisional plasma in terms of gradients of
temperature, electron–ion drifts and bulk fluid velocities; these calculations in turn allow
for the closure of the system (2.4) of fluid equations. However, these same gradients are
sources of free energy in the plasma, so they can lead to instabilities. Some of these
instabilities will be ‘fluid’, i.e. they are captured within the CE description and are
features of the fluid dynamics of plasmas; others are kinetic (‘microinstabilities’), and
their existence implies that the CE expansion is, in fact, illegitimate. Our primary purpose
in this paper is to determine when such microinstabilities do not occur in a strongly
magnetised two-species plasma. If, however, they do occur, we wish to determine their
growth rates. We begin by making a few general qualitative comments concerning the
existence and nature of these microinstabilities, before presenting the technical details of
their derivation.

2.3.2. Existence of microinstabilities in classical, collisional plasma
It might naively be assumed that a classical, collisional plasma is kinetically stable, on

two grounds. The first of these is that the distribution function of such a plasma is ‘almost’
Maxwellian, and thus stable. While it is certainly the case that a plasma whose constituent
particles have Maxwellian distribution functions is kinetically stable (Bernstein 1958;
Krall & Trivelpiece 1973), it is also known that a plasma with anisotropic particle
distribution functions is typically not (Furth 1963; Kalman et al. 1968; Davidson 1983;
Gary 1993). The (small) non-Maxwellian component of the CE distribution function is
anisotropic (as, e.g. was explicitly demonstrated by the calculation of pressure anisotropy
in § 2.2.2), and thus we cannot a priori rule out microinstabilities associated with this
anisotropy.

The second naive reason for dismissing the possibility of microinstabilities in
classical, collisional plasma is the potentially stabilising effect of collisional damping
on microinstability growth rates. If collisional processes are sufficiently dominant to be
responsible for the mediation of macroscopic momentum and heat fluxes in the plasma,
it might be naively inferred that they would also suppress microinstabilities. This is,
in fact, far from guaranteed, for the following reason. The characteristic scales of the
microinstabilities are not fluid scales, but are rather intrinsic plasma length scales related
to quantities such as the Larmor radius ρs or the inertial scale ds of species s, or the Debye
length λD – quantities given in terms of macroscopic physical properties of plasma by

ρs = msvthsc
|Zs|e|B| , (2.58a)
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ds ≡
(

4πZ2
s e2ns

msc2

)−1/2

= ρsβ
−1/2
s , (2.58b)

λD ≡
(∑

s

4πZ2
s e2ns

Ts

)−1/2

=
(∑

s

2c
d2

s vths

)−1/2

. (2.58c)

The crucial observation is then that the dynamics on characteristic microinstability scales
may be collisionless. For a classical, collisional hydrogen plasma (where λ ≡ λe ∼ λi for
Te ∼ Ti), the mean free path is much larger than the Debye length: λ/λD ∼ neλ

3
D � 1; so

there exists a range of wavenumbers k on which microinstabilities are both possible (kλD �
1) and collisionless (kλ� 1). For a strongly magnetised collisional plasma, λs � ρs for
all species by definition; thus, any microinstability with a characteristic scale comparable
to the Larmor radius of any constituent particle will be effectively collisionless. We
note that such a range of collisionless wavenumbers only exists in classical (viz. weakly
coupled) plasmas; in strongly coupled plasmas, for which λ � λD, all hypothetically
possible microinstability wavenumber scales are collisional. Thus the phenomenon of
microinstabilities in collisional plasmas is solely a concern for the classical regime.

2.3.3. A simple example: the firehose instability in CE plasmas
Perhaps the simplest example of a microinstability that can occur in CE plasma is the

firehose instability. This example was previously discussed by Schekochihin et al. (2005),
but we nonetheless outline it here to illustrate the central concept of our paper.

Consider bulk fluid motions of the plasma on length scales LV that are much smaller than
the mean free path λi, but much larger than the ion-Larmor radius ρi; the characteristic
frequencies associated with these motions are assumed to be much smaller that the ion
Larmor frequency Ωi, but much larger than the inverse of the ion collision time τ−1

i . Under
these assumptions, the following four statements can be shown to be true (Schekochihin
et al. 2005):

(i) The bulk velocities of the electron and ion species are approximately equal:
V e ≈ V i.

(ii) The electric field in a frame co-moving with the ion fluid vanishes; transforming to
the stationary frame of the system, this gives

E = −V i × B
c

. (2.59)

(iii) The contribution of the displacement current to the Maxwell–Ampère law (2.2d) is
negligible, and so

ene (V i − V e) ≈ c
4π

∇ × B. (2.60)

(iv) The electron and ion viscosity tensors both take the form (2.32), and the
electron-pressure anisotropy, defined by (2.35), is small compared with the ion
pressure anisotropy: Δe � Δi.

It then follows directly from (2.4b), summed over both ion and electron species, that

mini
DV i

Dt

∣∣∣∣
i

= −∇
(

B2

8π
+ pe⊥ + pi⊥

)
− ∇ · [ẑẑ

(
pi⊥ − pi‖

)]+ B · ∇B
4π

. (2.61)
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We remind the reader that ẑ = B/B, and emphasise that we have neglected the electron
inertial term on the grounds that it is small compared with the ion inertial term:

mene
DV e

Dt

∣∣∣∣
e

� mini
DV i

Dt

∣∣∣∣
i

. (2.62)

The evolution of the magnetic field is described by the induction equation

DB
Dt

∣∣∣∣
i

= B · ∇V i − B∇ · V i, (2.63)

which is derived by substituting (2.59) into Faraday’s law (2.2c).
Now consider small-amplitude perturbations with respect to a particular macroscale

state of the plasma

δV i = δ̂V i⊥ exp {i (k · r − ωt)} , (2.64a)

δB = δ̂B⊥ exp {i (k · r − ωt)} , (2.64b)

whose characteristic frequency ω is much greater than that of the plasma’s bulk fluid
motions (but is still much smaller than Ωi), whose wavevector k = k‖ẑ is parallel to B,
and assume also that the velocity and magnetic-field perturbations are perpendicular to B.
It is then easy to show that (2.61) and (2.63) become

−iminiωδ̂V i⊥ = i
(

B2

4π
+ pi⊥ − pi‖

)
k‖

δ̂B⊥
B

, (2.65a)

−iωδ̂B⊥ = iBk‖δ̂V i⊥, (2.65b)

where pi⊥ and pi‖ are the perpendicular and parallel ion pressures associated with the
macroscale state (which, on account of its comparatively slow evolution compared with
the perturbation, can be regarded a quasi-equilibrium). Physically, the macroscale flow
gives rise to different values of pi⊥ and pi‖, and thereby an ion-pressure anisotropy Δi,
because it changes the strength B of the macroscale magnetic field; thanks to the effective
conservation of the first and second adiabatic moments of the ions on the evolution time
scale of the macroscale flow (Chew et al. 1956), an increase (decrease) in B results in an
increase (decrease) in pi⊥, and a decrease (increase) in pi‖. The dispersion relation for the
perturbation is then

ω2 = k2
‖v

2
thi

(
1
βi

+ Δi

2

)
, (2.66)

where βi, defined by (2.57), is the ion plasma beta. For a sufficiently negative ion-pressure
anisotropy, viz. Δi < −2/βi, the perturbation is unstable. This instability is known as the
(parallel) firehose instability.

The underlying physics of the parallel firehose instability has been discussed extensively
elsewhere (see Rosin et al. (2011), and references therein; also see § 4.4.1). Here, we simply
note that the firehose instability arises in a magnetised plasma with sufficiently negative
pressure anisotropy as compared with the inverse of the ion plasma beta; because the ion
CE distribution function has a small, non-zero pressure anisotropy, this statement applies
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to CE plasma at large βi. We also observe that the product of the growth rate (2.66) of the
firehose instability with the ion–ion collision time satisfies

ωτi ∼ k‖λi

∣∣∣∣ 1
βi

+ Δi

∣∣∣∣1/2

∼ 1
βi

λi

ρi
, (2.67)

where we have assumed that Δi � −2β−1
i , and employed the (non-trivial) result that the

peak growth of the parallel firehose instability occurs at wavenumbers satisfying k‖ρi ∼
β

−1/2
i (see §§ 4.4.1 and 4.4.2). Thus, if βi � λi/ρi – a condition easily satisfied in weakly

collisional astrophysical environments such as the ICM (see table 4) – it follows that ωτi �
1, and so collisional damping is unable to inhibit the parallel firehose in a CE plasma.2 This
failure is directly attributable to its characteristic wavelength being at collisionless scales:
the parallel wavenumber satisfies k‖λi ∼ β

−1/2
i λi/ρi � 1.

This simple example clearly illustrates that microinstabilities are indeed possible in a
classical, collisional plasma, for precisely the reasons given in § 2.3.2.

2.3.4. Which microinstabilities are relevant
Although the naive arguments described in § 2.3.2 do not imply kinetic stability of

CE plasma, these same arguments do lead to significant restrictions on the type of
microinstabilities that can arise. Namely, for some plasma modes, the small anisotropy
of CE distribution functions is an insufficient free-energy source for overcoming the
competing collisionless damping mechanisms that ensure stability for pure Maxwellian
distribution functions – e.g. Landau damping or cyclotron damping. For other plasma
modes, the characteristic length scales are so large that collisional damping does suppress
growth. In magnetised plasmas, there also exist cyclotron harmonic oscillations that,
despite minimal damping, can only become unstable for sufficiently large anisotropy of
the particle distribution function: e.g. the electrostatic Harris instability (Harris 1959; Hall,
Heckrotte & Kammash 1964). Since the anisotropy threshold for such microinstabilities is
typically Δs � 1 (Shima & Hall 1965), they cannot operate in a CE plasma.

We claim that there are only two classes of microinstabilities that can be triggered in a
CE plasma. The first are quasi-cold-plasma modes: these are modes whose frequency is so
large that resonant wave–particle interactions (Landau or cyclotron resonances) only occur
with electrons whose speed greatly exceeds the electron thermal speed vthe. Collisionless
damping of such modes is typically very weak, and thus small anisotropies of particle
distribution functions can be sufficient to drive an instability. Well-known examples of
a small non-Maxwellian part of the distribution function giving rise to microinstabilities
include the bump-on-tail instability associated with a fast beam of electrons (see § 3.3.3 of
Davidson 1983), or the whistler instability for small temperature anisotropies (see § 3.3.5
of Davidson 1983). The existence of such instabilities for the CE distribution can be
demonstrated explicitly: e.g. the peak growth rate of the bump-on-tail instability associated
with the CE distribution function (‘the CE bump-on-tail instability’) is calculated in
Appendix D.3. However, the growth rates γ of such instabilities are exponentially small
in λe/L � 1. This claim, which is explicitly proven for the CE bump-on-tail instability
in Appendix D.3, applies to all electrostatic instabilities (see Appendix D.4), and it can
be argued that it also applies to all quasi-cold-plasma modes (see Appendix E). When
combined with the constraint that the resonant wave–particle interactions required for such
instabilities cannot occur if γ τr � 1, where τr is the collision time of the resonant particles,

2In fact, the naive condition γ τi � 1 is not sufficient to ensure collisional stabilisation of the firehose instability; the
true stabilisation condition is instead k‖λi � 1 (see § 2.5.7 for a discussion of this claim).
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the exponential smallness of the growth rate suggests that such microinstabilities will not
be significant provided λe/L really is small. As discussed in § 2.2.3, plasmas in which λe/L
is only moderately small are not well modelled as CE plasmas anyway, and thus, for the
rest of this paper, we will not study quasi-cold-plasma-mode instabilities.

The second class of allowed microinstabilities comprises modes that are electromagnetic
and low frequency in the sense that the complex frequency ω of the microinstability
satisfies, for at least one particle species s,

ω

kvths
∼
(
λs

L

)ι

� 1, (2.68)

where ι is some order-unity number. Low-frequency electromagnetic modes are in general
only subject to weak Landau and cyclotron damping (of order ω/kvths � 1 or less),
and thus can become unstable for small distribution-function anisotropies. By contrast,
electromagnetic modes satisfying ω ∼ kvths would typically generate strong inductive
electric fields, which would in turn be subject to significant Landau or cyclotron damping,
overwhelming any unstable tendency. The firehose instability introduced in § 2.3.3 is one
example of this type of microinstability: it satisfies (2.68) with ι = 1/2, provided its
β-stabilisation threshold is surpassed.

In this paper, we will focus on microinstabilities in this second class. Whilst small
compared with the streaming rate kvths of species s, the growth rates satisfying (2.68)
can still be significantly larger than the rate at which the plasma evolves on macroscopic
scales, and thus invalidate the CE expansion. We do not in this paper present a rigorous
proof that there are no microinstabilities of the CE distribution function which do not
fall into either of the two classes considered above. However, there do exist more precise
arguments supporting the latter claim than those based on physical intuition just presented;
these are discussed further in §§ 2.4.2 and 2.5.8.

The microinstabilities satisfying (2.68) fall into two sub-classes. The first sub-class
consists of microinstabilities driven by the CE temperature-gradient, CE electron-friction
and CE electron–ion-drift terms in the CE distribution functions (2.8); we refer
to these collectively as CE temperature-gradient-driven microinstabilities, or CET
microinstabilities, on account of the parameters ηR

e and ηu
e scaling with temperature

gradients (see § 2.2.2). The second sub-class is microinstabilities driven by the
CE shear terms, or CE shear-driven microinstabilities (CES microinstabilities). This
sub-classification is necessary for two reasons. First, the velocity-space anisotropy
associated with the CE shear terms is different from other non-Maxwellian terms, and
thus different types of microinstabilities can emerge for the two sub-classes. Secondly, as
was discussed in § 2.2.3 for the case of CE plasma, the typical size of small parameters ηT

e ,
ηR

e , ηu
e and ηi is different from that of εe and εi. In our initial overview of our calculations

(§ 2.4) and in the more detailed discussion of our method (§ 2.5), we will consider all
microinstabilities driven by the non-Maxwellian terms of the CE distribution together;
however, when it comes to presenting detailed results, we will consider CET and CES
microinstabilities separately (§§ 3 and 4, respectively).

2.4. Linear stability calculation: overview
2.4.1. General dispersion relation

Our linear kinetic stability calculation proceeds as follows: we consider an
electromagnetic perturbation with wavevector k and (complex) frequency ω of
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the form

δE = δ̂E exp {i (k · r − ωt)} , (2.69a)

δB = δ̂B exp {i (k · r − ωt)} , (2.69b)

in a plasma with the equilibrium electron and ion distribution functions given by (2.8a)
and (2.8b), respectively. We assume that all macroscopic parameters in the CE distribution
function are effectively constant on the time scales and length scales associated with
microinstabilities: this is equivalent to assuming that kλe, kλi � 1 (where k ≡ |k| is
the wavenumber of the perturbation), and |ω|τL � 1. To minimise confusion between
quantities evolving on short, collisionless time scales, and those on long, fluid time
scales, we relabel the equilibrium number density of species s as ns0, and the macroscopic
magnetic field as B0 in subsequent calculations. For notational convenience, we define

ηe ≡ ηT
e , (2.70)

and

Ae(ṽe) ≡ AT
e (ṽe) + ηR

e

ηT
e

AR
e (ṽe) + ηu

e

ηT
e

Au
e(ṽe), (2.71)

which in turn allows for the equilibrium distribution function of species s to be written as

fs0(ṽs‖, ṽs⊥) = ns0

v3
thsπ

3/2
exp

(−ṽ2
s

) [
1 + ηsAs(ṽs)ṽs‖ + εsCs(ṽs)

(
ṽ2

s‖ − ṽ2
s⊥
2

)]
. (2.72)

Finally, without loss of generality, we can set V i = 0 by choosing to perform the kinetic
calculation in the frame of the ions; thus, ṽs = v/vths.

It is well known (Stix 1962; Parra 2017) that the electric field of all linear
electromagnetic perturbations in a collisionless, magnetised plasma with equilibrium
distribution function fs0 must satisfy[

c2k2

ω2

(
k̂k̂ − I

)
+ E

]
· δ̂E = 0, (2.73)

where k̂ ≡ k/k is the direction of the perturbation,

E ≡ I + 4πi
ω

σ , (2.74)

the plasma dielectric tensor and σ the plasma conductivity tensor. The hot-plasma
dispersion relation is then given by

det
[

c2k2

ω2

(
k̂k̂ − I

)
+ E

]
= 0. (2.75)

The conductivity tensor in a hot, magnetised plasma is best displayed in an orthogonal
coordinate system with basis vectors {x̂, ŷ, ẑ} defined in terms of B0 and k:

ẑ ≡ B0

B0
, x̂ ≡ k⊥

k⊥
≡ k − k‖ẑ

k⊥
, ŷ ≡ ẑ × x̂, (2.76a–c)
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where B0 ≡ |B0|, k‖ ≡ k · ẑ, and k⊥ ≡ |k⊥|. In this notation, k = k‖ẑ + k⊥x̂. The
conductivity tensor is then given by

σ =
∑

s

σ s = − i
4πω

∑
s

ω2
ps

[
2√
π

k‖
|k‖|

∫ ∞

−∞
dw̃s‖ w̃s‖

∫ ∞

0
dṽs⊥ Λs(w̃s‖, ṽs⊥)ẑẑ

+ ω̃s‖
2√
π

∫
CL

dw̃s‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(w̃s‖, ṽs⊥)

∞∑
n=−∞

Rsn

ζsn − w̃s‖

]
, (2.77)

where

ωps ≡
√

4πZ2
s e2ns0

ms
, (2.78)

w̃s‖ ≡ k‖ṽs‖
|k‖| , (2.79)

ρ̃s ≡ mscvths

ZseB0
= |Zs|

Zs
ρs, (2.80)

ω̃s‖ ≡ ω

|k‖|vths
, (2.81)

ζsn ≡ ω̃s‖ − n
|k‖|ρ̃s

, (2.82)

f̃s0(ṽs‖, ṽs⊥) ≡ π3/2v3
ths

ns0
fs0

(
k‖
|k‖|vthsw̃s‖, vthsṽs⊥

)
, (2.83)

Λs(w̃s‖, ṽs⊥) ≡ ṽs⊥
∂ f̃s0

∂w̃s‖
− w̃s‖

∂ f̃s0

∂ṽs⊥
, (2.84)

Ξs(w̃s‖, ṽs⊥) ≡ ∂ f̃s0

∂ṽs⊥
+ Λs(w̃s‖, ṽs⊥)

ω̃s‖
, (2.85)

(Rsn)xx ≡ n2Jn(k⊥ρ̃sṽs⊥)2

k2
⊥ρ̃2

s ṽ
2
s⊥

, (2.86a)

(Rsn)xy ≡ inJn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥)

k⊥ρ̃sṽs⊥
, (2.86b)

(Rsn)xz ≡ nJn(k⊥ρ̃sṽs⊥)2

k⊥ρ̃sṽs⊥

k‖w̃s‖
|k‖|ṽs⊥

, (2.86c)

(Rsn)yx ≡ −(Rsn)xy, (2.86d)

(Rsn)yy ≡ J′
n(k⊥ρ̃sṽs⊥)2, (2.86e)

(Rsn)yz ≡ −inJn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥)

k‖w̃s‖
|k‖|ṽs⊥

, (2.86f )

(Rsn)zx ≡ (Rsn)xz, (2.86g)
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(Rsn)zy ≡ −(Rsn)yz, (2.86h)

(Rsn)zz ≡ w̃2
s‖

ṽ2
s⊥

Jn(k⊥ρ̃sṽs⊥)2. (2.86i)

Here, (Rsn)xy = x̂ · Rsn · ŷ, and similarly for other components of Rsn. The integration in
(2.77) is carried out over the Landau contour CL; this is simply the real axis for growing
perturbations, but has a more complicated form for non-growing ones (Landau 1946;
Schekochihin 2024). For the reader’s convenience, a summary of the derivation of the
hot-plasma dispersion relation is given in Appendix C.

We note that the dielectric and conductivity tensors have the following symmetries:

Eyx = −Exy, Ezx = Exz, Ezy = −Eyz, (2.87a–c)

σyx = −σxy, σzx = σxz, σzy = −σyz, (2.88a–c)

where, for tensors with no species subscript, we use the notation Exy ≡ x̂ · E · ŷ. We also
observe that if fs0(v‖, v⊥) is an even function with respect to v‖, then, for k‖ > 0,

σxx(−k‖) = σxx(k‖), (2.89a)

σxy(−k‖) = σxy(k‖), (2.89b)

σxz(−k‖) = −σxz(k‖), (2.89c)

σyy(−k‖) = σyy(k‖), (2.89d)

σyz(−k‖) = −σyz(k‖), (2.89e)

σzz(−k‖) = σzz(k‖), (2.89f )

with the remaining components of the conductivity tensor given by (2.87a–c). If fs0(v‖, v⊥)
is an odd function with respect to v‖, then

σxx(−k‖) = −σxx(k‖), (2.90a)

σxy(−k‖) = −σxy(k‖), (2.90b)

σxz(−k‖) = σxz(k‖), (2.90c)

σyy(−k‖) = −σyy(k‖), (2.90d)

σyz(−k‖) = σyz(k‖), (2.90e)

σzz(−k‖) = −σzz(k‖). (2.90f )

These symmetries can be used to determine completely the behaviour of perturbations
with k‖ < 0 directly from perturbations with k‖ > 0, without any additional calculations.
Thus, unless stated otherwise, from this point on, we assume k‖ > 0, and thus w̃s‖ = ṽs‖
(see (2.79)).

2.4.2. Simplifications of dispersion relation: overview of our approach
The full hot-plasma dispersion relation (2.75) is a transcendental equation, and thus, for

general distribution functions, the growth rates of perturbations can only be determined
numerically; this hinders the systematic investigation of stability over wide-ranging
parameter regimes. However, adopting a few simplifications both to the form of the CE
distribution functions (2.72) and to the type of microinstabilities being considered (see
§ 2.3.4) turns out to be advantageous when attempting a systematic study. It enables us
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to obtain simple analytical results for microinstability growth rates and characteristic
wavenumbers, as well as greatly reducing the numerical cost of evaluating these quantities.
The former allows us to make straightforward comparisons between microinstabilities,
while the latter facilitates the calculation of stability plots over a wide range of parameters
without requiring intensive computational resources.

First, we choose a Krook collision operator, with constant collision time τs for each
species s (Bhatnagar et al. 1954), when evaluating the isotropic functions AT

e (ṽe), AR
e (ṽe),

Au
e(ṽe), Ai(ṽi), Ce(ṽe) and Ci(ṽi) in (2.72). As was explained in § 2.2.1, these functions

are determined by the collision operator. While the full Landau collision operator might
seem to be the most appropriate choice, the conductivity tensor σ defined by (2.77)
cannot be written in terms of standard mathematical functions if this choice is made.
Instead, the relevant integrals must be done numerically. If a simplified collision operator
is assumed, σ can be evaluated analytically with only a moderate amount of algebra. In
Appendix B.2.1, we show that for the Krook collision operator

AT
e (ṽe) = − (ṽ2

e − 5
2

)
, (2.91a)

AR
e (ṽe) = −1, (2.91b)

Au
e(ṽe) = 0, (2.91c)

Ai(ṽe) = − (ṽ2
i − 5

2

)
, (2.91d)

Ce(ṽe) = −1, (2.91e)

Ci(ṽi) = −1, (2.91f )

where it is assumed that ṽe, ṽi � η−1/3
e , ε

−1/2
i in order that the CE distribution functions

retain positive signs (the vanishing of the CE electron–ion-drift term is discussed in
Appendix B.2.1). Adopting the Krook collision operator has the additional advantage
of allowing a simple prescription for collisional damping of microinstabilities to be
introduced self-consistently into our stability calculation (see § 2.5.7 for further discussion
of this).

Secondly, as discussed in § 2.3.4, the most important microinstabilities associated with
the CE distribution function are low frequency, i.e. they satisfy (2.68). Therefore, instead
of solving the full hot-plasma dispersion relation, we can obtain a less complicated
algebraic dispersion relation. We also always consider electromagnetic rather than
electrostatic perturbations. This is because it can be shown for a CE plasma that
purely electrostatic microinstabilities are limited to the quasi-cold-plasma modes (see
Appendix D). Describing how the simplified dispersion relation for low-frequency,
electromagnetic perturbations is obtained from the full hot-plasma dispersion relation
requires a rather lengthy exposition, and necessitates the introduction of a substantial
amount of additional mathematical notation. In addition to this, certain shortcomings of
this approach warrant an extended discussion. Readers who are interested these details
will find them in the next section (§ 2.5). Readers who are instead keen to see the results
of the stability calculations as soon as possible are encouraged to jump to §§ 3 and 4.

2.5. Linear stability calculation: detailed methodology
2.5.1. Low-frequency condition in a magnetised plasma

Before applying to the hot-plasma dispersion relation (2.75) the simplifications
discussed in § 2.4.2, we refine the low-frequency condition (2.68) based on the specific
form (2.77) of the conductivity tensor for a magnetised plasma. It is clear that the
equilibrium distribution function only affects the conductivity tensor via the functions
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Λs(ṽs‖, ṽs⊥) and Ξs(ṽs‖, ṽs⊥) (see (2.84) and (2.85)). For a distribution function of the
form (2.72), it can be shown that

Λs(ṽs‖, ṽs⊥) = −ṽs⊥ exp
(−ṽ2

s

) [
ηsAs(ṽs) − 3εsCs(ṽs)ṽs‖

]
, (2.92)

and

Ξs(ṽs‖, ṽs⊥) = −ṽs⊥ exp
(−ṽ2

s

) [
2 + 2ṽs‖ηsAs(ṽs) − ṽs‖

ṽs
ηsA′

s(ṽs)

+ 2εsCs(ṽs)

(
ṽ2

s‖ − ṽ2
s⊥
2

+ 1
2

)
− 1

ṽs

(
ṽ2

s‖ − ṽ2
s⊥
2

)
εsC′

s(ṽs)

+ ηs

ω̃s‖
As(ṽs) − 3

εs

ω̃s‖
Cs(ṽs)ṽs‖

]
, (2.93)

where the first term in the square brackets in (2.93) originates from the Maxwellian
part of the distribution function. A comparison of the size of the second, third, fourth
and fifth terms with the first indicates that for ṽs ∼ 1 – for which Ξs attains its largest
characteristic values – the non-Maxwellian terms of the CE distribution function only
provide a small, O(ηe, εe) contribution, and thus the conductivity is only altered slightly.
However, considering the sixth and seventh terms in the square brackets in (2.93) (which
are only present thanks to the anisotropy of the CE distribution function), it is clear that
the non-Maxwellian contribution to the conductivity tensor can be significant for ṽs ∼ 1
provided the frequency (2.81) satisfies one of

ω̃s‖ ∼ ηs � 1 or ω̃s‖ ∼ εs � 1. (2.94)

Thus, the relevant low-frequency condition in a magnetised plasma involves the parallel
particle streaming rate k‖vths.

There do exist certain caveats to the claim that it is necessary for microinstabilities
of CE plasma to satisfy (2.94); we defer detailed statement and discussion of these
caveats – as well as of other potential shortcomings of our approach – to §§ 2.5.6, 2.5.7
and 2.5.8.

2.5.2. Simplification I: non-relativistic electromagnetic fluctuations
The requirement that the mode be electromagnetic, combined with the fact we are

interested in non-relativistic fluctuations (ω � kc) enables our first simplification. We
see from (2.75) that for any perturbation of interest, the dielectric tensor must satisfy
‖E‖ � k2c2/ω2 � 1 (where ‖ · ‖ is the Euclidean tensor norm); therefore, it simplifies
to

E ≈ 4πi
ω

σ . (2.95)

This amounts to ignoring the displacement current in the Ampère–Maxwell law, leaving
Ampère’s original equation. For convenience of exposition, we denote the contribution of
each species s to (2.95) by

Es ≡ 4πi
ω

σ s. (2.96)
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2.5.3. Simplification II: expansion of dielectric tensor in ω � k‖vths

The next simplification involves an expansion of the matrices Es in the small parameters
ω̃s‖ ∼ ηs ∼ εs � 1. The general principle of the expansion is as follows. We first divide
the matrix Es (see (2.74), (2.77) and (2.96)) into the Maxwellian contribution M s and the
non-Maxwellian one Ps:

Es = ω2
ps

ω2
(M s + Ps) , (2.97)

where the ω2
ps/ω

2 factor is introduced for later convenience. Next, we note that,
for a Maxwellian distribution, Λs(ṽs‖, ṽs⊥) = 0 (see (2.84)), whereas Λs ∼ εs, ηs for
the non-Maxwellian component of the CE distribution function. Thus, from (2.77)
considered under the ordering kρs ∼ 1, M s = O(ω̃s‖) as ω̃s‖ → 0, while Ps = O(ηs, εs).
The expansion of M s and Ps in ω̃s‖ is, therefore,

M s
(
ω̃s‖, k

) ≡ ω̃s‖M (0)
s (k) + ω̃2

s‖M (1)
s (k) + . . . , (2.98a)

Ps
(
ω̃s‖, k

) ≡ P(0)
s (k) + ω̃s‖P(1)

s (k) + . . . , (2.98b)

where the matrices M (0)
s and M (1)

s are O(1) functions of k only, and P(0)
s and P(1)

s are
O(ηs, εs). We then expand Es as follows:

Es = ω̃s‖E
(0)
s + ω̃2

s‖E
(1)
s + . . . , (2.99)

where

E(0)
s ≡ ω2

ps

ω2

[
M (0)

s (k) + 1
ω̃s‖

P(0)
s (k)

]
, (2.100a)

E(1)
s ≡ ω2

ps

ω2

[
M (1)

s (k) + 1
ω̃s‖

P(1)
s (k)

]
. (2.100b)

2.5.4. Additional symmetries of low-frequency dielectric tensor E(0)
s

The tensor E(0)
s defined by (2.100a) has some rather convenient additional symmetries,

which lead to significant simplification of the dispersion relation. In Appendix F we show
that in combination with the general symmetries (2.87a–c), which apply to E(0)

s in addition
to E, for any distribution function of particle species s with a small anisotropy:

(E(0)
s )xz = −k⊥

k‖
(E(0)

s )xx, (2.101a)

(E(0)
s )yz = k⊥

k‖
(E(0)

s )xy, (2.101b)

(E(0)
s )zz = k2

⊥
k2

‖
(E(0)

s )xx. (2.101c)

These symmetries have the consequence that

k̂ · E(0)
s = E(0)

s · k̂ = 0. (2.102)

As a result of this identity, it is convenient to calculate the components of E(0)
s (and Es) in

the coordinate basis {e1, e2, e3} defined by

e1 ≡ ŷ × k̂, e2 ≡ ŷ, e3 ≡ k̂. (2.103a–c)
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Carrying out this calculation (see Appendix F), we find

(E(0)
s )11 = k2

k2
‖
(E(0)

s )xx, (2.104a)

(E(0)
s )12 = −(E(0)

s )21 = k
k‖

(E(0)
s )xy, (2.104b)

(E(0)
s )22 = (E(0)

s )yy, (2.104c)

(E(0)
s )13 = (E(0)

s )31 = (E(0)
s )23 = (E(0)

s )32 = (E(0)
s )33 = 0, (2.104d)

where (E(0)
s )ij is the (i, j)th component of E(0)

s in the basis {e1, e2, e3}. We conclude that,
if kρs ∼ 1 and ω̃s‖ � 1, the components of Es satisfy

(Es)13 ∼ (Es)23 ∼ (Es)33 ∼ ω̃s‖(Es)11 ∼ ω̃s‖(Es)12 ∼ ω̃s‖(Es)22. (2.105)

These components can be written in terms of the components of Es in the {x̂, ŷ, ẑ}
coordinate frame (see (2.76a–c)) via a coordinate transformation; the resulting expressions
are rather bulky, so we do not reproduce them here – they are detailed in Appendix G.

2.5.5. Consequences for dispersion relation
On account of the additional symmetries described in the previous section, a simplified

dispersion relation for low-frequency modes can be derived in place of the full hot-plasma
dispersion relation (2.75). However, depending on the frequency and characteristic
wavelengths of modes, this derivation has a subtlety because of the large discrepancy
between ion and electron masses. In, e.g. a two-species plasma with μe = me/mi � 1
(and ion charge Zi), we have

ω̃e‖
ω̃i‖

= √
μeτ , (2.106)

where τ = Ti/Te. If τ ∼ 1 (as would be expected in a collisional plasma on macroscopic
evolution time scales τL greater than the ion–electron temperature-equilibration time
τ

eq
ie – cf. (2.54)), then ω̃i‖ ∼ μe

−1/2ω̃e‖ � ω̃e‖. Thus, in general, ω̃i‖ �∼ ω̃e‖, and any
dispersion relation will, in principle, depend on an additional (small) dimensionless
parameter μe. This introduces various complications to the simplified dispersion relation’s
derivation, most significant of which being that, since ρe = Ziμ

1/2
e τ−1/2ρi � ρi (for Zi �

1), to assume the ordering kρs ∼ 1 for both ions and electrons is inconsistent (see § 2.5.6).
To avoid the description of our approach being obscured by these complications, we

consider a special case at first: we adopt the ordering kρe ∼ 1 in a two-species plasma
and assume that ω̃i‖ ∼ μ−1/2

e ω̃e‖ � 1. In this case, ω̃i‖‖E(0)

i ‖ ∼ μ1/2
e Ziτ

−1/2ω̃e‖‖E(0)
e ‖ �

ω̃e‖‖E(0)
e ‖, and so the dielectric tensor E is given by

E = ω̃e‖E
(0) + ω̃2

e‖E
(1) + . . . , (2.107)

where

E(0) ≡ E(0)
e + ω̃i‖

ω̃e‖
E(0)

i ≈ E(0)
e , (2.108a)

E(1) ≡ E(1)
e + ω̃2

i‖
ω̃2

e‖
E(1)

i . (2.108b)
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Thus, to leading order in the ω̃e‖ � 1 expansion, only the electron species contributes
to the dielectric tensor for electron-Larmor-scale modes. We revisit the derivation of
simplified dispersion relations for CE microinstabilities more generally in § 2.5.6.

To derive the simplified dispersion relation for electron-Larmor-scale modes, we start
by considering the component of (2.73) for the electric field that is parallel to the
wavevector k̂,

k̂ · E · δ̂E = 0, (2.109)

and then substitute the expanded form (2.107) of the dielectric tensor (with s = e). The
orthogonality of E(0)

e to k̂ – viz. (2.102) – implies that (2.109) becomes

k̂ · E(1) · δ̂E = E(1)

33 k̂ · δ̂E + k̂ · E(1) · δ̂ET = O(ω̃e‖|δ̂E|), (2.110)

where the transverse electric field is defined by δ̂ET ≡ δ̂E · (I − k̂k̂). In Appendix D.2,
we show that for ω̃e‖, ω̃i‖ � 1,

E(1)

33 ≈ ω2
pe

ω2

2k2
‖

k2
(1 + Ziτ

−1) [1 + O(ηe, εe)] . (2.111)

Since this is strictly positive, we can rewrite (2.110) to give the electrostatic field in terms
of the transverse electric field:

k̂ · δ̂E = −
(
E(1)

33

)−1 (
k̂ · E(1) · δ̂ET

)
. (2.112)

We conclude that |k̂ · δ̂E| ∼ |δ̂ET | for all low-frequency perturbations with k‖ ∼ k;
a corollary of this result is that there can be no low-frequency purely electrostatic
perturbations (see Appendix D.4.1 for an alternative demonstration of this).

We can now derive the dispersion relation from the other two components of (2.73),

[
c2k2

ω2

(
k̂k̂ − I

)
+
(

k̂k̂ − I
)

· E

]
· δ̂E = 0, (2.113)

by (again) substituting the expanded dielectric tensor (2.107) into (2.113):

[
ω̃e‖E

(0) + c2k2

ω2

(
k̂k̂ − I

)]
· δ̂ET = −

(
k̂k̂ − I

)
· (E − ω̃e‖E

(0)
) · δ̂E, (2.114)

where we have used the identity

E(0) =
(

k̂k̂ − I
)

· E(0) ·
(

k̂k̂ − I
)

, (2.115)

and ordered k2c2/ω2 ∼ ω̃e‖‖E(0)‖. The ratio of the right-hand side of (2.114) to the
left-hand side is O(ω̃e‖); we thus conclude that, to leading order in the ω̃e‖ � 1
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expansion, [
ω̃e‖E

(0)
e + c2k2

ω2

(
k̂k̂ − I

)]
· δ̂ET = 0, (2.116)

and the dispersion relation is approximately

[
ω̃e‖(E

(0)
e )11 − k2c2

ω2

] [
ω̃e‖(E

(0)
e )22 − k2c2

ω2

]
+ [

ω̃e‖(E
(0)
e )12

]2 = 0. (2.117)

Finally, writing the dielectric tensor in terms of Me and Pe as defined by (2.97), we find[
ω̃e‖(M (0)

e )11 + (P(0)
e )11 − k2d2

e

] [
ω̃e‖(M (0)

e )22 + (P(0)
e )22 − k2d2

e

]
+ [

ω̃e‖(M (0)
e )12 + (P(0)

e )12
]2 = 0, (2.118)

where de = c/ωpe is the electron inertial scale (see (2.58b)). This can be re-written as
a quadratic equation in ω – and thus, expressions for the complex frequency of any
low-frequency perturbation can be found for any given positive wavenumber. We note
that the electron inertial scale is related to the electron-Larmor radius by de = ρeβ

−1/2
e ;

therefore, our expansion scheme is only consistent with the low-frequency assumption
(2.94) under our assumed ordering, ω̃e‖ ∼ β−1

e , when βe � 1.
We note that one only needs to know E(0)

e in order to obtain the dispersion relation of
low-frequency perturbations and the transverse component of the electric field, whereas
to determine the electrostatic component of the electric field (and other quantities, such
as the density perturbation – see Appendix H), one must go to higher order in the
ω̃e‖ � 1 expansion. Since we are primarily interested in microinstability growth rates and
wavenumber scales, we will not explicitly calculate the electrostatic fields associated with
perturbations using (2.112), and thus can avoid the rather laborious calculation of E(1) for
CE distribution functions. We do, however, in Appendix G.1.3 derive an explicit expression
for E(1) for a plasma with Maxwellian distribution functions for all particle species; this
in turn allows us to relate the electrostatic electric field to the transverse field for such a
plasma (see Appendix I).

For the sake of completeness, we also observe that if the non-Maxwellian part of the CE
distribution function is even with respect to v‖, the transformation rules (2.89) combined
with (2.104) imply that a perturbation with a negative parallel wavenumber k‖ will obey
exactly the same dispersion relation as a perturbation for a positive parallel wavenumber,
viz. for k‖ > 0,

P(0)
e

(−k‖, k⊥
) = P(0)

e

(
k‖, k⊥

)
. (2.119)

If instead the non-Maxwellian part is odd, then, for k‖ > 0,

P(0)
e

(−k‖, k⊥
) = −P(0)

e

(
k‖, k⊥

)
. (2.120)

The dispersion relation for perturbations with k‖ < 0 can, therefore, be recovered by
considering perturbations with k‖ > 0, but under the substitution P(0)

e → −P(0)
e . Thus, we

can characterise all unstable perturbations under the assumption that k‖ > 0.
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In all subsequent calculations, we require the Maxwellian part M (0)
e of the dielectric

tensor. The elements of the matrix M (0)
s of species s are as follows:

(M (0)
s )11 = i

k2

k2
‖

F
(
k‖ρ̃s, k⊥ρ̃s

)
, (2.121a)

(M (0)
s )12 = −i

k
k‖

G
(
k‖ρ̃s, k⊥ρ̃s

)
, (2.121b)

(M (0)
s )21 = i

k
k‖

G
(
k‖ρ̃s, k⊥ρ̃s

)
, (2.121c)

(M (0)
s )22 = iH

(
k‖ρ̃s, k⊥ρ̃s

)
, (2.121d)

where the functions F(x, y), G(x, y) and H(x, y) are

F(x, y) ≡ 4
√

π

y2
exp

(
−y2

2

) ∞∑
m=1

m2Im

(
y2

2

)
exp

(
−m2

x2

)
, (2.122a)

G(x, y) ≡ exp
(

−y2

2

) ∞∑
m=−∞

m Re Z
(m

x

) [
I′

m

(
y2

2

)
− Im

(
y2

2

)]
, (2.122b)

H(x, y) ≡ F(x, y) + √
πy2 exp

(
−y2

2

) ∞∑
m=−∞

[
Im

(
y2

2

)
− I′

m

(
y2

2

)]
exp

(
−m2

x2

)
,

(2.122c)

where Im(α) is the mth modified Bessel function, and

Z(z) = 1√
π

∫
CL

du exp
(−u2

)
u − z

, (2.123)

is the plasma dispersion function (Fried & Conte 1961). The derivation of these results
from the full dielectric tensor (which is calculated in Appendix G.1.1) for a plasma whose
constituent particles all have Maxwellian distributions is presented in Appendices G.1.2
(expansion in the {x̂, ŷ, ẑ} basis) and G.1.3 (expansion in the {e1, e2, e3} basis).

2.5.6. Effect of multiple species on dispersion-relation derivations
We now relax the assumptions adopted in § 2.5.5 that the low-frequency modes of

interest are on electron-Larmor scales, and discuss how we derive simplified dispersion
relations for (low-frequency) CE microinstabilities more generally.

First, it is unnecessarily restrictive to assume that, for all CE microinstabilities, ω̃s‖ � 1
for all particle species. There are some instabilities for which ω̃e‖ ∼ ηe ∼ εe � 1 while
ω̃i‖ � 1. Recalling the orderings ω̃e‖ ∼ β−1

e and kρe ∼ 1 that were adopted for the
electron-Larmor-scale instabilities described in § 2.5.5, it follows that ω̃i‖ � 1 whenever
βe � τ−1/2μ−1/2

e ; in other words, electron-Larmor-scale CE microinstabilities in plasmas
with βe that is not too large will satisfy ω̃i‖ � 1. Therefore, we cannot naively apply our
low-frequency approximation to both Ee and Ei in all cases of interest. We will remain
cognisant of this in the calculations that follow – a concrete example of ω̃i‖ � 1 will be
considered in § 3.3.1.

Secondly, because of the large separation between electron- and ion-Larmor scales,
it is necessary to consider whether the approximation M s(ω̃s‖, k) ≈ ω̃s‖M (0)

s (k) remains
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valid for parallel or perpendicular wavenumbers much larger or smaller than the inverse
Larmor radii of each species. We show in Appendix G.1.6 that the leading-order
term in the ω̃s‖ � 1 expansion remains larger than higher-order terms for all k‖ρs � 1
(as, indeed, was implicitly assumed in § 2.5.5). However, for k‖ρs sufficiently small,
the same statement does not hold for all components of M s. More specifically, it is
shown in the same appendix that the dominant contribution to M s(k) when k‖ρs � 1
instead comes from the quadratic term ω̃2

s‖M (1)
s (k) (rather than any higher-order term).

Thus, in general, our simplified dispersion relation for low-frequency modes in a
two-species plasma has the form of a quartic in ω, rather than a quadratic, if k‖ρs �
1 for at least the electron species. Physically, the reason why a quadratic dispersion
relation is no longer a reasonable approximation is the existence of more than two
low-frequency modes in a two-species Maxwellian plasma in certain wavenumber
regimes. For example, for quasi-parallel modes with characteristic parallel wavenumbers
satisfying k‖ρi � 1, there are four low-frequency modes (see § 4.4.1). Nevertheless,
in other situations, the components of M s(k) for which the M s(ω̃s‖, k) ≈ ω̃s‖M (0)

s (k)
approximation breaks down are not important, on account of their small size compared
with terms in the dispersion relation associated with other Maxwellian components. In
this case, the original quadratic dispersion relation is sufficient. An explicit wavenumber
regime in which this is realised is k‖ρe ∼ k⊥ρe � 1 but kρi � 1 – see §§ 4.3.4
and 4.4.7.

Taking these multiple-species effects into account, the reasons behind the decision
made in § 2.3.4 to consider the CES microinstabilities separately from the CET
microinstabilities come into plain focus. First, the characteristic sizes of the CE
electron-temperature-gradient and ion-temperature-gradient terms are comparable (ηi ∼
ηe), while the CE ion-shear term is much larger than the CE electron-shear term:
εi ∼ μ−1/2

e εe. This has the consequence that the natural orderings of ω̃e‖ and ω̃i‖ with
respect to other parameters are different for CES and CET microinstabilities. Secondly,
the fact that the velocity-space anisotropy associated with the CE temperature-gradient
terms differs from the CE shear terms – which excite microinstabilities with different
characteristic wavevectors – means that the form of the dispersion relations of CET and
CES microinstabilities are distinct. More specifically, the dispersion relation for CET
microinstabilities at both electron and ion scales can always be simplified to a quadratic
equation in ω; in contrast, for CES microinstabilities, the dispersion relation cannot in
general be reduced to anything simpler than a quartic.

2.5.7. Modelling collisional effects on CE microinstabilities
As proposed thus far, our method for characterising microinstabilities in a CE plasma

does not include explicitly the effect of collisions on the microinstabilities themselves. In
principle, this can be worked out by introducing a collision operator into the linearised
Maxwell–Vlasov–Landau equation from which the hot-plasma dispersion relation (2.75)
is derived. Indeed, if a Krook collision operator is assumed (as was done in § 2.4.2 when
determining the precise form of the CE distribution functions of ions and electrons),
the resulting modification of the hot-plasma dispersion relation is quite simple: the
conductivity tensor (2.77) remains the same, but with the substitution

ω̃s‖ → ω̂s‖ ≡ ω̃s‖ + i
k‖λs

, (2.124)

in the resonant denominators (see Appendix C). As for how this affects the simplifications
to the dispersion relation outlined in § 2.5.3, the expansion parameter in the dielectric
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tensor’s expansion (2.99) is altered, becoming ω̂s‖ � 1 (as opposed to ω̃s‖ � 1); in other
words, ‖E(1)

s ‖/‖E(0)
s ‖ ∼ ω̂s‖.

The latter result leads to an seemingly counterintuitive conclusion: collisions typically
fail to stabilise low-frequency instabilities in CE plasma if ωτs � 1 (where τs is the
collision time of species s) but k‖vthiτs = k‖λs � 1. This is because the simplified
dispersion relation (2.118) only involves leading-order terms in the expanded dielectric
tensor. These terms are independent of ω̂s‖, and thus the growth rate of any microinstability
that is adequately described by (2.118) does not depend on the size of ωτs. For these
microinstabilities, the effect of collisions only becomes relevant if

k‖λs � 1. (2.125)

This is inconsistent with the assumptions kλe � 1, kλi � 1 made when setting up
our calculation in § 2.4.1. Thus, the only regime where collisions can reasonably be
included in our calculation is one where they are typically not important. An exception
to this rule arises when two-species plasma effects mean that the first-order terms in the
ω̂s‖ � 1 expansion are needed for a correct characterisation of the growth rate of certain
microinstabilities (see § 2.5.6); for these instabilities, we include the effect of collisions
using (2.124).

Although our calculation is not formally valid when (2.125) holds, so we cannot show
explicitly that growth ceases, this condition nonetheless represents a sensible criterion
for suppression of microinstabilities by collisional damping. Physically, it signifies that
collisions are strong enough to scatter a particle before it has streamed across a typical
wavelength of fluctuation excited by a microinstability. This collisional scattering prevents
particles from being resonant, which in turn would suppress the growth of many different
microinstabilities. However, we acknowledge that there exist microinstabilities that do not
involve resonant-particle populations (e.g., the firehose instability – see §§ 2.3.3 and 4.4.1),
and thus it cannot be rigorously concluded from our work that all microinstabilities are
suppressed when (2.125) applies.

Yet even without an actual proof of collisional stabilisation, there is another reason
implying that (2.125) is a reasonable threshold for microinstabilities: the characteristic
growth time of microinstabilities at wavenumbers satisfying (2.125) is comparable to
the evolution time τL of macroscopic motions in the plasma. To illustrate this idea, we
consider the ordering (2.94) relating the complex frequency of microinstabilities to the
small parameter εs for CES (CE shear-driven) microinstabilities, and use it to estimate

ωτL ∼ εsk‖vthsτL � εs
LV

λs

vths

V
, (2.126)

where V ∼ LV/τL is the characteristic ion bulk-flow velocity. Considering orderings
(2.55), it follows that εe ∼ μ1/2

e εi, and so

εi
vthi

V
∼ εe

vthe

V
∼ λe

LV
∼ λi

LV
. (2.127)

Then (2.126) becomes
ωτL � 1, (2.128)

implying (as claimed) that the CES microinstability growth rate is smaller than the fluid
turnover rate τ−1

L . Spelled out clearly, this means that the underlying quasiequilibrium
state changes before going unstable. Similar arguments can be applied to CET (CE
temperature-gradient-driven) microinstabilities.
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Thus, (2.125) represents a lower bound on the characteristic wavenumbers at which
microinstabilities can operate. We shall therefore assume throughout the rest of this paper
that microinstabilities are suppressed (or rendered irrelevant) if they satisfy (2.125).

2.5.8. Caveats: microinstabilities in CE plasma where ω/k‖vths �∼ ηs, εs

As mentioned in § 2.4.2, there are a number of important caveats to the claim that the
ordering (2.94) must be satisfied by microinstabilities in a CE plasma.

The first of these is that our comparison of non-Maxwellian with the Maxwellian
terms in expression (2.93) for Ξs is in essence a pointwise comparison at characteristic
values of ṽs for which Ξs attains its largest typical magnitude. However, Ξs affects
the components of the conductivity tensor via the velocity integral of its product with
a complicated function of frequency and wavenumber (see (2.77)). Thus, it does not
necessarily follow that the ratio of the integrated responses of the Maxwellian and
non-Maxwellian contributions to the conductivity tensor is the same as the pointwise
ratio of the respective contributions to Ξs. In some circumstances, this can result in
the Maxwellian part being smaller than anticipated, leading to faster microinstabilities.
An example of this phenomenon was given in § 2.5.6: for k‖ρs � 1, the characteristic
magnitude of the Maxwellian contribution to some components of the dielectric tensor
is O(ω̃2

s‖), as compared with the naive estimate O(ω̃s‖). This leads to certain CES
microinstabilities (for example, the CE ion-shear-driven firehose instability – § 4.4.1)
satisfying a modified low-frequency condition

ω̃s‖ ∼ ε1/2
s � 1. (2.129)

A similar phenomenon affects the limit k‖ → 0 for fixed k⊥, in which case it can
be shown that the Maxwellian contribution to σzz is O(k‖/k⊥); this leads to a CES
microinstability (the CE electron-shear-driven ordinary-mode instability – see § 4.4.11)
satisfying a modified ordering

ω

k⊥vths
∼ εs � 1. (2.130)

The second caveat is that for some plasma modes, the particles predominantly
responsible for collisionless damping or growth are suprathermal, i.e. ṽs � 1. Then the
previous comparison of terms in (2.93) is not applicable. Modes of this sort are the
quasi-cold plasma modes discussed in § 2.3.4 and Appendix D. They can be unstable,
but always with a growth rate that is exponentially small in ηs and εs.

In spite of these two caveats, we proceed by considering the full hot-plasma dispersion
relation (2.75) in the low-frequency limit ω � k‖vths. This approach enables the treatment
of all microinstabilities satisfying condition

ω̃s‖ ∼ ηιη
s , ειε

s � 1, (2.131a,b)

where ιη and ιε are fractional powers not much smaller than unity. Similarly to the
discussion in § 2.3.4, we claim that the microinstabilities satisfying the low-frequency
condition (2.131a,b) are likely to be the most rapid of all possible microinstabilities
in CE plasma. A formal justification of this claim relies on the argument – presented
in Appendix E – that for all plasma modes satisfying ω � k‖vths and |Re ω| � |Im ω|,
the growth rate is exponentially small in ηs and εs. By definition, this class of modes
includes the quasi-cold modes. In a plasma where εs, ηs � 1, the growth rates of such
microinstabilities will be exponentially small, and thus of little significance. The only
situation that we are aware of in which the low-frequency condition (2.131a,b) is not
appropriate is the aforementioned CES ordinary-mode instability; a separate treatment
of it involving the full hot-plasma dispersion relation is provided in Appendix K.3.13.
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3. CET (Chapman–Enskog, temperature-gradient-driven) microinstabilities
3.1. Form of CE distribution function

We consider first the non-Maxwellian terms of the CE distribution function arising from
temperature gradients and electron–ion drifts. Neglecting bulk-flow gradients (viz. setting
εs = 0 for both species – see (2.11e, f )), the CE distribution functions (2.72) for the
electrons and ions become

fe0(ṽe‖, ṽe⊥) = ne0

v3
theπ

3/2
exp

(−ṽ2
e

) {
1 − ṽ‖e

[
ηT

e

(
ṽ2

e − 5
2

)
+ ηR

e

]}
, (3.1a)

fi0(ṽi‖, ṽi⊥) = ni0

v3
thiπ

3/2
exp

(−ṽ2
i

) {
1 − ηiṽ‖i

(
ṽ2

i − 5
2

)}
, (3.1b)

where we have written out explicitly the electron-temperature-gradient (ηT
e , ηi – see

(2.11a,d)) and electron-friction (ηR
e – see (2.11b)) terms under the assumption that the

Maxwell–Vlasov–Landau system from which these CE distribution functions were derived
is governed by a Krook collision operator. We remind the reader that the electron–ion-drift
term (ηu

e – see (2.11c)) disappears for this choice of collision operator. We also observe
that the non-Maxwellian part of the distribution functions (3.1) have odd parity; thus, any
unstable mode with k‖ > 0 has a corresponding unstable mode with k‖ < 0 and the signs
of ηT

e , ηR
e , and ηi reversed (see § 2.5.5, last paragraph). For the rest of this section, we

therefore take k‖ > 0 without loss of generality; the behaviour of modes with k‖ < 0 can
be inferred via this symmetry relation.

The precise methodology that we employ to calculate the growth rates of CET
microinstabilities is described in Appendix J; here, we focus on the results of those
calculations. In § 3.2, we will present the overview of the CET stability landscape, while
the microinstabilities referred to there will be treated analytically in § 3.3.

3.2. Stability
We determine the stability (or otherwise) of the CE distribution functions of the form
(3.1a) and (3.2b) for different values of ηT

e , ηR
e and ηi, the electron inertial scale de,

the electron-temperature scale length LT = |∇‖ log Te|−1 and for fixed electron and ion
plasma betas (βe and βi, respectively). Stability calculations are carried out for particular
combinations of values of ηT

e , ηR
e , ηi, de, LT , βe and βi by solving for the maximum

microinstability growth rate across all wavevectors (see Appendix J for explanation of how
this is done), and determining whether this growth rate is positive for the microinstabilities
whose wavelength is smaller than the Coulomb mean free paths (a condition necessary for
our calculation to be valid).

The results of one such stability calculation – for a temperature-equilibrated hydrogen
plasma (ηT

e = ηi, βi = βe) – are presented in figure 2. In spite of the five-dimensional
(ηT

e , ηR
e , de/LT, βe) parameter space that seemingly needs to be explored, we can, in

fact, convey the most salient information concerning the stability of the CE distribution
functions (3.1) using plots over a two-dimensional (de/LT, λe/LT) parameter space at a
fixed βe (where we remind the reader that λe/LT = |ηT

e | – see (2.11a)). This reduction in
phase-space dimensionality is possible for two reasons. First, dimensional analysis implies
that the salient stability thresholds of CET microinstabilities cannot depend on de and LT
separately, but only on the ratio de/LT . Secondly, it transpires that the CE electron-friction
term of the form given in (3.1a) does not drive any microinstabilities, bur merely modifies
the real frequency of perturbations with respect to their Maxwellian frequencies (this
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(a) (b)

(c) (d )

FIGURE 2. The CE-distribution-function stability map for CET microinstabilities. Exploration
of the stability of the CE distribution functions (3.1a) and (3.1b) for different values of small
parameters ηT

e , ηR
e and ηi, and the ratio of the electron inertial scale de to the temperature

scale length LT , in a temperature-equilibrated hydrogen plasma. In this plot, we chose ηR
e =

0 and ηT
e = ηi, and then show λe/LT = |ηT

e | with equal logarithmic spacing in the range
[10−5, 100]; de/LT is chosen with equal logarithmic spacing in the range [10−15, 100]. The
total size of the grid is 4002. For reasons of efficiency, we calculate growth rates on a
402 grid in wavenumber space with logarithmic spacing for both parallel and perpendicular
wavenumbers. In this plot, βe = βi = 104. (a) Stable (blue) and unstable (red) regions of
(de/LT , λe/LT) phase space. The theoretically anticipated collisional cutoff (right – see (3.4))
and β-stabilisation threshold (bottom) of the CET whistler instability are shown as black dashed
lines. (b) Maximum normalised microinstability growth rate (red) vs λe/LT for a fixed electron
inertial scale de/LT = 10−15, along with analytically predicted maximum growth rate for the
CET whistler instability in the limit λeβe/LT � 1 (blue, see (3.10)). (c) Parallel wavenumber of
fastest-growing microinstability (red) vs λe/LT for a fixed electron inertial scale de/LT = 10−15,
along with the same quantity analytically predicted for the CET whistler instability in the limit
λeβe/LT � 1 (blue, see (3.11)). (d) Wavevector angle θ ≡ tan−1 (k⊥/k‖) of the fastest-growing
instability over (de/LT , λe/LT) parameter space.

is proven in Appendix J.1). Thus, we can set ηR
e = 0 without qualitatively altering the

stability properties of the CE distribution functions (3.1).
Figure 2(a) shows the regions of instability and stability of the CE distribution function

(3.1) over the (de/LT, λe/LT) parameter space. The unstable region is bracketed by two
thresholds. For de/LT below a critical value (de/LT)c0, stability is independent of de/LT ,
and only depends on the relative magnitude of λe/LT and βe: CET microinstabilities
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are quenched if λeβe/LT � 1. For de/LT � (de/LT)c0, and λeβe/LT � 1, stability is
attained at fixed λe/LT for de/LT > (de/LT)c, where (de/LT)c increases monotonically with
λe/LT . If λeβe/LT � 1 and de/LT � (de/LT)c, then the CE distribution function (3.1) is
unstable.

The fastest-growing CET microinstability is the whistler (heat-flux) instability: whistler
waves driven unstable by the small anisotropy of the CE electron-temperature-gradient
term (see § 3.3.1). That this instability with wavevector parallel to the magnetic field
is indeed the dominant microinstability is most easily ascertained by comparing simple
analytic expressions for its peak growth rate and wavevector with the equivalent quantities
recorded when performing the general stability calculation (see figure 2b–d). The
maximum microinstability growth rate matches the analytic result (3.10) for the CET
whistler instability in the limit λeβe/LT � 1, while the parallel wavenumber (|k‖|ρe)peak
of the fastest-growing mode is extremely well described by (3.11). In addition, figure 2(d)
demonstrates that the parallel instability is indeed the fastest. The CET whistler instability
has been considered previously by a number of authors (see references in § 3.3.1); we note
that these prior studies of this instability suggest that, nonlinearly, oblique CET whistler
modes may be the more important ones, even though linearly the parallel modes are the
fastest growing (see § 3.3.2).

The two thresholds demarcating the unstable region can then be associated with
stabilisation conditions of the CET whistler instability, each with a simple physical
interpretation. The first condition is the β-stabilisation condition of the whistler instability.
It is shown in § 3.3.1 that when λeβe/LT � 1, cyclotron damping on whistler modes
is sufficiently strong that only quasi-parallel modes with parallel wavenumbers k‖ρe �
(λeβe/LT)1/3 � 1 can be destabilised by the anisotropy of the CE distribution function,
and that the peak growth rate γwhistler,T of these unstable modes is exponentially small
in λeβe/LT compared with the electron Larmor frequency (see (3.8)): γwhistler,T/Ωe ∼
λe exp [−(λeβe/2LT)−2/3]/LT . This means that if λeβe/LT is reduced below unity, the
growth rate of the CET whistler instability decreases dramatically, and thus the instability
is unable to operate effectively on time scales shorter than those over which the CE plasma
is evolving macroscopically.

The second condition is collisional stabilisation of the CET whistler instability. Naively,
it might be expected that two conditions must be satisfied in order for the microinstability
to operate: that its growth rate must satisfy γwhistler,Tτe � 1, and its characteristic
wavenumber kλe � 1 (see (2.125)). Noting that for the CET whistler instability
(cf. (3.10)),

γwhistler,Tτe

kλe
= γwhistler,T

kvthe
∼ λe

LT

(
λeβe

LT

)−1/5

� 1, (3.2)

it follows that the former condition is more restrictive. Written as a condition on de/LT in
terms of λe/LT (and using γwhistler,T ∼ λeΩe/LT – see (3.10)), γwhistler,Tτe � 1 becomes

de

LT
� β−5/2

e

(
λeβe

LT

)2

, (3.3)

while the condition kλe � 1 on the instability wavenumber k‖ρe ∼ (λeβe/LT)1/5 (see
(3.11)) leads to

de

LT
�
(

de

LT

)
c

≡ β−3/2
e

(
λeβe

LT

)6/5

. (3.4)

It is the latter that agrees well with the true result, as shown in figure 2(a), implying that
(de/LT)c0 = β−3/2

e . The (arguably surprising) result that the CET whistler instability can
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operate even if γwhistler,Tτe � 1 is, in fact, a generic feature of low-frequency (viz. ω �
kvthe) plasma instabilities (see § 2.5.7). The physical instability mechanism underlying
such modes can be sustained provided the time taken for thermal particles (in this
case, electrons) to cross the mode’s wavelength is much shorter than the collision time,
irrespective of the mode’s own frequency – in other words, τekvthe = kλe � 1. We point
out that the collisional-stabilisation condition of the CET whistler instability can never be
satisfied in a strongly magnetised plasma if λeβe/LT � 1: this is because its wavenumber
k satisfies k−1 � ρe � λe.

Whilst it is the fastest-growing one (assuming ηT
e ∼ ηi), the CET whistler instability

is not the only CET microinstability of interest. There are two other instabilities
driven by the CET ion-temperature-gradient term, neither of which has previously been
identified, to our knowledge: the slow (hydromagnetic) wave instability (see § 3.3.3),
and the long-wavelength KAW instability (see § 3.3.4). The former, whose characteristic
wavenumber scale satisfies kρi ∼ 1, has a larger characteristic growth rate γSW ∼ λiΩi/LTi

(where LTi = |∇‖ log Ti|−1 is the scale length of the ion-temperature gradient). Similarly
to the CET whistler instability, the CET slow-wave instability has β-stabilisation and
collisional-stabilisation conditions λiβi/LTi � 1 and λi � ρi, respectively. Thus, unless
λiβi/LTi > λeβe/LTe (a condition equivalent to τ 3LTe/LTi > Z3

i , where τ = Ti/Te), the CET
slow-wave instability only operates when the CET whistler-wave instability does, but
on larger, ion rather than electron, scales. Nevertheless, the CET slow-wave instability
is worth noting because, on account of being an ion instability, it should continue to
operate even if the electron-scale CET whistler instability modifies the underlying electron
distribution function. The slow-wave instability will then be responsible for modifying the
ion distribution function. We are not aware of any work on the CET slow-wave instability
and, thus, on its effect on ion heat conduction.

Readers who are interested in knowing more about the properties and growth rates of
CET microinstabilities are encouraged to continue § 3.3; those who are focused on the
wider question of the kinetic stability of the CE distribution function should jump ahead
to § 4.

3.3. CET microinstability classification
3.3.1. Parallel whistler (heat-flux) instability

The CET whistler instability, which has been studied previously by a number of authors
(Levinson & Eichler 1992; Pistinner & Eichler 1998; Gary & Li 2000; Roberg-Clark
et al. 2016; Komarov et al. 2018; Roberg-Clark et al. 2018a,b; Kuzichev et al. 2019;
Shaaban et al. 2019; Drake et al. 2021), is driven by parallel electron heat fluxes.
These heat fluxes introduce the asymmetry to the CE electron distribution function
(i.e. the electron-temperature-gradient term), which, if it is sufficiently large, can overcome
electron-cyclotron damping of (electromagnetic) whistler waves and render them unstable.
The instability is mediated by gyroresonant wave–particle interactions that allow whistlers
to drain free energy from electrons with parallel velocities v‖ = ±Ωe/k‖. For a positive,
parallel electron heat flux, which is driven by an anti-parallel temperature gradient
(∇‖Te < 0, so ηT

e < 0), it is only whistlers with a positive parallel wavenumber that are
unstable. Whistler waves with both parallel and oblique wavevectors with respect to the
magnetic field can be destabilised, although the parallel modes are the fastest-growing
ones.

The CET whistler instability is most simply characterised analytically for parallel
wavenumbers (i.e. k = k‖). Then, it can be shown (see Appendix J.3.1, and also Levinson
& Eichler 1992; Roberg-Clark et al. 2016) that the real frequency � and growth rate γ at
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(a) (b) (c)

FIGURE 3. Parallel CET whistler instability. Dispersion curves of unstable whistler modes,
whose instability is driven by the electron-temperature-gradient term in the CE distribution
function (3.1a), for wavevectors that are co-parallel with the background magnetic field (viz. k =
k‖ẑ). The frequency (solid blue) and growth rates (solid red) of the modes are calculated using
(3.5a) and (3.5b), respectively. The resulting frequencies and growth rates, when normalised
as γβe/Ωe, are functions of the dimensionless quantity ηT

e βe; we show the dispersion curves
for three different values of ηT

e βe. The approximations (3.6a) and (3.6b) for the frequency
(dotted blue) and growth rate (dotted red) in the limit k‖ρe � 1 are also plotted, as are the
approximations (3.9a) and (3.9b) for the frequency (dashed blue) and growth rate (dashed red)
in the limit k‖ρe � 1.

arbitrary k‖ > 0 are given by

�

Ωe
= ηT

e

(
k‖ρe

4
− 1

2k‖ρe

)
−

(
ηT

e /2 + k3
‖ρ

3
e /βe

)
Re Z

(
1/k‖ρe

)[
Re Z

(
1/k‖ρe

)]2 + π exp
(−2/k2

‖ρ2
e

) , (3.5a)

γ

Ωe
= −

√
π
(
ηT

e /2 + k3
‖ρ

3
e /βe

)[
Re Z

(
1/k‖ρe

)]2 exp
(
1/k2

‖ρ2
e

)+ π exp
(−1/k2

‖ρ2
e

) . (3.5b)

For ηT
e > 0, γ < 0, but if ηT

e < 0, then γ is non-negative for k‖ρe � (ηT
e βe/2)1/3. The

dispersion curves � = �(k‖) and γ = γ (k‖) of unstable whistler waves with parallel
wavevectors for three different values of |ηT

e |βe are plotted in figure 3 using the above
formulae. For |ηT

e |βe � 1, the range of unstable parallel wavenumbers, �k‖, is comparable
to the characteristic wavenumber of the instability: �k‖ ∼ k‖ ∼ ρ−1

e .
The expressions (3.5a) and (3.5b) can be simplified in two subsidiary limits, which in

turn allows for the derivation of analytic expressions for the maximum growth rate of the
instability and the (parallel) wavenumber at which that growth rate is realised.

First, adopting the ordering k‖ρe ∼ (|ηT
e |βe)

1/3 � 1 under which the destabilising ηT
e

terms and the stabilising electron finite-Larmor-radius (FLR) terms are the same order, we
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find

� ≈ k2
‖ρ

2
e

βe
Ωe, (3.6a)

γ ≈ −
√

π

k2
‖ρ2

e

(
ηT

e

2
+ k3

‖ρ
3
e

βe

)
exp

(
− 1

k2
‖ρ2

e

)
Ωe. (3.6b)

The frequency corresponds to that of a whistler wave in the k‖ρe � 1 limit (Boldyrev et al.
2013). The fastest growth, which occurs at the wavenumber

k‖ρe ≈
( |ηT

e |βe

2

)1/3

− |ηT
e |βe

4
, (3.7)

is exponentially slow in |ηT
e |βe � 1:

γmax ≈ 3
√

π

4
|ηT

e | exp

[
− 22/3(|ηT

e |βe
)2/3 − 1

]
Ωe. (3.8)

Next, considering the opposite limit k‖ρe � 1, we obtain

� ≈
[
ηT

e βe

(
1
4

k‖ρe − π − 2
2πk‖ρe

)
+ 2

π
k2

‖ρ
2
e

]
Ωe

βe
, (3.9a)

γ ≈ − 1√
π

[
ηT

e βe

(
1
2

− 4 − π

2πk2
‖ρ2

e

)
+ k3

‖ρ
3
e

]
Ωe

βe
. (3.9b)

We then find that the maximum growth rate of the parallel mode is given by

γmax ≈ |ηT
e |√
π

{
1 −

[
1√
π

(
4
π

− 1
)]3/5

[(
3
2

)2/5

−
(

2
3

)3/5
] (|ηT

e |βe
)−2/5

}
Ωe

≈ 0.56|ηT
e |
[
1 − 0.13

(|ηT
e |βe

)−2/5
]
Ωe, (3.10)

at the parallel wavenumber

k‖ρe =
[

2
3
√

π

(
4
π

− 1
)]1/5 (|ηT

e |βe
)1/5 ≈ 0.63

(|ηT
e |βe

)1/5
. (3.11)

In addition, we see that the real frequency of modes with k‖ρe � (|ηT
e |βe/2)1/3 is larger

than the growth rate of the mode: � ∼ k‖ρeγ � γ . Thus, these modes oscillate more
rapidly than they grow.

The approximate expressions for (3.6) and (3.9) are valid in the limits |ηT
e |βe � 1 and

|ηT
e |βe � 1, respectively, and are plotted in figure 3 alongside the exact results (3.5).

Of particular note is the accuracy of the approximate expression (3.9b) for the growth
rate when k‖ρe � 0.6; this suggests that (3.10) is a reasonable estimate of the peak growth
rate for |ηT

e |βe � 1.
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3.3.2. Oblique whistler (heat-flux) instability
Analytical expressions for the frequency and growth rate of unstable modes with an

oblique wavevector at an angle to the magnetic field are more complicated than the
analogous expressions for parallel modes. In Appendix J.3, we show that there are two
low-frequency oblique modes, whose complex frequencies ω are given by

ω = Ωe

βe
k‖ρe

−BT ±
√

B2
T + 4ATCT

2AT
, (3.12)

where the coefficients AT = AT(k‖ρe, k⊥ρe, η
T
e βe), BT = BT(k‖ρe, k⊥ρe, η

T
e βe) and CT =

CT(k‖ρe, k⊥ρe, η
T
e βe) are composed of the sums and products of the special functions

defined in (2.122), and also other special functions defined in Appendix G.3. For a given
wavenumber, we can use (3.12) to calculate the growth rates of any unstable oblique
modes – and, in particular, demonstrate that positive growth rates are present for certain
values of ηT

e . When they do exist, (3.12) suggests that they will have the typical size
γ ∼ Ωe/βe ∼ ηT

e Ωe when kρe ∼ 1 and ηT
e βe ∼ 1.

For ηT
e > 0, we find that both modes (3.12) are damped; for ηT

e < 0, one mode is damped
for all wavenumbers, but the other is not. Figure 4 shows the maximum (positive) growth
rate γ (normalised to Ωe/βe) of this mode at a fixed value of ηT

e , for a range of βe. The
growth rate is calculated by evaluating the imaginary part of (3.12) at a given wavenumber.
For −ηT

e < 1/βe, the mode of interest is damped for most wavenumbers, except for a small
region of wavenumbers quasi-parallel to the magnetic field: in this region, there is a very
small growth rate γ � Ωe/βe (figure 4a). This finding is consistent with the exponentially
small growth rates found for the parallel whistler modes (see (3.8)). When −ηT

e ∼ 1/βe,
there is a marked change in behaviour: a larger region of unstable modes appears, with γ ∼
Ωe/βe, at wavenumbers kρe ∼ 1 (figure 4b,c). The growth rate is the largest for parallel
modes – but there also exist oblique modes with k⊥ � k‖ whose growth rate is close to
the peak growth rate. For example, for ηT

e βe = −4, we find that the growth rate of the
fastest-growing mode with a wavevector angle θ = 10◦ is only ∼2 % smaller than the
fastest-growing parallel mode; for a wavevector angle θ = 20◦, the reduction is by ∼6 %;
and for θ = 30◦, the reduction is by ∼20 %. Finally, if −ηT

e � 1/βe, there exists a extended
region of unstable modes, with 1 � kρe � |ηT

e βe|1/3, and γ ∼ |ηT
e Ωe| (figure 4d). Again,

the peak growth rate is at k⊥ = 0, but oblique modes also have a significant growth rate
(for unstable modes with θ = 30◦, the reduction in the largest growth rate compared with
the fastest-growing parallel mode is only by ∼4 %). Most of the unstable modes have
a non-zero real frequency: for −ηT

e ∼ 1/βe, ω ∼ γ (figure 4e), while for −ηT
e � 1/βe,

ω � γ for kρe � 1 (figure 4f ). Note, however, that in the latter case there exists a band of
wavenumbers at which there is no real frequency.

In summary, we have (re-)established that the fastest-growing modes of the CET
whistler instability are parallel to the magnetic field; however, we have shown
semi-analytically (a novel result of this work) that the growth of oblique perturbations
can be almost as large. This result is of some significance, because it has been argued that
oblique whistler modes are necessary for the instability to scatter heat-carrying electrons
efficiently (see, e.g. Komarov et al. 2018). It was proposed previously that such modes
could arise from modifications to the CET electron-temperature-gradient terms induced
by the unstable parallel whistler modes rendering the oblique modes the fastest-growing
ones; our calculations suggest that it would only a require a small change to the CET
whistler growth rates for this to be realised.

As a further aside, we observe that in a plasma with sufficiently high plasma βe,
these oblique modes are in fact closer in nature to KAWs than to whistler waves.
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 4. Oblique CET whistler instabilities. Maximum positive growth rates of unstable
whistler modes whose instability is driven by the electron-temperature-gradient term in CE
distribution function (3.1a), at arbitrary wavevectors with respect to the background magnetic
field. The growth rates of the modes are calculated by taking the imaginary part of (3.12),
where coefficients AT , BT and CT are known functions of the wavevector. The growth rates
are calculated on a 4002 grid, with equal logarithmic spacing in both perpendicular and parallel
directions between the minimum and maximum wavenumbers. The resulting growth rates, when
normalised as γβe/Ωe, are functions of the dimensionless quantity ηT

e βe; (a) ηT
e βe = −0.5,

(b) ηT
e βe = −4. (c) Same as (b) but with normalisation γ /|ηT

e |Ωe. (d) Same as (c), but with
ηT

e βe = −100. (e) Ratio of growth rate to absolute value of real frequency for unstable modes
for ηT

e βe = −4. ( f ) Same as (e), but with ηT
e βe = −100.

Whistler waves are characterised as having effectively immobile ions (ω � k⊥vthi), while
KAWs have warm ions (ω � k⊥vthi); as a consequence, whistler waves have a negligible
density perturbation (δne � Zieneϕ/Ti, where ϕ is the electrostatic potential associated
with the wave), while KAWs do not: δne ≈ Zieneϕ/Ti (Boldyrev et al. 2013). In a
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βe ∼ 1 plasma for k⊥ � k‖, the real frequency of whistler modes satisfies ω/k⊥vthi ∼
k‖ρi/βe ∼ k‖ρi; thus, we conclude from our above considerations that the two waves
must operate in different regions of wavenumber space, viz. k‖ρi � 1, k⊥ρi > 1 for
KAWs, and k‖ρi � 1 for whistlers. However, for βe � μ−1/2

e (where μe = me/mi) and
k⊥ ∼ k‖ � ρ−1

i , the frequency of whistler waves is too low for ω � k⊥vthi to be satisfied
whilst also maintaining k‖ρe � 1. Instead, the ions participate in the wave mechanism,
and δne ≈ −Zieneϕ/Ti (see Appendix H.2).

For further discussion of the physics of the whistler instability (as well as its nonlinear
evolution), see Komarov et al. (2018) and the other references given at the beginning of
§ 3.3.1.

3.3.3. Slow-(hydromagnetic)-wave instability
Although parallel ion heat fluxes in a classical, collisional plasma are typically

much weaker than electron heat fluxes, they can still act as a free-energy source
for instabilities, by introducing anisotropy to the ion distribution function (3.1b)
(i.e. the CE ion-temperature-gradient term). Furthermore, anisotropy in the ion
distribution function can enable the instability of plasma modes that are not destabilised
by the CE electron-temperature-gradient term. This exact situation is realised in
the CET slow-hydromagnetic-wave instability, in which a sufficiently large CET
ion-temperature-gradient term counteracts the effect of ion-cyclotron damping on slow
hydromagnetic waves. The slow hydromagnetic wave (or slow wave) (Rogister 1971;
Foote & Kulsrud 1979) is the left-hand-polarised quasi-parallel electromagnetic mode in
high-β plasma; it exists for parallel wavenumbers k‖ that satisfy β

−1/2
i � k‖ρi � 1, and

has a characteristic frequency ω ≈ 2Ωi/βi. To the authors’ knowledge, no instability of
the slow wave due to the ion heat flux has previously been reported. The instability’s
mechanism is analogous to the CET whistler instability: the slow waves drain energy from
ions with parallel velocities v‖ = ±Ωi/k‖ via gyroresonant wave–particle interactions.
For an anti-parallel ion-temperature gradient (i.e. ∇‖Ti < 0, so ηi < 0), slow waves
propagating down the temperature gradient are destabilised, while those propagating up
the temperature gradient are not.

As before, the slow-wave instability is most easily characterised in the subsidiary limit
k⊥ρi → 0 (k = k‖). Under the ordering k‖ρi ∼ 1, the real frequency � and growth rate γ
are given by (see Appendix J.4.1)

�

Ωi
= ηi

(
k‖ρi

4
− 1

2k‖ρi

)
− k2

‖ρ
2
i

[
Re Z

(
1/k‖ρi

)+ k‖ρi
] (

ηi/4 + k‖ρi/βi
)[

Re Z
(
1/k‖ρi

)+ k‖ρi
]2 + π exp

(−2/k2
‖ρ

2
i

) , (3.13a)

γ

Ωi
= −

√
πk2

‖ρ
2
i

(
ηi/4 + k‖ρi/βi

)[
Re Z

(
1/k‖ρi

)+ k‖ρi
]2 exp

(
1/k2

‖ρ
2
i

)+ π exp
(−1/k2

‖ρ
2
i

) . (3.13b)

The CET electron-temperature-gradient term does not appear because its contributions to
the frequency and growth rate are much smaller than the equivalent contributions of the
CET ion-temperature-gradient term at k‖ρi ∼ 1. Plots of � = �(k‖) and γ = γ (k‖) for
different values of ηiβi < 0 are shown in figure 5.

As with the CET whistler instability, we can derive simple expressions for the peak
growth rate (and the wavenumber associated with that growth rate) in subsidiary limits.
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(a) (b) (c)

FIGURE 5. Parallel CET slow-hydromagnetic-wave instability. Dispersion curves of slow
hydromagnetic waves whose instability is driven by the ion-temperature-gradient term in the
CE distribution function (3.1b), for wavevectors co-parallel with the background magnetic
field (viz. k = k‖ẑ). The frequency (solid blue) and growth rates (solid red) of the modes are
calculated using (3.13a) and (3.13b), respectively. The resulting frequencies and growth rates,
when normalised as γβi/Ωi, are functions of the dimensionless quantity ηiβi; we show the
dispersion curves for three different values of ηiβi. The approximations (3.14) and (3.15) for
the frequency (dotted blue) and growth rate (dotted red) in the limit k‖ρi � 1 are also plotted,
as are the approximations (3.18a) and (3.18b) for the frequency (dashed blue) and growth rate
(dashed red) in the limit k‖ρi � 1.

First, ordering k‖ρi ∼ |ηi|βi/4 � 1 so that the destabilising ηi terms and the stabilising
ion FLR terms are the same order, we find that the real frequency (3.13a) becomes

� ≈ 2Ωi

βi

(
1 − 1

4
k‖ρiηiβi − 3

2
k2

‖ρ
2
i

)
, (3.14)

which is precisely that of the slow hydromagnetic wave, with first-order FLR corrections
included (Foote & Kulsrud 1979). For ηi < 0 and k‖ρi < |ηi|βi/4, the growth rate (3.13b)
is positive:

γ ≈ −4
√

π

k4
‖ρ

4
i

(
ηi

4
+ k‖ρi

βi

)
exp

(
− 1

k2
‖ρ

2
i

)
Ωi. (3.15)

The maximum growth rate (which is exponentially small in ηiβi/4 � 1) is

γmax ≈ 8
√

π

|ηi|β2
i

exp
(

− 16
|ηi|2β2

i
− 1

)
Ωi, (3.16)

achieved at the parallel wavenumber

k‖ρi ≈ |ηi|βi

4
− |ηi|3β3

i

128
. (3.17)
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In the opposite limit, k‖ρi ∼ (|ηi|βi/4)1/3 � 1, we obtain

� ≈ −
(

ηiβi
1 − π/4

k‖ρi
− k2

‖ρ
2
i

)
Ωi

βi
, (3.18a)

γ ≈ −√
π

[
ηi

4
βi

(
1 − π − 3

k2
‖ρ

2
i

)
+ k‖ρi

]
Ωi

βi
. (3.18b)

The maximum positive growth rate is

γmax ≈
√

π

4

{
1 − 3 [4 (π − 3)]1/3 (|ηi|βi)

−2/3} |ηi|Ωi ≈ 0.44
[
1 − 2.48 (|ηi|βi)

−2/3] |ηi|Ωi,

(3.19)

realised for ηi < 0 at the parallel wavenumber

k‖ρi ≈
(

π − 3
2

)1/3

(|ηi|βi)
1/3 ≈ 0.41 (|ηi|βi)

1/3 . (3.20)

We note that, in contrast to the CET whistler instability, the real frequency of
the fastest-growing unstable mode is smaller than its growth rate: ωpeak/γmax ≈
0.36(|ηi|βi)

−1/3.
The approximate expressions (3.14), (3.15), (3.18a) and (3.18b) for the frequency and

growth rate in the limits k‖ρi � 1 and k‖ρi � 1, are plotted in figure 5, along with the
exact results (3.13).

As with the CET whistler instability, a general expression for the complex frequency of
oblique ion CET instabilities can be derived in the form (see Appendix J.4)

ω = Ωi

βi
k‖|ρi|

−B̃T ±
√

B̃2
T + 4ÃTC̃T

2ÃT

, (3.21)

where ÃT = ÃT(k‖ρi, k⊥ρi, ηiβi), B̃T = B̃T(k‖ρi, k⊥ρi, ηiβi) and C̃T = C̃T(k‖ρi, k⊥ρi, ηiβi)
are again sums and products of various special mathematical functions defined in (2.122).
Investigating such modes by evaluating (3.21) numerically for a range of wavenumbers
(see figure 6), we find that, for ηi < 0, there is one mode that is always damped and one
that can be unstable. For −ηi � 4/βi, the unstable modes are restricted to quasi-parallel
modes (see figure 6a); for −ηi � 4/βi, there is a much broader spectrum of unstable
modes (including oblique ones). The positive growth rates of the unstable mode are shown
in figure 6(b) for ηiβi = −8. The typical growth rate γ satisfies γ ∼ Ωi/βi ∼ ηiΩi, as
anticipated from (3.21). We also observe in figure 6(b) the existence of an unstable mode
at quasi-perpendicular wavenumbers, which is discussed in § 3.3.4.

In summary, an ion-temperature gradient can destabilise ion-Larmor-scale, slow
hydromagnetic waves via a similar mechanism to an electron-temperature gradient
destabilising electron-Larmor-scale whistler waves. If βi � LTi/λi, the characteristic
growth rate of these modes is γ ∼ λiΩi/LTi . Unstable modes whose wavevector is parallel
to B0 grow most rapidly, although the growth rate of (moderately) oblique modes is
only somewhat smaller. While the CET whistler instability is faster growing than the
CET slow-wave instability, both modes grow much more quickly than characteristic
hydrodynamic time scales in a strongly magnetised plasma. In any conceivable saturation
mechanism, the electron mode will adjust the electron heat flux, and the ion mode the

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


52 A.F.A. Bott, S.C. Cowley and A.A. Schekochihin

(a) (b)

FIGURE 6. Oblique CET ion-Larmor-scale instabilities. Maximum positive growth rates of
unstable ion-Larmor-scale modes whose instability is driven by the CE ion-temperature-gradient
term in the CE distribution function (3.1b), at arbitrary wavevectors with respect to the
background magnetic field. The growth rates of all modes are calculated by taking the imaginary
part of (3.21), with coefficients ÃT , B̃T and C̃T being known functions of the wavevector (see
Appendix J.4). The growth rates are calculated on a 4002 grid, with logarithmic spacing in
both perpendicular and parallel directions between the minimum and maximum wavenumber
magnitudes. The resulting growth rates, when normalised as γβi/Ωi, are functions of ηiβi; (a)
ηiβi = −2.5, (b) ηiβi = −8. The unstable k‖ρi � k⊥ρi ∼ 1 modes appearing in (b) are dealt
with in § 3.3.4.

ion heat flux. Thus, it seems likely that understanding the evolution (and ultimately, the
saturation) of both instabilities would be necessary to model correctly the heat transport
in a classical, collisional plasma that falls foul of the β-stabilisation condition.

3.3.4. Long-wavelength kinetic-Alfvén-wave instability
The instability observed in figure 6(b) at wavevectors satisfying k‖ρi � k⊥ρi ∼ 1

is different in nature to the slow-hydromagnetic-wave instability: it is an ion-temperature-
gradient-driven instability of long-wavelength KAWs. Like the CET slow-wave instability,
it operates on account of resonant wave–particle interactions that allow free energy to be
drained from the anisotropy of the ion distribution function, which itself arises from the
ion-temperature gradient. However, the gyroresonances v‖ ≈ ±Ωi/k‖ operate inefficiently
for modes with k‖ρi � 1 in a CE plasma, because there are comparatively few particles
with v‖ � vthi; the dominant resonance is instead the Landau resonance v‖ = ω/k‖. More
specifically, KAWs with k⊥ρi � 1, which are usually subject to strong Landau and Barnes
damping (that is, the damping rate of the waves is comparable to their real frequency), can
be destabilised if the (ion) plasma beta is sufficiently large: βi � LTi/λi. In figure 6(b),
the peak growth rate of the CET KAW instability is smaller than that of the CET
slow-hydromagnetic-wave instability by an order of magnitude; as will be shown below,
this is, in fact, a generic feature of the instability.

Similarly to quasi-parallel unstable modes, quasi-perpendicular ones such as unstable
KAWs can be characterised analytically, allowing for a simple identification of unstable
modes and their peak growth rates. It can be shown (see Appendix J.4.2) that, in the limit
k‖ρi � 1, k⊥ρi ∼ 1, the complex frequency of the low-frequency (ω � k‖vthi) modes in a
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plasma whose ion distribution function is (3.1b) is

ω

k‖vthi
= ηiGi

2 (1 − Fi)
+ k⊥ρi

βi (1 − Fi)
2

⎡⎣− i
√

π

2
k⊥ρi

⎛⎝Fi +
√

μeZ2
i
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⎞⎠
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√√√√
1 − π

4
k2

⊥ρ2
i
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(
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√
μeZ2

i

τ

)2

− i
√

πηiβi

4
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1 − Fi

⎤⎥⎦ , (3.22)

where Fi ≡ F(k⊥ρi), Gi ≡ G(k⊥ρi) and

F(α) ≡ exp
(

−α2

2

)[
I0

(
α2

2

)
− I1

(
α2

2

)]
, (3.23)

G(α) ≡ 2α2F(α) − exp
(

−α2

2

)
I1

(
α2

2

)
. (3.24)

In a Maxwellian plasma (i.e. when ηi = 0), (3.22) becomes

ω
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= 1
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⎤⎥⎥⎦ . (3.25)

In the subsidiary limit k⊥ρi � 1, we recover ω ≈ ±k‖vthik⊥ρi/βi, which is the well-known
dispersion relation of a KAW (Schekochihin et al. 2009; Boldyrev et al. 2013; Kunz et al.
2018).

For ηi �= 0, we find that, for modes with a positive propagation direction with respect to
the background magnetic field (viz. k‖ > 0), there is an instability provided

ηi � −3.14

⎛⎝1 + 6.5

√
μeZ2

i

τ

⎞⎠β−1
i , (3.26)

with the perpendicular wavenumber k⊥ρi of the fastest-growing unstable mode at fixed k‖
just beyond this threshold being approximately given by

k⊥ρi ≈ 1.77

⎛⎝1 − 3.4

√
μeZ2

i

τ

⎞⎠ . (3.27)

Figure 7 shows the real frequency and growth rate of such modes at three different
(negative) values of ηiβi. As ηi is decreased beyond the threshold, modes over an
increasingly large range of perpendicular wavenumbers are destabilised at both super-
and sub-ion-Larmor scales. Indeed, in the limit |ηi|βi � 1, the peak growth rate γmax (for
a fixed k‖) occurs at a perpendicular wavenumber k⊥ρi < 1, which decreases as |ηi|βi
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FIGURE 7. Quasi-perpendicular CET KAW instability. Dispersion curves of unstable KAWs
whose instability is driven by the ion-temperature-gradient term in the CE distribution
function (3.1b), for wavevectors that are almost perpendicular to the background magnetic field
(viz. k⊥ � k‖). The frequency (blue) and growth rates (red) of unstable modes are calculated
at (small) fixed values of k‖ρi from the real and imaginary parts of (3.21); the solid curves
are calculated for k‖ρi = 0.35, while the dashed curves are for k‖ρi = 0.05. The resulting
frequencies and growth rates, when normalised as γβi/k‖vthi, are functions of the dimensionless
quantity ηiβi; we show the dispersion curves for three different values of ηiβi. The frequency
(dotted blue) and growth rate (dotted red) in the limit k‖ρi � 1, which are calculated by taking
the real and imaginary parts of (3.22), are also plotted.

increases. Such modes are, in fact, no longer well described physically as KAWs; their
analogues in a Maxwellian plasma are Barnes-damped, non-propagating slow modes.

Although it is possible to characterise analytically the peak growth rate of the unstable
modes (and the perpendicular wavenumber at which such growth is attained) in the limit
k‖ρi � 1 by analysing (3.22), such estimates do not capture accurately the behaviour of
the fastest-growing modes across all wavevectors, because these fastest-growing modes
occur at finite values of k‖ρi; at such values, the dependence of the frequency and growth
rate on k⊥ρi departs somewhat from (3.22) (see figure 7). Instead, we find numerically
that, for ηiβi � −6,

γmax ≈ 0.025|ηi|Ωi at (k‖ρi)peak ≈ 0.35, (3.28)

independent of the specific value of either ηi or βi. For values of k‖ρi that are larger
than (k‖ρi)peak, the instability is quenched. It is clear that, in comparison with the
slow-hydromagnetic-wave instability, the growth rate of the fastest-growing perpendicular
modes is small (see (3.18)). This difference can be attributed to the fact that, for unstable
modes in the limit |ηi|βi � 1, γmax ∼ |ηi|k‖ρiΩi and the value of k‖ρi at which maximum
growth is achieved is still rather small compared with unity. We conclude that the
instability of slow hydromagnetic waves that are driven by an ion-temperature gradient
is likely to be more significant than the analogous instability of quasi-perpendicular/KAW
modes.

4. CES (Chapman–Enskog, shear-driven) microinstabilities
4.1. Form of CE distribution function

Next, we consider the non-Maxwellian terms of the CE distribution arising from bulk-flow
gradients. If we set ηs = 0 for both ions and electrons (viz. neglecting both temperature
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gradients and electron–ion drifts), the CE distribution functions (2.8) for both species
become

fs0(v‖, v⊥) = ns0

v3
thsπ

3/2
exp

(−ṽ2
s

) [
1 − εs

(
v2

‖
v2

ths

− v2
⊥

2v2
ths

)]
, (4.1)

where we have again chosen the isotropic functions Cs(ṽs) to be the ones that arise from
the Krook collision operator (see § 2.4.2). We note that for this choice of collision operator,
the constant Cs defined by (2.34) is Cs ≈ 3/2, and so the relationship (2.35) between the
CE distribution functions’ pressure anisotropy Δs and the shear parameter εs becomes

Δs = 3
2εs. (4.2)

We also observe that the CE shear terms have even parity with respect to the parallel
velocity v‖, and thus for any unstable mode with positive parallel wavenumber k‖ > 0,
there is a corresponding unstable mode with k‖ < 0. This conclusion has the consequence
that the sign of εs (which is the same as the sign of (ẑẑ − I/3) :W s, where W s is the
rate-of-strain tensor of species s – see (2.12)) has a significant effect on possible types
of CES microinstabilities. Thus, we must consider the cases εs > 0 (positive pressure
anisotropy, Δs > 0) and εs < 0 (negative pressure anisotropy, Δs < 0) separately. For
easier comparison with previous work by other authors, we will sometimes substitute
εs = 2Δs/3, and work in terms of Δs.

As with the discussion of CET microinstabilities in § 3, in the main text, we only present
the main findings of our calculations: namely, the overview of the CES stability landscape
(§ 4.2), and the analytical characterisation of CES microinstabilities with εs > 0 (§ 4.3)
and εs < 0 (§ 4.4). The methodology underlying the calculations of growth rates of CES
microinstabilities is presented in Appendix K. Similarly to § 3, for the rest of this section,
we assume without loss of generality that k‖ > 0 in all formulae.

4.2. Stability
The stability of CE distribution functions of the form (4.1) is determined as a function
of the parameters εi, εe, de, βe, βi and the velocity scale length LV = |(ẑẑ − 1

3 I) :W i/Vi|−1

by assessing whether the maximum microinstability growth rate across all wavelengths
smaller than λe and λi is negative or positive (see Appendix K for the methodology
underpinning this calculation). As with the temperature-gradient-driven instabilities, we
report the results of stability calculations that pertain to a temperature-equilibrated
hydrogen plasma; that is, the particular case in which βi = βe and εe = μ1/2

e εi [where
we recall that the characteristic magnitude of the CE electron velocity-shear term in
such a plasma is smaller than the analogous CE ion-velocity-shear term by a factor of
μ1/2

e = (me/mi)
1/2]. Because εi can take both positive and negative values (see § 4.1),

we do one stability calculation for each case; the results of these two calculations are
shown in figures 8 and 9, respectively. The key characteristics of the stability of the
CE distribution function (4.1) for ions and electrons can be shown using plots over a
two-dimensional (de/LV, Ma λe/LV) parameter space at fixed βe and Ma – we remind the
reader that Ma λe/LV = |εi|, and that the Mach number Ma is assumed to satisfy Ma � 1 –
as opposed to the five-dimensional (εi, de, LV, βe, Ma) parameter space that might naively
be anticipated. This is because dimensional analysis again implies that de and LV must
appear in the stability boundary in the combination de/LV , and the two relevant stability
thresholds are only functions of the product of Ma and de/LV rather than their independent
values.
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(a) (b)

(c) (d )

FIGURE 8. The CE-distribution-function stability map for CES microinstabilities driven by
positive pressure anisotropy. Exploration of the stability of the ion and electron CE distribution
functions (4.1) for different positive values of small parameters εe and εi (viz. electron- or
ion-pressure anisotropies), and the ratio of the electron inertial scale de to the velocity scale
length LV , in a temperature-equilibrated hydrogen plasma. In this plot, we chose εe = μ

1/2
e εi,

and then show Ma λe/LV = |εi| with equal logarithmic spacing in the range [10−5, 100]; de/LV is
chosen with equal logarithmic spacing in the range [10−15, 100]. The total size of the grid is 4002.
For reasons of efficiency, we calculate growth rates on a 402 grid in wavenumber space with
logarithmic spacing for both parallel and perpendicular wavenumbers. In this plot, βe = βi =
104, and Ma = 1. (a) Stable (blue) and unstable (red) regions of (de/LV , Ma λe/LV) phase space.
The theoretically anticipated collisional cutoffs (right – see (4.5)) and β-stabilisation thresholds
(horizontal dashed lines) for the CES mirror and parallel transverse instabilities, respectively,
are also shown. (b) Maximum normalised microinstability growth rate (red) vs Ma λe/LV for a
fixed electron inertial scale de/LV = 10−15, along with the maximum growth rate for the mirror
instability (purple) in the limit Ma λeβe/LV � 1 (see (4.13)), and for the parallel transverse
instability in the limit Ma λeβe/LV � μ

−1/2
e (see (4.31), with θ = 0◦). (c) Parallel wavenumber

of the fastest-growing microinstability (red) vs Ma λe/LV for a fixed electron inertial scale
de/LV = 10−15, along with the same quantity analytically predicted for the mirror instability
(purple) in the limit Ma λeβe/LV � 1 (see (4.14a,b)), and for the parallel transverse instability
(blue) in the limit Ma λeβe/LV � μ

−1/2
e (see (4.33a,b), with θ = 0◦). (d) Wavevector angle

θ ≡ tan−1 (k‖/k⊥) of the fastest-growing instability over the (de/LV , Ma λeβe/LV) parameter
space.
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(a) (b)

(c) (d )

FIGURE 9. The CE-distribution-function stability map for CES microinstabilities driven by
negative pressure anisotropy. Same as figure 8, but for negative values of the small parameters
εe and εi. (a) Stable (blue) and unstable (red) regions of (de/LV , Ma λe/LV) phase space.
The theoretically anticipated collisional cutoffs (right – see (4.5)) for the CES firehose and
oblique transverse instabilities, respectively, and the β-stabilisation thresholds (horizontal
dashed lines) for the CES firehose, CES EST and whisper instabilities are also shown. (b)
Maximum normalised microinstability growth rate (red) vs Ma λe/LV for a fixed electron
inertial scale de/LV = 10−15, along with analytically predicted maximum growth rate for
the firehose instability (purple) (see (4.66)), for the EST instability (green) in the limit
μ

−1/2
e β

−5/7
e � Ma λe/LV � μ

−1/2
e β−1

e (see (4.98)) for the whisper instability (yellow) in the
limit μ

−1/2
e β

−1/3
e � Ma λe/LV � μ

−1/2
e β

−5/7
e (see (4.110)), and for the oblique transverse

instability (blue) in the limit Ma λe/LV � μ
−1/2
e β−1

e (see (4.101)). (c) Same as (b), but for the
parallel wavenumber of the fastest-growing microinstability. The analytical predictions of this
quantity for the firehose instability (purple) (see (4.67)), for the EST instability (green) (see
(4.99b)) and for the whisper instability (yellow) (see (4.111b)), respectively, are also shown. (d)
Same as (b), but for the perpendicular wavenumber of the fastest-growing microinstability. The
analytical predictions of this quantity for the firehose instability (purple) (see (4.67)), for the EST
instability (green) (see (4.99a)) and for the whisper instability (yellow) (see (4.111a)), are also
shown.

The regions of stability presented in figure 8(a) for εi > 0 (viz. for shear flows that drive
positive pressure anisotropy) and in figure 9(a) for εi < 0 (viz. for shear flows driving
negative pressure anisotropy), respectively, are broadly similar to the region of stability
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for CET microinstabilities described in § 3.2 (and shown in figure 2a), but with one
crucial difference. Once again, for de/LV less than a critical value (de/LV)c0, stability is
independent of de/LV , and there are no instabilities for Ma λeβe/LV � 1; for de/LV �
(de/LV)c0 and Ma λeβe/LV > 1, stability is guaranteed if (and only if) de/LV > (de/LV)c
at fixed Ma λe/LV , where (de/LV)c is a monotonically increasing function of Ma λe/LV .
As before, these two bounding thresholds correspond to the β-stabilisation conditions
and collisional-stabilisation conditions, respectively, of CES microinstabilities. However,
the dependence of (de/LV)c on Ma λe/LV is more complicated than the analogous
relationship between (de/LT)c and Ma λe/LT that was presented in figure 2(a). Namely,
if Ma λe/LT � β−1

e μ−1/2
e , then (de/LV)c suddenly shifts towards a larger value, with the

subsequent (power-law) relationship between (de/LV)c and Ma λe/LV being distinct from
the analogous relationship when Ma λe/LT � β−1

e μ−1/2
e . This behaviour is the result of

a feature of the unstable region that is present for CES but not CET microinstabilities:
different instabilities being dominant in different regions of the (de/LV, Ma λe/LV)

parameter space. As we will see, this arises because CES microinstabilities on ion scales
have less stringent β-stabilisation thresholds than those on electron scales. Although their
regions of stability are qualitatively similar, the types of microinstabilities that arise when
εi > 0 or εi < 0 are quite different, so we now discuss each case in turn.

4.2.1. Positive pressure anisotropy
For εi > 0 and 0.5μ−1/2

e β−1
e � Ma λe/LV � β−1

e , the fastest-growing CES microin-
stability is the mirror instability: that is, a non-propagating, compressible slow mode
on ion scales that is destabilised by positive ion pressure anisotropy. For Ma λeβe/LV �
0.5μ−1/2

e , a faster-growing CES microinstability emerges on electron-Larmor scales,
driven by positive electron-pressure anisotropy: the whistler (electron-cyclotron)
instability. For fixed βi, the CES mirror instability can operate at smaller values of
Ma λe/LV than the CES whistler instability, because the mirror-instability threshold
�iβi = 3 Ma λeβi/2LV � 1 (see § 4.3.1) is a less stringent condition on Ma λe/LV for fixed
βe than the threshold Δeβe = 3μ1/2

e Ma λeβi/2LV � 0.5 of the CES whistler instability
(see § 4.3.2). On the other hand, once Ma λeβe/LV � 0.5μ−1/2

e , the maximum growth
rate of the CES mirror instability γmirr ∼ ΔiΩi is much smaller than that of the CES
whistler instability: γwhistler,S ∼ ΔeΩe ∼ μ−1/2

e ΔiΩi � ΔiΩi. For Ma λeβe/LV � μ−1/2
e ,

in addition to unstable whistler modes, modes on sub-electron-Larmor scales are also
destabilised: this is the parallel transverse instability, a microinstability that is essentially
unmagnetised (kρi � 1) in character. When it can operate, the CES parallel transverse
instability has a much larger growth rate than the unstable electron-Larmor-scale whistler
waves, γtrans ∼ Δe(Δeβ)1/2Ωe � γwhist ∼ ΔeΩe, so if Ma λeβe/LV � μ−1/2

e , the transverse
instability dominates.

Numerical evidence for the dominance of the CES mirror instability when μ−1/2
e �

Ma λe/LV � 1, and then the CES parallel transverse instability when Ma λe/LV � μ−1/2
e ,

can be produced by isolating the maximum growth rate, the parallel wavenumber and
the wavevector angle associated with peak growth for the unstable regions of the
(de/LV, Ma λe/LV) parameter space. Figure 8(b) shows that, for fixed de/LV and a range
of Ma λe/LV , the peak microinstability growth rate is a reasonable match for that of the
mirror instability (viz. (4.13)) for 0.5μ−1/2

e β−1
e � Ma λe/LV � β−1

e , and a good match
for the parallel transverse instability (viz. (4.31)) for Ma λe/LV � μ−1/2

e β−1
e . Figure 8(c)

demonstrates that, for μ−1/2
e β−1

e � Ma λe/LV � β−1
e , the (non-dimensionalised) parallel

wavenumber (k‖ρe)peak of peak growth satisfies (k‖ρe)peak ∼ μ−1/2
e , in agreement with the

expected parallel wavenumber of the fastest-growing mirror modes (see (4.14a,b)). At
Ma λe/LV ∼ μ−1/2

e β−1
e , there is a dramatic shift in (k‖ρe)peak to a value (k‖ρe)peak � 1 that
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agrees with the expected parallel wavenumber of the parallel transverse instability (see
(4.33a,b)). As for the peak-growth wavevector angle (figure 8d), for β−1

e � Ma λe/LV �
μ−1/2

e β−1
e , the dominant instability is oblique (as would be expected for the mirror

instability), while for Ma λe/LV � 0.5μ−1/2
e β−1

e , it is parallel (implying that the CES
whistler/parallel transverse instability dominates). We conclude that the mirror instability
is indeed dominant when 0.5μ−1/2

e β−1
e � Ma λe/LV � β−1

e , and the parallel transverse
instability when Ma λe/LV � μ−1/2

e β−1
e .

4.2.2. Negative pressure anisotropy
Now considering the case when εi < 0, i.e. the case of negative pressure anisotropy, the

only CES microinstability that operates when μ−1/2
e β−1

e � Ma λe/LV � β−1
e is the firehose

instability: the destabilisation of Alfvén waves by ion-pressure anisotropies Δi � −1/βi.3
If Ma λe/LV � μ−1/2

e β−1
e , several electron-scale CES microinstabilities arise, all of which

tend to have larger growth rates than the firehose instability. The first of these to develop
(at Ma λe/LV ∼ μ−1/2

e β−1
e ) is the oblique electron firehose instability: the destabilisation

of oblique kinetic-Alfvén waves by negative electron-pressure anisotropy. For μ−1/2
e β−1

e �
Ma λe/LV � μ−1/2

e β−5/7
e , the EST instability begins to operate; this is a non-propagating

quasi-perpendicular mode on electron-Larmor scales (k⊥ρe ∼ 1 � k‖ρe), which, while
damped in a Maxwellian plasma, is unstable for sufficiently negative electron pressure
anisotropies, and grows more rapidly than the oblique electron firehose instability. For
μ−1/2

e β−5/7
e � Ma λe/LV � μ−1/2

e β−1/3
e , the EST instability is surpassed by the whisper

instability: the instability of a newly discovered propagating wave in a Maxwellian
plasma (a whisper wave) whose perpendicular wavelength is on sub-electron-Larmor
scales (k⊥ρe � 1), but whose parallel wavelength is above the electron-Larmor scale
(k‖ρe < 1). Finally, when Ma λe/LV � μ−1/2

e β−1/3
e , the oblique transverse instability

comes to predominate; unlike either the oblique electron firehose, the EST or whisper
instabilities, it is unmagnetised in nature (like its parallel relative). Of these four
instabilities, the oblique electron firehose and transverse instabilities have been identified
previously (see references in §§ 4.4.7 and 4.4.9, respectively), but not the EST or whisper
instabilities.

We support these claims (in an analogous manner to the εi > 0 case) by calculating the
growth rate of the dominant microinstabilities for given points in the (de/LV, Ma λe/LV)
parameter space. Figure 9(b) shows the maximum growth rate for a fixed value of
de/LV . For μ−1/2

e β−1
e � Ma λe/LV � β−1

e , the peak growth rate follows the analytical
prediction for the ion firehose instability, γfire ∼ |Δi|1/2Ωi/

√
log 1/|Δi|, when Δi �

−2/βi (see (4.66)). For Ma λe/LV � μ−1/2
e β−1

e , the peak growth rate becomes much
greater than γfire; for β−5/7

e � μ1/2
e Ma λe/LV � β−1

e , it instead matches that of the
EST instability, γEST ∼ |Δe|(|Δe|βe)

3/2Ωe/
√

log |Δe|βe (see (4.98)), where we remind
the reader that |Δe| = 3μ1/2

e Ma λe/2LV . For μ1/2
e Ma λe/LV � β−5/7

e , the observed
growth rate agrees with an analytical prediction for the whisper instability, γwhisp ∼
|Δe|1/2(|Δe|βe)

1/4Ωe/
√

log |Δe|βe (see (4.110)). Finally, because of the value of βe chosen
for this numerical example, the condition Ma λe/LV � μ−1/2

e β−1/3
e under which the oblique

transverse instability dominates is never met for Ma λe/LV � 1, and thus the numerically
measured growth rate of the dominant CES microinstability is larger than the transverse
instability’s peak growth rate γtrans ∼ |Δe|(|Δe|βe)

1/2Ωe (see (4.101)) for the entire range
of Ma λe/LV that we show in figure 9(b), (blue line).

3In the limit of wavelengths much larger than the ion-Larmor radius, the firehose-instability threshold is well
known to be Δi = (Δi)c < −2/βi. However, for plasmas whose ion species have either a CE distribution function or
a bi-Maxwellian distribution, the instability threshold for oblique ion-Larmor-scale firehose modes is somewhat less
stringent: see § 4.4.1.
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A further confirmation that the most important microinstabilities are those that we
have explicitly identified is obtained by calculating the parallel and perpendicular
wavenumbers associated with the dominant microinstability. Figures 9(c) and 9(d) show
that, for β−1

e � Ma λe/LV � μ−1/2
e β−1

e , (k‖ρe)peak ∼ (k⊥ρe)peak ∼ μ1/2
e . These values of

(k‖ρe)peak are consistent with the properties of the fastest-growing unstable firehose
modes (see §§ 4.4.1 and 4.4.4), whose parallel wavenumber (approximately) satisfies
(k‖ρi)peak ∼ 1/

√
log 1/|Δi| when Δi � −2/βi (see (4.67)), and whose wavevector angle

is θpeak ≈ 39o. At Ma λe/LV ∼ μ−1/2
e β−1

e , the magnitudes of the parallel and perpendicular
wavenumbers changes abruptly, to (k‖ρe)peak ∼ (k⊥ρe)peak ∼ 1; this is in line with
expectations from the onset of the oblique electron firehose instability when |Δe|βe ∼ 1.
For Ma λe/LV � β−1

e (|Δe|βe � 1), the parallel scale of the fastest-growing mode remains
above electron-Larmor scales [(k‖ρe)peak < 1], while (k⊥ρe)peak increases monotonically
above unity. Both findings match theoretical expectations concerning the evolution of
the parallel and perpendicular wavenumbers of the EST and whisper instabilities as
functions of increasing |Δe|βe, and analytic formulae for these quantities are in reasonable
agreement with the numerical results (see §§ 4.4.8 and 4.4.10).

4.2.3. Collisional stabilisation
For both εi > 0 and εi < 0, the shift in (de/LV)c at Ma λe/LV ∼ μ−1/2

e β−1
e observed

in figures 8(a) and 9(a) can be explained in terms of the ion-scale and electron-scale
microinstabilities having distinct collisional-stabilisation conditions of the form (2.125)
(viz. kλe ∼ kλi � 1), with the condition on the ion-scale instabilities being more
restrictive. The wavenumbers kmirr and kfire at which maximal growth of the ion mirror
and firehose instabilities occurs satisfy kmirrρi ∼ 1 and kfireρi � 1, respectively, for
Ma λeβe/LV � 1, leading to the collisional-stabilisation condition

λe

LV
� ρi

LV
∼ μ−1/2

e β1/2
e

de

LV
. (4.3)

For the electron-scale microinstabilities, the parallel and the oblique transverse
instabilities have the largest (common) wavenumber of all such instabilities that
operate when εi > 0 and εi < 0, respectively, and so provide the most demanding
collisional-stabilisation conditions. For both transverse instabilities, the wavenumber at
which peak growth occurs satisfies ktransρe ∼ (μ1/2

e Ma λeβe/LV)1/2 (see (4.32)), which in
turn can be rearranged to give the collisional-stabilisation condition

λe

LV
� Ma−1/3μ−1/6

e

(
de

LV

)2/3

. (4.4)

Bringing these results together, we find(
de

LV

)
c

=
{

μ1/2
e β−1/2

e λe/LV, β−1
e � Ma λe/LV < μ−1/2

e β−1
e ,

μ1/4
e Ma1/2 (λe/LV)3/2 , Ma λe/LV � μ−1/2

e β−1
e ,

(4.5)

with (de/LV)c0 = μ1/2
e β−3/2

e . This matches asymptotically the numerical results shown
in figures 8(a) and 9(a). These findings confirm that, once again, the relevant
collisional-stabilisation condition for the microinstabilities with wavenumber k is kλe =
kλi � 1 (viz. (2.125)), as opposed to the more restrictive conditions γ τi � 1 and γ τe � 1
on the CES ion-scale and electron-scale instabilities, respectively. Similarly to the
collisional-stabilisation condition on the CET whistler instability (see § 3.2), we note that
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the collisional-stabilisation condition on any of these microinstabilities can never actually
be satisfied in a strongly magnetised plasma, because kλi � λi/ρi � 1 for the ion-scale
instabilities, and kλe � λe/ρe � 1 for the electron-scale instabilities.

4.2.4. Outline of the rest of this section
Further discussion about the properties and growth rates of CES microinstabilities

with εs > 0 (viz. those driven by positive pressure anisotropy) can be found in § 4.3,
with the mirror, whistler and transverse instabilities discussed in §§ 4.3.1, 4.3.2 and
4.3.3, respectively. In addition to these, there is another instability (the electron mirror
instability) that can be driven by positive pressure anisotropy of CE distribution
functions that we note in passing: it consists in KAWs driven unstable by the CE
electron-shear term, and to some extent by the ion-shear term (§ 4.3.4). The electron mirror
instability does not appear to be the fastest-growing CES microinstability anywhere in
the (de/LV, Ma λe/LV) parameter space; since the instability is subdominant to two other
electron-scale instabilities (the whistler and transverse instabilities), this would seem to
imply that the instability is comparatively less important.

CES microinstabilities with εs < 0 (viz. those driven by negative pressure anisotropy)
are explored in § 4.4. The firehose instability is overviewed in § 4.4.1, with then four
subclasses of the instability (parallel, oblique, critical line and sub-ion-Larmor scale)
considered in §§ 4.4.2, 4.4.3, 4.4.4 and 4.4.5. The oblique electron firehose instability
is discussed in § 4.4.7, the EST instability in § 4.4.8, the oblique transverse instability
in § 4.4.9 and the whisper instability in § 4.4.10. We identify two additional CES
microinstabilities which are never the fastest-growing microinstability in any unstable
region: the parallel electron firehose instability (§ 4.4.6), which (in spite of its name)
has a different underlying physical mechanism than the oblique electron firehose, and the
ordinary-mode instability (§ 4.4.11), which only operates at very high βe (βe � |Δe|−3),
and is only characteristically distinct from the oblique transverse instability in a regime in
which it is slower growing.

Readers who do not wish to dwell on specific CES microinstabilities should proceed
directly to § 5.

4.3. CES microinstability classification: positive pressure anisotropy (εi > 0)
4.3.1. Mirror instability

The CES mirror instability consists in the destabilisation of compressive slow modes
by a sufficiently large positive ion-pressure anisotropy associated with the ion-shear term
of the ion CE distribution function. In a high-β plasma with Maxwellian ion and electron
distribution functions, the slow mode – which is one of the two plasma modes which
exist at oblique wavevector angles θ � β

−1/4
i (the other being the shear-Alfvén wave),

and consists of a perturbation to the magnetic field’s strength – is non-propagating,
being subject to strong Barnes’ (equivalently, transit-time) damping (Barnes 1966).
This damping is the result of Landau-resonant interactions between the slow mode
and co-moving ions with v‖ = ω/k‖; since, for a distribution function that decreases
monotonically with v‖ > 0, there are more ions with v‖ < ω/k‖ than with v‖ > ω/k‖,
there is a net transfer of free energy from the slow modes to the ions (as a particle
acceleration process, this is sometimes called betatron acceleration). However, in a plasma
with Δi > 0, there is an increase in the relative number of ions with large pitch angles in
the troughs of the slow mode’s magnetic-field strength perturbation, giving rise to excess
perpendicular pressure. When Δi > 1/βi, this excess pressure overbalances the magnetic
pressure, leading to the mirror instability. In CE plasma with 0 < Δiβi − 1 � 1, only
quasi-perpendicular long-wavelength mirror modes (k‖ρi � k⊥ρi � 1) are destabilised;
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for larger values of Δi, a broad range of slow modes (including ion-Larmor-scale ones)
become unstable. Chronologically, the earliest discussions of the mirror instability in
pressure-anisotropic plasmas are due to Parker (1958) and Hasegawa (1969). Southwood &
Kivelson (1993) provide a detailed and lucid discussion of the linear physics of the mirror
instability (see also Kunz et al. 2015); various analytical (Pokhotelov et al. 2008; Rincon
et al. 2015) and numerical (Hellinger et al. 2009; Kunz et al. 2014; Riquelme et al. 2015;
Melville et al. 2016) studies investigating its nonlinear evolution have also been carried
out.

The CES mirror instability can be characterised analytically – and simple expressions
derived for the maximum growth rate and the wavevector at which that growth is attained –
in the limit of marginal instability. First, we define the threshold parameter Γi ≡ βiΔ − 1,
where Δ ≡ Δi + Δe = (1 + μ1/2

e )Δi, and assume that Γi � 1. It can then be shown (see
Appendix K.3.2) that under the orderings

k‖ρi ∼ k2
⊥ρ2

i ∼ Γi � 1,
γ

Ωi
∼ Γ 2

i

βi
� 1, (4.6a,b)

the mirror modes have a growth rate given by

γ

Ωi
= k‖ρi√

πβi

(
Γi − 3

2

k2
‖

k2
⊥

− 3
4

k2
⊥ρ2

i

)
. (4.7)

This is the same result as the growth rate of the mirror instability in a bi-Maxwellian
plasma, with (the anticipated) threshold Γi > 0 (Hellinger 2007). The peak growth rate
γmax is then given by

γmax = Γ 2
i

6
√

2πβi

Ωi, (4.8)

achieved at the wavenumber

(k‖ρi)peak = Γi

3
√

2
, (k⊥ρi)peak = Γ

1/2
i√
3

. (4.9a,b)

This recovers the results of Hellinger (2007).
Figure 10 illustrates the accuracy of the above predictions for γ (and therefore

γmax), (k‖ρi)peak and (k⊥ρi)peak by comparing them with the equivalent values obtained
numerically using the general method outlined in Appendix K for a particular value
of Γi � 1. The wavenumber dependence of the numerically determined growth rate
(see figure 10a) corroborates that, close to marginality, the unstable mirror modes are
quasi-perpendicular; more quantitatively, the values of k‖ρi and k⊥ρi at which peak growth
is obtained numerically match (4.9a,b). Furthermore, the growth rate (4.7) agrees well
with the numerical result when plotted as a function of k‖ρi with fixed k⊥ρi, and also as a
function of k⊥ρi with fixed k‖ρi (figure 10b).

In contrast, for finite Γi � 1, simple expressions for γmax, (k‖ρi)peak and (k⊥ρi)peak are
challenging to derive analytically. Our numerical calculations indicate that, when Γi ∼ 1,
a broad range of (purely growing) oblique modes becomes unstable, with maximum
growth rate γmax ∼ Ωi/βi ∼ �Ωi attained when k‖ρi � k⊥ρi ∼ 1 (figure 11a). Therefore,
asymptotic expansions that treat k⊥ρi and k‖ρi as small or large cannot be used to derive
simplified expressions for the growth rate of the fastest-growing mirror modes. While
the expressions (4.9a,b) for the wavenumber of peak growth derived in the case of
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(a) (b)

FIGURE 10. Mirror instability at Γi = �βi − 1 � 1. (a) Growth rates of unstable mirror modes
resulting from the CE ion-shear term in the CE distribution function (4.1) for Γi = 0.04 � 1
(�βi = 1.04). The growth rates of all modes are calculated using the approach outlined in
Appendix K.3. The growth rates are calculated on a 4002 grid, with logarithmic spacing in
both perpendicular and parallel directions between the minimum and maximum wavenumber
magnitudes. The resulting growth rates, when normalised as γβi/Ωi, are functions of the
dimensionless quantity �βi. The dashed white lines indicate the analytical prediction (4.9a,b) for
the wavenumber at which peak growth is achieved. (b) The mirror mode’s growth rate (solid line)
as a function of k‖ρi with k⊥ρi = Γ

1/2
i /

√
3 (top), and as a function of k⊥ρi with k‖ρi = Γi/3

√
2

(bottom). The dashed lines show the analytical prediction (4.7) for these quantities.

near-marginality remain qualitatively correct, they are no longer quantitatively accurate;
the same conclusion applies to the expression (4.7) for the growth rate when k‖ρi ∼
k⊥ρi ∼ 1 (figure 11b). That being said, an expression similar to (4.7) can be derived (see
Appendix K.3.2) for long-wavelength unstable mirror modes that satisfy the ordering

k‖ρi ∼ k⊥ρi � 1,
γ

Ωi
∼ k‖ρi

βi
∼ �k‖ρi � 1. (4.10a,b)

This expression is

γ

Ωi
= k‖ρi√

πβi

(
Γi − Γi + 3

2

k2
‖

k2
⊥

)
. (4.11)

It implies that all such modes with

k⊥ >

(
3 + Γi

2Γi

)1/2

k‖, (4.12)

will be unstable, a prediction that is consistent with the unstable region observed in
figure 11(a).

When Γi � 1, but Γi < (mi/me)
1/2, the region of (k‖, k⊥) space in which mirror modes

are unstable is qualitatively similar to the Γi ∼ 1 case, albeit more extended (figure 12a).
We find that in this limit, the maximum growth rate γmax becomes directly proportional to
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(a) (b)

FIGURE 11. Mirror instability at Γi = �βi − 1 ∼ 1. (a) Growth rates of unstable mirror modes
resulting from the CE ion-shear term in the CE distribution function (4.1) for Γi = 1 (�βi = 2).
The growth rates of all modes are calculated in the same way as in figure 10. The dashed
white lines indicate the analytic prediction (4.9a,b) for the parallel/perpendicular wavenumber at
which peak growth is achieved, while the dotted line indicates the analytical prediction (4.12) for
the perpendicular wavenumber above which long-wavelength (k‖ρi � k⊥ρi � 1) mirror modes
become unstable. (b) The mirror mode’s growth rate (solid line) as a function of k‖ρi with
k⊥ρi = Γ

1/2
i /

√
3 (top), and as a function of k⊥ρi with k‖ρi = Γi/3

√
2 (bottom). The dashed

lines show the analytical prediction (4.7) for this quantity.

Δ (see figure 12b), in contrast to the marginal case (4.7):

γmax ≈ 0.2�Ωi. (4.13)

This growth is attained at parallel and perpendicular wavenumbers

(k⊥ρi)peak ≈ 1.2, (k‖ρi)peak ≈ 0.7, (4.14a,b)

which depend only weakly on �βi.
Some understanding of these results can be derived by considering the dispersion

relation of mirror modes on sub-ion-Larmor scales. Adopting the ordering

k‖ρi ∼ k⊥ρi ∼ (Δiβi)
1/2 � 1,

γ

Ωi
∼ Δi, (4.15a,b)

while assuming that Δiβi � μ−1/2
e , one finds (see Appendix K.3.2) that

γ

Ωi
≈ k‖

k

√√√√(k2ρ2
i

βi
− Δi

k2
‖ − k2

⊥
k2

)(
Δi

k2
‖

k2
− k2ρ2

i

βi

)
. (4.16)

This can be re-written in terms of the wavevector angle θ = tan−1 (k⊥/k‖) as

γ

Ωi
≈ cos θ

√[
k2ρ2

i

βi
− Δi

(
cos2 θ − sin2 θ

)](
Δi cos2 θ − k2ρ2

i

βi

)
. (4.17)

Analysing this expression leads to three conclusions. First, for θ > 45◦, there is an
instability at all wavenumbers satisfying kρi < (Δiβi)

1/2 cos θ , explaining the expansion
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(a) (b)

FIGURE 12. Mirror instability at Γi = �βi � 1. (a) Growth rates of unstable mirror modes
resulting from the CE ion-shear term in the CE distribution function (4.1) for Γi = 29 � 1
(�βi = 30). The growth rates of all modes are calculated in the same way as in figure 10.
The dot-dashed white lines indicate the parallel/perpendicular wavenumbers (4.14a,b) at which
peak growth is achieved, while the dotted line indicates the analytical prediction (4.12) for
the perpendicular wavenumber above which long-wavelength (k‖ρi � k⊥ρi � 1) mirror modes
become unstable. (b) Normalised maximum positive growth rate γmax/�Ωi (solid red line) of
the unstable mirror mode as a function of �βi along with the parallel (solid blue line) and
perpendicular (solid yellow line) wavenumbers, (k‖ρi)peak and (k⊥ρi)peak respectively, at which
that growth is attained. The analytical prediction (4.7) of γmax for marginally unstable modes,
as well as the analogous predictions (4.9a,b) for (k‖ρi)peak and (k⊥ρi)peak, are shown as dashed
lines.

of the unstable region of (k‖, k⊥)-space with increasing Δiβi. For θ � 45◦, growth only
occurs over a more limited range of wavenumbers

√
cos2 θ − sin2 θ < kρi/(Δiβi)

1/2 <
cos θ . Secondly, growth in this limit is maximised when kρi � (Δiβi)

1/2, with the maximal
growth rate

γmax = 1

3
√

3
ΔiΩi ≈ 0.19ΔiΩi, (4.18)

attained at cos θ = 1/
√

3 (θ ≈ 55◦). This expression for γmax is (surprisingly) close to the
numerically measured peak growth rate (4.13). For kρi ∼ (Δiβi)

1/2, the maximum growth
rate is smaller than (4.18) by an order-unity factor. Finally, when kρi � (Δiβi)

1/2, viz. in a
wavenumber regime where there are no unstable mirror modes, (4.16) becomes imaginary,
implying that the modes have a real frequency given by

ω ≈ ±k‖k⊥ρe
Ωe

βi
. (4.19)

This is the dispersion relation of KAWs in a high-β plasma.4 In short, at Δiβi � 1, KAWs
are also destabilised by positive ion-pressure anisotropy in addition to longer-wavelength

4We note that (4.19) is also the same dispersion relation as that of oblique whistler waves (see, e.g. Galtier & Meyrand
2015). However, as was discussed in § 3.3.1, in a high-β plasma (βe � μ

−1/2
e ), the small frequency (ω � k‖vthi) of

perturbations prohibits all but parallel perturbations from not interacting significantly with the ions, and thus we believe
that the modes are more accurately identified as KAWs.
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mirror modes. We note that KAWs can also be destabilised by positive electron
anisotropy, but the characteristic wavelength of such modes is preferentially comparable
to electron-Larmor scales (see § 4.3.4).

4.3.2. Whistler instability
The CES whistler instability arises when the free energy associated with positive

electron-pressure anisotropy Δe of the electron CE distribution function destabilises
whistler waves, overwhelming both the electron-cyclotron damping (which is the dominant
stabilisation mechanism for whistler waves with k‖ρe ∼ 1) and the Landau damping due
to the ion species (the dominant stabilisation mechanism for waves with k‖ρe � 1).
In the special case of static ions, electron-cyclotron damping can be overcome by
a positive electron-pressure anisotropy of any magnitude for whistler waves with
sufficiently long wavelengths. Retaining mobile ions, the instability operates only if Δe
exceeds a threshold of order (Δe)c ∼ β−1

e . When Δe > (Δe)c, gyroresonant interactions
between electrons with v‖ = ±Ωe/k‖ and whistler waves allow for free energy to pass
from the former to the latter, and so an increasingly broad spectrum of unstable
parallel and oblique modes emerges on electron-Larmor scales. The analogue of
this instability in a bi-Maxwellian plasma was found by Kennel & Petschek (1966),
and it has since been studied numerically in moderately high-β plasma (βe ∼ 1–10)
by several authors (e.g. Gary & Wang 1996; Guo et al. 2014; Riquelme et al.
2016).

Similarly to the CET whistler instability, the simplest characterisation of the CES
whistler instability is for unstable parallel whistler modes (viz. k ≈ k‖). Assuming that
these modes satisfy the orderings

ω̃e‖ = ω

k‖vthe
∼ Δe ∼ 1

βe
, k‖ρe ∼ 1, (4.20a,b)

it can be shown (see Appendix K.3.3) that their real frequency � and growth rate γ

satisfy

�βe

Ωe
= ±Δeβe ± k‖ρe

[
Δeβe

(
1 + μ1/2

e

)− k2
‖ρ

2
e

]
Re Z

(
1/k‖ρe

)[
Re Z

(
1/k‖ρe

)]2 + π exp
(−2/k2

‖ρ2
e

) , (4.21a)

γβe

Ωe
= k‖ρe

[
exp

(−1/k2
‖ρ

2
e

)+ μ1/2
e

] (
Δeβe − k2

‖ρ
2
e

)+ μ1/2
e ΔeβeRe Z

(
1/k‖ρe

)[
Re Z

(
1/k‖ρe

)]2
/
√

π + √
π exp

(−2/k2
‖ρ2

e

) , (4.21b)

where the terms proportional to μ1/2
e are associated with the ion species.5 In the

limit μe → 0, formally there is always instability provided Δeβe > 0; however, for a
hydrogen plasma (μe ≈ 1/1836), it can be shown numerically that the numerator of
(4.21b) only becomes positive (over a narrow interval of parallel wavenumbers around
k‖ρe ≈ 0.60) for Δeβe > 0.56. The dispersion curves �(k‖) and γ (k‖) of the unstable
whistler waves in a hydrogen plasma for three different values of Δeβe that are above the
necessary value for instability are shown in figure 13. When Δeβe � 1, the growth rate
is positive for a range �k‖ ∼ ρ−1

e around k‖ρe ∼ 1, attaining a characteristic magnitude
γ ∼ � ∼ Ωe/βe.

5Formally, these terms are O(μ
1/2
e ) under our assumed ordering, and so should be dropped. However, because of

the exponential dependence of the other damping/growth terms on k‖ρe, these terms play an important role for moderate
values of k‖ρe, viz. μ

1/2
e exp (1/k2

‖ρ
2
e ) � 1 for k‖ρe �

√
2/

√
log mi/me ≈ 0.5, so we retain them.
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FIGURE 13. Parallel CES whistler instability. Dispersion curves of unstable whistler modes
whose instability is driven by the electron-shear term in CE distribution function (4.1),
for wavevectors that are co-parallel with the background magnetic field (viz. k = k‖ẑ). The
frequency (solid blue) and growth rate (solid red) of the modes are calculated using (4.21a) and
(4.21b), respectively. The resulting frequencies and growth rates, when normalised as γβe/Ωe,
are functions of the dimensionless quantity Δeβe; we show the dispersion curves for three
different values of Δeβe. The approximations (4.22a) and (4.22b) for the frequency (dotted blue)
and growth rate (dotted red) in the limit k‖ρe � 1 are also plotted, as are the approximations
(4.24a) and (4.24b) for the frequency (dashed blue) and growth rate (dashed red) in the limit
k‖ρe � 1.

As before, we characterise the growth rate for various values of Δeβe by taking
subsidiary limits. First, for Δeβe � 1, a necessary (though not always sufficient) condition
for positive growth is k‖ρe < (Δeβe)

1/2 � 1. We therefore expand (4.21) in k‖ρe ∼
(Δeβe)

1/2 � 1, finding that

� ≈ k2
‖ρ

2
e

βe
Ωe, (4.22a)

γ ≈
√

π

k‖ρe

{
exp

(
− 1

k2
‖ρ2

e

)(
Δe − k2

‖ρ
2
e

βe

)
− μ1/2

e

k2
‖ρ

2
e

βe

}
Ωe. (4.22b)

Similarly to what we showed in § 3.3.1 for the CET whistler instability, we have once again
found unstable whistler waves. For comparison’s sake, the approximate expressions (4.22)
are plotted in figure 13 in addition to their exact analogues (4.21); it is clear that there is
reasonable agreement for a moderately small value of Δeβe, but that the approximations
become less accurate for k‖ρe � 0.5 and Δeβe > 1.

In the limit μe → 0, the expression (4.22b) for the growth rate is very similar to that of
the whistler (electron-cyclotron) instability in a plasma with a bi-Maxwellian distribution
and positive electron-pressure anisotropy (Davidson 1983). In this case, whistler modes
with k‖ρe < (Δeβe)

1/2 are always unstable, although the growth rate of such modes is
exponentially small in Δeβe � 1 as compared with the frequency (4.22a), and so γ �
� ∼ Ωe/βe. By contrast, with small but finite μe = me/mi, it can be shown analytically
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that, for (4.22b) to be positive, Δe > (Δe)c, where

(Δe)c = 1

βeWLam

[
μ

−1/2
e exp (−1)

]
≈ 1

βe

1

log (μ
−1/2
e ) − 1 − log [log (μ

−1/2
e ) − 1]

. (4.23)

Here, WLam(x) denotes the Lambert W function (Corless et al. 1996). Unstable modes
first develop around (k‖ρe)c = (Δe)

1/2
c /[(Δe)c + 1/βe]1/2. In a hydrogen plasma, this gives

(Δe)c ≈ 0.49/βe and (k‖ρe)c ≈ 0.57, which are similar to the instability threshold and
wavenumber, respectively, determined numerically if γ is computed for arbitrary values
of k‖ρe; the small discrepancy is due to the finite value of k‖ρe at which instability first
emerges. Formally, (Δe)c → 0 as μe → 0, but the limit converges only logarithmically in
μe, suggesting that in an actual plasma, the CES whistler instability will generically have
a threshold at a finite value of Δeβe.

Let us now turn to the opposite subsidiary limit Δeβe � 1. We find from (4.21b) that
maximal growth occurs at k‖ρe ∼ (Δeβ)1/2 � 1

� ≈ 1
π

[
Δe (π − 2) + k2

‖ρ
2
e

βe

]
Ωe, (4.24a)

γ ≈ k‖ρe√
π

(
Δe − k2

‖ρ
2
e

βe

)
Ωe. (4.24b)

Alongside k‖ρe � 1 approximations, these approximations are plotted in figure 13, and
agree well with the numerical results for Δeβe � 3 and k‖ρe � 2. The maximum growth
rate

γmax = 2

3
√

3π
Δe(Δeβe)

1/2Ωe ≈ 0.22Δe(Δeβe)
1/2Ωe, (4.25)

is attained at the parallel wavenumber

(k‖ρe)peak =
(

Δeβe

3

)1/2

. (4.26)

A notable feature of the CES whistler instability in this subsidiary limit is that the
fastest-growing modes are on sub-electron-Larmor scales; thus, such modes are arguably
better conceptualised not as whistler modes, but as unstable, unmagnetised plasma modes
(see § 4.3.3).

Similarly to the CET whistler instability, analytical expressions for the frequency and
growth rate of unstable modes that have an oblique wavevector angle are much less
simple that the analogous expressions for parallel whistler modes. It can be shown (see
Appendix K.2) that the complex frequency of such modes is given by

ω = Ωe

βe
k‖ρe

−iBS ±
√

−B2
S + 4ASCS

2AS
, (4.27)

where the functions AS = AS(k‖ρe, k⊥ρe,Δeβe), BS = BS(k‖ρe, k⊥ρe,Δeβe) and CS =
CS(k‖ρe, k⊥ρe,Δeβe) are composed of the sums and products of special mathematical
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(a) (b)

FIGURE 14. Oblique unstable modes at Δeβe ∼ 1: (a) Δeβe = 0.75; (b) Δeβe = 3. Maximum
positive growth rates of linear perturbations resulting from CE ion- and electron-shear terms
in the CE distribution function (4.1) for Δeβe ∼ 1. Here, a temperature-equilibrated hydrogen
plasma is considered, viz. Δe = μ

1/2
e Δi, and βi = βe. The growth rates of all modes are

calculated using the approach outlined in Appendix K.3. The growth rates are calculated on
a 4002 grid, with logarithmic spacing between wavenumbers in both perpendicular and parallel
directions. The resulting growth rates, when normalised as γβe/Ωe, are functions of Δeβe, or,
equivalently, εeβe. The vertical dashed lines indicate k‖ρi = 1 and k‖ρe = 1, respectively, while
the horizontal ones indicate k⊥ρi = 1 and k⊥ρe = 1.

functions. When Δeβe ∼ 1, (4.27) implies that if there is an instability, its growth rate
will be of order γ ∼ Ωe/βe at k‖ρe, k⊥ρe ∼ 1.

To confirm this expectation, in figure 14 we plot the maximum growth rate (obtained
numerically) of oblique modes across the (k‖, k⊥)-plane for two of the values of Δeβe
used in figure 13. For Δeβe not far beyond the threshold of the CES whistler instability
(figure 14a), the unstable modes are quasi-parallel and have growth rates γ � Ωe/βe
(cf. figure 13a). For Δeβe � 1, a broader spectrum of wavenumbers becomes unstable
(figure 14b). The parallel mode remains the fastest growing in this case; however,
oblique modes with k⊥ � k‖/2 also have growth rates of comparable magnitude: e.g. the
fastest-growing mode with wavevector angle θ = 10◦ has γmax/γmax(k⊥ = 0) ≈ 0.93, and
for a wavevector angle θ = 10◦, γmax/γmax(k⊥ = 0) ≈ 0.76. For more oblique angles, the
growth rate is reduced significantly: e.g. for θ = 30◦, γmax/γmax(k⊥ = 0) ≈ 0.22. Thus,
we conclude that a spectrum of oblique modes in addition to parallel ones is indeed
destabilised, with γ ∼ Ωe/βe � γ (k⊥ = 0).

We note that, in addition to oblique CES whistler modes, whose characteristic
wavenumber domain is k⊥ρe � k‖ρi ∼ 1, we observe two other unstable modes in
figure 14(a) with different characteristic values of k‖ and k⊥. The first of these, which
exists on ion scales, is the CES mirror instability, which we already discussed in § 4.3.1.
The second is the CES electron mirror instability – we shall consider this instability in
§ 4.3.4.

4.3.3. Parallel transverse instability
As was shown in § 4.2, in the limit Δeβe � 1, the fastest-growing CES microinstability

is essentially unmagnetised, and is a variant of the so-called transverse instability (Kahn
1962, 1964; Albright 1970b). This instability is also sometimes referred to as the resonant
(electron) Weibel instability, or the Weibel instability at small anisotropy (Fried 1959;
Weibel 1959). Both the linear theory of this instability and its physical mechanism have
been explored extensively for bi-Maxwellian plasmas (see, e.g. Lazar et al. 2009; Ibscher
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et al. 2012), and various studies (both analytical and numerical) of its nonlinear evolution
have also been performed (Albright 1970a; Davidson et al. 1972; Lemons et al. 1979;
Califano et al. 1998, 2002; Kato 2005; Pokhotelov & Amariutei 2011; Ruyer et al.
2015). For the small anisotropy case that is relevant to CE plasma, the mechanism of
the instability is somewhat subtle, involving both non-resonant and Landau-resonant
wave–particle interactions. In a Maxwellian plasma, transverse modes are non-propagating
and Landau-damped by electrons with velocities v ≈ ω/k‖. However, this damping can
be reversed by the free energy associated with positive electron-pressure anisotropy at
wavenumbers that satisfy kde � Δ1/2

e ; the electron Landau damping increases more rapidly
with k than the instability’s drive, which in turn sets the wavenumber at which peak growth
occurs. The requirement for the corresponding scale to be well below the electron-Larmor
scale – and thus for the plasma to be quasi-unmagnetised with respect to the transverse
modes – sets the restriction Δeβe � 1 on the instability’s operation. In general, transverse
modes whose wavevectors are co-parallel to the velocity-space direction along which the
temperature is smallest are the fastest growing; in the case of a CE electron distribution
function of the form (4.1) with Δe > 0, these modes’ wavevectors are parallel to the
magnetic field. However, a broad spectrum of oblique transverse modes is also destabilised
when Δe > 0.

To characterise the transverse instability’s growth analytically, we first assume Δeβe �
1, and then take directly the unmagnetised limit of the full CES dispersion relation (see
Appendix K.3.4) under the orderings

k⊥ρe ∼ k‖ρe ∼ (Δeβe)
1/2 � 1, ω̃e‖ = ω

k‖vthe
∼ Δe. (4.28a,b)

We obtain two non-propagating modes (real frequency � = 0) that have growth rates

γ1 = kvthe√
π

(
Δe

k2
‖ − k2

⊥
k2

− k2ρ2
e

βe

)
, (4.29a)

γ2 = kvthe√
π

(
Δe

k2
‖

k2
− k2ρ2

e

βe

)
. (4.29b)

For Δe > 0, the growth rate of the second mode is always positive and larger than that of
the first mode; the first mode only has a positive growth rate provided k⊥ < k‖. Now taking
the subsidiary limit k‖ρe � k⊥ρe � 1, we find that both roots have the same growth rate

γ ≈ k‖vthe√
π

(
Δe − k2

‖ρ
2
e

βe

)
, (4.30)

which is identical to (4.24b). We note by comparison with (4.24a) that the unmagnetised
limit fails to recover the non-zero real frequencies of the k‖ρe � 1 whistler modes; this
is because the ratio of these modes’ real frequency � to their growth rate γ is �/γ ∼
1/k‖ρe � 1.

The maximum growth rate γmax of the second mode (4.29b) for an oblique wavevector
with angle θ is

γmax = 2

3
√

3π
cos3 θΔe(Δeβe)

1/2Ωe, (4.31)
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(a) (b)

FIGURE 15. Oblique unstable modes at Δeβe � 1. (a) Maximum positive growth rates of linear
perturbations resulting from CE ion- and electron-shear terms in the CE distribution function
(4.1) for Δeβe = 100. Here, a temperature-equilibrated hydrogen plasma is considered, viz. Δe =
μ

1/2
e Δi and βi = βe. The growth rates of all modes are calculated in the same way as figure 14.

The vertical dashed line indicates the value of k‖ρe at which maximum growth of the parallel
transverse instability is attained (see (4.33a,b)), while the horizontal one indicates k⊥ρe = 1. (b)
The transverse mode’s growth rate (solid line) as a function of k‖ρe with k⊥ρe = 1 (top), and
as a function of k⊥ρe with k‖ρe = (Δeβe/3)1/2 (bottom). The dashed lines show the analytical
prediction (4.29b) for this quantity.

attained at the (total) wavenumber

(kρe)peak = cos θ

(
Δeβe

3

)1/2

. (4.32)

The parallel and perpendicular wavenumbers of this maximum growth are then

(k‖ρe)peak = cos2 θ

(
Δeβe

3

)1/2

, (k⊥ρe)peak = cos θ sin θ

(
Δeβe

3

)1/2

. (4.33a,b)

In the special case of parallel modes (θ = 0◦), this recovers the peak growth rate (4.25) of
the CES whistler instability at k‖ in the limit Δeβe � 1.

In figure 15, we demonstrate that the fastest-growing unstable modes in the limit
Δeβe � 1 are indeed transverse ones. This figure shows the numerically determined
growth rate as a function of k‖ and k⊥), for a particular large value of Δeβe. A broad
range of sub-electron-Larmor-scale modes are unstable (figure 15a), with the parallel
wavenumber of the fastest-growing ones closely agreeing with the analytical prediction
(4.33a,b). The analytical expression (4.29b) for the transverse instability’s growth rate
also agrees well with the numerical result as a function of both k‖ and k⊥ (figure 15b).

4.3.4. Electron mirror instability
The oblique microinstability evident in figure 14(b) at sub-ion-Larmor scales is the CES

electron mirror instability: the destabilisation of KAWs by excess perpendicular electron
pressure (viz. Δe > 0) associated with the CE electron-shear term. The instability (which
has also been referred to as the field-swelling instability – see Basu & Coppi 1984) is
perhaps confusingly named, given that its physical mechanism is rather different to that
of the (ion-scale) mirror instability: non-resonant interactions between the anisotropic
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(a) (b)

FIGURE 16. Electron mirror instability at Γe = Δeβe − 1 � 1. (a) Growth rates of unstable
electron mirror modes associated with the CE distribution function (4.1) for Γe = 1/3 (Δeβe =
4/3). The growth rates of all modes are calculated in the same way as figure 14. The dashed
white lines indicate the analytical prediction (4.37) for the parallel/perpendicular wavenumber at
which peak growth is achieved. (b) Plot of the electron mirror mode’s growth rate (solid line) as
a function of k‖ρe with k⊥ρe = 0.65Γ

1/2
e (top), and as a function of k⊥ρe with k‖ρe = 0.27Γe

(bottom). The dashed lines show the analytical prediction (4.35) for this quantity.

distribution of electrons and the KAWs causes the restoring force underpinning the
latter’s characteristic oscillation to be negated if Δe > 1/βe. The electron mirror instability
has been extensively explored in βe ∼ 1 plasma (see Hellinger & Štverák (2018), and
references therein); in plasmas with βe � 1, it has been analytically characterised and its
physical mechanism elucidated in the quasi-perpendicular (k‖ � k⊥) limit of gyrokinetics
(Kunz et al. 2018). Here, we find that once its marginality condition (Δe = 1/βe) is
surpassed sufficiently, oblique modes with k‖ � k⊥ are also destabilised.

As with the mirror instability, a simple analytic characterisation of the CES electron
mirror instability can be performed in the case of marginal instability. We define the
marginality parameter Γe ≡ Δeβe − 1, and adopt the ordering

k2
⊥ρ2

e ∼ k‖ρe ∼ ω̃e‖βe ∼ Γe � 1, (4.34)

with the additional assumption that Γe � μ1/2
e in order that the effect of ion-pressure

anisotropy can be neglected. Then, it can be shown (see Appendix K.3.5) that the growth
rate is

γ

Ωe
= k‖ρe

βe

[
−3

√
π

4
k2

⊥ρ2
e +

√
3
2
Γek2

⊥ρ2
e − 9

4
k2

‖ρ2
e + 9

16
(π − 2) k4

⊥ρ4
e

]
. (4.35)

It follows that the maximum growth rate is

γmax =
[
π − 8 + √

π (16 + π)
]3/2

48 (π − 2)

⎡⎣√π + 4 + √
π (16 + π)

π − 8 + √
π (16 + π)

−
√

π

π − 2

⎤⎦ Γ 2
e

βe
Ωe

≈ 0.055
Γ 2

e

βe
Ωe, (4.36)
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attained at

(k‖ρe)peak =
√

π − 8 + √
π (16 + π)

36 (π − 2)
Γe ≈ 0.27Γe, (4.37a)

(k⊥ρe)peak =
√

π − 8 + √
π (16 + π)

6 (π − 2)
Γ 1/2

e ≈ 0.65Γ 1/2
e . (4.37b)

Figure 16 demonstrates that these predictions are accurate by comparing them with
numerical results for a particular (small) value of Γe. More specifically, figure 16(a) shows
that the location in the (k‖, k⊥) plane at which the maximum growth of the electron mirror
instability is attained closely matches the analytical prediction (4.37), while figure 16(b)
confirms that the wavenumber dependence of the growth rate agrees with (4.35) for
k⊥ρe � μ1/4

e . We note that, in addition to the electron mirror, another instability operating
at smaller characteristic values of k⊥ρe is evident in figure 16. These are the k⊥ρi � 1
mirror modes driven unstable by the CE ion-shear term that were discussed in § 4.3.1;
for 1 � kρi � μ−1/4

e , the ion-pressure anisotropy associated with the CE ion-shear terms
remains a greater free-energy source for KAW instabilities than the CE electron-shear
term, even when Δe > 1/βe.

For Γe � 1, our near-marginal theory anticipates that peak growth occurs at
electron-Larmor scales (k‖ρe � k⊥ρe ∼ 1), with γmax ∼ Ωe/βe. These expectations are
indeed realised numerically, as shown in figure 17 (see also figure 14). The expression
(4.35) for the growth rate as a function of wavenumber that was derived in the case of
Γe � 1 remains qualitatively – but not quantitatively – accurate (see figure 17b). Figure 18
shows that a similar conclusion holds for the expression (4.36) for the peak growth
rate, and also for the expressions (4.37a) and (4.37b) of the parallel and perpendicular
wavenumbers at which that growth occurs.

To confirm our prior claim in § 4.2 that the CES parallel whistler instability is faster
growing than the electron mirror instability, we show the former’s numerically computed
growth rate on figure 18(a); as it approaches the asymptotic value (4.25) that is valid in the
limit Δeβe � 1, we observe that the electron mirror’s growth rate is a factor of ∼3 smaller
(cf. figure 15a). The parallel wavenumber at which peak growth of the whistler instability
occurs is also larger than the analogous quantity for the electron mirror by an order-unity
factor.

While we cannot derive a simple analytic expression for the growth rate of the dominant
electron mirror modes when Γe � 1, we can calculate this quantity for long-wavelength
(viz. kρe � 1) modes. For this calculation, we assume that kρe ∼ μ1/4

e � 1, k⊥ ∼ k‖ and
the ordering

ω̃e‖ = ω

k‖vthe
∼ kρe

βe
∼ |Δe|kρe. (4.38)
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(a) (b)

FIGURE 17. Electron mirror instability at Γe = Δeβe − 1 ∼ 1. (a) Growth rates of unstable
electron mirror modes associated with the CE distribution function (4.1) for Γe = 1 (Δeβe = 2).
The growth rates of all modes are calculated in the same way as figure 14. The dashed white lines
indicate the analytical prediction (4.37) for the parallel/perpendicular wavenumber at which peak
growth is achieved, while the dotted line indicates the analytical prediction (4.43) for the total
wavenumber below which oblique long-wavelength (k‖ρe < k⊥ρe � 1) electron mirror modes
become unstable. (b) The electron mirror mode’s growth rate (solid line) as a function of k‖ρe

with k⊥ρe = 0.65Γ
1/2

e (top), and as a function of k⊥ρe with k‖ρe = 0.27Γe (bottom). The dashed
lines show the analytical prediction (4.35) for this quantity.

Under these assumptions, we obtain (see Appendix K.3.5) two modes whose complex
frequencies ω are given by

ω ≈ ±k‖ρeΩe

{[
1
βe

+ Δe

(
1
2

− μ1/2
e

k2
‖ρ

2
e − k2

⊥ρ2
e

k4ρ4
e

)]

×
[

k2ρ2
e

βe
− Δe

(
k2

⊥ρ2
e + μ1/2

e

k2
‖

k2
− 1

2
k2

‖ρ
2
e

)]}1/2

. (4.39)

The terms proportional to μ1/2
e Δe are associated with the CE ion-shear term, which plays

a non-negligible role for kρe � μ1/4
e . In the subsidiary limit kρe � μ1/4

e , (4.39) becomes
the dispersion relation (4.18) obtained in § 4.3.1 for unstable mirror modes in the limit
Δiβi � 1. In the opposite subsidiary limit kρe � μ1/4

e (but kρe � 1), (4.39) simplifies to

ω ≈ ±k‖ρeΩe

√(
1
βe

+ Δe

2

)[
k2ρ2

e

βe
− Δe

(
k2

⊥ρ2
e − 1

2
k2

‖ρ2
e

)]
. (4.40)

For k‖ � k⊥, this recovers the high-β limit of the dispersion relation for unstable KAWs
previously derived in the gyrokinetic calculations of Kunz et al. (2018); our calculations
show that this dispersion relation also applies to oblique (k‖ � k⊥) electron mirror modes.
For Δe > 0, we (as expected) have an unstable root if and only if

Δe >
1
βe

, (4.41)
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(a) (b) (c)

FIGURE 18. The maximum growth of the electron mirror instability. The maximum normalised
growth rate γeβe/Ωe ((a), solid red line) of unstable electron mirror modes as a function
of Δeβe, as well as parallel ((b), solid blue line) and perpendicular ((c), solid yellow line)
wavenumbers, (k‖ρe)peak and (k⊥ρe)peak, respectively, at which that growth is attained. The
analytical prediction (4.36) of γmax for marginally unstable electron mirror modes, as well as
the analogous predictions (4.37) for (k‖ρe)peak and (k⊥ρe)peak, are shown as dashed lines. The
dotted lines are the maximum growth rate and (parallel) wavenumber of peak growth for the CET
parallel whistler instability (see § 4.3.2) as functions of Δeβe.

with the unstable mode’s growth rate being

γ ≈ k‖ρeΩe

√(
1
βe

+ Δe

2

)[
Δe

(
k2

⊥ρ2
e − 1

2
k2

‖ρ2
e

)
− k2ρ2

e

βe

]
. (4.42)

We can now provide an analytical demonstration that a broad spectrum of electron
mirror modes is unstable if Γe � 1. It follows directly from (4.39) that instability arises for
all modes with k⊥ > k‖ if the following constraint on the total wavenumber k is satisfied:

kρi <

√
2μ

1/2
e (Γe + 1) cos2 θ

(Γe + 3) cos2 θ − 2Γe sin2 θ
, (4.43)

where θ = tan−1 (k⊥/k‖) is, as normal, the wavevector angle. The validity of this bound is
illustrated in figure 17(a). (4.43) is particularly simple to interpret in the subsidiary limit
kρe � μ1/4

e , yielding a lower bound on θ alone:

θ > tan−1

√
Γe + 3

2Γe
. (4.44)

For Γe � 1 (but Γe > 0), this implies that the only unstable electron mirror modes are
quasi-perpendicular, as anticipated from our calculations pertaining to the marginal state
of the instability. On the other hand, for Γe � 1, modes with a wide range of wavevector
angles will be destabilised.

4.4. CES microinstability classification: negative pressure anisotropy (εi < 0)

4.4.1. Firehose instability
The best-known instability to be triggered by either negative ion or electron-pressure

anisotropy associated with the CE ion- and electron-shear terms, respectively, is the
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CES firehose instability. The linear theory of the firehose (or garden-hose) instability
in high-β plasma, the first studies of which were completed over half a century
ago (Rosenbluth 1956; Chandrasekhar et al. 1958; Parker 1958; Vedenov & Sagdeev
1958), has previously been explored in the contexts of plasmas with bi-Maxwellian
distributions (e.g. Kennel & Sagdeev 1967; Davidson & Völk 1968; Yoon, Wu & de
Assis 1993; Hellinger & Matsumoto 2000), CE distributions (e.g. Schekochihin et al.
2005) and even characterisations that are independent of the ion distribution function (e.g.
Schekochihin et al. 2010; Kunz et al. 2015). Its physical mechanism is well established:
negative pressure anisotropies reduce the elasticity of magnetic-field lines that gives
rise to Alfvén waves, and can completely reverse it when Δi is negative enough. The
long-wavelength ‘fluid’ firehose instability (whose mechanism is independent of the
particular ion distribution function) is non-resonant in nature; however, resonant damping
mechanisms such as Barnes damping or cyclotron damping play an important role in
regulating the growth of modes on scales comparable to the ion-Larmor scale, and thereby
set the scale of peak firehose growth. Beyond linear theory, nonlinear analytical studies of
the parallel firehose instability in high-β plasma have been completed (e.g. Rosin et al.
2011), as well as numerical ones (e.g. Kunz et al. 2014; Melville et al. 2016; Riquelme
et al. 2018).

While there is much in common between firehose modes across all wavevector angles,
there are certain differences that, on account of their significance for determining the
fastest-growing firehose mode, are important to highlight. Based on these differences,
firehose modes can be categorised into three different types: quasi-parallel, oblique
and critical-line firehose modes. Quasi-parallel firehose modes, which are destabilised
left-handed and/or right-handed high-β Alfvén waves (Kennel & Sagdeev 1967; Davidson
& Völk 1968), exist inside a narrow cone of wavevector angles θ � β

−1/4
i (Achterberg

2013). The peak wavenumber of their growth (k‖ρi ∼ |Δi + 2/βi|1/2) is determined by
gyroviscosity, an FLR effect (Schekochihin et al. 2010). For θ � β

−1/4
i , the characteristic

low-frequency (viz. ω � Ωi) waves that exist above ion-Larmor-scales in high-β plasma
are shear-Alfvén waves and (compressible) slow modes; the former remains susceptible to
firehose instability, but, on account of its FLR coupling to the slow mode, its instability
proceeds quite differently at sufficiently small wavenumbers (kρi � |Δi + 2/βi|1/2), with
peak growth occurring at smaller scales (k‖ρi ∼ |Δi + 2/βi|1/4 � 1). Finally, along a
‘critical line’ in the (k‖, k⊥) plane (k⊥ ≈ √

2/3k‖, θ ≈ 39◦), the FLR coupling between
the slow mode and shear-Alfvén wave becomes anomalously weak due to two opposing
FLR effects cancelling each other out. This results in much weaker collisionless damping
on critical-line firehose modes, and so they can exist on scales that are close to (though,
as we prove here for the first time, not strictly at) the ion-Larmor scale. Thus critical-line
firehose modes are generically the fastest-growing ones in high-β plasma (Schekochihin
et al. 2005).

We support this claim with figure 19, which shows the maximum growth rate of the
firehose-unstable modes as a function of both k‖ and k⊥ for two different (unstable) values
of Δiβi (and with the same value of βi as was used to calculate the stability maps presented
in § 4.2). Both examples confirm that, although a broad spectrum of unstable parallel and
oblique firehose modes emerge when Δiβi + 2 � −1, it is the critical-line firehose modes
that are the fastest growing.

The value of Δi required to trigger the CES firehose instability is, as with the case
of the firehose instability in a plasma with a bi-Maxwellian ion distribution, dependent
on the scale of the unstable firehose modes. For long-wavelength firehose modes (i.e.
those with kρi � 1), the threshold is Δi < (Δi)c = −2/βi; it can be shown that this
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(a) (b)

FIGURE 19. The CES firehose instability when Δiβi + 2 � −1. Maximum positive growth
rates of linear perturbations resulting from the CE ion-shear term in the CE distribution function
(4.1) with Δi negative enough to surpass the long-wavelength firehose-instability threshold
Δi = −2/βi by at least an order-unity factor. The growth rates of all modes are calculated
using the approach outlined in Appendix K.3. The growth rates are calculated on a 4002 grid,
with logarithmic spacing in both perpendicular and parallel directions between wavenumbers.
The resulting growth rates, when normalised as γβi/Ωi, are functions of two dimensionless
parameters only: Δi and βi. The dashed white lines indicate the analytical predictions (4.67) for
the parallel/perpendicular wavenumber at which peak growth is achieved, while the dotted line
indicates the critical line k⊥ = k‖

√
2/3 along which the firehose growth rate is predicted to be

maximal; (a) Δiβi = −3, (b) Δiβi = −30. In both cases, βi = 104.

result is independent of the particular form of the ion distribution function (Schekochihin
et al. 2010). However, our numerical solutions for the wavenumber-dependent growth
rate of firehose modes in CE plasma when Δi > −2/βi (see figure 20a) suggest that
oblique ion-Larmor-scale firehose modes can be destabilised at less negative pressure
anisotropies. This is consistent with the findings of previous studies of the oblique firehose
in β ∼ 1 plasma (Hellinger & Matsumoto 2000; Hellinger & Trávníček 2008; Astfalk &
Jenko 2016), although this finding has not until now been comprehensively studied in
plasma with β � 1. We can, in fact, calculate the threshold semi-analytically for the CES
firehose instability as a function of wavenumber (see Appendix K.2.2); the results, which
are shown in figure 20(b) show that oblique firehose modes with k‖ρi ≈ 0.45, k⊥ρi ≈
0.3 become unstable when Δi ≈ −1.35/βi. The reduced threshold of ion-Larmor-scale
firehose modes, which can be shown to depend only on fourth- and higher-order moments
of the ion distribution function, is considered in greater depth in Bott et al. (2023, in prep.).

The growth of the three different sub-categories of unstable CES firehose modes
(quasi-parallel, oblique and critical-line firehoses) can be described analytically. However,
the relative orderings of ω̃i‖, k‖ρi, k⊥ρi, βi and |Δi| for these sub-categories are different,
so it is necessary to treat them separately.

4.4.2. Quasi-parallel firehose instability
The relevant orderings of parameters for quasi-parallel firehose modes is

ω̃i‖ = ω

k‖vthi
∼ β

−1/2
i ∼ |Δi|1/2 ∼ k‖ρi, (4.45)

with the additional small wavenumber-angle condition

k⊥ρi � β
−1/4
i k‖ρi ∼ β

−3/4
i . (4.46)
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(a) (b)

FIGURE 20. Onset of the CES firehose instability. (a) Maximum positive growth rates of linear
perturbations resulting from the CE ion-shear term in the CE distribution function (4.1) with
βi = 104 and Δi = −1.7/βi (a value at which the long-wavelength firehose instability is absent,
because Δi > −2/βi). The growth rates of all modes are calculated in the same way as figure 19.
(b) Threshold value (Δiβi)c of Δiβi at which modes with parallel and perpendicular wavenumber
k‖ and k⊥, respectively, become firehose unstable. Regions of (k‖, k⊥) that are shaded black are
stable.

Under the ordering (4.45), we find (see Appendix K.3.6) that there are four modes with
complex frequencies given by

ω

Ωi
= ±k‖ρi

(
1
4

k‖ρi ±
√

1
16

k2
‖ρ

2
i + 1

βi
+ Δi

2

)
, (4.47)

where the ± signs can be chosen independently. This is the standard parallel firehose
dispersion relation (Kennel & Sagdeev 1967; Davidson & Völk 1968; Schekochihin
et al. 2010). To (re-)identify the modes that are destabilised by the negative ion-pressure
anisotropy, we set Δi = 0: the resulting dispersion relation agrees with Foote & Kulsrud
(1979), recovering the dispersion relation of Alfvén waves in the limit k‖ρi � β

−1/2
i (see

their (19)) and the dispersion relation of the slow and fast hydromagnetic waves in the limit
k‖ρi � β

−1/2
i (see their (20)). The growth rate of the unstable parallel firehose modes that

follows from (4.47) is shown in figure 21 for several different values of Δi and βi; the
results closely match the analogous result determined numerically.6

For non-zero Δi and fixed k‖ρi, (4.47) implies that we have instability provided

|Δi| >
2
βi

+ 1
8

k2
‖ρ

2
i . (4.48)

6An inquisitive reader might wonder why the numerical solution suggests that, in addition to the long-wavelength
parallel firehose modes, parallel ion-Larmor-scale modes are also unstable in some cases (see figure 21b), albeit with
a much smaller growth rate. This instability is the CES resonant parallel firehose instability, so named because of its
mediation via gyroresonant interactions between ions and ion-Larmor-scale modes (Yoon et al. 1993). In a βi ∼ 1 plasma,
this instability can have a growth rate comparable to (or even larger than) the longer-wavelength non-resonant firehose
modes; however, because of the exponential dependence of the resonant parallel firehose instability’s growth rate on
|Δi|−1 ∼ βi, the instability is generically much weaker than the non-resonant firehose in plasma with βi � 1 (see Bott
et al., in prep.). In the language of § 2.3.4, resonant parallel firehose modes are quasi-cold in CE plasma. We therefore do
not consider this instability further in this paper.
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FIGURE 21. Parallel CES firehose instability. Growth rates of Alfvén waves whose instability is
driven by the CE ion-shear term in the CE distribution function (4.1), for wavevectors co-parallel
with the background magnetic field (viz. k = k‖ẑ). The growth rates (solid lines) of all modes
are calculated in the same way as figure 19. We show the growth rates for a selection of different
values of Δiβi and βi. The approximation (4.47) for the growth rate (dashed red) in the limit
k‖ρi � 1 is also plotted.

The fastest-growing mode
γmax

Ωi
=
∣∣∣∣ 2
βi

+ Δi

∣∣∣∣ , (4.49)

occurs at the characteristic wavenumber

(k‖ρi)peak = 2
∣∣∣∣ 2
βi

+ Δi

∣∣∣∣1/2

. (4.50)

For k‖ρi > 2
√

2|2β−1
i + Δi|1/2, the unstable mode is stabilised. This agrees with previous

analytical characterisations of the firehose instability (Rosin et al. 2011).

4.4.3. Oblique firehose instability
In this case, we order

ω̃i‖ ∼ 1

β
1/2
i

∼ |Δi|1/2 ∼ k2
‖ρ

2
i ∼ k2

⊥ρ2
i . (4.51)

Aside from the finite propagation angle of oblique modes, the key difference between
the oblique and quasiparallel cases is the larger magnitude of the typical wavenumber
kρi ∼ β

−1/4
i . The unstable oblique firehose modes have the complex frequency (see

Appendix K.3.7)

ω

Ωi
= −k‖ρi

[
i

8
√

πk2
⊥ρ2

i

(
k2

‖ρ
2
i − 3

2
k2

⊥ρ2
i

)2

±
√

1
βi

+ Δi

2
− 1

64πk4
⊥ρ4

i

(
k2

‖ρ
2
i − 3

2
k2

⊥ρ2
i

)4
⎤⎦ . (4.52)

Setting |Δi| = 0, and considering the subsidiary limit kρi � β
−1/4
i , we recover the

dispersion relation of the shear-Alfvén mode (Foote & Kulsrud 1979).
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FIGURE 22. Oblique CES firehose instability. Growth rates of the shear-Alfvén mode whose
instability is driven by the CE ion-shear term in the CE distribution function (4.1), for
wavevectors at an angle θ = 60◦ with the background magnetic field (viz. k⊥ = √

3k‖). The
growth rates (solid lines) of all modes are calculated in the same way as figure 19. We show the
growth rates for a selection of different values of Δiβi and βi. The approximation (4.52) for the
growth rate (dashed red) in the limit k‖ρi � 1 is also plotted.

Similarly to the quasi-parallel firehose instability, the instability condition is still

Δi < − 2
βi

. (4.53)

If this condition is met, the maximum growth rate of the instability is

γmax

Ωi
≈
(

8π

27

)1/4 ∣∣∣∣ 2
βi

+ Δi

∣∣∣∣3/4

tan θ

[
1 − 3

2
tan2 θ

]−1

, (4.54)

and is attained at (parallel) wavenumber

(k‖ρi)peak ≈
(

32π

3

)1/4 ∣∣∣∣ 2
βi

+ Δi

∣∣∣∣1/4

tan θ

[
1 − 3

2
tan2 θ

]−1

, (4.55)

where θ = tan−1(k⊥/k‖) is (again) the wavevector angle with respect to the magnetic
field. In contrast to the quasi-parallel case, if the condition (4.53) is met, the instability
persists for all wavenumbers satisfying kρi � 1, albeit with a decreasing growth rate
beyond the parallel wavenumber given by (4.55). We notice that along the critical line
k⊥ = k‖

√
2/3 (θ ≈ 39◦), the maximum growth rate (4.54) of the oblique firehose diverges.

This divergence is mathematically the result of failing to take into account higher-order
terms in the kρi � 1 expansion, but, as was discussed earlier in this section, it is indicative
of a physical effect (viz. much faster growth of firehose modes with k⊥ = k‖

√
2/3).

The degree to which the growth rate of unstable modes determined from (4.52) follows a
numerical solution for a particular choice of θ is demonstrated in figure 22. The agreement
is reasonable, although an increasingly large discrepancy develops as kρi approaches unity
due to FLR effects.

4.4.4. Critical-line firehose instability
In this third and final case, we set k⊥ = k‖

√
2/3. The FLR coupling between the

shear-Alfvén mode and the Barnes’-damped slow-mode then vanishes to leading order
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in kρi � 1, and next-order FLR terms must be considered. Depending on the value of βi,
we find two sub-cases.

First, for βi ∼ Δ−1
i � 106 – a numerical bound that we will justify a posteriori

following our calculations – the FLR term responsible for setting the wavenumber of
the fastest-growing mode is the second-order correction to the FLR coupling between
the shear-Alfvén and slow modes. The appropriate ordering to adopt then depends on the
relative magnitude of Δi and β−1

i . For Δiβi + 2 � −1, we use the ordering

ω̃i‖ ∼ 1

β
1/2
i

∼ |Δi|1/2 ∼ k6
‖ρ

6
i . (4.56)

In this case, we find (see Appendix K.3.8) that the frequency of the two shear-Alfvén
modes is given by

ω

Ωi
= −k‖ρi

[
6889ik6

‖ρ
6
i

27 648
√

π
±
√(

1
βi

+ Δi

2

)
− 68892

27 6482π
k12

‖ ρ12
i

]
. (4.57)

The wavelength at which the growth rate is maximised scales with an extraordinarily low
power of |2β−1

i + Δi|:

(k‖ρi)peak ≈ 219/1231/2π1/12

831/3351/12

∣∣∣∣ 2
βi

+ Δi

∣∣∣∣1/12

≈ 0.97
∣∣∣∣ 2
βi

+ Δi

∣∣∣∣1/12

, (4.58)

with associated maximum growth rate

γmax

Ωi
≈ 213/1231/2π1/12

831/3351/12

∣∣∣∣ 2
βi

+ Δi

∣∣∣∣7/12

≈ 0.58
∣∣∣∣ 2
βi

+ Δi

∣∣∣∣7/12

. (4.59)

As discussed in § 4.4.1, the instability threshold for critical-line firehose modes is not
(4.53), but is a less stringent value. We can demonstrate this analytically by showing that,
for Δi  −2/βi, critical-line firehose modes are still unstable. Adopting the ordering

ω̃i‖ ∼ 1

β
3/5
i

∼ k6
‖ρ

6
i , (4.60)

it follows (see Appendix K.3.8) that the growth rate of the critical-line firehose modes is

γ

Ωi
= −k‖ρi

[
6889k6

‖ρ
6
i

27 648
√

π
±
√

5
4βi

k2
‖ρ

2
i + 68892

27 6482π
k12

‖ ρ12
i

]
. (4.61)

The maximum growth rate of such modes is then given by

γmax

Ωi
≈ 2357/1033/2π1/5

834/577/10
β

−7/10
i ≈ 1.2β

−7/10
i , (4.62)

obtained at parallel wavenumber

(k‖ρi)peak ≈ 251/1031/2π1/10

832/571/10
β

−1/10
i ≈ 0.64β

−1/10
i . (4.63)

When βi ∼ Δ−1
i � 106 the fastest-growing critical-line firehose modes have a

sufficiently large wavenumber that the effect of FLR coupling between shear-Alfvén
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and slow modes is sub-dominant to the effect of cyclotron damping. Assuming that
Δiβi + 2 � −1 and adopting the ordering

ω̃i‖ ∼ 1

β
1/2
i

∼ |Δi|1/2, k‖ρi ∼ 1√
log 1/

∣∣β−1
i + Δi/2

∣∣ , (4.64a,b)

we show in Appendix K.3.8 that the frequency of the shear-Alfvén modes becomes

ω

Ωi
= − i

√
π

2k‖ρi
exp

(
− 1

k2
‖ρ

2
i

)
± k‖ρi

√√√√( 1
βi

+ Δi

2

)
− π

4k4
‖ρ

4
i

exp

(
− 1

k2
‖ρ

2
i

)
. (4.65)

In this case, the maximum growth rate

γmax

Ωi
≈ (k‖ρi)peak

∣∣∣∣ 1
βi

+ Δi

2

∣∣∣∣1/2

, (4.66)

is attained at

(k‖ρi)peak ≈
√

2√
log 1/

∣∣β−1
i + Δi/2

∣∣
⎡⎢⎣1 −

4 log
(

log 1/

√∣∣β−1
i + Δi/2

∣∣)
log 1/

∣∣β−1
i + Δi/2

∣∣
⎤⎥⎦ . (4.67)

Figure 19 corroborates that the analytical approximation (4.67) provides a reasonable
estimate of the parallel wavenumber at which peak growth occurs.

Similarly to the βi � 106 regime, when βi � 106, critical-line firehose modes still grow
when Δi ≈ −2/βi. Their growth rate as a function of wavenumber is given by

γ

Ωi
= −

√
π

2k‖ρi
exp

(
− 1

k2
‖ρ

2
i

)
± k‖ρi

√√√√ 5
4βi

k2
‖ρ

2
i + π

4k4
‖ρ

4
i

exp

(
− 1

k2
‖ρ

2
i

)
. (4.68)

The maximum of (4.68),
γmax

Ωi
≈

√
5

2
(k‖ρi)

2
peakβ

−1/2
i , (4.69)

is achieved at

(k‖ρi)peak ≈
√

2√
log (πβi/20)

{
1 − 3 log

[
log (πβi/20)/2

]
log (πβi/20)

}
. (4.70)

By comparing the expressions (4.57) and (4.65) for the complex frequency of
shear-Alfvén modes – specifically, the ratio of the final terms – the dependence on βi
(equivalently, Δi) of the relative importance of FLR slow-mode coupling and cyclotron
damping can be determined. This ratio is ∼0.16k8

‖ρ
8
i exp (−1/k2

‖ρ
2
i ), with equality being

achieved when k‖ρi ≈ 0.3. Using (4.58) to estimating the value of |2β−1
i + Δi| at which

this value of k‖ρi is achieved, we find that |2β−1
i + Δi| ≈ 8 × 10−7. Assuming |Δiβ

−1
i +

2| ∼ 1, we conclude that, for βi � 106, cyclotron damping will determine the wavenumber
cutoff, with this transition value of βi proportional to the value of |Δi|βi. This estimate can
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FIGURE 23. Critical-line CES firehose instability. Growth rates of shear-Alfvén modes whose
instability is driven by the CE ion-shear term in the CE distribution function (4.1), for
wavevectors at an angle θ ≈ 39◦ with the background magnetic field (viz. k⊥ = √

2/3k‖). The
growth rates (solid lines) of all modes are calculated in the same way as figure 19. We show the
growth rates for a selection of different values of Δiβi and βi. The approximations (4.57) and
(4.65) for the growth rate (dashed and dotted red, respectively) in the limit k‖ρi � 1 are also
plotted.

be validated numerically by comparing (4.57) and (4.65) with the numerically determined
growth rate (see figure 23). We indeed find that, for βi ∼ Δ−1

i � 106, the effect of
cyclotron damping sets the wavenumber of peak growth, while FLR slow-mode coupling
does so for βi ∼ Δ−1

i � 106. In both cases, the superior of the two analytic approximations
closely matches the numerical growth rate.

These results suggest that, for very large βi, the wavenumber of the maximum growth
of the firehose instability satisfies kρi � 1, rather than kρi ∼ 1. This result might seem
to contradict previous authors who claim to have found numerical evidence that the
fastest growth rates of the firehose instability occur at kρi ∼ 1 (Yoon et al. 1993;
Schekochihin et al. 2005; Kunz et al. 2014); however, given the logarithmic dependence
of the characteristic wavenumber (4.67), we conclude that it would take simulations at
very high βi to be able to distinguish between kρi ∼ 1 and kρi ∼ β

−1/12
i � 1. In addition,

the results presented in figure 20(b) indicate that firehose modes with kρi ∼ 1 have a
less stringent instability threshold on Δi than (4.53), providing an opportunity for such
modes to grow significantly before longer-wavelength modes can do so. In short, it seems
reasonable to assume for all practical purposes that the dominant firehose modes occur at
kρi ∼ 1, provided βi is not extremely large.

4.4.5. Sub-ion-Larmor-scale firehose instability
Figure 19(b) also suggests that, once |Δi|βi � 1, firehose modes on sub-ion-Larmor

scales develop – albeit with a smaller growth rate than the critical-line ones. Similarly
to sub-ion-Larmor-scale mirror modes (see the end of § 4.3.1), we can characterise these
modes analytically by adopting the ordering

k‖ρi ∼ k⊥ρi ∼ (|Δi|βi)
1/2 � 1,

γ

Ωi
∼ Δi. (4.71a,b)
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If we also assume that |Δi|βi � μ−1/2
e , it is shown in Appendix K.3.2 that the growth rate

of these modes is given by

γ

Ωi
≈ k‖

k

√√√√(−Δi
k2

⊥ − k2
‖

k2
− k2ρ2

i

βi

)(
k2ρ2

i

βi
− Δi

k2
‖

k2

)

= cos θ

√[
−Δi

(
sin2 θ − cos2 θ

)− k2ρ2
i

βi

](
k2ρ2

i

βi
− Δi cos2 θ

)
. (4.72)

If Δi < 0, we have an instability for all modes with θ > 45◦ whose total wavenumber
satisfies

kρi <

√
|Δi|βi

(
sin2 θ − cos2 θ

)
. (4.73)

Analogously to the sub-ion-Larmor-scale mirror modes (cf. (4.18)), the growth is
maximised when kρi � (|Δi|βi)

1/2 and θ ≈ 55◦, with

γmax = 1

3
√

3
|Δi|Ωi ≈ 0.19|Δi|Ωi. (4.74)

In contrast to the case of the mirror instability, this growth rate is asymptotically small in
Δi � 1 compared with the peak growth rate of the critical-line firehose modes (cf. (4.59)
and (4.67)), and thus the instability of sub-ion-Larmor-scale firehose modes is always
subdominant. For completeness, we note that, once |Δi|βi ∼ μ−1/2

e , the electron-pressure
anisotropy associated with the CE electron-shear term begins to play a comparable role to
the ion-pressure anisotropy for modes with kρi ∼ (|Δi|βi)

1/2. In this case, the expression
for the growth rate becomes

γ

Ωi
≈ k‖

k

{[
−Δi

k2
⊥ − k2

‖
k2

− k2ρ2
i

(
1
βi

+ μ1/2
e Δi

2

)]

×
[

k2ρ2
i

βi
− Δi

(
μ1/2

e k2
⊥ρ2

i − 1
2
μ1/2

e k2
‖ρ

2
i + k2

‖
k2

)]}1/2

. (4.75)

The bound (4.73) on the total wavenumber required for the instability of modes with k⊥ >
k‖ is then

kρi <

√
|Δi|βi

(
sin2 θ − cos2 θ

)
1 + μ

1/2
e Δiβi/2

. (4.76)

Because the denominator tends to zero as Δi → −2μ−1/2
e β−1

i , the bound becomes
increasingly weak, and so the region of (k‖, k⊥)-space in which there is instability extends
significantly towards electron-Larmor scales. This extension precedes the onset of the
oblique electron firehose instability (see § 4.4.7).

4.4.6. Parallel electron firehose instability
The CES parallel electron firehose instability arises when the negative electron-pressure

anisotropy (Δe < 0) associated with the CE electron-shear term becomes a sufficiently
large free-energy source to overcome the relatively weak collisionless damping
mechanisms that act on long-wavelength (k‖ρe � 1) quasiparallel whistler waves by
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changing their handedness from right to left handed. More specifically, whistler waves
with quasi-parallel wavevectors do not have a component of electric field parallel to
B0, and so are not subject to electron-Landau damping. Electron-cyclotron damping
does occur, but is very inefficient for k‖ρe � 1. The resonant interaction primarily
responsible for damping is that between the whistler waves and Maxwellian ions in the CE
plasma streaming along field lines with v‖ � vthi. When the handedness of the whistler
waves changes, this interaction instead leads to the waves’ growth. Because the resonant
interaction driving the instability involves the plasma’s ions, the CES parallel electron
firehose instability has a rather small growth rate compared with other CES electron-scale
microinstabilities, with growth disappearing entirely in the special case of cold ions.
The parallel wavenumber of peak growth, which is a small but finite fraction of the
electron-Larmor scale, viz. (k‖ρe)peak ≈ 0.4 for Δe � −2/βe, is set by electron-cyclotron
damping, which prevents shorter-wavelength modes from becoming unstable. The CES
parallel electron firehose instability was first identified by Hollweg & Völk (1970) and has
been studied subsequently using theory and simulations in plasma with βe ∼ 1–20 by a
number of authors (e.g. Paesold & Benz 1999; Li & Habbal 2000; Messmer 2002; Gary
& Nishimura 2003; Camporeale & Burgess 2008, 2010; Riquelme et al. 2018).

To characterise the parallel electron firehose instability analytically, we can simply use
the expressions (4.21a) and (4.21b) given in § 4.3.2 for the real frequency � and growth
rate γ , respectively, of the parallel whistler waves that satisfy the ordering

ω̃e‖ = ω

k‖vthe
∼ Δe ∼ 1

βe
, (4.77)

and have k‖ρe ∼ 1, but this time with Δeβe < 0. Plots of the dispersion curves �(k‖)
and γ (k‖) of CES parallel electron firehose modes are then shown in figure 24 for
a selection of different (negative) values of Δeβe. In a hydrogen plasma, we find an
instability for Δe < (Δe)c ≈ −1.7/βe. For Δe � −2/βe, modes with k‖ρe � 0.4 become
unstable. Figure 24 also shows that parallel electron firehose modes generically have a
real frequency that is much greater than their growth rate (� ∼ Ωe/βe � γ ); however,
this frequency changes sign at a wavenumber which, when Δe � −2/βe, is comparable to
the wavenumber (k‖ρe)peak at which peak growth occurs.

These results can be elucidated by considering the expressions (4.21) in the subsidiary
limit

k‖ρi ∼ 1√
log
(

2μ
−1/2
e |1 + 2/Δeβe|

) � 1. (4.78)

Then (4.21) simplifies to

� = ±
[(

1 + Δeβe

2

)
k2

‖ρ
2
e − μ1/2

e Δeβe

]
Ωe

βe
, (4.79a)

γ =
√

π

k‖ρe

[
Δe exp

(
− 1

k2
‖ρ2

e

)
−
(

Δe

2
+ 1

βe

)
μ1/2

e k2
‖ρ

2
e

]
Ωe. (4.79b)

These approximations are plotted alongside (4.21) in figure 24; the agreement is qualitative
rather than quantitative for Δe ∼ −2/βe, but becomes increasingly good as Δe is decreased
further.

Using these simplified expressions, we can derive approximate analytical expressions
for the instability’s threshold (Δe)c, as well as its peak growth rate and the wavenumber at
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FIGURE 24. Parallel CES electron firehose instability. Dispersion curves of unstable whistler
modes, whose instability is driven by the negative electron-pressure anisotropy associated with
the electron-shear term in CE distribution function (4.1), for wavevectors that are co-parallel
with the background magnetic field (viz. k = k‖ẑ). The frequency (solid blue) and growth rates
(solid red) of the modes are calculated using (4.21a) and (4.21b), respectively. The resulting
frequencies and growth rates, when normalised as γβe/Ωe, are functions of the dimensionless
quantity Δeβe; we show the dispersion curves for three different values of Δeβe. The k‖ρe � 1
approximations (4.79a) for the frequency (dotted-blue) and (4.79b) growth rate (dotted-red) are
also plotted.

which that growth occurs. First considering the sign of (4.79), it is easy to show that
there exists a range of wavenumbers k‖ at which γ > 0 if and only if Δe < −2/βe,
so (Δe)c ≈ −2/βe. This is somewhat more stringent than the numerically observed
threshold, a discrepancy attributable to FLR effects, not taken into account by the
approximation (4.79b). When Δe < −2/βe, it can be proven that the growth rate (4.79b) is
maximised at

(k‖ρe)peak ≈ 1√
log
(
μ

−1/2
e |1/2 + 1/Δeβe|

)
⎧⎨⎩1 −

log
[√

2 log
(
μ−1/2

e |1/2 + 1/Δeβe|
)]

log
(
μ

−1/2
e |1/2 + 1/Δeβe|

)
⎫⎬⎭ ,

(4.80)

attaining the value

γmax = √
πμ1/2

e (k‖ρe)peak

∣∣∣∣Δe

2
+ 1

βe

∣∣∣∣Ωe. (4.81)

Comparing (4.81) with the characteristic magnitude of � evaluated using (4.79a) at
k‖ρe = (k‖ρe)peak (and assuming that (k‖ρe)peak � μ1/4

e ), we conclude that γ � μ1/4
e � ,

thereby explaining our previous observation that the growth rate of parallel electron
firehose modes is generically much smaller than the real frequency of those modes. We
can also show that the one exception to this occurs when (k‖ρe)peak ≈ μ1/4

e [2Δeβe/(1 +
2Δeβe)]1/2, an approximate expression for the wavenumber below which � changes sign.
As we will see, the characteristic growth rate of the CES parallel electron firehose is
typically much smaller than its oblique relative in high-β plasma (see § 4.4.7), a conclusion
that also applies in βe ∼ 1 plasmas with bi-Maxwellian distributions (see Li & Habbal
2000).
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4.4.7. Oblique electron firehose instability
In spite of its similar name, the CES oblique electron firehose instability is quite

distinct from its parallel cousin: it is a non-propagating mode than arises from the
destabilisation of oblique KAWs by a sufficiently negative electron-pressure anisotropy.
The linear theory of the analogous instability in βe ∼ 1 plasma with bi-Maxwellian
electrons was first presented by Li & Habbal (2000), with a number of simulation
studies of this instability having been conducted subsequently (Gary & Nishimura 2003;
Camporeale & Burgess 2008, 2010; Riquelme et al. 2018). The high-β variant of the
(linear) instability for general anisotropic electron distribution functions was studied in
the k‖ � k⊥ limit of gyrokinetics by Kunz et al. (2018). In contrast to the findings of
Gary & Nishimura (2003), who showed that the oblique electron firehose instability in a
bi-Maxwellian plasma at βe ∼ 1 involves gyroresonant wave–particle interactions between
electrons and the unstable modes, instability of CES oblique electron firehose modes
at βe � 1 is essentially non-resonant, with sufficient large negative electron-pressure
anisotropies negating the restoring force that underpins the oscillation of high-β
KAWs.

Similarly to the parallel electron firehose instability, the CES oblique electron firehose
instability is triggered when Δe � −2/βe. The precise value of the threshold depends
on the wavevector of the mode being destabilised. Analogously to the parallel electron
firehose, long-wavelength oblique electron firehose modes are unstable when Δe <
(Δe)c = −2/βe. However, figure 25(a) shows that there is positive growth of kρe ∼ 1
oblique electron firehose modes for less negative values of Δe, illustrating that the
threshold is less stringent for such modes. This phenomenon is reminiscent of the ion
firehose instability (see figure 20): ion-Larmor-scale oblique firehose modes also have a
less stringent threshold than longer-wavelength modes. In addition to the kρe ∼ 1 modes, a
region of unstable KAWs with characteristic wavenumbers μ1/2

e � kρe � μ1/4
e , k⊥ ∼ k‖,

is evident in figure 25(a). These modes, which were discussed at the end of § 4.4.1, are
destabilised by negative ion-pressure anisotropy; the extent of this region closely matches
the analytic prediction (4.76). Using a similar semi-analytic approach to that employed
for the case of the ion firehose instability (see Appendix K.2.2), we can determine the
approximate threshold for the oblique electron firehose instability as a function of k‖ρe
and k⊥ρe. The results are shown in figure 25(b); modes with k‖ρe ∼ 0.5, k⊥ρe ∼ 0.4 have
the least stringent threshold (Δe ≈ −1.4/βe).

Well into the unstable regime, i.e. when Δeβe + 2 � −1, electron firehose modes across
a broad range of wavevectors are destabilised (see figure 26a). The fastest-growing electron
firehose modes are oblique and occur at electron-Larmor scales (k⊥ρe ∼ 1 > k‖ρe), with
characteristic growth rate γ ∼ |Δe|Ωe ∼ Ωe/βe. This growth rate is much larger than the
peak growth rate of the parallel electron firehose instability (4.81).

Similarly to the electron mirror instability, a simple analytic expression for the growth
rate of the fastest-growing electron firehose modes when Δeβe + 2 � −1 is challenging
to establish. We can, however, characterise the growth of two particular classes of electron
firehose modes analytically.

The first of these are long-wavelength (viz. kρe � 1) electron firehose modes. For these,
we adopt the same ordering (4.38) as was considered when characterising long-wavelength
electron mirror modes:

k‖ρe ∼ k⊥ρe ∼ μ1/4
e � 1, ω̃e‖ = ω

k‖vthe
∼ kρe

βe
∼ |Δe|kρe. (4.82a,b)
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(a) (b)

FIGURE 25. Onset of the CES oblique electron firehose instability. (a) Maximum positive
growth rates of linear perturbations resulting from both the CE ion- and electron-shear term
in the CE distribution function (4.1) with βi = 104 and Δe = −1.7/βe (which is above the
long-wavelength oblique electron-firehose instability-threshold Δe = −2/βe). The growth rates
of all modes are calculated in the same way as figure 19. The resulting growth rates are
normalised as γβe/Ωe are functions of the dimensionless parameter Δeβe. The dotted line
denotes the instability boundary (4.76) on KAWs driven unstable by ion-pressure anisotropy
of the CE ion-shear term. (b) Threshold value of Δeβe at which modes with parallel and
perpendicular wavenumber k‖ and k⊥, respectively, become unstable. Regions of (k‖, k⊥) that
are shaded black are stable.

(a) (b)

FIGURE 26. Oblique electron firehose instability at Δeβe + 2 � −1. (a) Maximum positive
growth rates of linear perturbations resulting from CE ion- and electron-shear terms in the CE
distribution function (4.1) for Δeβe = −3. Here, a temperature-equilibrated hydrogen plasma is
considered, viz. Δe = μ

1/2
e Δi, and βi = βe. The growth rates of all modes are calculated in the

same way as figure 25. (b) Plots of the oblique electron firehose mode growth rate (solid line) as
a function of k‖ρe with k⊥ρe = 0.2 (top), and as a function of k⊥ρe with k‖ρe = 0.2 (bottom).
The dotted and dashed lines show the analytical predictions (4.83) and (4.86), respectively.
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We then obtain a closed-form expression (cf. (4.39), and also (4.75)) for the complex
frequencies of the electron firehose modes:

ω ≈ ±k‖ρeΩe

{[
1
βe

+ Δe

(
1
2

− μ1/2
e

k2
‖ρ

2
e − k2

⊥ρ2
e

k4ρ4
e

)]

×
[

k2ρ2
e

βe
− Δe

(
k2

⊥ρ2
e + μ1/2

e

k2
‖

k2
− 1

2
k2

‖ρ
2
e

)]}1/2

. (4.83)

If Δe < −2/βe, the right-hand side of (4.83) is purely imaginary for k⊥ > k‖, and so
we have positive growth for all long-wavelength electron firehose modes with θ > 45◦.7
This approximation should be compared with the numerically determined growth rate in
figure 26(b). If it is further assumed that μ1/4

e � kρe � 1, k⊥ ∼ k‖, it is shown in § 4.3.4
that (4.83) simplifies to an analogue of (4.40), viz.

ω ≈ ±k‖ρeΩe

√(
1
βe

+ Δe

2

)(
k2ρ2

e
1
βe

+ Δe

2

[
k2

‖ρ2
e − 2k2

⊥ρ2
e

])
. (4.84)

This result is again in agreement with the gyrokinetic calculations of Kunz et al. (2018).
Extrapolating (4.84) to k‖ρe ∼ k⊥ρe ∼ 1, we recover that γ ∼ Ωe/βe when |Δeβe +
2| � 1.

A second sub-category of electron firehose modes that can be described analytically are
quasi-perpendicular ones. For any fixed k‖ρe � 1, the most rapidly growing modes are
strongly anisotropic: they occur when the perpendicular wavelength is comparable to the
electron Larmor radius, k⊥ρe ∼ 1. These modes can therefore be elucidated analytically
by considering their dispersion relation under the ordering

ω̃e‖ ∼ |Δe| ∼ 1
βe

, (4.85)

in the wavenumber domain μ1/2
e � k‖ρe � k⊥ρe ∼ 1. We solve the dispersion relation

(see Appendix K.3.10) to find

ω

Ωe
= k‖ρe

F(k⊥ρe)

{
−i

√
π

2

[
k2

⊥ρ2
e

βe
+ ΔeH(k⊥ρe)

]
±
√

D (k⊥ρe, βe,Δe)

}
, (4.86)

where the discriminant is

D (k⊥ρe, βe,Δe) ≡
[

k2
⊥ρ2

e

βe
+ ΔeH(k⊥ρe)

]
×
{

1
βe

(
1 − π

4
k2

⊥ρ2
e

)
− Δe

[π
4
H(k⊥ρe) + F(k⊥ρe)

]}
, (4.87)

and the two auxiliary functions are (cf. (3.24))

F(α) = exp
(

−α2

2

)[
I0

(
α2

2

)
− I1

(
α2

2

)]
, (4.88)

H(α) ≡ 1 − exp
(

−α2

2

)
I0

(
α2

2

)
. (4.89)

7In fact, this condition is stronger than necessary to guarantee instability – but the exact condition is somewhat
complicated, so we omit discussion of it.
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As a sanity check, we observe that in the subsidiary limit k⊥ρe � 1, (4.86) becomes

ω ≈ ±k⊥k‖ρ2
e Ωe

√(
1
βe

+ Δe

2

)(
1
βe

− Δe

)
, (4.90)

returning us to the dispersion relation (4.84) of unstable kinetic Alfvén waves taken in the
limit k‖ � k⊥.

In the case when Δe < −2β−1
e , one of the modes described by (4.86) can be

destabilised by sufficiently negative pressure anisotropy, and become purely growing. The
wavenumbers susceptible to this instability are those satisfying

k2
⊥ρ2

e

[
1 − exp

(
−k2

⊥ρ2
e

2

)
I0

(
k2

⊥ρ2
e

2

)]−1

< |Δe|βe. (4.91)

Provided Δe < −2β−1
e and |Δe|βe ∼ 1, this gives a range of unstable perpendicular

wavenumbers k⊥ρe � 1. That these wavenumbers are indeed unstable follows immediately
from the observation that if (4.91) holds, then the discriminant (4.87) satisfies

D (k⊥ρe, βe,Δe) = −π

[
ΔeH(k⊥ρe) − k2

⊥ρ2
e

βe

] [
ΔeH(k⊥ρe) − k2

⊥ρ2
e

βe
+ 1

βe
+ |Δe|F(k⊥ρe)

]

< π

[
ΔeH(k⊥ρe) − k2

⊥ρ2
e

βe

]2

, (4.92)

from which it follows that the imaginary part of (4.86) for the ‘+’ root is positive. When
|Δeβe + 2| ∼ 1, the characteristic growth rate of the instability is

γmax ∼ k‖ρe|Δe|Ωe, (4.93)

which is consistent with the numerical findings shown in figure 26(a). Indeed, (4.86)
agrees reasonably with the numerically determined growth rate for small values of k‖ρi
(see figure 26b).

One particularly interesting subsidiary limit of (4.90) is |Δe|βe � 1, in which it can be
shown that, under the ordering k⊥ρe ∼ (|Δe|βe)

1/2 � 1, the growth rate is

γ ≈ πk‖k3
⊥ρ4

e

(
|Δe| − k2

⊥ρ2
e

βe

)
Ωe. (4.94)

This implies that the perpendicular wavelength of peak growth transitions smoothly to
values below the electron-Larmor radius as |Δe|βe is increased beyond order-unity values.
As we shall discuss in the next section, these unstable sub-electron-Larmor-scale modes
are best regarded as a distinct instability from the electron firehose, and so we introduce it
properly in a new section.

4.4.8. Electron-scale-transition instability
When |Δe|βe is increased significantly past unity, the fastest-growing microinstability

changes character from that of a destabilised KAW, and instead becomes a destabilised
non-propagating mode. The authors of this paper are not aware of this instability having
been identified previously; we call it the EST instability, on account of it providing
a smooth transition between unstable KAWs with k⊥ρe � 1, and microinstabilities on
sub-electron scales (k⊥ρe � 1). Unstable EST modes are quasi-perpendicular (k‖ρe < 1 �
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(a) (b)

FIGURE 27. The CES EST instability. (a) Maximum positive growth rates of linear
perturbations resulting from CE ion- and electron-shear terms in the CE distribution function
(4.1) for Δeβe = −10 and βe = 104. Here, a temperature-equilibrated hydrogen plasma is
considered viz. Δe = μ

1/2
e Δi, and βi = βe. The growth rates of all modes are calculated in the

same way as figure 25. (b) Plot of the EST mode growth rate (solid line) as a function of k‖ρe
with k⊥ρe = (3|Δe|βe/5)1/2 (top), and as a function of k⊥ρe with k‖ρe = (k‖ρe)peak (bottom),
where (k‖ρe)peak is given by (4.99b). The dotted and dashed lines show the analytical prediction
(4.97).

k⊥ρe � β1/7
e ), with the parallel wavenumber of the fastest-growing modes determined

by a balance between the instability’s drive and the electron-cyclotron damping that
arises at sufficiently large k‖ρe. In contrast to the oblique electron firehose instability,
Landau-resonant electrons with v‖ ≈ ω/k‖ also play a role in the EST instability’s physical
mechanism.

To demonstrate that the EST modes are not unstable KAWs, we consider the expression
(4.86) in a Maxwellian plasma (viz. Δe = 0). It is easy to show that in this case,
D(k⊥ρe, βe,Δe) � 0 if and only if

k⊥ρe � 2√
π

. (4.95)

Thus, for sufficiently large values of k⊥ρe, KAWs cease to be able to propagate, and
we obtain two purely damped non-propagating modes. Thus, any microinstabilities for
Δe < 0 associated with these modes can no longer be considered to be unstable KAWs.
Substituting (4.95) into the threshold condition (4.91), we estimate that EST modes first
become unstable when Δe < (Δe)c ≈ −3/βe.

As Δe is decreased below (Δe)c, the EST modes quickly acquire a faster growth rate
than all the other CES microinstabilities that can operate for such values of Δe. We
illustrate this numerically in figure 27(a) by showing the maximum growth rate of all
CES microinstabilities as a function of (k‖, k⊥) for a particular value of Δe < 0. The EST
modes with k‖ρe, k⊥ρe > 1 are the fastest growing, with γ � Ωe/βe.

In the limit |Δe|βe � 1 (but |Δe|βe � β2/7
e ), the maximum growth rate of the EST

instability can be estimated analytically. Adopting the orderings

k‖ρe ∼ 1√
log |Δe|βe

, k⊥ρe ∼ (|Δe|βe)
1/2,

ω

k‖vthe
∼ |Δe|5/2β3/2

e , (4.96a–c)
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it can be shown (see Appendix K.3.11) that the EST mode has the growth rate

γ

Ωe
= πk‖k3

⊥ρ4
e

(
|Δe| − k2

⊥ρ2
e

βe

){
1 + πk2

⊥ρ2
e

k2
‖ρ2

e

[
4 exp

(
− 1

k2
‖ρ2

e

)
+ √

πμ1/2
e k3

‖ρ
3
e

]}−1

,

(4.97)

where the term proportional to μ1/2
e is associated with Landau damping on the ion species.

Taking the subsidiary limit k‖ρe � 1/
√

log |Δe|βe, we recover (4.94). The EST mode’s
growth rate is, therefore, anticipated to be positive provided k⊥ρe < (|Δe|βe)

1/2. It can
then be shown that (4.97) has the approximate maximum value

γmax ≈ 6
√

3π

25
√

5
(k‖ρe)peak

[
1 − 3π3/2

5
μ1/2

e (k‖ρe)peak|Δe|βe

]
|Δe| (|Δe|βe)

3/2 Ωe, (4.98)

at the wavenumbers

(k⊥ρe)peak =
(

3|Δe|βe

5

)1/2

, (4.99a)

(k‖ρe)peak = 1√
log (24π|Δe|βe/5)

[
1 − log log (24π|Δe|βe/5)

log 24π|Δe|β/5

]
. (4.99b)

The growth rate (4.97) is plotted in figure 27(b) along with the numerically determined
growth rate; reasonable agreement is found.

We note that, for perpendicular wavenumbers k⊥ρe � β1/7
e , the characteristic

quasi-perpendicular plasma modes in a Maxwellian plasma are not EST modes, but
are instead whisper waves (see § 4.4.10). Therefore, when |Δe|βe � β2/7

e (see (4.106)),
the expressions (4.98) and (4.99a) for the EST mode’s maximum growth rate and the
perpendicular wavenumber at which that growth is attained are no longer valid. Instead,
when |Δe|βe � β2/7

e , the fastest-growing EST modes (which coexist with faster-growing
unstable whisper waves) are those close to the scale k⊥ρe ∼ Δ−1/5

e ; extrapolating from
(4.97), we find that γmax ∼ |Δe|2/5Ωe/

√
log |Δe|βe.

4.4.9. Oblique transverse instability
The transverse instability (whose physical mechanism was discussed in § 4.3.3) can be

excited for sufficiently large negative electron pressure anisotropies as well as positive
ones; however, when Δe < 0, the fastest-growing modes are highly oblique with respect
to the background magnetic field as opposed to parallel to it. In contrast to the Δe >

0 case, the oblique transverse instability does not become the fastest-growing CES
microinstability for all Δe � −β−1

e , only becoming so once its maximum growth rate
exceeds the electron-Larmor frequency (which occurs when Δe � −β−1/3

e ). While Δe >

−β−1/3
e , the fastest-growing oblique transverse modes, which have k⊥ρe ∼ (|Δe|βe)

1/2, are
confined to the parallel wavenumbers satisfying k‖ρe � 1. Their growth is outcompeted
by the EST and whisper instabilities (see §§ 4.4.8 and 4.4.10, respectively), which have
k‖ρe < 1; this is illustrated numerically in figure 28(a) for a particular large, negative
value of Δeβe.

As for their analytical characterisation, transverse modes have identical growth rates to
those obtained in the Δe > 0 case, given by (4.29a,b). For Δe < 0, only the first mode
can have positive growth, and such growth is only realised if k⊥ > k‖. Now taking the
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(a) (b)

FIGURE 28. The CES oblique transverse instability. (a) Maximum positive growth rates of
linear perturbations resulting from CE ion- and electron-shear terms in the CE distribution
function (4.1) for Δeβ = −100 and βe = 104. Here, a temperature-equilibrated hydrogen plasma
is considered viz. Δe = μ

1/2
e Δi, and βi = βe. The growth rates of all modes are calculated in the

same way as figure 25. (b) Plot of the oblique transverse mode’s growth rate (solid line) as
a function of k‖ρe with k⊥ρe = (|Δe|βe/3)1/2 (top), and as a function of k⊥ρe with k‖ρe = 2
(bottom). The dotted and dashed lines show the analytical prediction (4.97).

quasi-perpendicular unmagnetised limit k⊥ρe � k‖ρe � 1, we find that this mode has the
growth rate

γ ≈ k⊥vthe√
π

(
−Δe − k2

⊥ρ2
e

βe

)
. (4.100)

This expression is mathematically identical to the parallel transverse instability (4.30)
(§ 4.3.3), except with substitution k‖ → k⊥; the maximum growth rate of the oblique
transverse instability is, therefore,

γmax = 2

3
√

3π
(|Δe|βe)

1/2|Δe|Ωe, (4.101)

at the (perpendicular) wavenumber

(k⊥ρe)peak =
(

Δeβe

3

)1/2

. (4.102)

(4.100) is compared with the numerically determined growth rate in figure 28(b); we find
that the approximation is excellent provided k‖ρe � 1.

We note that, based on our analysis, the oblique transverse mode is anticipated always
to have a smaller growth rate than the EST instability (4.98) when 1 � |Δe|βe � β2/7

e :

γEST

γtrans
∼ |Δe|βe√

log |Δe|βe
� 1. (4.103)

4.4.10. Whisper instability
When Δe � −β−5/7

e (but Δe � −β−1/3
e ), the dominant CES microinstability is the CES

whisper instability. The instability is so named, because it consists in the destabilisation
of the whisper wave, a plasma wave whose existence has not previously been identified:
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it is therefore of some interest.8 The likely reason for its previous neglect relates to
the somewhat esoteric regime in which such a wave exists – a magnetised plasma with
βe � 1 that might naively be expected to support essentially unmagnetised perturbations
at kρe � 1. The energetically dominant magnetic component of the wave is perpendicular
to both k and B0 (viz. δBy), and the wave itself has no electron-number-density perturbation
unless βe is extremely large. Its operation (and also the operation of its instability in a
CE plasma) involves both resonant and non-resonant interactions between electrons and
the wave. More specifically, it is the non-resonant interaction of electrons at the edge
of their Larmor orbits with the parallel electric field associated with the whisper wave
that gives rise to the phase-shifted current perturbation necessary for wave propagation,
while the primary damping mechanisms (Landau and Barnes’ damping, respectively)
of whisper waves are mediated by resonant wave–particle interactions. The physical
mechanism of this wave and its instability (which is most clearly explored within
the quasi-perpendicular limit of gyrokinetics) will be discussed further in a future
paper.

We characterise the whisper instability’s growth analytically in the limits μ1/2
e �

k‖ρe � 1, k⊥ρe � 1 and Δeβe � 1 under the orderings

ω̃e‖ = ω

k‖vthe
∼ 1

β
2/7
e

∼ 1
k2

⊥ρ2
e

∼ 1
Δeβe

, k‖ρe ∼ 1√
log |Δe|βe

� 1. (4.104a,b)

It can be shown (see Appendix K.3.12) that such modes have complex frequencies

ω

Ωe
= −i

[ √
π

2k‖ρe
exp

(
− 1

k2
‖ρ2

e

)
+ k‖ρe

8
√

πk2
⊥ρ2

e

]

± k‖ρe

√√√√√
π

4
k⊥ρe

(
k2

⊥ρ2
e

βe
+ Δe

)
−
[ √

π

2k2
‖ρ2

e

exp

(
− 1

k2
‖ρ2

e

)
+ 1

8
√

πk2
⊥ρ2

e

]2

.

(4.105)

It is a simple matter to ascertain that the right-hand side of (4.105) is either purely real or
purely imaginary, and thus modes are approximately either non-propagating with growth
rate γ or purely oscillating with frequency � . The dispersion curves �(k⊥) and γ (k⊥)

are plotted in figure 29. To interpret (4.105), we take subsidiary limits.
We first consider 1 � k⊥ρe ∼ (|Δe|βe)

1/2 � β1/7
e . In this case, the second term in the

square root is much larger than the first, so the expression for the ‘+’ root simplifies to
the dispersion relation (4.97) of the EST instability. However, when the perpendicular
wavenumber (4.99a) of the EST instability’s peak growth derived from (4.97) exceeds
(k⊥ρe)peak � 31/72−5/7π−3/14β1/7

e ≈ 0.56β1/7
e , this simplification is no longer justifiable.

Therefore, when so when

|Δe|βe � 5
210/735/7π3/7

β2/7
e ≈ 0.52β2/7

e , (4.106)

(4.97) is no longer, in fact, a valid description of the EST mode’s growth rate.

8We have named whisper waves as such because they always have a higher frequency than their whistler-wave
counterparts, and, on account of their small characteristic scale, are likely to have lower amplitudes than whistlers. The
analogy of a whistle to a whisper seemed apt to us.
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FIGURE 29. The CES EST vs whisper instability. Growth rates of EST and whisper modes
whose instability is driven by the CE electron-shear term in the CE distribution function (4.1), for
quasi-perpendicular (k‖ � k⊥) wavevectors with respect to the background magnetic field. The
growth rates (solid lines) of all modes are calculated in the same way as figure 25 for a selection
of different values of Δeβe and βe, and k‖ρe = 0.35. The approximations (4.97), (4.105), and
(4.109) for the real frequency (dotted, dot-dashed and dashed blue, respectively) and growth
rate (dotted, dot-dashed and dashed red, respectively) in the limit k‖ρe � 1, k⊥ρe � 1, are also
plotted.

Now considering the subsidiary limit k⊥ρe ∼ (|Δe|βe)
1/2 � β1/7

e and k‖ρe �
1/

√
log |Δe|βe of (4.105), we find two propagating modes:

ω

Ωe
≈ ±π1/4

2
k‖ρe

√
k⊥ρe

(
k2

⊥ρ2
e

βe
+ Δe

)
. (4.107)

If we set Δe = 0 in order to identify the underlying Maxwellian mode, this reduces to

ω

Ωe
≈ ±π1/4

2
k‖ρe

(k⊥ρe)
3/2

β
1/2
e

. (4.108)

This dispersion relation, which does not coincide with any previously identified plasma
wave, is that of the whisper wave.

The presence of this wave in the case of Δe < 0 results in a purely unstable mode
provided β−1/7

e � k⊥ρe < (|Δe|βe)
1/2 and retaining finite k‖ρe. In this subsidiary limit,

the growth rate of the instability is

γ

Ωe
= −

√
π

2k‖ρe
exp

(
− 1

k2
‖ρ2

e

)

± k‖ρe

√√√√√
π

4
k⊥ρe

(
|Δe| − k2

⊥ρ2
e

βe

)
+ π

2k4
‖ρ4

e

exp

(
− 2

k2
‖ρ2

e

)
. (4.109)

This has the maximum value

γmax ≈ π1/4

√
2

(k‖ρe)peak (|Δe|βe)
1/4 |Δe|1/2Ωe, (4.110)
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at the wavenumbers

(k⊥ρe)peak =
( |Δe|βe

3

)1/2

, (4.111a)

(k‖ρe)peak = 2√
3 log |Δe|βe

[
1 − 4 log 3 (log |Δe|βe/4)

3 log |Δe|βe

]
. (4.111b)

Thus, the maximum growth rate of whisper instability has different scalings with |Δe|
and βe than either the EST instability (4.98) or the oblique transverse instability (4.101).
When |Δe|βe � β2/7

e , (4.105) implies that the growth rate γ continues to increase beyond
the maximum value of k⊥ρe at which the EST modes can exist, and thus the whisper
instability, if it is operating, is always dominant over the EST instability. Whether it is
also dominant over the oblique transverse instability depends on the choice of βe and Δe.
We can quantify this explicitly, by considering the ratio of the oblique transverse
instability’s growth rate (4.101) to that of the whisper instability

γtrans

γwhisper
∼
√

log (|Δe|βe) (|Δe|βe)
1/4 |Δe|1/2. (4.112)

We see that for |Δe|3βe � 1, γtrans � γwhisper. Thus for |Δe|−7/5 � βe � |Δe|−3, the
whisper instability dominates. This condition certainly holds for the particular value of
Δe considered in figure 28; to support our claim, in figure 30(a) we plot the analytical
approximation (4.109) along with the numerically determined growth rate for the fixed
values of k⊥ρe and k‖ρe, respectively, at which the whisper instability is predicted
to achieve its maximum growth. The growth rate of the whisper instability, which is
correctly captured by our analytic approximation, does indeed exceed that of the transverse
instability by an appreciable factor.

For βe � |Δe|−3, (4.110) implies that, in fact, γ /k‖vthe ∼ 1. This violates the condition of
validity of the method that we have generally used to evaluate CES microinstability growth
rates numerically (see § 2.5.8, and also Appendix K). The divergence of the true growth
rates (calculated by solving the full hot-plasma dispersion relation numerically) from those
arising from the solution of the low-frequency (ω � k‖vthe) dispersion relation (K23) for
increasing βe is illustrated in figure 30(b). For γ � Ωe, we find that the distinction between
k‖ρe < 1 modes and k‖ρe > 1 modes vanishes; furthermore, the fastest-growing modes
(including the modes with k‖ = 0) come to resemble the transverse instability when βe �
|Δe|−3; this feature, which indicates the emergence of yet another distinct CES instability,
is discussed in the next section.

4.4.11. Ordinary-mode instability
The final instability we consider in this paper is the CES ordinary-mode

(electromagnetic) instability: the destabilisation of the ordinary mode at sub-electron-
Larmor scales by negative electron-pressure anisotropy. The bi-Maxwellian equivalent of
the instability was first identified by Davidson & Wu (1970); for a more recent linear study
of the instability, see Ibscher et al. (2012). For the characteristically small electron-pressure
anisotropies that are associated with the CE electron-shear term, this instability can only
arise at very large values of βe. For purely perpendicular modes (k‖ = 0) in a magnetised
plasma, resonant wave–particle interactions cannot arise, and so the ordinary-mode’s
instability mechanism is non-resonant.

The CES ordinary-mode instability is most simply characterised by considering modes
that are exactly perpendicular to the guide magnetic field (viz. k‖ = 0). In this case, it can
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(a) (b)

FIGURE 30. The CES whisper instability. (a) Plot of the whisper instability’s growth rate as
a function of k‖ρe with k⊥ρe = (|Δe|βe/3)1/2 (top), and as a function of k⊥ρe with k‖ρe =
(k‖ρe)peak (bottom), where (k‖ρe)peak is given by (4.111b), for Δeβ = −100 and βe = 104 (cf.
figure (28)). The numerically determined value of this quantity is calculated in the same way
as figure 25. The dotted and dashed lines show the analytical prediction (4.109). (b) Divergence
of growth rates (dotted lines) arising from using the approach outlined in Appendix K (which
involves solving a simplified ‘low-frequency’ dispersion relation) as compared with the full
hot-plasma dispersion relation (dashed lines) when βe ∼ |Δe|−3. Here, Δe = −0.01, k⊥ρe =
(|Δe|βe/3)1/2 and βe is varied. For reference, βe = 0.01|Δe|−3 = 104 corresponds to the same
values of βe and Δe as considered in figure 28.

be shown (see Appendix K.3.13) that, if the ordinary mode is destabilised, its growth rate
is given by the equation

∞∑
n=1

2γ 2

γ 2 + n2Ω2
e

exp
(

−k2
⊥ρ2

e

2

)
In

(
k2

⊥ρ2
e

2

)
= −Δe − k2

⊥d2
e − exp

(
−k2

⊥ρ2
e

2

)
I0

(
k2

⊥ρ2
e

2

)
.

(4.113)

This dispersion relation is very similar to that derived by Davidson & Wu (1970)
for the ordinary-mode instability in the case of a bi-Maxwellian distribution. If the
electron-pressure anisotropy is insufficient to destabilise the ordinary mode, the mode is
undamped, and its real frequency satisfies

∞∑
n=1

2� 2

n2Ω2
e − � 2

exp
(

−k2
⊥ρ2

e

2

)
In

(
k2

⊥ρ2
e

2

)
= Δe + k2

⊥d2
e + exp

(
−k2

⊥ρ2
e

2

)
I0

(
k2

⊥ρ2
e

2

)
.

(4.114)

The dispersion curves �(k⊥) and γ (k⊥) for a selection of different values of βe and at
fixed Δe are shown in figure 31.

We can use the ordinary-mode dispersion relation (4.113) to derive the threshold for this
instability at exactly perpendicular wavevectors. We note that the left-hand side of (4.113)
is strictly positive; thus for solutions to exist, it is required that there exist a range of
perpendicular wavenumbers over which the right-hand side of (4.113) is also positive. For
k⊥ρe � 1, the right-hand side is always negative because |Δe| � 1. We therefore consider
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FIGURE 31. The CES ordinary-mode instability. Growth rates of ordinary modes whose
instability is driven by the CE electron-shear term in the CE distribution function (4.1), for
perpendicular (k‖ = 0) wavevectors with respect to the background magnetic field. The growth
rates (solid lines) of the modes are calculated using (4.113) and (4.114). We show the growth
rates for a selection of different values of βe and for Δe = 0.01. The approximation (4.121) of
the growth rate in the limit k⊥ρe � γ /Ωe � 1 is also plotted (dashed red).

the limit k⊥ρe � 1 (assuming γ ∼ Ωe), for which

1√
πk⊥ρe

∞∑
n=1

2γ 2

γ 2 + n2Ω2
e

≈ |Δe| − k2
⊥ρ2

e

βe
− 1√

πk⊥ρe
. (4.115)

The right-hand side of (4.115) is maximal when

k⊥ρe =
(

βe

2
√

π

)1/3

, (4.116)

and, when maximal, also greater than zero if and only if

|Δe|3βe >
27
4π

. (4.117)

Therefore the threshold (4.117) is a necessary condition for a purely perpendicular
instability to exist. It is also a sufficient condition, because the left-hand side of (4.115)
becomes arbitrarily small for small γ . Comparing the threshold (4.117) with figure 30(b),
we conclude that the emergence of an instability with a purely perpendicular wavenumber
at around βe ∼ |Δe|−3 is consistent with numerical expectations. In the limit βe � Δ−3

e ,
all modes whose perpendicular wavenumbers satisfy

√
π|Δe|−1 < k⊥ρe < (|Δe|βe)

1/2 (4.118)

are unstable.
One can also show analytically that for γ � Ωe, these unstable ordinary modes grow

at the same rate as unstable oblique transverse modes (§ 4.4.9). Motivated by the fact that
γ � k⊥vthe for the oblique transverse instability, or, equivalently, γ /Ωe � k⊥ρe, we first
consider (4.113) in the limit k⊥ρe � γ /Ωe ∼ 1; we will subsequently take the subsidiary
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limit γ /Ωe � 1. The relevant dispersion relation is (4.115), which can be rewritten as

1√
πk⊥ρe

[
γπ

Ωe
coth

(
γπ

Ωe

)
− 1

]
≈ −Δe − k2

⊥ρ2
e

βe
− 1√

πk⊥ρe
, (4.119)

using the summation identity

∞∑
n=1

2γ 2

γ 2 + n2Ω2
e

= γπ

Ωe
coth

(
γπ

Ωe

)
− 1. (4.120)

Now assuming γ � Ωe and using coth x ≈ 1 for any number x � 1, we deduce

γ

Ωe
= −k⊥ρe√

π

(
Δe + k2

⊥ρ2
e

βe

)
, (4.121)

which is equivalent to (4.100). Since |Δe| � 1, our result is consistent with our initial
assumption γ /Ωe � k⊥ρe. We note that, at wavenumbers that do not satisfy (4.118),
ordinary modes and oblique transverse modes behave quite differently: such ordinary
modes have real frequencies and are neither growing nor damped, whereas transverse
modes remain non-propagating.

In summary, we conclude that, when βe � |Δe|−3, the CES ordinary-mode instability
is the dominant CES microinstability, but that in this limit, the fastest growing unstable
modes are essentially identical to the unstable unmagnetised oblique transverse modes
already described in § 4.4.9.

5. Discussion and conclusions

In this paper, we have shown that the CE description of classical, collisional plasma
is valid for a wide range of plasma conditions. Microinstabilities are stabilised in such
plasmas by two effects: collisional damping of instabilities, or β-dependent thresholds
arising from a non-zero macroscopic magnetic field. In particular, we have demonstrated
that predictions for transport based on the CE theory should not fail on account of kinetic
instabilities in a collisional plasma whose constituent ions and electrons are strongly
magnetised and that has β � 1. By identifying the stable region for the leading-order
corrections in the CE expansion, we have de facto identified the stable region for
corrections to arbitrary order: if one of the above effects is enough to maintain stability,
any perturbations arising from smaller corrections will be unable to overcome the same
effect. However, we have also demonstrated that for plasmas with β � 1 there exists a
significant region of the (de/L, λ/L) parameter space in which fast, small-scale instabilities
are both possible and, in fact, generic. Indeed, in the strongly magnetised plasmas (that
is, ρs � λs for both electrons and ions) on which we have focused our investigation, it
transpires that collisional damping is never able to prevent the most important kinetic
instabilities, and thus strongly magnetised, high-β plasmas cannot be modelled by standard
CE theory if λ/L � 1/β. This finding has significant implications for our understanding
of various plasma environments, including those found in astrophysical contexts and also
those created in laser-plasma experiments on high-energy laser facilities.

When kinetic instabilities do arise in a CE plasma, we claim that we have characterised
the most significant of them systematically. Using an analytical approach based on
asymptotic methods, we have been able to derive simple expressions for the thresholds
and growth rates of these kinetic instabilities in terms of basic parameters such as β, λ/L
and the mass ratio μe = me/mi. Three of the instabilities – the CET whistler instability
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(§ 3.3.1), the CET slow-wave instability (§ 3.3.3), and the CET long-wavelength KAW
instability (§ 3.3.4) – are driven by heat fluxes in a CE plasma, while the remaining
ten – the CES mirror instability (§ 4.3.1), the CES whistler instability (§ 4.3.2), the CES
transverse instability (§§ 4.3.3 and 4.4.9), the CES electron mirror instability (§ 4.3.4), the
CES firehose instability (§§ 4.4.2, 4.4.3, 4.4.4, and 4.4.5), the CES parallel and oblique
electron firehose instabilities (§§ 4.4.6 and 4.4.7, respectively), the CES EST instability
(§ 4.4.8), the CES whisper instability (§ 4.4.10) and the CES ordinary-mode instability
(§ 4.4.11) – are driven by ion- and/or electron-velocity shears. While many of these
instabilities, or versions thereof, had been considered previously, four of them (the CET
slow-wave, CET long-wavelength KAW, CES EST and CES whisper instabilities) are new;
the whisper instability in particular seems to be of some interest both conceptually and
practically, because it is associated with a newly discovered plasma wave (the whisper
wave), and the instability is much faster than its competitors over quite a wide range
of values of λ/L and β. The consequences of the existence of the whisper (and EST)
instabilities for astrophysical and laser plasmas, in particular for magnetic-field generation,
will be addressed in future work.

An important question to address is that of the dominant microinstability overall: in
a given plasma (with fixed de/L, λ/L and β), amongst the many instabilities that we
have found, which is the dominant one? As we explained in § 2.2.3, the answer to
this question depends on assumptions about the relative magnitude of temperature- and
velocity-gradient scale lengths LT and LV . Here, we assume Ma λ/LV to be large enough to
trigger all of the aforementioned instabilities, and also adopt the scalings (2.55) in § 2.2.3
for a CE plasma whose largest-scale fluid motions are sonic (Ma � 1). As we discussed
in the final paragraph of § 2.2.3, our first assumption (which necessitates that βi � ε−1

i )
in fact supports our second one. We then find that the three most competitive ones are on
electron scales: the CET whistler, CES whisper and transverse instabilities. These have
growth rates (see (3.10), (4.31) and (4.110), respectively)

γwhistler,T ∼ ηeΩe ∼ μ1/4
e Ma

λi

LV
Ωe, (5.1a)

γwhisper ∼ |εe|3/4β1/4
e[

log |εe|βe
]1/2 Ωe ∼

(
λi

LV

)3/4
μ3/8

e Ma3/4β1/4
e[

log
(
μ

1/2
e βeMa λi/LV

)]1/2 Ωe, (5.1b)

γtrans ∼ ε3/2
e β1/2

e Ωe ∼ μ3/4
e

(
λi

LV

)3/2

β1/2
e Ωe. (5.1c)

Although the threshold for the CET whistler instability is less restrictive than for the
whisper instability, at the whisper instability threshold |εe|βe ∼ β2/7

e ∼ |εe|−2/5 it follows
that

γwhistler,T

γwhisper
∼ ηe

[
log εeβe

]1/2

ε
2/5
e

∼ μ1/20
e

(
λi

LV

)3/5 [
log
(
μ1/2

e βeMa λi/LV
)]1/2 � 1. (5.2)

Thus, the fact that CE plasmas typically support fluid motions on smaller scales
than temperature gradients (see § 2.2.3) implies that CES microinstabilities are more
potent at sufficiently high plasma βe. Yet, for βe � μ−1/2

e Ma−1 LV/λi, the CET whistler
instability is the most rapidly growing microinstability. Finally, for βe � μ−1/4

e Ma−1LV/λi,
none of these electron-scale instabilities is triggered at all, with only the ion-scale
firehose and mirror instabilities operating. In short, the dominant microinstability is a
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complicated function of the parameter regime. For reference, in table 2 of § 1 we show
the (approximate) growth rates for all of the instabilities considered in this paper if the
scalings (2.55) are adopted, and figure 1 shows a schematic stability map for the same
case.9

We believe that our study – which is the first systematic investigation of the kinetic
stability of a classical, collisional, magnetised plasma – provides a significant step
forward towards a comprehensive understanding of this state of matter. It is perhaps
inevitable, however, given the conceptual extent of the problem, that there remain a
number of questions concerning the stability of the CE distribution function that we
have not addressed here. In terms of linear theory, a numerical study using a better
collision operator to find the exact stability boundaries could be usefully carried out –
although we do not anticipate that this would lead to an alteration of the basic scalings
of those boundaries derived in this paper. Another issue not addressed by this work is
that of linear coupling between CET and CES microinstabilities; it is not immediately
obvious to what extent microinstabilities with similar growth rates might aid each other’s
growth. The analysis could also be extended to two-species plasmas not in thermal
equilibrium, as well as high-Zi plasmas (with important applications in laser-plasma
physics). Numerical simulations using collisional particle-in-cell or Vlasov codes could
be employed to confirm the validity of the predictions made in this paper. Another
possible research direction that could prove to be fruitful concerns the application of
thermodynamic arguments to CE microinstabilities, such as those propounded by Fowler
(1968) and more recently by Helander (2017). Such arguments have previously been
used to derive bounds on growth rates, and also the amplitude that unstable electrostatic
fluctuations can attain in magnetised plasmas. While the use of analogous arguments to
characterise CE microinstabilities would require a generalisation of those arguments to
include electromagnetic fluctuations, this may not be too challenging for microinstabilities
such as the whisper instability that can be described by reduced models (e.g. gyrokinetics).

Perhaps the most interesting future development of this work would be the determination
of transport coefficients for plasmas falling into the unstable regimes. This requires
quasi-linear or nonlinear treatment. Nonetheless, the results presented here can be seen
as both a guide and a warning to those wishing to address this fundamental question. They
are a guide in the sense that a correct characterisation of transport coefficients requires
knowledge of the fastest-growing linear modes, which our study provides. But they are also
as a warning in that an isolated treatment of one type of microinstability without reference
to the full range of possible others could lead to a mischaracterisation of transport
properties. The best hope for a correct calculation of transport in a weakly collisional,
high-β plasma is, therefore, the following programme: for a plasma with particular
conditions, identify the fastest microinstability, calculate the saturated magnitude of
the fluctuations produced by it, determine the anomalous transport coefficients with
those fluctuations present, re-calculate of the stability of this plasma and so on, until a
self-consistent picture emerges. It is likely that such a picture will involve a distribution
function whose underlying nature depends on macroscopic motions, and hence transport
coefficients that are themselves properties of flow shear, temperature gradients and
large-scale magnetic fields. Carrying out such calculations is a non-trivial task, but not
impossible.

9A note of caution is warranted: if a CE plasma is unstable to microinstabilities, then the heat fluxes and rate-of-strain
tensors will be modified, potentially altering both LT and LV . There is no a priori reason to think that such a plasma will
obey Braginskii-type scalings of the form (2.55) – and so using this ordering to estimate microinstability growth rates is
incorrect in kinetically unstable CE plasmas.
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Appendix A. Glossary of notation used in the paper

As an aid to reading, we provide a glossary of the notation that we use in our paper in
tables 5 and 6 of this appendix.

Appendix B. Derivation of the Chapman–Enskog distribution function
B.1. The Chapman–Enskog expansion in strongly magnetised plasma

There exist a number of lucid explanations of how the CE distribution functions (2.8)
arise in a collisional, strongly magnetised two-species electron–ion plasma (ρs � λs for
s = i, e) – the monograph of Braginskii (1965), but also (for example) Helander & Sigmar
(2005), Chapter 4. For that reason, we do not provide a full derivation of (2.8). However,
in this appendix, we describe a calculation that allows for a direct derivation of the CE
distribution function for a strongly magnetised collisional plasma, without first having to
perform the CE expansion for arbitrary values of ρs/λs.

The first part of the calculation is the same as in Helander & Sigmar (2005, pp. 76–78).
For the reader’s convenience, we present a summarised version. We consider the
Maxwell–Vlasov–Landau equation (2.1) of species s in a frame co-moving with the fluid
rest frame of that species. Defining the peculiar velocity variable v′

s = v − V s in the fluid
rest frame, (2.1) becomes

Dfs

Dt
+ v′

s · ∇fs +
[

Zse
ms

(
E ′ + v′

s × B
c

)
− DV s

Dt

]
· ∂fs

∂v′
s

− v′
s · ∇V s · ∂fs

∂v′
s

=
∑

s′
C( fs, fs′),

(B1)
where E ′ ≡ E + V s × B/c is the electric field measured in the moving frame, and

D
Dt

≡ ∂

∂t
+ V s · ∇, (B2)
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Notation Quantity

r Spatial position
t Time
e Elementary charge
c Speed of light
Zs Charge of species s (s = i in two-species plasma) in units of e
ms Mass of a particle of species s
μe = me/mi Electron-to-ion mass ratio
E Electric field
B Magnetic field
B0 Macroscopic magnetic field
ẑ Direction vector of the macroscopic magnetic field
v (v⊥) Particle velocity (in the direction perpendicular to B0)
v (v⊥) Particle speed (in the direction perpendicular to B0)
v‖ Particle velocity in the direction parallel to B0
φ Gyrophase angle
fs(r, v, t) Distribution function of particles of species s
C( fs, fs′ ) Collision operator for interactions between species s and s′
ns Density of particles of species s (2.3a)
V s Bulk fluid velocity of particles of species s (2.3b)
Ts Temperature of particles of species s (2.3c)
ps (ps‖/ps⊥) (Parallel/perpendicular) pressure of particles of species s (2.6a), (2.33)
πs Viscosity tensor of particles of species s (2.6b)
Δs = ( ps⊥ − ps‖)/ps Pressure anisotropy of particles of species s (2.35)
qs (qs‖) (Parallel) heat flux of particles of species s (2.6c), (2.16)
Rs (Rs‖) (Parallel) frictional force on species s due to collisions (2.6d)
Qs Heating rate due to inter-species collisions (2.6e)
uei (uei‖) (Parallel) relative electron–ion drift
vths Thermal speed of particles of species s
v′

s = v − V s Peculiar velocity of particles of species s
v′

s‖ (v′
s⊥) Peculiar parallel (perpendicular) velocity of particles of species s

ṽs = (v − V i)/vths Non-dimensionalised particle velocity in ion-fluid rest frame
ṽs‖ Non-dimensionalised parallel particle velocity, ion-fluid rest frame
ṽs (ṽs⊥) Non-dim. (perpendicular) particle speed, ion-fluid rest frame
λs Mean free path of species s
ρs (ρ̃s) (Signed) Larmor radius of species s
τs Collision time of species s
Ωs (Ω̃s) (Signed) Larmor frequency of species s
L Macroscopic length scale of variation in the direction parallel to B0
LT (LTi ) Electron-(ion)-temperature length scale parallel to B0 (2.13a,b)
LV (LVe ) Ion-(electron)-bulk-flow length scale parallel to B0 (2.13c,d)
τL Macroscopic time scale over which CE distribution varies
ηe = ηT

e Small parameter (2.11a) ∝ CE electron-temperature-gradient term
ηR

e Small parameter (2.11b) ∝ CE electron-friction term
ηu

e Small parameter (2.11c) ∝ CE electron–ion-drift term
ηi Small parameter (2.11d) ∝ CE ion-temperature-gradient term
εe Small parameter (2.11e) ∝ CE electron-shear term
εi Small parameter (2.11f ) ∝ CE ion-shear term
AT

e (ṽe) Function arising in CE electron-temperature-gradient term
AR

e (ṽe) Function arising in CE electron-friction term
Au

e(ṽe) Function arising in CE electron–ion-drift term
Ai(ṽi) Function arising in CE ion-temperature-gradient term
Ce(ṽe) Function arising in CE electron-shear term
Ci(ṽi) Function arising in CE ion-shear term

TABLE 5. Glossary of notation I.
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Notation Quantity

W s Traceless rate-of-strain tensor of species s (2.12)
Ma = Vi/vthi Mach number
log ΛCL Coulomb logarithm
κ

‖
e (κ‖

i ) Parallel electron (ion) thermal conductivity (2.21) (2.27)
χ = 2κ

‖
e /3ne Parallel thermal diffusivity

μvs Dynamic viscosity of particles of species s
ν = μvi/mini Kinematic viscosity
τ

eq
ie Ion–electron-temperature equilibration time

ds Inertial scale of particles of species s (2.58b)
λD Debye length (2.58c)
βs Plasma beta of particles of species s (2.57)
ωps Plasma frequency of particles of species s (2.78)
fs0(ṽs‖, ṽs⊥) Equilibrium distribution function of particles of species s
f̃s0(ṽs‖, ṽs⊥) Renormalised equilibrium dist. func. of particles of species s (2.83)
δE Microscale electric-field perturbation
δB Microscale magnetic-field perturbation
δ̂E Fourier component of δE
δ̂B Fourier component of δB
k (k⊥) (Perpendicular) wavevector of electromagnetic perturbation
k (k‖/k⊥) (Parallel/perpendicular) wavenumber of electromagnetic perturbation
k̂ (x̂) (Perpendicular) wavevector direction
ŷ Direction perpendicular to both x̂ and ẑ
θ Wavevector angle
ω Complex frequency of electromagnetic perturbation
� Real frequency of electromagnetic perturbation
γ Growth rate of electromagnetic perturbation
ω̃s‖ = ω/|k‖|vths Ratio of complex frequency to parallel streaming rate (2.81)
ω̂s‖ = ω̃s‖ + i/|k‖|λs Modified frequency-to-streaming-rate ratio (2.124)
I Unit dyadic
E Plasma dielectric tensor (2.74)
Es Contribution of species s to E

σ Plasma conductivity tensor (2.77)
σ s Contribution of species s to σ

CL Landau contour
ζsn = ω̃s‖ − n/|k‖|ρ̃s Resonant non-dimensionalised velocity (2.82)
w̃s‖ = k‖ṽs‖/|k‖| Non-dimensionalised parallel particle velocity (2.79)
Λs(w̃s‖, ṽs⊥) Velocity-space anisotropy of distribution function (2.84)
Ξs(w̃s‖, ṽs⊥) Velocity-space integrand of conductivity tensor (2.85)
E(0) Leading-order term in expansion of E in ω̃s‖ � 1
E(1) First-order correction in expansion of E in ω̃s‖ � 1
Ms Maxwellian component of Es – see (2.97)
Ps Non-Maxwellian component of Es – see (2.97)
M (0)

s (P(0)
s ) Leading-order term in expansion of Ms (Ps) in ω̃s‖ � 1

M (1)
s First-order correction in expansion of Ms in ω̃s‖ � 1

{e1, e2, e3} Coordinate basis (2.103a–c)
δ̂ET = δ̂E · (I − k̂k̂) Transverse electric-field perturbation
Z(z) Plasma dispersion function (2.123)
F(x, y), G(x, y), H(x, y) Special mathematical functions (2.122)
L(x, y), N(x, y) Special mathematical functions (G32)
I(x, y), J(x, y), K(x, y) Special mathematical functions (G85)
W(x, y), X(x, y), Y(x, y) Special mathematical functions (G97)

TABLE 6. Glossary of notation II.
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is the convective derivative. Initially ordering λs ∼ ρs, and assuming the plasma is
collisional (λs/L � 1), we rearrange (B1) so that the largest terms are grouped together
(on the left-hand side):∑

s′
C( fs, fs′) − Zse

msc

(
v′

s × B
) · ∂fs

∂v′
s

= Dfs

Dt
+ v′

s · ∇fs +
(

Zse
ms

E ′ − DV s

Dt

)
· ∂fs

∂v′
s

− v′
s · (∇V s) · ∂fs

∂v′
s

. (B3)

We then expand the distribution functions fs in small parameter λs/L � 1:

fs = f (0)
s + f (1)

s + . . . , (B4)

and solve (B3) order by order in λs/L for f (0)
s and f (1)

s . The subsequent treatment of the
collision operator for the electron distribution function is a little different from the ion
distribution function, so we treat each case individually.

B.1.1. Electrons
For the electrons, we can rewrite the total collision operator in a convenient form if we

assume that Ti ∼ Te, and V i ∼ vthi:∑
s′

C( fe, fs′) = Cee( fe) + C(0)

ei ( fe) + C(1)

ei ( fe), (B5)

where the electron–electron collision operator Cee( fe) and electron–ion collision operators
C(0)

ei ( fe) and C(1)

ei ( fe) are

Cee( fe) ≡ C( fe, fe), (B6a)

C(0)

ei ( fe) ≡ νei(v)v3 ∂

∂v
·
[

1
v

(
I − v̂v̂

) · ∂fe

∂v

]
, (B6b)

C(1)

ei ( fe) ≡ νei(v)
mev

′
e · uei

Te

ne

π3/2v3
the

exp
(−ṽ2

e

)
. (B6c)

Here, νei(v) is the velocity-dependent collision frequency

νei(v) ≡ 3
√

π

4τe

(vthe

v

)3
, (B7)

and the total electron–ion collision operator C( fe, fi) is given by C( fe, fi) = C(0)

ei ( fe) +
C(1)

ei ( fe). Note that when evaluating C(1)

ei ( fe), we assumed that the deviation of the electron
distribution function from a Maxwellian was small. This reformulation of the electron–ion
collision operator is possible, because the assumptions Ti ∼ Te, and V i ∼ vthi mean that,
from the perspective of the electrons, the ion distribution is sharply peaked around the
ion-fluid velocity: in other words, fi ≈ niδ(v − V i). Furthermore, the reformulation is
convenient because the total electron collision operator (B5) becomes independent of the
ion distribution function. Thus, the asymptotic expansion (B4) for the electron distribution
function is decoupled from the ions.

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


106 A.F.A. Bott, S.C. Cowley and A.A. Schekochihin

Substituting (B5), the ordered kinetic equation (B3) for the electron distribution
becomes

Cee( fe) + C(0)

ei ( fe) + e
mec

(
v′

e × B
) · ∂fe

∂v′
e

= Dfe

Dt
+ v′

e · ∇fe −
(

e
me

E ′ + DV e

Dt

)
· ∂fe

∂v′
e

− v′
e · (∇V e) · ∂fe

∂v′
e

− C(1)

ei ( fe), (B8a)

where we note that, under assumptions Ti ∼ Te, and V i ∼ vthi, C(1)

ei ( fe) ∼ μ1/2
e C(0)

ei ( fe) is
much smaller than C(0)

ei ( fe). Then applying expansion (B4) with s = e gives

Cee( f (0)
e ) + C(0)

ei ( f (0)
e ) + e

mec

(
v′

e × B
) · ∂f (0)

e

∂v′
e

= 0. (B9)

It can be shown (Helander & Sigmar 2005) that the only solution of (B9) is (as expected)
a Maxwellian distribution:

f (0)
e = ne

π3/2v3
the

exp
(

−|v′
e|2

v2
the

)
. (B10)

After some algebraic manipulation, it can also be shown that the leading-order perturbed
electron distribution function f (1)

e (v) satisfies

Cee( f (1)
e ) + C(0)

ei ( f (1)
e ) + e

mec

(
v′

e × B
) · ∂f (1)

e

∂v′
e

=
{( |v′

e|2
v2

the

− 5
2

)
v′

e · ∇ log Te + v′
e ·
[

Re

pe
+ meueiνei(v)

Te

]
+ me

2Te

(
v′

ev
′
e − |v′

e|2
3

I

)
:W e

}
f (0)
e , (B11)

where Re and so on are defined in the main text, in (2.12). We note that this manipulation
uses the leading-order terms (in λe/L) of the moment equations (2.4), and all terms directly
involving gradients of density cancel with other terms.

B.1.2. Electrons in strongly magnetised limit
We now solve for f (1)

e in a strongly magnetised plasma, i.e. ρe � λe. In this subsidiary
limit, both the collision integrals on the left-hand side of (B11) and the terms on its
right-hand side are much smaller than the term proportional to the magnetic field; in other
words,

v′
e × B · ∂f (1)

e

∂v′
e

≈ 0. (B12)

We then define coordinate system {v′
e‖, v

′
e⊥, φ′} by v′

e‖ ≡ ẑ · v′
e, v′

e⊥ = v′
e − v′

e‖ẑ, v′
e⊥ =

|v′
e⊥| and φ′ = φ, where ẑ = B/|B| and φ is the gyrophase angle. The velocity gradient
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operator in this system is

∂f (1)
e

∂v′
e

= ẑ
∂f (1)

e

∂v′
e‖

+ v′
e⊥

v′
e⊥

∂f (1)
e

∂v′
e⊥

+ 1
v′2

e⊥
v′

e × ẑ
∂f (1)

e

∂φ′ . (B13)

This, when combined with (B12), implies that f (1)
e is approximately gyrotropic:

f (1)
e (v′) ≈ 〈f (1)

e 〉φ′(v′
‖, v

′
⊥), (B14)

where we have defined the gyro-average 〈f (1)
e 〉φ′ of the electron distribution function by

〈f (1)
e 〉φ′ ≡ 1

2π

∫ 2π

0
dφ′ f (1)

e . (B15)

Now gyro-averaging (B11), we obtain

Cee
(〈f (1)

e 〉φ′
)+ C(0)

ei

(〈f (1)
e 〉φ′

)
=
{[( |v′

e|2
v2

the

− 5
2

)
∇‖ log Te + Re‖

pe
+ meuei‖νei(v)

Te

]
v′

e‖

+
(

ẑẑ − 1
3

I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e , (B16)

where we have used the gyrophase isotropy of the collision operators to commute the order
of gyro-averaging on the left-hand side. (B16) is a linear equation for 〈f (1)

e 〉φ′ , so by tensor
invariance, it must have a solution of the form

〈f (1)
e 〉φ′ = τe

{[
AT

e

( |v′
e|

vthe

)
∇‖ log Te + AR

e

( |v′
e|

vthe

)
Re‖
pe

+
(

Au
e

( |v′
e|

vthe

)
− 1

)
meuei‖
Teτe

]
v′

e‖

+ Ce

( |v′
e|

vthe

)(
ẑẑ − 1

3
I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e , (B17)

where τe is defined by (2.15a) in the main text, and the isotropic functions AT
e (|v′

e|/vthe),
AR

e (|v′
e|/vthe) and C(|v′

e|/vthe) are determined by inverting the collision operators (see
Appendix B.2 for an example of how this calculation is done for a simple choice of
collision operator). The total electron CE distribution function becomes

fe(v
′
e‖, v

′
e⊥) =

{
1 + τe

[
AT

e

( |v′
e|

vthe

)
∇‖ log Te + AR

e

( |v′
e|

vthe

)
Re‖
pe

+
(

Au
e

( |v′
e|

vthe

)
− 1

)
meuei‖
Teτe

]
v′

e‖

+ Ce

( |v′
e|

vthe

)(
ẑẑ − 1

3
I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e . (B18)

We emphasise that this quantity is expressed in the rest frame of the electron fluid.10

10Reintroducing the parameters ηT
e , ηR

e , ηu
e and εe into (B18) gives the expression (2.17) that is quoted in § 2.2.2.
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Finally, we recover (2.8a) by transforming (B18) into the frame co-moving with the
ion fluid. Since uei‖ ∼ λevthe/L � vthe, this transformation applied to the non-Maxwellian
component f (1)

e of the electron distribution function only produces corrections of
magnitude ∼ (λe/L)f (1)

e , and thus any correction terms are negligible. The only important
contribution is from the shifted Maxwellian

exp
(

−|v′
e|2

v2
the

)
≈ exp

(−ṽ2
e

) [
1 + 2ṽe‖

uei‖
vthe

]
+ . . . , (B19)

where ṽe = (v − V i)/vthe. Combining (B19) with (B18), we deduce

fe(ṽe‖, ṽe⊥) =
{

1 +
[

AT
e (ṽe) λe∇‖ log Te + AR

e (ṽe) λe
Re‖
pe

+ Au
e(ṽe) λe

meuei‖
Teτe

]
ṽe‖

+ τeCe(ṽe)

(
ẑẑ − 1

3
I

)
:W e

(
ṽ2

e‖ − ṽ2
e⊥
2

)}
f (0)
e . (B20)

Introducing the parameters ηT
e , ηR

e , ηu
e and εe defined by (2.11a), (2.11b), (2.11c) and (2.11e)

gives the final result (2.8a).

B.1.3. Ions
The derivation of the equivalent result (2.8b) for the ion distribution is mostly similar,

but with one key difference: the total ion collision operator is dominated by the ion–ion
collision operator Cii( fi) ≡ C( fi, fi):∑

s′
C( fi, fs′) = Cii( fi) + C( fi, fe) ≈ Cii( fi). (B21)

This is because ion–electron collisions are small in the mass ratio compared with
ion–electron collisions. After some algebra, it can be shown that the equivalent of (B11)
for the perturbed ion distribution f (1)

i is

Cii( f (1)

i ) − Zie
mic

(
v′

i × B
) · ∂f (1)

i

∂v′
i

=
[( |v′

i|2
v2

thi

− 5
2

)
v′

i · ∇ log Ti + mi

2Ti

(
v′

iv
′
i −

|v′
i|2
3

I

)
:W i

]
f (0)

i , (B22)

where the lowest-order distribution is Maxwellian:

f (0)

i (v) = ni

π3/2v3
thi

exp
(

−|v′
i|2

v2
thi

)
. (B23)

We emphasise that the main differences between (B11) and (B22) are the presence of
only one collision operator on the left-hand side of (B22) and the absence of any term
proportional to the ion–electron friction force Rie on the right-hand side of (B22).

Once (B22) has been written down, the method for obtaining the ion CE distribution
function (2.8b) in a strongly magnetised plasma is near-identical to that of the electron
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distribution function. Gyro-averaging gives

Cii( f (1)

i ) =
[( |v′

i|2
v2

thi

− 5
2

)
v′

i‖∇‖ log Ti +
(

ẑẑ − 1
3

I

)
:W i

(
v′2

i‖
v2

thi

− v′2
i⊥

2v2
thi

)]
f (0)

i , (B24)

from which it follows that

fi(v
′
i‖, v

′
i⊥) =

[
1 + τiAi

( |v′
i|

vthi

)
v′

i‖∇‖ log Ti

+ Ci

( |v′
i|

vthi

)(
ẑẑ − 1

3
I

)
:W i

(
v′2

i‖
v2

thi

− v′2
i⊥

2v2
thi

)]
f (0)

i . (B25)

On substituting for parameters ηi and εi defined by (2.11d) and (2.11f ), respectively, we
obtain (2.8b).

B.2. Deriving isotropic functions of velocity for the CE solution
In this appendix, we illustrate how to calculate the isotropic functions AT

e (ṽe), AR
e (ṽe),

Au
e(ṽe), Ai(ṽi), Ce(ṽe) and Ci(ṽi) arising in the electron and ion CE distribution functions

for the particular cases of two simplified collision operators: the Krook collision operator
and the Lorentz collision operator.

B.2.1. Krook collision operator
The Krook collision operator (Bhatnagar et al. 1954) for species s is given by

CK( fs) ≡ − 1
τs

(
fs − f (0)

s

)
, (B26)

where τs is the collision time of species s (assumed velocity-independent), and

f (0)
s = ns

π3/2v3
ths

exp
(

−|v′
e|2

v2
ths

)
(B27)

is a Maxwellian distribution with density ns, mean velocity V e and temperature Ts
determined from fs via (2.3). For this choice of collision operator, i.e. assuming∑

s′
C( fs, fs′) = CK( fs), (B28)

for all particle species, calculating the CE distribution function is particularly simple.
Substituting (B18) for the electron CE distribution function into the electron Krook
collision operator, we find

CK( fe) = −
{[

AT
e

( |v′
e|

vthe

)
∇‖ log Te + AR

e

( |v′
e|

vthe

)
Re‖
pe

+
(

Au
e

( |v′
e|

vthe

)
− 1

)
meuei‖
Teτe

]
v′

e‖

+ Ce

( |v′
e|

vthe

)(
ẑẑ − 1

3
I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e . (B29)
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By comparison with (B16), which, on substituting the Krook operator, becomes

CK( f (1)
e ) =

{[( |v′
e|2

v2
the

− 5
2

)
∇‖ log Te + Re‖

pe
+ meuei‖

Teτe

]
v′

e‖

+
(

ẑẑ − 1
3

I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e , (B30)

we can immediately deduce that

AT
e (ṽe) = − (ṽ2

e − 5
2

)
, (B31a)

AR
e (ṽe) = −1, (B31b)

Au
e(ṽe) = 0, (B31c)

Ce(ṽe) = −1. (B31d)

The CE electron–ion-drift term vanishes for a Krook operator because the operator
neglects inter-species collisions; by the same token, neither Ti and Te nor V i and V e will
equilibrate.

For the ion CE distribution, it follows from (B25) substituted into (B26) that

CK( fi) = −
[

Ai

( |v′
i|

vthi

)
v′

i‖∇‖ log Ti + Ci

( |v′
i|

vthi

)(
ẑẑ − 1

3
I

)
:W i

(
v′2

i‖
v2

thi

− v′2
i⊥

2v2
thi

)]
f (0)

i ,

(B32)

which gives, on comparison with (B24), that

Ai(ṽi) = − (ṽ2
i − 5

2

)
, (B33a)

Ci(ṽi) = −1. (B33b)

B.2.2. Lorentz collision operator
The Lorentz collision operator for species s is defined by

CL( fs) ≡ νs(v)v3 ∂

∂v
·
[

1
v

(
I − v̂v̂

) · ∂fs

∂v

]
, (B34)

where νs(v) is a velocity-dependent scattering rate. We emphasise that the Lorentz
collision operator is still simplified and physically complete compared with the full Landau
collision operator, as it merely isotropises the distribution function over long times.
However, such an operator does arise as the largest component of the electron–ion collision
operator (see (B6b)) in Appendix B.1), and is, in fact, the exact electron collision operator
in the limit of highly charged ions: the so-called ‘Lorentz approximation’ (Helander &
Sigmar 2005).
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To calculate the electron CE distribution function, we substitute (B18) into the collision
operator (B34) (with s = e). Using the identities

∂

∂v
·
[

1
v

(
I − v̂v̂

) · ∂

∂v
(a · v)

]
= −2a · v

v3
, (B35a)

∂

∂v
·
[

1
v

(
I − v̂v̂

) · ∂

∂v
(v · A · v)

]
= −6v · A · v

v3
, (B35b)

for any constant vector a and any symmetric, traceless, constant matrix A, it follows that

CL( fe) = −ν̂e(ṽe)

{[
2AT

e

( |v′
e|

vthe

)
∇‖ log Te + 2AR

e

( |v′
e|

vthe

)
Re‖
pe

+ 2
(

Au
e

( |v′
e|

vthe

)
− 1

)
meuei‖
Teτe

]
v′

e‖

+ 6Ce

( |v′
e|

vthe

)(
ẑẑ − 1

3
I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e , (B36)

where ν̂s ≡ νs(ṽs)τs is the non-dimensionalised collision rate for species s. As with the
Krook operator, we compare (B36) with (B16), substituting a Lorentz collision operator
for the latter, viz.

CL( f (1)
e ) =

{[( |v′
e|2

v2
the

− 5
2

)
∇‖ log Te + Re‖

pe
+ meuei‖νe(ṽe)

Te

]
v′

e‖

+
(

ẑẑ − 1
3

I

)
:W e

(
v′2

e‖
v2

the

− v′2
e⊥

2v2
the

)}
f (0)
e . (B37)

We deduce from the comparison that

AT
e (ṽe) = − 1

2ν̂e(ṽe)

(
ṽ2

e − 5
2

)
, (B38a)

AR
e (ṽe) = − 1

2ν̂e(ṽe)
, (B38b)

Au
e(ṽe) = 1

2
, (B38c)

Ce(ṽe) = − 1
6ν̂e(ṽe)

. (B38d)

The isotropic functions Ai(ṽi) and Ci(ṽi), which are given by

Ai(ṽi) = − 1
2νi(ṽi)τi

(
ṽ2

i − 5
2

)
, (B39a)

Ci(ṽi) = − 1
6νi(ṽi)τi

, (B39b)

can be deduced in an analogous manner.
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Appendix C. Derivation of hot, magnetised plasma dispersion relation for arbitrary
distribution functions

In this appendix we re-derive the hot-plasma dispersion relation, given by (2.75) in
§ 2.4.1 (see also Davidson (1983), Parra (2017), the latter of whose approaches we follow).
Our derivation also introduces a (simplified) collision operator in order to show that
substitution (2.124) stated in § 2.5.7 provides a simple technique for including the effect
of collisions on linear electromagnetic perturbations.

Consider a kinetic, magnetised plasma in equilibrium composed of one electron species
and multiple ions species, with (assumed constant) background magnetic field B0. As in
§ 2.4.1, we denote the (gyrotropic) equilibrium distribution function of species s as fs0 =
fs0(v‖, v⊥). and then consider a collisionless, linear perturbation δfs to this equilibrium
state, with wavevector k and complex frequency ω:

δfs = δ̂f s exp {i (k · r − ωt)} . (C1)

The electromagnetic perturbations associated with the perturbed distribution functions
have the forms given in (2.69), viz.

δE = δ̂E exp {i (k · r − ωt)} , (C2a)

δB = δ̂B exp {i (k · r − ωt)} , (C2b)

and satisfy Faraday’s law and the Maxwell–Amp̀ere law:

∂δB
∂t

= −c∇ × δE, (C3a)

∇ × δB = 4π

c
δj + 1

c
∂δE
∂t

, (C3b)

where the current perturbation is

δj = δ̂j exp {i (k · r − ωt)} =
∑

s

Zse
∫

d3v v δfs. (C4)

To close these equations, we relate δfs to the electromagnetic field perturbations by
linearising the Maxwell–Vlasov–Landau equation (2.1). The linearisation fs = fs0 + δfs
then gives that the perturbed distribution function of species s satisfies

∂δfs

∂t
+ v · ∇δfs + Zse

msc
(v × B0) · ∂δfs

∂v
= −Zse

ms

(
δE + v × δB

c

)
· ∂fs0

∂v
− νsδfs, (C5)

where we have replaced the full linearised collision operator with a simplified Krook
collision operator with constant collision frequency νs = τ−1

s for species s. For any
particular equilibrium distribution function, (C3a), (C3b), (C4) and (C5) are a closed set
of governing equations.
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We now write these equations in terms of k and ω using (C1), (E1a) and (C2b):

−iωδ̂B = −ick × δ̂E, (C6a)

ik × δ̂B = 4π

c
δ̂j − iω

c
δ̂E, (C6b)

δ̂j =
∑

s

Zse
∫

d3v v δ̂fs, (C6c)

(
−iω̂s + ik · v + Ω̃s

∂

∂φ

)
δ̂fs = −Zse

ms

(
δ̂E + v × δ̂B

c

)
· ∂fs0

∂v
, (C6d)

where we have defined the (signed) Larmor frequency of species s as

Ω̃s ≡ ZseB0

msc
= Zs

|Zs|Ωs, (C7)

and introduced the modified complex frequency ω̂s ≡ ω + iνs. Note that Ze = −1, so that
Ω̃e < 0. We then eliminate δ̂B in (C6b) and (C6d) using (C6a) to give

k2c2

ω2

[
δ̂E − k̂

(
k̂ · δ̂E

)]
= 4πi

ω
δ̂j − δ̂E, (C8a)

δ̂j =
∑

s

Zse
∫

d3v v δ̂fs, (C8b)

(
−iω̂s + ik · v + Ω̃s

∂

∂φ

)
δ̂fs = −Zse

ms

[
δ̂E + k

ω
v ×

(
k̂ × δ̂E

)]
· ∂fs0

∂v
. (C8c)

Next, we derive an expression for δ̂f s in terms of δ̂E. For arbitrary wavelengths
compared with the Larmor radius ρs of species s, expressing δ̂f s in terms of the equilibrium
distribution function and δ̂E requires inversion of the gyrophase-angle derivative in (C8).
This can be done for any fs0 in an orthonormal coordinate system with basis vectors
{x̂, ŷ, ẑ} defined by (2.76a–c). By Fourier transforming δ̂f s in φ, it can then be shown
that

δ̂fs = − Zsei
msω

(
∂fs0

∂v‖
− v‖

v⊥

∂fs0

∂v⊥

)
ẑ · δ̂E + exp (−ik⊥ρ̃sṽs⊥ sin φ)

∞∑
n=−∞

δ̂f s,n exp (inφ) ,

(C9)

where the series coefficients are given by

δ̂f s,n = −Zsei
ms

1

ω̂s − k‖v‖ − nΩ̃s

[
∂fs0

∂v⊥
+ k‖

ω

(
v⊥

∂fs0

∂v‖
− v‖

∂fs0

∂v⊥

)]
u∗

n · δ̂E, (C10)

and the vector un in the basis {x̂, ŷ, ẑ} is

un = v‖
v⊥

Jn(k⊥ρ̃sṽs⊥)ẑ + nJn(k⊥ρ̃sṽs⊥)

k⊥ρ̃sṽs⊥
x̂ − iJ′

n(k⊥ρ̃sṽs⊥)ŷ, (C11)

Jn(k⊥ρ̃sṽs⊥) denoting the nth-order Bessel function of the first kind. We can then
take advantage of the independence of fs0 of the gyroangle to show that the current
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perturbation is

δ̂j = −
∑

s

2πZ2
s e2i

msω

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥

(
v⊥

∂fs0

∂v‖
− v‖

∂fs0

∂v⊥

)
v‖ẑ
(
ẑ · δ̂E

)
+
∑

s

2πZse
∫

CL

dv‖

∫ ∞

0
dv⊥ v2

⊥

∞∑
n=−∞

δ̂f s,nun, (C12)

where CL denotes the usual Landau contour. This can be written as Ohm’s law

δ̂j = σ · δ̂E, (C13)

where σ is the conductivity tensor. In the absence of collisions (νs = 0), this is given by
(2.77). If the collision frequency νs �= 0 is non-zero, then

ω̂s

|k‖|vths
= ω̃‖s + i

|k‖|τsvths
= ω̃‖s + i

|k‖|λs
, (C14)

from which the substitution (2.124) proposed in § 2.5.7 follows.
Substituting Ohm’s law (C13) into Ampère’s law (C8a) gives the singular nonlinear

eigenvalue equation [
c2k2

ω2

(
k̂k̂ − I

)
+ E

]
· δ̂E = 0, (C15)

where

E ≡ I + 4πi
ω

σ (C16)

is the plasma dielectric tensor (2.74). Taking the determinant of (C15) gives the desired
result (2.75).

Appendix D. Electrostatic instabilities of CE plasma

In this appendix, we calculate the electrostatic hot-plasma dispersion relation for
arbitrary distribution functions (Appendix D.1). We then show (Appendix D.2) that for
frequencies ω such that ω̃s‖ = ω/k‖vths � 1, the dominant contribution to the longitudinal
conductivity k̂ · σ · k̂ is from the Maxwellian component, and strictly positive; the small
O(ηs, εs) non-Maxwellian distortion associated with the CE distribution function results
in only an O(ηs, εs) distortion to k̂ · σ · k̂. We then illustrate the possibility of electrostatic
instabilities associated with the CE distribution function by calculating the growth rate
of the parallel CE bump-on-tail instability (Appendix D.3). Finally, in Appendix D.4, we
show that the only electrostatic instabilities that can occur have a growth rate which is
exponentially small in dimensionless parameters O(ηs, εs), for arbitrary frequencies. Thus,
it follows that electrostatic instabilities generally have a small growth rate in comparison
with electromagnetic instabilities for a CE plasma.
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D.1. The electrostatic hot-plasma dispersion relation
Beginning from the singular eigenvalue equation (2.73), viz.

[
c2k2

ω2

(
k̂k̂ − I

)
+ E

]
· δ̂E = 0, (D1)

we consider the electrostatic modes, for which δ̂E = (k̂ · δ̂E)k̂. For them, the hot-plasma
dispersion relation becomes

E33 = k2 + 4πi
ω

k̂ · σ · k̂ = 0. (D2)

Employing the expression (2.77) for the conductivity tensor, we calculate the longitudinal
conductivity

k̂ · σ · k̂ = − i
4πω

∑
s

ω2
ps

[
2√
π

k2
‖

k2

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

+ ω̃s‖
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

k̂ · Rsn · k̂
ζsn − ṽs‖

]
, (D3)

where

k̂ · Rsn · k̂ = Jn(k⊥ρ̃sṽs⊥)2

k2ρ̃2
s ṽ

2
s⊥

(
n2 + 2nk‖ρ̃sṽs‖ + k2

‖ρ̃
2
s ṽ

2
s‖
)

= k2
‖Jn(k⊥ρ̃sṽs⊥)2

k2ṽ2
s⊥

(
n

k‖ρ̃s
+ ṽs‖

)2

. (D4)

By way of the identity

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2

(
n/k‖ρ̃s + ṽs‖

)2

ζsn − ṽs‖
= −ṽs‖ + ω̃s‖

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2 n/k‖ρ̃s + ṽs‖
ζsn − ṽs‖

, (D5)

which follows directly from the Bessel-function identity

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2 = 1, (D6)
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it follows that

ω̃s‖
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

k̂ · Rsn · k̂
ζsn − ṽs‖

= −ω̃s‖
2√
π

k2
‖

k2

∫
CL

dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥

[
∂ f̃s0

∂ṽs⊥
+ Λs(ṽs‖, ṽs⊥)

ω̃s‖

]

+ ω̃s‖
2√
π

k2
‖

k2

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2 n/k‖ρ̃s + ṽs‖
ζsn − ṽs‖

+ ω̃2
s‖

2√
π

k2
‖

k2

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥

∂ f̃s0

∂ṽs⊥

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2 n/k‖ρ̃s + ṽs‖
ζsn − ṽs‖

= − 2√
π

k2
‖

k2

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

+ 2ω̃2
s√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

(
ṽs⊥

∂ f̃s0

∂ṽs‖
+ n

k‖ρ̃s

∂ f̃s0

∂ṽs⊥

)
Jn(k⊥ρ̃sṽs⊥)2

ζsn − ṽs‖
, (D7)

where ω̃s ≡ ω/kvths. We conclude that

k̂ · σ · k̂ = − i
4πω

∑
s

ω2
ps

[
ω̃2

s
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

Πn(ṽs‖, ṽs⊥)
Jn(k⊥ρ̃sṽs⊥)2

ζsn − ṽs‖

]
,

(D8)

where

Πn(ṽs‖, ṽs⊥) ≡ ṽs⊥
∂ f̃s0

∂ṽs‖
+ n

k‖ρ̃s

∂ f̃s0

∂ṽs⊥
. (D9)

The electrostatic component of the dielectric tensor is then

E33 = k2 +
∑

s

k2
Ds

[
1√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

Πn(ṽs‖, ṽs⊥)
Jn(k⊥ρ̃sṽs⊥)2

ζsn − ṽs‖

]
, (D10)

and the electrostatic hot-plasma dispersion relation (D2) becomes

k2 +
∑

s

k2
Ds

[
1√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

Πn(ṽs‖, ṽs⊥)
Jn(k⊥ρ̃sṽs⊥)2

ζsn − ṽs‖

]
= 0, (D11)

where the Debye wavenumber kDs of species s is defined by

kDs ≡
√

2ωps

vths
. (D12)
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D.2. The electrostatic dielectric response at low frequencies
In this appendix, we perform a Taylor expansion of the electrostatic component E33 of the
dielectric tensor (D10) in ω̃s‖ � 1. Before carrying out the expansion, we first substitute
the identity

Πn(ṽs‖, ṽs⊥) = ω̃s‖Ξs(ṽs‖, ṽs⊥) + (
ṽs‖ − ζsn

) ∂ f̃s0

∂ṽs⊥
(D13)

into (D10), which then becomes

E33 = k2 −
∑

s

k2
Ds

1√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥

∂ f̃s0

∂ṽs⊥

+
∑

s

k2
Ds

[
ω̃s‖√

π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2

ζsn − ṽs‖

]
. (D14)

Now carrying out the Taylor expansion in ω̃s‖ � 1, we see that, to the leading order in this
expansion,

E33 ≈ k2 +
∑

s

k2
Ds

1√
π

∫ ∞

−∞
dṽs‖ f̃s0(ṽs‖, 0). (D15)

For the CE distribution

f̃s0(ṽs‖, 0) = exp
(−ṽ2

s‖
) {

1 + ηsAs(ṽs‖)ṽs‖ + εsCs(ṽs‖)ṽ2
s‖
}
, (D16)

we have

1√
π

∫ ∞

−∞
dṽs‖ f̃s0(ṽs‖, 0) = 1 + εs

2
√

π

∫ ∞

0
dṽs‖ ṽ2

s‖Cs(ṽs‖) exp
(−ṽ2

s‖
)
, (D17)

where the term in the CE distribution function proportional to ηs has vanished on
account of having odd parity with respect to ṽs‖. We conclude that the non-Maxwellian
contribution to (D17) is O(ηs, εs) in comparison with the Maxwellian contribution, and so
the electrostatic component of the dielectric tensor for low-frequency fluctuations is just

E33 ≈ k2 +
∑

s

k2
Ds, (D18)

or, writing (D18) explicitly in terms of ω̃s‖ and the plasma frequency ωps of species s,

E33 ≈ k2 +
∑

s

ω2
ps

ω2

2k2
‖

k2
ω̃2

s‖. (D19)

It follows that E(0)

33 and E(1)

33 defined by (2.99) are given by

E(0)

33 = 0, (D20a)

E(1)

33 = ω2
pe

ω2

∑
s

ZsTe

Ts

2k2
‖

k2
. (D20b)

where we have neglected the displacement current term (k � kDe), and the temperature of
species s is denoted by Ts.
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D.3. Existence of electrostatic instabilities for a CE plasma
That electrostatic instabilities can exist is most simply shown in the limit of purely parallel,
high-frequency fluctuations: k⊥ = 0, k‖ = k, ω̃s = ω̃s‖ � 1 and

� ≡ Re ω � Im ω ≡ γ. (D21)

For purely parallel modes, the only non-zero term in the sum of Bessel functions in
the electrostatic hot-plasma dispersion relation (D11) is the n = 0 term; thus, (D11)
simplifies to

E33 = k2 +
∑

s

k2
Ds

(
1√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽs⊥

∂ f̃s0

∂ṽs‖

1
ω̃s − ṽs‖

)
= 0. (D22)

Next, we expand (D22) around the real frequency � , using (D21); this gives

E33(ω, k) ≈ E33(�, k) + iγ
∂E33

∂ω
(�, k). (D23)

Taking the imaginary part of (D23) allows for an expression for γ to be derived in terms
of � :

γ ≈ −
[
∂ Re E33

∂ω
(�, k)

]−1

Im E33(�, k). (D24)

To calculate γ , we use

Re E33(�, k) = k2 +
∑

s

k2
Ds

(
1√
π

P
∫

dṽs‖

∫ ∞

0
dṽs⊥ ṽs⊥

∂ f̃s0

∂ṽs‖

1
ω̃s − ṽs‖

)
, (D25a)

Im E33(�, k) = −√
πk2

∫ ∞

0
dṽs⊥ ṽs⊥

∂ f̃s0

∂ṽs‖
(ω̃s, ṽs⊥) , (D25b)

where, to the leading order, ω̃s ≈ �/kvths. Now expanding (D25a) in ω̃s � 1, we find that

Re E33(�, k) ≈ k2 −
∑

s

k2
Ds

ω̃2
s

≈ k2

(
1 − ω2

pe

� 2

)
, (D26)

where we have integrated (D25a) by parts, used identity∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥ ṽs⊥ f̃s0

(
ṽs‖, ṽs⊥

) = √
π, (D27)

and neglected the small ion contribution to the dielectric tensor. We conclude that – as
expected – the real frequency of such modes is simply the plasma frequency: � ≈ ±ωpe.
This in turn implies that

ω̃e = kDe√
2k

� 1. (D28)

In other words, electrostatic modes in this limit are simply plasma oscillations with
wavelengths much greater than the Debye length.
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We immediately deduce that if � ≈ ωpe (without loss of generality, we can consider the
mode with � > 0), then

∂ Re E33

∂ω
(�, k) ≈ 2k2

ωpe
, (D29)

which in turn implies that γ is positive if and only if, for some k,

Im E33(ωpe, k) > 0. (D30)

For the electron CE distribution function (2.72), we have

∂ f̃e0

∂ṽe‖
= − exp

(−ṽ2
e

) {
2ṽe‖ + ηe

[(
2ṽ2

e‖ − 1
)

Ae(ṽe) − ṽ2
e‖
ṽe

A′
e(ṽe)

]

+ εe

[
2ṽe‖Ce(ṽe)

(
ṽ2

e‖ − ṽ2
e⊥
2

− 1
)

− ṽe‖
ṽe

(
ṽ2

e‖ − ṽ2
e⊥
2

)
C′

e(ṽe)

]}
. (D31)

As shown in Appendix B.2.1, for a Krook collision operator it follows that (assuming
ηR

e = ηu
e = 0)

Ae(ṽe) = − (ṽ2
e − 5

2

)
, (D32a)

Ce(ṽe) = −1. (D32b)

We then see that

Im E33(ωpe, k) = √
πk2

[
kDe√

2k
− ηe

(
k2

De

4k2
− 3

4

)(
k2

De

k2
− 1

)
− εe

kDe√
2k

(
k2

De

2k2
− 3

2

)]
exp

(
− k2

De

2k2

)
. (D33)

This expression changes sign from negative to positive when k � η1/3
e kDe, or k �

ε1/2
e kDe; thus, plasma waves with sufficiently long wavelengths are driven unstable

by the non-Maxwellian component of the CE distribution function. Physically, this is
the bump-on-tail instability; this arises because the distribution function is no longer
monotonically decreasing at (parallel) particle velocities v‖ � η−1/3

e vthe, or v‖ � η−1/3
e vthe,

and so plasma waves can extract energy from particles via the Landau resonance.
Substituting (D33) into (D24), the growth rate of instabilities satisfying k � kDe

becomes

γ ≈ ωpe

√
π

2
√

2

kDe

k

(
1 − ηe

k3
De

2
√

2k3
− εe

k2
De

2k2

)
exp

(
− k2

De

2k2

)
. (D34)

Maximising this expression with respect to k, it can then be shown that the peak growth
rate for CE electron-temperature-gradient-driven microinstabilities (εe = 0) is

γmax ≈ 3
√

π

4
η1/3

e exp
(−η−2/3

e − 1
)
ωpe, (D35)

at the wavenumber

kpeak ≈ η1/3
e√
2

[
1 − η2/3

e

2

]
kDe, (D36)
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whereas for CE electron-shear-driven microinstabilities (ηe = 0)

γmax ≈
√

π

2
ε1/2

e exp
(−ε−1

e − 1
)
ωpe, (D37)

at the wavenumber

kpeak ≈ ε1/2
e√
2

[
1 − εe

2

]
kDe. (D38)

D.4. Impossibility of electrostatic instabilities with ‘fast’ growth rates
The existence of electrostatic instabilities was demonstrated in Appendix (D.3); however,
the growth rates of the exemplified instabilities were shown to be exponentially small
in the parameters ηe or εe. In this appendix, we provide a proof that there cannot exist
electrostatic instabilities whose growth rate scales algebraically with ηs or εs.

To substantiate this claim properly, it is necessary to consider perturbations with
frequencies ω satisfying ω � k‖vths and ω � k‖vths separately.

D.4.1. Low-frequency electrostatic modes: ω � k‖vths

The impossibility of low-frequency electrostatic instabilities follows immediately from
(D18), which shows that the leading-order term in the ω̃s‖ � 1 expansion of the
electrostatic component of the dielectric tensor is non-zero. It follows that the electrostatic
component of the dielectric tensor is strictly positive at low frequencies. Since the
electrostatic component of the dielectric tensor must vanish in order for the electrostatic
dispersion relation (D11) to be satisfied, we conclude that there do not exist electrostatic
modes with ω � k‖vths, let alone instabilities.

D.4.2. Other electrostatic modes: ω � k‖vths

For all other electrostatic perturbations, we suppose that there exist microinstabilities
with growth rates which scale algebraically with ηs, εs, and then prove that that such a
supposition is incompatible with the hot-plasma electrostatic dispersion relation.

Consider some unstable perturbation satisfying the electrostatic dispersion relation
(D11), with complex frequency ω = � + iγ , and γ > 0. We then define

�̃s‖ ≡ �

k‖vths
, (D39a)

γ̃s‖ ≡ γ

k‖vths
, (D39b)

so that ω̃s‖ = �̃s‖ + iγ̃s‖. For unstable perturbations satisfying (D11), it follows from the
real and imaginary parts of the dispersion relation that

0 = k2 −
∑

s

k2
Ds

{
1√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

[
Πn(ṽs‖, ṽs⊥)

×
(
ṽs‖ − �̃s‖ + n/k‖ρ̃s

)
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

]}
, (D40a)

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


Kinetic stability of Chapman–Enskog plasmas 121

0 = γ
∑

s

k2
Dsμ

−1/2
s

{
1√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

[
Πn(ṽs‖, ṽs⊥)

× Jn(k⊥ρ̃sṽs⊥)2(
ṽs‖ − �̃s‖ + n/k‖ρ̃s

)2 + γ̃ 2
s‖

]}
, (D40b)

where μs ≡ me/ms, and we have utilised the fact that the Landau contour simplifies to the
real line for unstable perturbations. Using (D40b), we can eliminate part of (D40a) to give

0 = k2 −
∑

s

k2
Ds

{
1√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

[
Πn(ṽs‖, ṽs⊥)

×
(
ṽs‖ + n/k‖ρ̃s

)
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

]}
. (D41)

Next, we substitute for Πn(ṽs‖, ṽs⊥) using

Πn(ṽs‖, ṽs⊥) = Λs(ṽs‖, ṽs⊥) +
(

ṽs‖ + n
k‖ρ̃s

)
∂ f̃s0

∂ṽs⊥
, (D42)

to give

0 = k2 −
∑

s

k2
Ds

{
1√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥

∞∑
n=−∞

[
∂ f̃s0

∂ṽs⊥

(
ṽs‖ + n/k‖ρ̃s

)2
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

+Λs(ṽs‖, ṽs⊥)

(
ṽs‖ + n/k‖ρ̃s

)
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

]}
. (D43)

This expression is very helpful for contradicting the premise of the existence of unstable
electrostatic modes. We illustrate this claim with a simple example – a pure Maxwellian
distribution function – before considering the CE distribution.

For a Maxwellian distribution for which Λs(ṽs‖, ṽs⊥) = 0, and

∂ f̃s0

∂ṽs⊥
= −2ṽs⊥ exp

(−ṽ2
s

)
, (D44)

(D43) becomes

0 = k2 +
∑

s

k2
Ds

[
2√
π

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥ ṽs⊥ exp

(−ṽ2
s

)
×

∞∑
n=−∞

(
ṽs‖ + n/k‖ρ̃s

)2
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

]
. (D45)

The integrand on the right-hand side of (D45) is strictly positive – a contradiction.
Therefore, we recover the standard result that there cannot exist unstable perturbations
if the underlying distribution is Maxwellian.
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We now consider the CE distribution (2.72). In order for an instability to arise, it is
clear that the integrand on the right-hand side of (D43) has to be positive – and further,
the contribution of the integrand from that interval has to dominate all other (negative)
contributions to the total integral. To prove that these conditions cannot be satisfied for
the CE distribution function, we consider the two terms in the integrand on the right-hand
side of (D43) separately.

For the first term
∂ f̃s0

∂ṽs⊥

(
ṽs‖ + n/k‖ρ̃s

)2
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖
> 0 (D46)

if and only if
∂ f̃s0

∂ṽs⊥
< 0. (D47)

For the CE distribution function (2.72),

∂ f̃s0

∂ṽs⊥
= −ṽs⊥ exp

(−ṽ2
s

) {
2 + ηs

[
2ṽs‖As(ṽs) − ṽs‖

ṽs
A′

s(ṽs)

]
+ εs

[
2Cs(ṽs)

(
ṽ2

s‖ − ṽ2
s⊥
2

+ 1
2

)
− 1

ṽs

(
ṽ2

s‖ − ṽ2
s⊥
2

)
C′

s(ṽs)

]}
. (D48)

Thus, for ṽs⊥ � 1 and ṽs‖ � 1, we see that ∂ f̃s0/∂ṽs⊥ < 0, because ηs, εs � 1. The only
values of ṽs where this inequality could be reversed are large: ṽs � 1. Assuming that
As(ṽs) ∼ ṽ

ιη
s and Cs(ṽs) ∼ ṽιε

s for ṽs � 1, where ιη and ιε are constants, it follows that, for

ṽs � η−1/(ιη+1)
s , ε−1/(ιε+2)

s , (D 49a,b)

the non-Maxwellian terms are comparable to the Maxwellian ones. However, for such ṽs

∂ f̃s0

∂ṽs⊥
∼ η−1/(ιη+1)

s exp
(−η−2/(ιη+1)

s

)
, ε−1/(ιε+1)

s exp
(−ε−2/(ιε+1)

s

)
, (D50a,b)

while (
ṽs‖ + n/k‖ρ̃s

)2
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖
�

�̃ 2
s‖

γ̃ 2
s‖

, (D51)

if it is assumed that |� | � |γ |. Since we assumed that γ̃s‖ is only algebraically small
in εs and/or ηs, we conclude that the contribution to the integrand on the right-hand
side of (D43) from ṽs satisfying (D49a,b) is asymptotically small compared with other
contributions, and thus cannot change the sign of the total integral.

For the second term, we consider the nth term of the sum independently. Recalling from
(2.92) that

Λs(ṽs‖, ṽs⊥) = −ṽs⊥ exp
(−ṽ2

s

) [
ηsAs(ṽs) − 3εsCs(ṽs)ṽs‖

]
, (D52)

it follows that for ṽs ∼ 1

Λs(ṽs‖, ṽs⊥)

∂ f̃s0/∂ṽs⊥
∼ ηs

ṽs‖ + n/k‖ρ̃s
,

εs

ṽs‖ + n/k‖ρ̃s
. (D53)

Thus, for ṽs ∼ 1, the non-Maxwellian term is only comparable to the Maxwellian one
for |ṽs‖ + n/k‖ρ̃s| � ηs, εs. However, this non-Maxwellian contribution is in fact always
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smaller than other non-Maxwellian contributions, which by (D53) are in turn smaller than
the equivalent Maxwellian contributions.

Depending on the magnitude of |n/k‖ρ̃s|, this claim is justified in two different ways.

(i) |n/k‖ρ̃s| � 1: in this case, let the interval of non-dimensionalised parallel
velocities ṽs‖ satisfying |ṽs‖ + n/k‖ρ̃s| � ηs, εs be denoted by I. Then, there exists
another finite interval of ṽs‖ ∼ 1 such that |ṽs‖ + n/k‖ρ̃s| ∼ 1. It therefore follows
that ∫

I
dṽs‖ Λs(ṽs‖, ṽs⊥)

(
ṽs‖ + n/k‖ρ̃s

)
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖

∼ η2
s

∫ ∞

−∞
dṽs‖ Λs(ṽs‖, ṽs⊥)

(
ṽs‖ + n/k‖ρ̃s

)
Jn(k⊥ρ̃sṽs⊥)2(

ṽs‖ − �̃s‖ + n/k‖ρ̃s
)2 + γ̃ 2

s‖
, (D54)

where we have assumed that |�̃s‖| � |γ̃s‖| (and also |�̃s‖| � 1). The claim
immediately follows.

(ii) |n/k‖ρ̃s| � 1: in this case, it follows immediately that |ṽs‖ + n/k‖ρ̃s| � ηs, εs if and
only if ṽs‖ � 1. Via a similar argument to that presented for large ṽs‖ for the first term
in the integrand on the right-hand side of (D43), contributions to the total integral
will be exponentially small in ηs, εs, and thus are unable to reverse the sign of the
total integral.

Thus, we have confirmed that there cannot exist electrostatic instabilities with growth
rates which are algebraic in small parameters ηs, εs.

Appendix E. Weak growth of high-frequency perturbations

In this appendix, we present an argument that all perturbations in a CE plasma with
complex frequency ω = � + iγ satisfying the ‘high-frequency’ conditions |ω| � k‖vths
and |� | � |γ | for all particle species have a growth rate that is at most exponentially small
in ηs, and εs. This argument does not prove that all perturbations satisfying |ω| � k‖vths in
a CE plasma are stable, in that it does not apply to perturbations whose damping or growth
rate is not small compared with their frequency.

E.1. Deriving conditions for stability
We begin with the result that for any linear electromagnetic perturbation with real
frequency � > 0, growth rate γ , wavevector k and electric-field perturbation

δE = δ̂E exp {i (k · r − � t) + γ t} , (E1)

the dissipation rate Q of the perturbation is related to the anti-Hermitian part of the plasma
dielectric tensor evaluated at the perturbation’s real frequency (Pitaevskii & Lifshitz 1981):

Q = i�δ̂E
∗ · EA

(k,�) · δ̂E, (E2)

where the anti-Hermitian part EA is defined by

EA = 1
2

(
E − E†)

, (E3)

with E† representing the conjugate transpose of E. If the mode is damped, then the
dissipation rate is positive: Q > 0. Since EA is anti-Hermitian, it is diagonalisable in some

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


124 A.F.A. Bott, S.C. Cowley and A.A. Schekochihin

orthonormal basis {êa, êb, êc}, with imaginary eigenvalues (−iςa,−iςb,−iςc), where ςa,
ςb and ςc are real numbers. The dissipation rate Q can be written in terms of these
eigenvectors as

Q = �
(
ςa

∣∣êa · δ̂E
∣∣2 + ςb

∣∣êb · δ̂E
∣∣2 + ςc

∣∣êc · δ̂E
∣∣2) . (E4)

Thus, for unstable perturbations to exist, it must be the case that at least one of the numbers
ςa, ςb and ςc has to be negative (without loss of generality, we will assume ςa < 0); if
this is the case, then the dissipation rate (and hence the growth rate) is a linear function
of ςa. We will show that if |ω| � k‖vths, ςa, ςb and ςc can only be negative if they are
exponentially small in ηs and εs.

To prove this, consider the characteristic polynomial

�(ς) ≡ det
[
EA

(k,�) − ς I
]

(E5)

of EA evaluated at the real frequency � and wavevector k; it is a cubic, and thus can be
written

�(ς) = −ς 3 − i�2ς
2 + �1ς + i�0, (E6)

where �0, �1 and �2 depend on EA. Since EA has eigenvalues (−iςa,−iςb,−iςc), it follows
that

�(ς) = − (ς + iςa) (ς + iςb) (ς + iςc)

= −ς 3 − iς 2 (ςa + ςb + ςc) + ς (ςaςb + ςbςc + ςcςa) + iςaςbςc, (E7)

and so

�0 = ςaςbςc, (E8a)

�1 = ςaςb + ςbςc + ςcςa, (E8b)

�2 = ςa + ςb + ςc. (E8c)

This implies that ςa, ςb and ςc are positive if �0, �1 and �2 are positive. Furthermore, �0,
�1 and �2 can be used to provide bounds for ςa, ςb and ςc using an inequality discovered
by Laguerre (1880):

ς− � ςa, ςb, ςc � ς+, (E9a–c)

where

ς± = −�2

3
± 2

3

√
�2

2 − 3�2
1. (E10)

In particular, the expression (E10) for the root bounds implies that if �1 and �2 are
exponentially small in ηs and εs, then so are ςa, ςb and ςc.
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We can also evaluate �(ς) in terms of the components of EA in the coordinate basis
{x̂, ŷ, ẑ}:

�(ς) = −ς 3 + ς 2 (EA
xx + EA

yy + EA
zz

)
− ς

(
EA

xxE
A
yy + EA

yyE
A
zz + EA

zzE
A
xx + (EA

xy)
2 + (EA

yz)
2 + (EA

xz)
2)+ det EA

,

(E11)

where we have used the symmetries (2.87a–c) of the dielectric tensor to give �(ς) in terms
of only the (six) independent components of EA. (E11) gives

�0 = −i det EA
, (E12a)

�1 = −EA
xxE

A
yy − EA

yyE
A
zz − EA

zzE
A
xx − (EA

xy)
2 − (EA

yz)
2 − (EA

xz)
2, (E12b)

�2 = −i
(
EA

xx + EA
yy + EA

zz

)
. (E12c)

The anti-Hermiticity of EA implies that Im EA
xx = −iEA

xx, Im EA
yy = −iEA

yy, Im EA
zz = −iEA

zz

and Im EA
xz = −iEA

xz, while Re EA
xy = EA

xy and Re EA
yz = EA

yz, as is indeed necessary for �0,
�1, and �2 to be real numbers. Thus, in order to establish stability it is sufficient for our
purposes to show that

i det EA
< 0, (E13a)

EA
xxE

A
yy + EA

yyE
A
zz + EA

zzE
A
xx + (EA

xy)
2 + (EA

yz)
2 + (EA

xz)
2 < 0, (E13b)

i
(
EA

xx + EA
yy + EA

zz

)
< 0. (E13c)

When these inequalities are not strictly satisfied, then we can instead estimate the
magnitude of (E12b) and (E12c) to determine bounds for ςa, ςb and ςc.

E.2. Evaluating conditions for stability
Combining (2.74) with (2.77) gives an expression for the general plasma dielectric tensor
(assuming k‖ > 0 without loss of generality):

E = I +
∑

s

ω2
ps

ω2

[
2√
π

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)ẑẑ

+ ω̃s‖
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

Rsn

ζsn − ṽs‖

]
, (E14)

where all salient quantities are defined in § 2.4.1. Now evaluating the anti-Hermitian part
of (E14) for ω = � , ω̃s‖ = �̃s‖, we find

EA = −i
∑

s

ω2
ps

� 2

[
2
√

π�̃s‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥

∞∑
n=−∞

Ξs(ζsn, ṽs⊥)Rsn(ζsn, ṽs⊥)

]
. (E15)

We now consider stability conditions (E13) in turn.

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


126 A.F.A. Bott, S.C. Cowley and A.A. Schekochihin

First evaluating (E13c), it can be shown that

i
(
EA

xx + EA
yy + EA

zz

) = 2
√

π
∑

s

ω2
ps

� 2
�̃s‖

∞∑
n=−∞

{∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ζsn, ṽs⊥)

×
[

n2Jn(k⊥ρ̃sṽs⊥)2

k2
⊥ρ̃2

s ṽ
2
s⊥

+ J′
n(k⊥ρ̃sṽs⊥)2 + ζ 2

sn

ṽ2
s⊥

Jn(k⊥ρ̃sṽs⊥)2

]}
.

(E16)

It is clear that the right-hand side (E16) is negative if

Ξs(ζsn, ṽs⊥) < 0. (E17)

For a Maxwellian distribution,

Ξs(ζsn, ṽs⊥) = ∂ f̃s0

∂ṽs⊥
(ζsn, ṽs⊥) = −2ṽs⊥ exp

(−ṽ2
s⊥
)

exp
(−ζ 2

sn

)
< 0, (E18)

and thus i(EA
xx + EA

yy + EA
zz) < 0, as required. For the CE distribution (2.72)

Ξs(ṽs‖, ṽs⊥) = −ṽs⊥ exp
(−ṽ2

s

) {
2 + ηs

[
2ṽs‖As(ṽs) − ṽs‖

ṽs
A′

s(ṽs)

]
+ εs

[
2Cs(ṽs)

(
ṽ2

s‖ − ṽ2
s⊥
2

+ 1
2

)
− 1

ṽs

(
ṽ2

s‖ − ṽ2
s⊥
2

)
C′

s(ṽs)

]}
− ṽs⊥

ω̃s‖
exp

(−ṽ2
s

) [
ηsAs(ṽs) − 3εsCs(ṽs)ṽs‖

]
. (E19)

For |ω̃s‖| � 1, it is clear for ṽs � 1 that the largest contribution to Ξs(ṽs‖, ṽs⊥) comes
from the Maxwellian term; the non-Maxwellian terms are O(ηs, εs). Thus, for ζsn, ṽs⊥ � 1,
Ξs(ζsn, ṽs⊥) < 0. As discussed in Appendix (D.4.2), for ζsn � 1, the sign of Ξs(ζsn, ṽs⊥) <

0 can, in principle, be reversed. However, the magnitude of Ξs(ζsn, ṽs⊥) is exponentially
small for such ζsn, and thus so is �2.

The remaining conditions (E13a) and (E13b) are much more tedious to treat; thus for
simplicity, we explicitly consider only the case when a single particle species provides the
dominant contribution to the dielectric tensor. Under this assumption, it can be shown that

EA
xxE

A
yy + EA

yyE
A
zz + EA

zzE
A
xx + (EA

xy)
2 + (EA

yz)
2 + (EA

xz)
2

= 2π
ω4

ps

� 4
�̃ 2

s‖

∞∑
m=−∞

∞∑
n=−∞

{∫ ∞

0
dṽ

(1)

s⊥

∫ ∞

0
dṽ

(2)

s⊥ ṽ
(1)

s⊥ ṽ
(2)

s⊥

×
[
Ξs(ζsm, ṽ

(1)

s⊥ )Ξs(ζsn, ṽ
(2)

s⊥ )Amn (αs, ṽ
(1)

s⊥ , ṽ
(2)

s⊥ )
]}

, (E20)
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where αs ≡ k⊥ρ̃s and

Amn(αs, ṽ
(1)

s⊥ , ṽ
(2)

s⊥ )

≡ 1
α2

s

[
mṽ

(2)

s⊥ Jm(αsṽ
(1)

s⊥ )J′
n(αsṽ

(2)

s⊥ ) − nṽ
(1)

s⊥ J′
m(αsṽ

(1)

s⊥ )Jn(αsṽ
(2)

s⊥ )
]2

+ 1
α2

s

[
mζsnṽ

(2)

s⊥ Jm(αsṽ
(1)

s⊥ )J′
n(αsṽ

(2)

s⊥ ) − nζsmṽ
(1)

s⊥ J′
m(αsṽ

(1)

s⊥ )Jn(αsṽ
(2)

s⊥ )
]2

+
[
ζsnṽ

(2)

s⊥ Jm(αsṽ
(1)

s⊥ )J′
n(αsṽ

(2)

s⊥ ) − ζsmṽ
(1)

s⊥ J′
m(αsṽ

(1)

s⊥ )Jn(αsṽ
(2)

s⊥ )
]2

. (E21)

Being a sum of positive terms, Amn is positive for all n and m, and thus we again conclude
that the integrand on the right-hand side of (E20) is negative if Ξs(ζsm, ṽs⊥) < 0 and
Ξs(ζsn, ṽs⊥) < 0. Via similar reasoning to that applied to �2 in the previous paragraph,
it follows that for the CE distribution function, the only way in which this condition can be
violated is for either ζsm � 1 or ζsn � 1 – both of which give rise to exponentially small
terms. Thus, either �1 > 0 or �1 is exponentially small in ηs and εs.

Finally, for (E13a), it is necessary to evaluate det EA; this becomes (after much tedious
algebra)

det EA = −4
3

iπ3/2
ω6

ps

� 6
�̃ 3

s‖

×
∞∑

m=−∞

∞∑
n=−∞

∞∑
l=−∞

{∫ ∞

0
dṽ

(1)

s⊥

∫ ∞

0
dṽ

(2)

s⊥

∫ ∞

0
dṽ

(3)

s⊥ ṽ
(1)

s⊥ ṽ
(2)

s⊥ ṽ
(3)

s⊥

×
[
Ξs(ζsm, ṽ

(1)

s⊥ )Ξs(ζsn, ṽ
(2)

s⊥ )Ξs(ζsl, ṽ
(3)

s⊥ )Bmnl (αs, ṽ
(1)

s⊥ , ṽ
(2)

s⊥ , ṽ
(3)

s⊥ )
] }

, (E22)

where

Bmnl(αs, ṽ
(1)

s⊥ , ṽ
(2)

s⊥ , ṽ
(3)

s⊥ )

≡
{

mJm(αsṽ
(1)

s⊥ )
[
ṽ

(1)

s⊥ ζsnJn(αsṽ
(2)

s⊥ )J′
l(αsṽ

(3)

s⊥ ) − ṽ
(3)

s⊥ ζslJ′
n(αsṽ

(2)

s⊥ )Jl(αsṽ
(3)

s⊥ )
]

+ nJn(αsṽ
(1)

s⊥ )
[
ṽ

(2)

s⊥ ζslJl(αsṽ
(2)

s⊥ )J′
m(αsṽ

(3)

s⊥ ) − ṽ
(1)

s⊥ ζsmJ′
l(αsṽ

(2)

s⊥ )Jm(αsṽ
(3)

s⊥ )
]

+ lJl(αsṽ
(1)

s⊥ )
[
ṽ

(3)

s⊥ ζsmJm(αsṽ
(2)

s⊥ )J′
n(αsṽ

(3)

s⊥ ) − ṽ
(2)

s⊥ ζsnJ′
m(αsṽ

(2)

s⊥ )Jn(αsṽ
(3)

s⊥ )
]}2

. (E23)

Similarly to Amn, Bmnl is strictly positive for all m, n and l, meaning that the integrand
on the right-hand side of (E22) is negative if Ξs(ζsm, ṽs⊥) < 0, Ξs(ζsn, ṽs⊥) < 0 and
Ξs(ζsl, ṽs⊥) < 0. For the CE distribution, exactly the same argument as before applies
to show that either �0 > 0 or it is exponentially small.

In summary, we have now verified that the only situation in which the stability
conditions (E13) are not satisfied are those for which �0, �1 and �2 are exponentially small
in ηs and εs. In the latter case, considerations of bounds (E9a–c) and (E10) implies that ςa,
ςb, and ςc are also all exponentially small in ηs and εs. The claim of the appendix follows.
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Appendix F. Properties of leading-order expansion E(0) of dielectric tensor (2.74) in
ω̃s‖ � 1 for a weakly anisotropic distribution function

F.1. Symmetries of E(0)
s in coordinate basis {x̂, ŷ, ẑ}

In this appendix, we show that the leading-order expansion E(0)
s (cf. (2.100a)) of the

dielectric tensor Es of species s (cf. (2.96)) in ω̃s‖ � 1 arising in a non-relativistic plasma
with only weak anisotropy of its particle distribution function obeys additional symmetries
(2.101), viz.

(E(0)
s )xz = −k⊥

k‖
(E(0)

s )xx, (F1a)

(E(0)
s )yz = k⊥

k‖
(E(0)

s )xy, (F1b)

(E(0)
s )zz = k2

⊥
k2

‖
(E(0)

s )xx, (F1c)

when kρs ∼ 1. The term ‘weak anisotropy’ means that the magnitude of angular
anisotropy – mathematically represented by the function Λs defined by (2.84) – satisfies
Λs � ω̃s‖ for all particle species when ṽs ∼ 1.

We begin the proof by substituting (2.77) into (2.96) to give

Es ≡ ω2
ps

ω2

[
2√
π

k‖
|k‖|

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)ẑẑ

+ ω̃s‖
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

Rsn

ζsn − ṽs‖

]
. (F2)

Then, under the assumed ordering ω̃s‖ ∼ Λs, the function Ξs defined by (2.85) satisfies
Ξs ∼ 1 for ṽs ∼ 1; therefore, Es has order-unity elements as ω̃s‖ → 0. Let us expand Es
in a Taylor series around ω̃s‖ = 0:

Es = ω̃s‖E
(0)
s + δEs, (F3)

where δEs = O(ω̃2
s‖), and the matrix elements of E(0)

s are given below:

(E(0)
s )xx ≡ − 2ω2

ps√
πω2

∞∑
n=−∞

[
n2

k2
⊥ρ̃2

s

∫
CL

dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2

]
, (F4a)

(E(0)
s )xy ≡ − 2iω2

ps√
πω2

∞∑
n=−∞

[
n

k⊥ρ̃s

∫
CL

dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ ṽs⊥Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)J′

n(k⊥ρ̃sṽs⊥)

]
, (F4b)
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(E(0)
s )xz ≡ − 2ω2

ps√
πω2

∞∑
n=−∞

[
n

k⊥ρ̃s

∫
CL

ṽs‖ dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2

]
, (F4c)

(E(0)
s )yx ≡ −(E(0)

s )xy, (F4d)

(E(0)
s )yy ≡ − 2ω2

ps√
πω2

∞∑
n=−∞

[∫
CL

dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)J′
n(k⊥ρ̃sṽs⊥)2

]
, (F4e)

(E(0)
s )yz ≡ − 2iω2

ps√
πω2

∞∑
n=−∞

[∫
CL

ṽs‖ dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ ṽs⊥Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)J′

n(k⊥ρ̃sṽs⊥)

]
, (F4f )

(E(0)
s )zx ≡ (E(0)

s )xz, (F4g)

(E(0)
s )zy ≡ −(E(0)

s )yz, (F4h)

(E(0)
s )zz ≡ 2ω2

ps√
πω̃s‖ω2

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

− 2ω2
ps√

πω2

∞∑
n=−∞

∫
CL

ṽ2
s‖ dṽs‖

ṽs‖ + n/|k‖|ρ̃s

∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2. (F4i)

Next, noting that

ṽs‖
ṽs‖ + n/|k‖|ρ̃s

= 1 − n
|k‖|ρ̃s

1
ṽs‖ + n/|k‖|ρ̃s

, (F5)

as well as
∞∑

n=−∞

n
k⊥ρ̃s

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2 = 0, (F6)

we see that the double integral in (F4c) can be rearranged to give

(E(0)
s )xz = 2ω2

ps√
πω2

∞∑
n=−∞

[
n2

|k‖|k⊥ρ̃2
s

∫
CL

dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2

]
,

= − k⊥
|k‖|(E

(0)
s )xx. (F7)
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Similarly, it can be shown that

(E(0)
s )yz = 2iω2

ps√
πω2

∞∑
n=−∞

[
n

|k‖|ρ̃s

∫
CL

dṽs‖
ṽs‖ + n/|k‖|ρ̃s

×
∫ ∞

0
dṽs⊥ ṽs⊥Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)J′

n(k⊥ρ̃sṽs⊥)

]
,

= k⊥
|k‖|(E

(0)
s )xy. (F8)

Finally, (E(0)
s )zz can also be written in terms of (E(0)

s )xx: because

ṽ2
s‖

ṽs‖ + n/|k‖|ρ̃s
= ṽs‖ − n

|k‖|ρ̃s
+ n2

|k‖|2ρ̃2
s

1
ṽs‖ + n/|k‖|ρ̃s

, (F9)

it follows that

(E(0)
s )zz = k2

⊥
k2

‖
(E(0)

s )xx + 2ω2
ps√

πω̃s‖ω2

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

− 2ω2
ps√

πω2

∞∑
n=−∞

∫ ∞

−∞
ṽs‖ dṽs‖

∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2

+ 2ω2
ps√

πω2

∞∑
n=−∞

n
k⊥ρ̃s

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥ Ξs(ṽs‖, ṽs⊥)Jn(k⊥ρ̃sṽs⊥)2

= k2
⊥

k2
‖
(E(0)

s )xx − 2ω2
ps√

πω2

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥ ṽs‖

∂ f̃s0

∂ṽs⊥

+ 2ω2
ps√

πω̃s‖ω2

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)

[
1 −

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2

]

= k2
⊥

k2
‖
(E(0)

s )xx + 2ω2
ps√

πω2

∫ ∞

−∞
dṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥), (F10)

where we have used the identity

∞∑
n=−∞

Jn(k⊥ρ̃sṽs⊥)2 = 1. (F11)

Thus, we conclude that since the anisotropy is assumed small,

(E(0)
s )zz = k2

⊥
k2

‖
(E(0)

s )xx + O(ω̃s‖), (F12)

completing the proof.
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F.2. Evaluating the dielectric tensor in coordinate basis {e1, e2, e3}
To demonstrate that the components of the dielectric tensor E(0)

s are given by (2.104), viz.

(E(0)
s )11 = k2

k2
‖
(E(0)

s )xx, (F13a)

(E(0)
s )12 = −(E(0)

s )21 = k
k‖

(E(0)
s )xy, (F13b)

(E(0)
s )22 = (E(0)

s )yy, (F13c)

we use (F1) to express Es
(0) in the form

E(0)
s = (E(0)

s )xxx̂x̂ + (E(0)
s )xy

(
x̂ŷ − ŷx̂

)+ (E(0)
s )yyŷŷ

− k⊥
|k‖|(E

(0)
s )xx

(
x̂ẑ + ẑx̂

)+ k⊥
|k‖|(E

(0)
s )xy

(
ŷẑ − ẑŷ

)+ k2
⊥

k2
‖
(E(0)

s )xxẑẑ. (F14)

Noting that

k̂ = k⊥
k

x̂ + k‖
k

ẑ, (F15a)

ŷ × k̂ = k‖
k

x̂ − k⊥
k

ẑ, (F15b)

we can rewrite (F14) as

E(0)
s = k2

k2
‖
(E(0)

s )xx

(
ŷ × k̂

) (
ŷ × k̂

)
+ k

|k‖|(E
(0)
s )xy

[(
ŷ × k̂

)
ŷ − ŷ

(
ŷ × k̂

)]
+ (E(0)

s )yyŷŷ (F16)

= k2

k2
‖
(E(0)

s )xxe1e1 + k
|k‖|(E

(0)
s )xy (e1e2 − e2e1) + (E(0)

s )yye2e2, (F17)

leading to the desired results (F13). In addition, we see that E(0)
s · k̂ = 0; thus, the results

(2.105) claiming that certain components of Es are small in ω̃s‖ are justified.

Appendix G. Dielectric tensor components for the CE distribution function (2.8)

In this appendix, we calculate the components of the dielectric tensor arising from
the CE distribution function (2.8), with isotropic functions AT

e (ṽe), AR
e (ṽe), Au

e(ṽe),
Ce(ṽe), Ai(ṽi) and Ci(ṽi) chosen as appropriate for a Krook collision operator (see
Appendix B.2.1), viz.

AT
e (ṽe) = − (ṽ2

e − 5
2

)
, (G1a)

AR
e (ṽe) = −1, (G1b)

Au
e(ṽe) = 0, (G1c)

Ai(ṽi) = − (ṽ2
i − 5

2

)
, (G1d)

Ce(ṽe) = −1, (G1e)

Ci(ṽi) = −1. (G1f )
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This, via (2.108), allows for the dielectric tensor Es to be calculated order by order in ω̃s‖.
We carry out these calculations in the case of non-relativistic fluctuations, and so

E ≈ 4πi
ω

σ =
∑

s

Es, (G2)

where we remind the reader that (cf. (F2))

Es = ω2
ps

ω2

[
2√
π

k‖
|k‖|

∫ ∞

−∞
dṽs‖ ṽs‖

∫ ∞

0
dṽs⊥ Λs(ṽs‖, ṽs⊥)ẑẑ

+ω̃s‖
2√
π

∫
CL

dṽs‖

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(ṽs‖, ṽs⊥)

∞∑
n=−∞

Rsn

ζsn − ṽs‖

]
, (G3)

ζsn ≡ ω̃s‖ − n
|k‖|ρ̃s

, (G4)

f̃s0(ṽs‖, ṽs⊥) ≡ π3/2v3
ths

ns0
fs0

(
k‖
|k‖|vthsṽs‖, vthsṽs⊥

)
, (G5)

Λs(ṽs‖, ṽs⊥) ≡ ṽs⊥
∂ f̃s0

∂ṽs‖
− ṽs‖

∂ f̃s0

∂ṽs⊥
, (G6)

Ξs(ṽs‖, ṽs⊥) ≡ ∂ f̃s0

∂ṽs⊥
+ Λs(ṽs‖, ṽs⊥)

ω̃s‖
, (G7)

and

(Rsn)xx ≡ n2Jn(k⊥ρ̃sṽs⊥)2

k2
⊥ρ̃2

s ṽ
2
s⊥

, (G8a)

(Rsn)xy ≡ inJn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥)

k⊥ρ̃sṽs⊥
, (G8b)

(Rsn)xz ≡ nJn(k⊥ρ̃sṽs⊥)2

k⊥ρ̃sṽs⊥

k‖ṽs‖
|k‖|ṽs⊥

, (G8c)

(Rsn)yx ≡ −(Rsn)xy (G8d)

(Rsn)yy ≡ J′
n(k⊥ρ̃sṽs⊥)2, (G8e)

(Rsn)yz ≡ inJn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥)

k‖ṽs‖
|k‖|ṽs⊥

, (G8f )

(Rsn)zx ≡ (Rsn)xz (G8g)

(Rsn)zy ≡ −(Rsn)yz (G8h)

(Rsn)zz ≡ ṽ2
s‖

ṽ2
s⊥

Jn(k⊥ρ̃sṽs⊥)2. (G8i)
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The components of the dielectric tensor Es in coordinate basis {e1, e2, e3} are related to
the components in coordinate basis {x̂, ŷ, ẑ} by

(Es)11 = k2
‖

k2
(Es)xx − 2k‖k⊥

k2
(Es)xz + k2

⊥
k2

(Es)zz, (G9a)

(Es)12 = k‖
k

(Es)xy + k⊥
k

(Es)yz, (G9b)

(Es)13 = k‖k⊥
k2

[
(Es)xx − (Es)zz

]+
(

k2
‖

k2
− k2

⊥
k2

)
(Es)xz, (G9c)

(Es)21 = −(Es)12, (G9d)

(Es)22 = (Es)yy, (G9e)

(Es)23 = −k⊥
k

(Es)xy + k‖
k

(Es)yz, (G9f )

(Es)31 = (Es)13, (G9g)

(Es)32 = −(Es)23, (G9h)

(Es)33 = k2
⊥

k2
(Es)xx + 2k‖k⊥

k2
(Es)xz + k2

‖
k2

(Es)zz. (G9i)

For clarity, we calculate separately the Maxwellian contribution M s of the total CE
distribution function and the non-Maxwellian contribution Ps associated with the CE
electron friction, temperature-gradient and shear terms to Es – viz. we decompose Es
as follows (cf. (2.97)):

Es = ω2
ps

ω2
(M s + Ps) . (G10)

G.1. Maxwellian distribution
G.1.1. General dielectric tensor

Consider a non-dimensionalised Maxwellian distribution function

f̃s(ṽs‖, ṽs⊥) = exp
(−ṽ2

s

)
. (G11)

The Maxwellian is isotropic, so (G6) gives

Λs(ṽs‖, ṽs⊥) = 0, (G12)

while (G7) becomes

Ξs(ṽs‖, ṽs⊥) = −2ṽs⊥ exp
(−ṽ2

s

)
. (G13)
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Substituting this into (G3) gives

(M s)xx = 4√
π

ω̃s‖
∞∑

n=−∞

[
n2

k2
⊥ρ̃2

s

∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) ]

, (G14a)

(M s)xy = 4i√
π

ω̃s‖
∞∑

n=−∞

[
n

k⊥ρ̃s

∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Jn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥) exp

(−ṽ2
s⊥
) ]

, (G14b)

(M s)xz = 4√
π

ω̃s‖
∞∑

n=−∞

[
n

k⊥ρ̃s

∫
CL

ṽs‖ exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

(G14c)

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) ]

, (G14d)

(M s)yx = (M s)xy, (G14e)

(M s)yy = 4√
π

ω̃s‖
∞∑

n=−∞

[∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ3

s⊥J′
n(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) ]

, (G14f )

(M s)yz = − 4i√
π

ω̃s‖
∞∑

n=−∞

[∫
CL

ṽs‖ exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Jn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥) exp

(−ṽ2
s⊥
) ]

, (G14g)

(M s)zx = (M s)xz, (G14h)

(M s)zy = −(M s)yz, (G14i)

(M s)zz = 4√
π

ω̃s‖
∞∑

n=−∞

[∫
CL

ṽ2
s‖ exp

(−ṽ2
s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) ]

. (G14j)

Using the integral identities

1√
π

∫
CL

u exp
(−u2

)
du

u − z
= 1 + zZ(z) , (G15a)
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1√
π

∫
CL

u2 exp
(−u2

)
du

u − z
= z [1 + zZ(z)] , (G15b)

involving the plasma dispersion function, and the identities∫ ∞

0
dt tJn(αt)2 exp

(−t2) = 1
2

exp
(

−α2

2

)
In

(
α2

2

)
, (G16a)∫ ∞

0
dt t2Jn(αt)J′

n(αt) exp
(−t2) = α

4
exp

(
−α2

2

)[
I′

n

(
α2

2

)
− In

(
α2

2

)]
, (G16b)∫ ∞

0
dt t3J′

n(αt)2 exp
(−t2) = 1

4
exp

(
−α2

2

){
2n2

α2
In

(
α2

2

)
−α2

[
I′

n

(
α2

2

)
− In

(
α2

2

)]}
, (G16c)

involving Bessel functions (here α is a real number), we obtain expressions for the
dielectric components (G14) in terms of special functions:

(M s)xx = 2ω̃s‖
∞∑

n=−∞

n2

k2
⊥ρ̃2

s

Z(ζsn) exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G17a)

(M s)xy = iω̃s‖
∞∑

n=−∞
nZ(ζsn) exp

(
−k2

⊥ρ̃2
s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G17b)

(M s)xz = 2ω̃s‖
∞∑

n=−∞

n
k⊥ρ̃s

[1 + ζsnZ(ζsn)] exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G17c)

(M s)yx = (M s)xy, (G17d)

(M s)yy = ω̃s‖
∞∑

n=−∞
Z(ζsn)

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

n

(
k2

⊥ρ̃2
s

2

)]
, (G17e)

(M s)yz = −iω̃s‖
∞∑

n=−∞
k⊥ρ̃s [1 + ζsnZ(ζsn)]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G17f )

(M s)zx = (M s)xz, (G17g)

(M s)zy = −(M s)yz, (G17h)

(M s)zz = 2ω̃s‖
∞∑

n=−∞
ζsn [1 + ζsnZ(ζsn)] exp

(
−k2

⊥ρ̃2
s

2

)
In

(
k2

⊥ρ̃2
s

2

)
. (G17i)

The components of the dielectric tensor (G10) in coordinate basis {e1, e2, e3} then follow
from (G9), although we do not write these out explicitly.
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G.1.2. Dielectric tensor in low-frequency limit, {x̂, ŷ, ẑ} coordinate frame
Now, to consider the low-frequency limit ω̃s‖ � 1, we Taylor expand (G17) in ω̃s‖.

Noting that ω̃s‖ only appears via the argument ζsn = ω̃s‖ − n/|k‖|ρ̃s, we use the differential
identity Z′(z) = −2[1 + zZ(z)] to obtain the expansions

Z(ζsn) = Z
(

− n
|k‖|ρ̃s

)
− 2ω̃s‖

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]
+ O(ω̃2

s‖), (G18a)

1 + ζsnZ(ζsn) = 1 − n
|k‖|ρ̃s

Z
(

− n
|k‖|ρ̃s

)
+ ω̃s‖

[(
1 − 2n2

|k‖|2ρ̃2
s

)
Z
(

− n
|k‖|ρ̃s

)
+ 2n

|k‖|ρ̃s

]
+ O(ω̃2

s‖), (G18b)

ζsn [1 + ζsnZ(ζsn)] = − n
|k‖|ρ̃s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]
+ ω̃s‖

[
1 − 2n2

|k‖|2ρ̃2
s

− 2n
|k‖|ρ̃s

(
1 − n2

|k‖|2ρ̃2
s

)
Z
(

− n
|k‖|ρ̃s

)]
+ O(ω̃2

s‖). (G18c)

Then, expanding the dielectric tensor as

M s = ω̃s‖M (0)
s + ω̃2

s‖M (1)
s + O(ω̃3

s‖), (G19)

we have

(M (0)
s )xx = 2

∞∑
n=−∞

n2

k2
⊥ρ̃2

s

Z
(

− n
|k‖|ρ̃s

)
exp

(
−k2

⊥ρ̃2
s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G20a)

(M (0)
s )xy = i

∞∑
n=−∞

nZ
(

− n
|k‖|ρ̃s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G20b)

(M (0)
s )xz = 2

∞∑
n=−∞

n
k⊥ρ̃s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G20c)

(M (0)
s )yy =

∞∑
n=−∞

Z
(

− n
|k‖|ρ̃s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

n

(
k2

⊥ρ̃2
s

2

)]
, (G20d)
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(M (0)
s )yz = i

∞∑
n=−∞

k⊥ρ̃s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G20e)

(M (0)
s )zz = −2

∞∑
n=−∞

n
|k‖|ρ̃s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G20f )

and

(M (1)
s )xx = −4

∞∑
n=−∞

n2

k2
⊥ρ̃2

s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G21a)

(M (1)
s )xy = −2i

∞∑
n=−∞

n
[

1 − n
|k‖|ρ̃s

Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G21b)

(M (1)
s )xz = 2

∞∑
n=−∞

n
k⊥ρ̃s

[(
1 − 2n2

|k‖|2ρ̃2
s

)
Z
(

− n
|k‖|ρ̃s

)
+ 2n

|k‖|ρ̃s

]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G21c)

(M (1)
s )yy = −2

∞∑
n=−∞

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

n

(
k2

⊥ρ̃2
s

2

)]
, (G21d)

(M (1)
s )yz = −i

∞∑
n=−∞

k⊥ρ̃s

[(
1 − 2n2

|k‖|2ρ̃2
s

)
Z
(

− n
|k‖|ρ̃s

)
+ 2n

|k‖|ρ̃s

]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G21e)

(M (1)
s )zz = 2

∞∑
n=−∞

[
1 − 2n2

|k‖|2ρ̃2
s

− 2n
|k‖|ρ̃s

(
1 − n2

|k‖|2ρ̃2
s

)
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
. (G21f )
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These expressions can be simplified somewhat using two further types of algebraic
manipulation. First, for z a real number, we can split the plasma dispersion into real and
imaginary parts as

Z(z) = 1√
π
P
∫ ∞

−∞

exp
(−u2

)
du

u − z
+ i

√
π exp

(−z2)
= Re Z(z) + i

√
π exp

(−z2). (G22)

Thus, we see that the real part of Z(z) is an odd function for real z, while the imaginary
part is an even function. As a consequence, only one of the real or imaginary parts of the
plasma dispersion function will enter into the summations in (G20) and (G21). Secondly,
we utilise the generating function of the modified Bessel function, viz.

∞∑
n=−∞

In(α) tn = exp
[
α

2

(
t + 1

t

)]
, (G23)

to deduce the following identities:

∞∑
n=−∞

In(α) = exp (α), (G24a)

∞∑
n=−∞

n2In(α) = α exp (α), (G24b)

∞∑
n=−∞

[
I′

n(α) − In(α)
] = 0, (G24c)

∞∑
n=−∞

n2 [I′
n(α) − In(α)

] = exp (α). (G24d)

Combining these results, we obtain from (G20) and (G21) the following expressions for
the components of M (0)

s and M (1)
s :

(M (0)
s )xx = 4i

√
π

∞∑
m=1

m2

k2
⊥ρ̃2

s

exp

(
− m2

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
Im

(
k2

⊥ρ̃2
s

2

)
= iF

(
k‖ρ̃s, k⊥ρ̃s

)
, (G25a)

(M (0)
s )xy = −i

∞∑
m=−∞

m Re
[

Z
(

m
|k‖|ρ̃s

)]
exp

(
−k2

⊥ρ̃2
s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]
= −iG

(
k‖ρ̃s, k⊥ρ̃s

)
, (G25b)

(M (0)
s )xz = −4i

√
π

∞∑
m=−∞

m2

k⊥|k‖|ρ̃2
s

exp

(
− m2

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
In

(
k2

⊥ρ̃2
s

2

)

= − ik⊥
|k‖|F

(
k‖ρ̃s, k⊥ρ̃s

)
, (G25c)
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(M (0)
s )yy = i

√
π

∞∑
m=−∞

exp

(
− m2

k2
‖ρ̃2

s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2m2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
Im

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

m

(
k2

⊥ρ̃2
s

2

)]
= iH

(
k‖ρ̃s, k⊥ρ̃s

)
, (G25d)

(M (0)
s )yz = −i

∞∑
m=−∞

mk⊥
|k‖| Re

[
Z
(

m
|k‖|ρ̃s

)]
exp

(
−k2

⊥ρ̃2
s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]

= − ik⊥
|k‖|G

(
k‖ρ̃s, k⊥ρ̃s

)
, (G25e)

(M (0)
s )zz = 4i

√
π

∞∑
m=1

m2

k2
‖ρ̃2

s

exp

(
− m2

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
Im

(
k2

⊥ρ̃2
s

2

)

= ik2
⊥

k2
‖

F
(
k‖ρ̃s, k⊥ρ̃s

)
, (G25f )

and

(M (1)
s )xx = −2

{
1 +

∞∑
m=−∞

2m3

|k‖|k2
⊥ρ̃3

s

Re
[

Z
(

m
|k‖|ρ̃s

)]
exp

(
−k2

⊥ρ̃2
s

2

)
Im

(
k2

⊥ρ̃2
s

2

)}

= −4
3

W
(
k‖ρ̃s, k⊥ρ̃s

)
, (G26a)

(M (1)
s )xy = 4

√
π

∞∑
m=1

m2

|k‖|ρ̃s
exp

(
− m2

k2
‖ρ̃2

s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]
, (G26b)

(M (1)
s )xz = 2

{
k⊥
|k‖| +

∞∑
m=−∞

(
2m3

|k‖|2k⊥ρ̃3
s

− m
k⊥ρ̃s

)
Re
[

Z
(

m
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)}
, (G26c)

(M (1)
s )yy = −2

{
1 +

∞∑
m=−∞

m
|k‖|ρ̃s

Re
[

Z
(

m
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2m2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
Im

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

m

(
k2

⊥ρ̃2
s

2

)]}

= −4
3

Y
(
k‖ρ̃s, k⊥ρ̃s

)
, (G26d)
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(M (1)
s )yz = −√

π

∞∑
m=−∞

k⊥ρ̃s

(
1 − 2m2

|k‖|2ρ̃2
s

)
exp

(
− m2

k2
‖ρ̃2

s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]
, (G26e)

(M (1)
s )zz = 2

{
1 − k2

⊥
k2

‖
+

∞∑
m=−∞

2m
|k‖|ρ̃s

(
1 − m2

|k‖|2ρ̃2
s

)
Re
[

Z
(

m
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)}
, (G26f )

where we have reintroduced the special functions F(x, y), G(x, y) and H(x, y) defined by
(2.122), as well as W(x, y) and Y(x, y) defined by (G97). As anticipated from the arguments
presented in Appendix F, M (0)

s obeys the symmetries

(M (0)
s )xz = −k⊥

k‖
(M (0)

s )xx, (G27a)

(M (0)
s )yz = k⊥

k‖
(M (0)

s )xy, (G27b)

(M (0)
s )zz = k2

⊥
k2

‖
(M (0)

s )xx. (G27c)

G.1.3. Dielectric tensor in low-frequency limit, {e1, e2, e3} coordinate frame
Having evaluated the first- and second-order terms in the expansion for components

of the dielectric tensor in the coordinate basis {x̂, ŷ, ẑ}, we can use (G9) to find
equivalent expressions in the coordinate basis {e1, e2, e3}. Explicitly, we have the following
transformations for M (0)

s :

(M (0)
s )11 = k2

‖
k2

(M (0)
s )xx − 2k‖k⊥

k2
(M (0)

s )xz + k2
⊥

k2
(M (0)

s )zz, (G28a)

(M (0)
s )12 = k‖

k
(M (0)

s )xy + k⊥
k

(M (0)
s )yz, (G28b)

(M (0)
s )13 = k‖k⊥

k2

[
(M (0)

s )xx − (M (0)
s )zz

]+
(

k2
‖

k2
− k2

⊥
k2

)
(M (0)

s )xz, (G28c)

(M (0)
s )22 = (M (0)

s )yy, (G28d)

(M (0)
s )23 = −k⊥

k
(M (0)

s )xy + k‖
k

(M (0)
s )yz, (G28e)

(M (0)
s )33 = k2

⊥
k2

(M (0)
s )xx + 2k‖k⊥

k2
(M (0)

s )xz + k2
‖

k2
(M (0)

s )zz, (G28f )

and similarly for M (1)
s .
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On account of the symmetries derived in Appendix G.1.2, we find for M (0)
s that

(M (0)
s )11 = k2

k2
‖
(M (0)

s )xx, (G29a)

(M (0)
s )12 = k

k‖
(M (0)

s )xy, (G29b)

(M (0)
s )21 = −(M (0)

s )12, (G29c)

(M (0)
s )22 = (M (0)

s )yy, (G29d)

with all other components vanishing. This agrees with (2.104) stated in the main text. On
substitution of identities (G25), (2.121) are recovered.

As for M (1)
s , from the results (G26) derived in Appendix G.1.2, we have the following

identities:

(M (1)
s )xz + k⊥

k‖
(M (1)

s )xx = −2
∞∑

m=−∞

m
k⊥ρ̃s

Re
[

Z
(

m
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)
, (G30a)

(M (1)
s )yz − k⊥

k‖
(M (1)

s )xy = −√
π

∞∑
m=−∞

k⊥ρ̃s exp

(
− m2

k2
‖ρ̃2

s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]
, (G30b)

(M (1)
s )zz + k⊥

k‖
(M (1)

s )xz = 2

{
1 +

∞∑
m=−∞

m
|k‖|ρ̃s

Re
[

Z
(

m
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)}
. (G30c)

Thus, we can decompose the dielectric components (M (1)
s )xz, (M (1)

s )yz and (M (1)
s )zz in terms

of the remaining components of M (1)
s as follows:

(M (1)
s )xz = −k⊥

k‖
(M (1)

s )xx − L
(
k‖ρ̃s, k⊥ρ̃s

)
, (G31a)

(M (1)
s )yz = k⊥

k‖
(M (1)

s )xy − N
(
k‖ρ̃s, k⊥ρ̃s

)
, (G31b)

(M (1)
s )zz = −k⊥

k‖
(M (1)

s )xz +
[

2 + k⊥
k‖

L
(
k‖ρ̃s, k⊥ρ̃s

)]
= k2

⊥
k2

‖
(M (1)

s )xx + 2
[

1 + k⊥
k‖

L
(
k‖ρ̃s, k⊥ρ̃s

)]
, (G31c)
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where the special functions L(x, y) and N(x, y) are defined by

L(x, y) ≡
∞∑

m=−∞

2m
y

Re Z
(m

x

)
exp

(
−y2

2

)
Im

(
y2

2

)
, (G32a)

N(x, y) ≡ √
π

∞∑
m=−∞

y exp
(

−m2

x2

)
exp

(
−y2

2

)[
I′

m

(
y2

2

)
− Im

(
y2

2

)]
. (G32b)

This leads to the following expressions:

(M (1)
s )11 = k2

k2
‖
(M (1)

s )xx + 2
[

k2
⊥

k2
+ k⊥

k‖
L
(
k‖ρ̃s, k⊥ρ̃s

)]
, (G33a)

(M (1)
s )12 = k

k‖
(M (1)

s )xy − k⊥
k

N
(
k‖ρ̃s, k⊥ρ̃s

)
, (G33b)

(M (1)
s )13 = −2k⊥k‖

k2
− L

(
k‖ρ̃s, k⊥ρ̃s

)
, (G33c)

(M (1)
s )22 = (M (1)

s )yy, (G33d)

(M (1)
s )23 = −k‖

k
N
(
k‖ρ̃s, k⊥ρ̃s

)
, (G33e)

(M (1)
s )33 = 2k2

‖
k2

. (G33f )

We note that M (1)
s does not possess the same symmetry properties as M (0)

s .

G.1.4. Asymptotic forms of M(0)
s and M(1)

s
In this appendix, we write down asymptotic forms at small and large x and y for the

special functions F(x, y), G(x, y), H(x, y), L(x, y) and N(x, y) defined by (2.122) and
(G32), respectively. Physically, this corresponds via (2.121) to considering the dielectric
response associated with M (0)

s and M (1)
s for modes with parallel and perpendicular

wavenumbers very small (or very large) with respect to the inverse Larmor radius of
species s. Detailed derivations are left as an exercise to keen readers (and can be verified
numerically).

Proceeding systematically through various limits, we have the following results:

(i) x ∼ 1, y � 1

F(x, y) = √
π exp

(
− 1

x2

) [
1 + O

(
y2)] , (G34a)

G(x, y) = Re
[

Z
(

1
x

)] [
1 + O

(
y2)] , (G34b)

H(x, y) = √
π exp

(
− 1

x2

) [
1 + O

(
y2)] , (G34c)

L(x, y) = y Re
[

Z
(

1
x

)] [
1 + O

(
y2)] , (G34d)

N(x, y) = √
πy
[

2 exp
(

− 1
x2

)
− 1

] [
1 + O

(
y2)] . (G34e)
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(ii) x, y � 1

F(x, y) =
√

πx3(
x2 + y2

)3/2

[
1 + O

(
1

x2 + y2

)]
, (G35a)

G(x, y) = − 2x3(
x2 + y2

)2

[
1 + O

(
1

x2 + y2

)]
, (G35b)

H(x, y) =
√

πx(
x2 + y2

)1/2

[
1 + O

(
1

x2 + y2

)]
, (G35c)

L(x, y) = − 2xy
x2 + y2

[
1 + O

(
1

x2 + y2

)]
, (G35d)

N(x, y) =
√

πx

y
(
x2 + y2

)1/2

[
1 + O

(
1

x2 + y2

)]
. (G35e)

We observe that the asymptotic forms (G35) are in fact valid even for y � 1.
(iii) x � 1, y ∼ 1

F(x, y) = 4
√

π

y2
exp

(
−y2

2

)
I1

(
y2

2

)
exp

(
− 1

x2

){
1 + O

[
exp

(
− 3

x2

)]}
,

(G36a)

G(x, y) = −x exp
(

−y2

2

)[
I0

(
y2

2

)
− I1

(
y2

2

)] [
1 + O

(
x2)] , (G36b)

H(x, y) = √
πy2 exp

(
−y2

2

)[
I0

(
y2

2

)
− I1

(
y2

2

)] [
1 + O

(
x2)] , (G36c)

L(x, y) = −2x
y

[
1 − exp

(
−y2

2

)
I0

(
y2

2

)] [
1 + O

(
x2)] , (G36d)

N(x, y) = −√
πy exp

(
−y2

2

)[
I0

(
y2

2

)
− I1

(
y2

2

)] [
1 + O

(
x2)] . (G36e)

(iv) x, y � 1

F(x, y) = √
π exp

(
− 1

x2

){
1 + O

[
exp

(
− 3

x2

)
, y2

]}
, (G37a)

G(x, y) = −x
[

1 −
(

3
4

y2 − 1
2

x2

)
+
(

3
4

x4 − 15
32

x2y2 + 5
16

y4

)] [
1 + O

(
x6, x4y2, x2y4, y6)] , (G37b)

H(x, y) = √
πy2

[
1 −

(
3
4

y2 − 1
2

x2

)
+
(

3
4

x4 − 15
32

x2y2 + 5
16

y4

)] [
1 + O

(
x6, x4y2, x2y4, y6)] , (G37c)

L(x, y) = −xy
[
1 + O

(
x2, y2)] , (G37d)

N(x, y) = −√
πy
[
1 + O

(
x2)] [1 + O

(
x2, y2)] . (G37e)
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(v) x � 1, y � 1

F(x, y) = 4
y3

exp
(

− 1
x2

){
1 + O

[
exp

(
− 3

x2

)
,

1
y2

]}
, (G38a)

G(x, y) = − x√
πy3

[
1 + O

(
1
y2

)]
, (G38b)

H(x, y) = 1
y

[
1 + O

(
1
y2

)]
, (G38c)

L(x, y) = −2x
y

[
1 − 1√

πy

] [
1 + O

(
x2,

1
y3

)]
, (G38d)

N(x, y) = − 1
y2

[
1 + O

(
1
y2

)]
. (G38e)

G.1.5. Unmagnetised Maxwellian dielectric response
In this paper, we consider microinstabilities over a wide range of scales, from kρi �

1 to sub-electron-scale microinstabilities with kρe � 1. Therefore, the ordering kρs ∼ 1
assumed in § 2.5.3 for the derivation of the low-frequency dielectric tensor in a magnetised
plasma cannot hold for both ions and electrons (as was noted in § 2.5.5 and discussed in
§ 2.5.6). While the derivation of the dielectric tensor in a strongly magnetised plasma
(kρs � 1) is straightforwardly performed by asymptotic analysis applied directly to the
hot, magnetised plasma conductivity tensor (2.77), the equivalent calculation for kρs � 1
is most easily done by direct analysis of the Vlasov equation with B0 = 0. In this appendix,
we present such a calculation.

We begin from (C8), but with Ω̃s = 0 (and ignoring the displacement current):

k2c2

ω2

[
δ̂E − k̂

(
k̂ · δ̂E

)]
= 4πi

ω
δ̂j, (G39a)

δ̂j =
∑

s

Zse
∫

d3v v δ̂fs, (G39b)

(−iω + ik · v) δ̂fs = −Zse
ms

[
δ̂E + k

ω
v ×

(
k̂ × δ̂E

)]
· ∂fs0

∂v
. (G39c)

As with the magnetised case, we substitute the perturbed distribution function (G39c) into
the current (G39b):

δ̂j = −i
∑

s

Z2
s e2

ms

∫
d3v

v

ω − k · v

[
δ̂E + k

ω
v ×

(
k̂ × δ̂E

)]
· ∂fs0

∂v
. (G40)

Non-dimensionalising the distribution function via

f̃s0(ṽs) ≡ π3/2v3
ths

ns0
fs0 (vthsṽs) , (G41)

we obtain

δ̂j = − i
4πω

∑
s

ω2
ps

ω̃s

π3/2

∫
d3ṽs

ṽs

ω̃s − k̂ · ṽs

[
δ̂E + 1

ω̃s
ṽs ×

(
k̂ × δ̂E

)]
· ∂ f̃s0

∂ ṽs
, (G42)
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where ω̃s = ω/kvths. For a Maxwellian distribution, with

f̃s0(ṽs) = exp
(−ṽ2

s

)
, (G43)

the second term in (G42) vanishes, leaving

δ̂j = σ · δ̂E, (G44)

where the conductivity tensor is

σ = i
4πω

∑
s

ω2
ps

2ω̃s

π3/2

∫
d3ṽs

ṽsṽs

ω̃s − k̂ · ṽs
exp

(−ṽ2
s

)
. (G45)

The integral can be evaluated to give

σ = − i
4πω

∑
s

ω2
psω̃s

{
Z(ω̃s)

(
I − k̂k̂

)
+ 2

[
ω̃s + ω̃2

s Z(ω̃s)
]

k̂k̂
}

. (G46)

The dielectric tensor in an unmagnetised Maxwellian plasma for general ω̃s is, therefore,

E(UM) =
∑

s

ω2
ps

ω2
ω̃s

{
Z(ω̃s)

(
I − k̂k̂

)
+ 2

[
ω̃s + ω̃2

s Z(ω̃s)
]

k̂k̂
}

. (G47)

Note that it follows from (G39) that E · k̂ = 0, so we conclude that for non-zero
fluctuations, either k̂ · δ̂E = 0 or 1 + ω̃sZ(ω̃s) = 0. We do not find the conventional
longitudinal plasma waves because we have neglected the displacement current in
Maxwell’s equations. The only modes that satisfy 1 + ω̃sZ(ω̃s) = 0 are strongly damped,
with ω̃s ∼ 1. Thus, all modes satisfying ω̃s � 1 must be purely transverse.

For ω̃s � 1, the unmagnetised dielectric response therefore simplifies to

E(UM) = i
√

π
(

I − k̂k̂
)∑

s

ω2
ps

ω2
ω̃s
[
1 + O(ω̃s)

]
. (G48)

G.1.6. Validity of approximation Ms ≈ M(0)
s for large or small k‖ρs and k⊥ρs

In carrying out the expansion of the Maxwellian dielectric tensor (G17) in ω̃s‖, we
assumed that kρs ∼ 1; however, in general, we will wish to consider microinstabilities
that exist at typical wavenumbers kρs � 1 or kρs � 1. Indeed, since the mass ratio
μe = me/mi is very small, if we wish to consider the combined response of both species,
it is inevitable that for one of them, kρs � 1 or kρs � 1. Thus, it remains to assess
when the approximation M s ≈ M (0)

s is valid in these limits. We show in this appendix
that this approximation is appropriate in the limit k‖ρs � 1, for arbitrary k⊥ρs; however,
for k‖ρs � 1, the approximation breaks down for some dielectric components – indeed, in
the limit k‖ρs, k⊥ρs � 1, it breaks down for all but two components. For these instances,
an alternative expression for the dielectric tensor is derived below.
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The validity of the k‖ρs � 1 limit is most simply demonstrated by comparing the
components of M (0)

s with the unmagnetised dielectric response (G48). Recalling that

(M (0)
s )11 = iω̃s‖

k2

k2
‖

F
(
k‖ρ̃s, k⊥ρ̃s

)
, (G49a)

(M (0)
s )12 = iω̃s‖

k
k‖

G
(
k‖ρ̃s, k⊥ρ̃s

)
, (G49b)

(M (0)
s )21 = −(M (0)

s )12, (G49c)

(M (0)
s )22 = iω̃s‖H

(
k‖ρ̃s, k⊥ρ̃s

)
, (G49d)

and applying the asymptotic results (G35), we find

(M (0)
s )11 ≈ i

√
π

ω̃s‖k‖
k

, (G50a)

(M (0)
s )12 ≈ −2i

ω̃s‖k2
‖

k2

1
kρs

, (G50b)

(M (0)
s )22 ≈ i

√
π

ω̃s‖k‖
k

. (G50c)

We note these expressions are valid for arbitrary k⊥ρs. The equivalent components of the
unmagnetised (normalised) dielectric tensor M s ≈ ω2E(UM)

s /ω2
ps are

(M s)11 = i
√

πω̃s, (G51a)

(M s)12 = (M (0)
s )21 = 0, (G51b)

(M s)22 = i
√

πω̃s. (G51c)

Noting that ω̃s = ω̃s‖k‖/k, we see that the diagonal terms are identical, while the non-zero
e1e2 term present in the kρs � 1 limit of M (0)

s becomes asymptotically small in 1/kρs � 1.
To demonstrate that the approximation M s ≈ M (0)

s is not accurate in the limit k‖ρs � 1,
we consider the full Maxwellian dielectric tensor assuming ω̃s‖ � 1 and k‖ρs � 1. If this
long-wavenumber dielectric tensor subsequently evaluated at low frequencies ω̃s‖ � 1
gives the same result as M (0)

s for any particular component of M s, then the approximation
for that component is reasonable; otherwise, the approximation has to be modified at
sufficiently small k‖ρs � 1.

If k‖ρs � 1 and ω̃s‖ � 1, it follows that, for n �= 0,

|ζsn| ≡
∣∣∣∣ω̃s‖ − n

k‖ρ̃s

∣∣∣∣ � 1. (G52)

In this case, we can simplify the plasma dispersion function via a large-argument
expansion

Z(ζsn) ≈ − 1
ζsn

− 1
2ζ 3

sn

+ . . . . (G53)
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The long-wavelength dielectric tensor is then

(M s)xx ≈ −2ω̃s‖
∞∑

n=−∞

n2

ζsnk2
⊥ρ̃2

s

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G54a)

(M s)xy ≈ −iω̃s‖
∞∑

n=−∞

n
ζsn

exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G54b)

(M s)xz ≈ −ω̃s‖
∞∑

n=−∞

n
ζ 2

snk⊥ρ̃s
exp

(
−k2

⊥ρ̃2
s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G54c)

(M s)yx = −(M s)xy, (G54d)

(M s)yy ≈ −ω̃s‖

[∑
n∈Z �=

{
1
ζsn

exp
(

−k2
⊥ρ̃2

s

2

)

×
[(

2n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

n

(
k2

⊥ρ̃2
s

2

)]}

− Z
(
ω̃s‖
)

k2
⊥ρ̃2

s exp
(

−k2
⊥ρ̃2

s

2

){
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)}]
, (G54e)

(M s)yz ≈ iω̃s‖

[∑
n∈Z �=

{
1

2ζ 2
sn

k⊥ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]}

+ [
1 + ω̃s‖Z

(
ω̃s‖
)]

k⊥ρ̃s exp
(

−k2
⊥ρ̃2

s

2

){
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)}]
, (G54f )

(M s)zx = (M s)xz, (G54g)

(M s)zy = −(M s)yz, (G54h)

(M s)zz ≈ −ω̃s‖

[∑
n∈Z �=

{
1
ζsn

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)}

− 2ω̃s‖
[
1 + ω̃s‖Z

(
ω̃s‖
)]

exp
(

−k2
⊥ρ̃2

s

2

)
I0

(
k2

⊥ρ̃2
s

2

)]
, (G54i)

where Z
�= denotes non-zero integers. We note that the error associated with neglecting

higher-order terms in ζsn is O(k2
‖ρ

2
s ). Next, using

− 1
ζsn

= 1
n/k‖ρ̃s − ω̃s‖

≈ k‖ρ̃s

n

[
1 + ω̃s‖k‖ρ̃s

n
+ O

(
ω2

Ω2
e

)]
, (G55)

we can isolate the dependence of each dielectric tensor component on ω̃s‖. It is clear
that any sum involving an odd power of n vanishes, meaning that the leading-order
contributions in k‖ρ̃s from the summation terms arise from the highest power of ω̃s‖ gives
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an even power of n. The resulting approximate expressions are

(M s)xx ≈ 2k2
‖

k2
⊥

ω̃2
s‖

[
1 − exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)]
, (G56a)

(M s)xy ≈ iω̃s‖k‖ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G56b)

(M s)xz ≈ −4k2
‖ρ̃

2
s

k‖
k⊥

ω̃2
s‖

∞∑
n=1

1
n2

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G56c)

(M s)yy ≈ ω̃s‖ exp
(

−k2
⊥ρ̃2

s

2

){
Z
(
ω̃s‖
)

k2
⊥ρ̃2

s

[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]

+ 2ω̃s‖k2
‖ρ̃

2
s

∞∑
n=1

[(
2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

n2

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s

n2
I′

n

(
k2

⊥ρ̃2
s

2

)]}
, (G56d)

(M s)yz ≈ iω̃s‖
[
1 + ω̃s‖Z

(
ω̃s‖
)]

× k⊥ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G56e)

(M s)zz ≈ 2ω̃2
s‖
[
1 + ω̃s‖Z

(
ω̃s‖
)]

exp
(

−k2
⊥ρ̃2

s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
, (G56f )

where we have again used the sum identities (G24). Note that we have retained a term
in (M s)yy which is quadratic in k‖ρ̃s, even though there exists another term which is
independent of k‖ρ̃s. This is because the latter term becomes arbitrarily small in the limit
k⊥ρs � 1, whereas the former is independent of k⊥ρs; hence, if k⊥ρs � k‖ρs, the latter
term can become dominant.

Now considering the limit ω̃s‖ � 1, while holding k‖ρs � 1 at some fixed value, the
plasma dispersion function can now be approximated by its small-argument expansion

Z
(
ω̃s‖
) ≈ i

√
π, (G57)

to give

(M s)xx ≈ 2k2
‖

k2
⊥

ω̃2
s‖

[
1 − exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)]
, (G58a)

(M s)xy ≈ iω̃s‖k‖ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G58b)

(M s)xz ≈ −4k2
‖ρ̃

2
s

k‖
k⊥

ω̃2
s‖

∞∑
n=1

1
n2

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G58c)

(M s)yy ≈ ω̃s‖ exp
(

−k2
⊥ρ̃2

s

2

){
i
√

πk2
⊥ρ̃2

s

[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]

+ 2ω̃2
s‖k2

‖ρ̃
2
s

∞∑
n=1

[(
2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

n2

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s

n2
I′

n

(
k2

⊥ρ̃2
s

2

)]}
, (G58d)
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(M s)yz ≈ iω̃s‖
[
1 + i

√
πω̃s‖

]
× k⊥ρ̃s exp

(
−k2

⊥ρ̃2
s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G58e)

(M s)zz ≈ 2ω̃2
s‖
[
1 + i

√
πω̃s‖

]
exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
. (G58f )

For comparison, we state below the long-wavelength limit of M (0)
s using asymptotic

expressions (G36):

(M (0)
s )xx = 4i

√
π

ω̃s‖
k2

⊥ρ̃2
s

exp

(
− 1

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
I1

(
k2

⊥ρ̃2
s

2

)
, (G59a)

(M (0)
s )xy = iω̃s‖|k‖|ρ̃s exp

(
−k2

⊥ρ̃2
s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G59b)

(M (0)
s )xz = −4i

√
π

ω̃s‖
k⊥k‖ρ̃2

s

exp

(
− 1

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
I1

(
k2

⊥ρ̃2
s

2

)
, (G59c)

(M (0)
s )yy = i

√
πω̃s‖k2

⊥ρ̃2
s exp

(
−k2

⊥ρ̃2
s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G59d)

(M (0)
s )yz = iω̃s‖k⊥ρ̃s exp

(
−k2

⊥ρ̃2
s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G59e)

(M (0)
s )zz = 4i

√
π

ω̃s‖
k2

‖ρ̃2
s

exp

(
− 1

k2
‖ρ̃2

s

)
exp

(
−k2

⊥ρ̃2
s

2

)
I1

(
k2

⊥ρ̃2
s

2

)
. (G59f )

Assuming k⊥ρs ∼ 1, we observe that, while three of the six unique dielectric tensor
components are identical for both ω̃s‖ → 0, k‖ρs � 1 fixed, and k‖ρs → 0, ω̃s‖ � 1 fixed
[(M s)xy, (M s)yy, and (M s)yz], the other three [(M s)xx, (M s)xz and (M s)zz] are not. Instead,
the dominant terms are the quadratic terms (M (1)

s )xx, (M (1)
s )xz and (M (1)

s )zz in the ω̃s‖ � 1
expansion. In the limit k⊥ρs � 1, (M s)yy also departs from the approximation (M (0)

s )yy
for sufficiently small k⊥ρs as compared with k‖ρs, instead being accurately described by
(M (1)

s )yy.
As a consequence, we must assess the conditions under which one approximation or the

other is valid. This is most simply answered by observing that the expressions for (M (0)
s )xx,

(M (0)
s )xz and (M (0)

s )zz from (G59a), (G59c) and (G59f ) are exponentially small; thus, for
k‖ρs � 1/ log (1/ω̃s‖), we must use approximations (G58a), (G58c), (G58e) for (M s)xx,
(M s)xz and (M s)zz. In addition, if k2

⊥ρ2
s � ω̃s‖k2

‖ρ
2
s � 1, then

(M s)yy ≈ 2ω2
ps

ω2
ω̃2

s‖k2
‖ρ̃

2
s , (G60)

becomes the appropriate approximation for (M s)yy.
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G.1.7. Calculation of second-order corrections to dispersion relation
In this appendix, we justify the relations (K20) used in Appendix K – that is, for

k‖ρs � 1,

[(M s)13]2

(M (1)
s )33

� (M s)11, (G61a)

(M s)13(M s)23

(M (1)
s )33

� ω̃e‖(M s)12 � (M s)12, (G61b)

[(M s)23]2

(M (1)
s )33

� ω̃e‖(M s)22 � (M s)22. (G61c)

We also prove the identity (K25), or

(M (1)
e + M (1)

i )11 −
[
(M (1)

e + M (1)

i )13

]2

2(M (1)
e )33

= −4
3

We − 4
3

Wi − 1
4

(Le + Li)
2 , (G62)

used to derive the dispersion relation (K23). We have introduced the notation We =
W(k‖ρ̃e, k⊥ρ̃e), Wi = L(k‖ρi, k⊥ρi), Le = L(k‖ρ̃e, k⊥ρ̃e) and Li = L(k‖ρi, k⊥ρi), for the
sake of brevity.

To complete the first task, we begin with the expressions (K16) for the dielectric
components, and substitute (G26a), (G25b), (G25d) and (G26d) for (M (1)

s )xx, (M (0)
s )xy,

(M (0)
s )xy, (M (0)

s )yy and (M (1)
s )xy, respectively. This gives (K16) directly in terms of special

functions G(x, y), H(x, y), L(x, y), N(x, y), W(x, y) and Y(x, y):

(M s)11 ≈ −4k2

3k2
‖
ω̃2

s‖W
(
k‖ρ̃s, k⊥ρ̃s

)+ 2ω̃2
s‖

[
k2

⊥
k2

+ k⊥
k‖

L
(
k‖ρ̃s, k⊥ρ̃s

)]
, (G63a)

(M s)12 ≈ −i
k
k‖

ω̃s‖G
(
k‖ρ̃s, k⊥ρ̃s

)
, (G63b)

(M s)13 ≈ −ω̃2
s‖

[
2k⊥k‖

k2
+ L

(
k‖ρ̃s, k⊥ρ̃s

)]
, (G63c)

(M s)22 ≈ iω̃s‖H
(
k‖ρ̃s, k⊥ρ̃s

)− 4
3
ω̃2

s‖Y
(
k‖ρ̃s, k⊥ρ̃s

)
, (G63d)

(M s)23 ≈ −k‖
k

ω̃2
s‖N
(
k‖ρ̃s, k⊥ρ̃s

)
, (G63e)

(M s)33 ≈ 2k2
‖

k2
ω̃2

s‖. (G63f )

We then apply the k‖ρs � 1 limits of the aforementioned special functions using
Appendices G.1.4 and G.4.2 – in particular, (G36b), (G36c), (G36d), (G36e), (G100a)
and (G101c):

(M s)11 ≈ 2ω̃2
s‖ exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
, (G64a)

(M s)12 ≈ iω̃s‖kρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G64b)

https://doi.org/10.1017/S0022377824000308 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000308


Kinetic stability of Chapman–Enskog plasmas 151

(M s)13 ≈ −ω̃2
s‖

2k‖
k

exp
(

−k2
⊥ρ̃2

s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
, (G64c)

(M s)22 ≈ i
√

πω̃s‖k2
⊥ρ̃2

s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
+ ω̃2

s‖k2
‖ρ̃

2
s , (G64d)

(M s)23 ≈ √
πω̃2

s‖k‖ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
, (G64e)

(M s)33 ≈ 2k2
‖

k2
ω̃2

s‖. (G64f )

We can now make the relevant comparisons presented in (G61), and obtain the desired
results

[(M s)13]2

(M s)11(M s)33
≈ exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
� 1, (G65a)

(M s)13(M s)23

(M s)12M s)33
≈ iω̃s‖ exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
� ω̃s‖, (G65b)

[(M s)23]2

(M s)22(M s)33
≈ −i

√
π

2
ω̃s‖ exp

(
−k2

⊥ρ̃2
s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
� ω̃s‖, (G65c)

where we used the inequalities

exp
(

−k2
⊥ρ̃2

s

2

)
I0

(
k2

⊥ρ̃2
s

2

)
� 1, (G66a)

exp
(

−k2
⊥ρ̃2

s

2

)[
I0

(
k2

⊥ρ̃2
s

2

)
− I1

(
k2

⊥ρ̃2
s

2

)]
� 1, (G66b)

valid for arbitrary values of k⊥ρ̃s.
To derive (G62), we use (G63a), (G63b) and (G63f ) to derive the following expressions:

(M (1)
e + M (1)

i )11 = k2

k2
‖

[
(M (1)

e )xx + (M (1)

i )xx

]
+ 2

[
2k2

⊥
k2

+ k⊥
k‖

(Le + Li)

]
, (G67a)

(M (1)
e + M (1)

i )13 = 4k⊥k‖
k2

+ Le + Li, (G67b)

2(M (1)
e )33 = 4k2

‖
k2

. (G67c)

Then [
(M (1)

e + M (1)

i )13

]2

2(M (1)
e )33

=
[

2k⊥
k

+ k
2k‖

(Le + Li)

]2

, (G68)

which in turn gives

(M (1)
e + M (1)

i )11 −
[
(M (1)

e + M (1)

i )13

]2

2(M (1)
e )33

= k2

k2
‖

[
(M (1)

e )xx + (M (1)

i )xx − 1
4

(Le + Li)
2
]

. (G69)

The identities (K24) give (G62), completing the proof.
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G.2. The CE electron-friction term
For an electron distribution of the form

f̃e(ṽe‖, ṽe⊥) = −ηR
e ṽe‖ exp

(−ṽ2
e

)
, (G70)

with ηR
s � 1 a constant, it follows that

Λe(ṽe‖, ṽe⊥) = −ηR
e ṽe⊥ exp

(−ṽ2
e

)
, (G71)

while

Ξe(ṽe‖, ṽe⊥) = − ηR
e

ω̃e‖
ṽe⊥ exp

(−ṽ2
e

)+ O(ηe). (G72)

Since ∫ ∞

−∞
dṽe‖ ṽe‖

∫ ∞

0
dṽe⊥ Λe(ṽe‖, ṽe⊥) = 0, (G73)

when Λe(ṽe‖, ṽe⊥) is given by (G71), the function Ξe(ṽe‖, ṽe⊥) is just proportional to that
arising for a Maxwellian distribution (cf. (G13)), and so the dielectric response associated
with the CE electron-friction term is

Pe = ηR
e

2
Me. (G74)

G.3. The CE temperature-gradient-driven terms
For the CE temperature-gradient-driven term arising from a Krook operator, which takes
the form

f̃s(ṽs‖, ṽs⊥) = −ηsṽs‖
(
ṽ2

s − 5
2

)
exp

(−ṽ2
s

)
, (G75)

it follows (assuming ηR
e = 0) that

Λs(ṽs‖, ṽs⊥) = −ηsṽs⊥
(
ṽ2

s − 5
2

)
exp

(−ṽ2
s

)
, (G76)

and

Ξs(ṽs‖, ṽs⊥) = − ηs

ω̃s‖
ṽs⊥

(
ṽ2

s − 5
2

)
exp

(−ṽ2
s

)+ O(ηs). (G77)

Then, to leading order in ηs,

(Ps)xx = 2√
π

ηs

∞∑
n=−∞

[
n2

k2
⊥ρ̃2

s

∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
, (G78a)

(Ps)xy = 2i√
π

ηs

∞∑
n=−∞

[
n

k⊥ρ̃s

∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Jn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥) exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
, (G78b)
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(Ps)xz = 2√
π

ηs

∞∑
n=−∞

[
n

k⊥ρ̃s

∫
CL

ṽs‖ exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

(G78c)

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
, (G78d)

(Ps)yx = −(Ps)xy, (G78e)

(Ps)yy = 2√
π

ηs

∞∑
n=−∞

[∫
CL

exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ3

s⊥J′
n(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
, (G78f )

(Ps)yz = − 2i√
π

ηs

∞∑
n=−∞

[∫
CL

ṽs‖ exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Jn(k⊥ρ̃sṽs⊥)J′
n(k⊥ρ̃sṽs⊥) exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
, (G78g)

(Ps)zx = (Ps)xz, (G78h)

(Ps)zy = −(Ps)yz, (G78i)

(Ps)zz = 2√
π

ηs

∞∑
n=−∞

[∫
CL

ṽ2
s‖ exp

(−ṽ2
s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) (

ṽ2
s − 5

2

)]
. (G78j)

In addition to the plasma-dispersion-function identities (G15) and Bessel-function
identities (G16), we use

1√
π

∫
CL

u3 exp
(−u2

)
du

u − z
= 1

2
+ z2 [1 + zZ(z)] , (G79a)

1√
π

∫
CL

u4 exp
(−u2

)
du

u − z
= z

{
1
2

+ z2 [1 + zZ(z) , ]
}

, (G79b)

and ∫ ∞

0
dt t3Jn(αt)2 exp

(−t2) = 1
2

exp
(

−α2

2

){
In

(
α2

2

)
+ α2

2

[
I′

n

(
α2

2

)
− In

(
α2

2

)]}
, (G80a)∫ ∞

0
dt4 t2Jn(αt)J′

n(αt) exp
(−t2) = α

4
exp

(
−α2

2

)[(
α2 − 2 + 2n2

α2

)
In

(
α2

2

)
+ (

1 − α2) I′
n

(
α2

2

)]
, (G80b)
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0
dt5 t3J′

n(αt)2 exp
(−t2) = 1

2
exp

(
−α2

2

)
×
{[

3α2

2
− α4

2
+ n2

(
1
α2

− 3
2

)]
In

(
α2

2

)
+
(

α4

2
+ n2

2
− α2

)
I′

n

(
α2

2

)}
, (G80c)

to obtain again the expressions for the dielectric components (G78) in terms of special
mathematical functions (a tedious, but elementary calculation):

(Ps)xx = ηs

∞∑
n=−∞

n2

k2
⊥ρ̃2

s

exp
(

−k2
⊥ρ̃2

s

2

){
k2

⊥ρ̃2
s

2
Z(ζsn) I′

n

(
k2

⊥ρ̃2
s

2

)

+
[
ζsn + Z(ζsn)

(
ζ 2

sn − 3
2

− k2
⊥ρ̃2

s

2

)]
In

(
k2

⊥ρ̃2
s

2

)}
, (G81a)

(Ps)xy = iηs

2

∞∑
n=−∞

n exp
(

−k2
⊥ρ̃2

s

2

){[
ζsn + Z(ζsn)

(
ζ 2

sn − 3
2

− k2
⊥ρ̃2

s

2

)]
I′

n

(
k2

⊥ρ̃2
s

2

)

+
[

Z(ζsn)

(
1
2

+ k2
⊥ρ̃2

s

2
+ 2n2

k2
⊥ρ̃2

s

− ζ 2
sn

)
− ζsn

]
In

(
k2

⊥ρ̃2
s

2

)}
, (G81b)

(Ps)xz = ηs

∞∑
n=−∞

n
k⊥ρ̃s

exp
(

−k2
⊥ρ̃2

s

2

){
k2

⊥ρ̃2
s

2
[1 + ζsnZ(ζsn)] I′

n

(
k2

⊥ρ̃2
s

2

)

+
[
ζ 2

sn − 1 − k2
⊥ρ̃2

s

2
+ ζsnZ(ζsn)

(
ζ 2

sn − 3
2

− k2
⊥ρ̃2

s

2

)]
In

(
k2

⊥ρ̃2
s

2

)}
, (G81c)

(Ps)yx = (Ps)xy, (G81d)

(Ps)yy = ηs

∞∑
n=−∞

exp
(

−k2
⊥ρ̃2

s

2

){[(
n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

2

)
ζsn

+Z(ζsn)

(
n2ζ 2

sn

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s ζ
2
sn

2
+ k2

⊥ρ̃2
s

4
− k4

⊥ρ̃4
s

2
− 3n2

2
− 3n2

2k2
⊥ρ̃2

s

)]
In

(
k2

⊥ρ̃2
s

2

)}
+
[

Z(ζsn)

(
1
2

+ k2
⊥ρ̃2

s + n2

k2
⊥ρ̃2

s

− ζ 2
sn

)
− ζsn

]
k2

⊥ρ̃2
s

2
I′

n

(
k2

⊥ρ̃2
s

2

)
, (G81e)

(Ps)yz = − iηs

2

∞∑
n=−∞

k⊥ρ̃s exp
(

−k2
⊥ρ̃2

s

2

)

×
{[

k2
⊥ρ̃2

s + 2n2

k2
⊥ρ̃2

s

− ζ 2
sn + ζsnZ(ζsn)

(
k2

⊥ρ̃2
s + 1

2
+ 2n2

k2
⊥ρ̃2

s

− ζ 2
sn

)]
In

(
k2

⊥ρ̃2
s

2

)
+
[
ζ 2

sn − 1 − k2
⊥ρ̃2

s + ζsnZ(ζsn)

(
ζ 2

sn − 3
2

− k2
⊥ρ̃2

s

)]
I′

n

(
k2

⊥ρ̃2
s

2

)}
, (G81f )

(Ps)zx = (Ps)xz, (G81g)
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(Ps)zy = −(Ps)yz, (G81h)

(Ps)zz = ηs

∞∑
n=−∞

exp
(

−k2
⊥ρ̃2

s

2

){
k2

⊥ρ̃2
s

2
ζsn [1 + ζsnZ(ζsn)] I′

n

(
k2

⊥ρ̃2
s

2

)

+
[
ζ 3

sn − ζsn − k2
⊥ρ̃2

s ζsn

2
+ ζ 2

snZ(ζsn)

(
ζ 2

sn − 3
2

− k2
⊥ρ̃2

s

2

)]
In

(
k2

⊥ρ̃2
s

2

)}
. (G81i)

G.3.1. Dielectric tensor in low-frequency limit
In the low-frequency limit ω̃s‖ � 1 under the ordering k‖ρs ∼ k⊥ρs ∼ 1, the expressions

(G81) can be approximated by the leading-order term of the expansion of Ps, that is

Ps ≈ P(0)
s + O(ω̃2

s‖), (G82)

where

(P(0)
s )xx = ηs

∞∑
n=−∞

n2

k2
⊥ρ̃2

s

exp
(

−k2
⊥ρ̃2

s

2

){
k2

⊥ρ̃2
s

2
Z
(

− n
|k‖|ρ̃s

)
I′

n

(
k2

⊥ρ̃2
s

2

)

+
[
− n

|k‖|ρ̃s
+ Z

(
− n

|k‖|ρ̃s

)(
n2

|k‖|2ρ̃2
s

− 3
2

− k2
⊥ρ̃2

s

2

)]
In

(
k2
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, (G83a)
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, (G83b)
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s
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(P(0)
s )yx = (P(0)

s )xy, (G83d)
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n=−∞
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2
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−3n2

2
− 3n2

2k2
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, (G83e)
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, (G83f )

(P(0)
s )zx = (P(0)

s )xz, (G83g)

(P(0)
s )zy = −(P(0)

s )yz, (G83h)

(P(0)
s )zz = ηs
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){
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)]}
. (G83i)

In this limit, we have utilised the approximation ζsn ≈ −n/|k‖|ρ̃s. Similarly to the
Maxwellian case, we can use the Bessel-function-summation identities (G24) and the
symmetry properties of the plasma dispersion function with a real argument to show that

(P(0)
s )xx = 2i

√
πηs exp

(
−k2

⊥ρ̃2
s

2

) ∞∑
n=1
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)
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2
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(
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(
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)
, (G84a)

(P(0)
s )xy = −iηs

{
1
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2
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n=−∞

n Re
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Z
(

n
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)]
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(
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)
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×
{(

n2
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s
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, (G84b)
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, (G84e)
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where the functions I(x, y), J(x, y) and K(x, y) are defined by

I(x, y) ≡ 2
√

π

y2
exp

(
−y2

2

)
×

∞∑
m=1

m2 exp
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−m2

x2

)[
y2

2
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m
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y2

2

)
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(
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2

)
Im

(
y2

2

)]
, (G85a)

J(x, y) ≡ 1
2x

+ 1
2

exp
(

−y2
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) ∞∑
m=−∞
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m Re Z

(m
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(
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(
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, (G85b)

K(x, y) ≡
√

π

2
exp

(
−y2

2

) ∞∑
m=−∞

{
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(
−m2

x2

)[(
m2 + 1

2
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)
I′
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(
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x2y2
− 3 m2

y2
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2
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)
Im

(
y2

2

)]}
. (G85c)

G.3.2. Asymptotic limits of P(0)
s

In this appendix, we give simplified expressions in the limits of small and large x and
y for the special functions I(x, y), J(x, y) and K(x, y) defined by (G85). Physically, this
corresponds, via (J2), to considering the dielectric response associated with P(0)

s for modes
with parallel and perpendicular wavenumbers that are very small or very large with respect
to the inverse Larmor radius of species s.

Proceeding systematically through various limits, we have the following results:

(i) x ∼ 1, y � 1

I(x, y) =
√

π

2

(
1
x2

− 1
2

)
exp

(
− 1

x2

) [
1 + O

(
y2)] , (G86a)

J(x, y) =
[(

1
4

− 1
2x2

)
Re Z

(
1
x

)
+ 1

2x

] [
1 + O

(
y2)] , (G86b)

K(x, y) =
√

π

2

(
1
x2

− 1
2

)
exp

(
− 1

x2

) [
1 + O

(
y2)] . (G86c)

(ii) x, y � 1

I(x, y) = −
√

πx3

4
(
x2 + y2

)3/2

[
1 + O

(
1

x2 + y2

)]
, (G87a)

J(x, y) = − x3(
x2 + y2

)2

[
1 + O

(
1

x2 + y2

)]
, (G87b)

K(x, y) = −
√

πx

4
(
x2 + y2

)1/2

[
1 + O

(
1

x2 + y2

)]
. (G87c)
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(iii) x � 1, y ∼ 1

I(x, y) = 2
√

π

x2y2
exp

(
−y2

2
− 1

x2

)
I1

(
y2

2

) [
1 + O

(
x2)] , (G88a)

J(x, y) = − x
2

exp
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−y2

2

)
×
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y2

(
I0

(
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2

)
− I1

(
y2

2
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− I1

(
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2

)] [
1 + O

(
x2)] , (G88b)

K(x, y) =
√

π

2
exp

(
−y2

2

)[(
1
2

y2 − y4

)
I0

(
y2

2

)
+
(

1
2

y2 + y4

)
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2

)] [
1 + O

(
x2)] . (G88c)

(iv) x, y � 1

I(x, y) =
√

π

2x2
exp

(
− 1

x2

)[
1 + O

(
exp

(
− 3

x2

)
, y2

)]
, (G89a)

J(x, y) = −x
(

3
8

y2 − 1
4

x2

) [
1 + O

(
x4, x2y2, y4)] , (G89b)

K(x, y) =
√

π

4
y2 [1 + O

(
x2, y2)] . (G89c)

G.4. The CE shear terms
For a CE shear term of the form

f̃s(ṽs‖, ṽs⊥) = −εs

(
ṽ2

s‖ − ṽ2
s⊥
2

)
exp

(−ṽ2
s

)
, (G90)

we have

Λs(ṽs‖, ṽs⊥) = −3εsṽs‖ṽs⊥ exp
(−ṽ2

s

)
, (G91a)

Ξs(ṽs‖, ṽs⊥) = −3εs

ω̃s‖
ṽs‖ṽs⊥ exp

(−ṽ2
s

)+ O(εs). (G91b)

This gives

(Ps)xx = 6√
π

εs

∞∑
n=−∞

[
n2

k2
⊥ρ̃2

s

∫
CL

ṽs‖ exp
(−ṽ2

s‖
)

dṽs‖
ṽs‖ − ζsn

×
∫ ∞

0
dṽs⊥ ṽs⊥Jn(k⊥ρ̃sṽs⊥)2 exp

(−ṽ2
s⊥
) ]

, (G92a)
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(Ps)xy = 6i√
π

εs

∞∑
n=−∞
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n
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∫
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(−ṽ2
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dṽs⊥ ṽ2
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, (G92b)

(Ps)xz = 6√
π
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×
∫ ∞

0
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) ]

, (G92d)

(Ps)yx = (Ps)xy (G92e)

(Ps)yy = 6√
π
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, (G92f )

(Ps)yz = − 6i√
π
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, (G92g)

(Ps)zx = (Ps)xz, (G92h)

(Ps)zy = −(Ps)yz, (G92i)

(Ps)zz = 6√
π
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dṽs⊥ ṽs⊥ exp

(−ṽ2
s

) }
. (G92j)

Again using the Bessel-function identities (G16), and the identities (G15) and (G79a)
applicable to the plasma dispersion function, the dielectric tensor’s elements become

(Ps)xx = 3εs
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n=−∞
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)
, (G93a)
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, (G93b)
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(Ps)xz = 3εs
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, (G93c)

(Ps)yx = (Ps)xy, (G93d)
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, (G93e)

(Ps)yz = −3iεs
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(Ps)zx = (Ps)xz, (G93g)

(Ps)zy = −(Ps)yz, (G93h)
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ζ 2
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)
. (G93i)

G.4.1. Dielectric tensor in low-frequency limit
As with the CE temperature-gradient term, under the ordering k‖ρs ∼ k⊥ρs ∼ 1, the

expressions (G81) can be approximated by the leading-order term of the expansion of Ps
in the low-frequency limit ω̃s‖ � 1. Namely, we have

Ps ≈ P(0)
s + O(ω̃2

s‖), (G94)

where

(P(0)
s )xx = 3εs

∞∑
n=−∞

n2

k2
⊥ρ̃2

s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G95a)

(P(0)
s )xy = 3iεs

2

∞∑
n=−∞

n
[

1 − n
|k‖|ρ̃s

Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G95b)

(P(0)
s )xz = −3εs

∞∑
n=−∞

n2

k⊥|k‖|ρ̃2
s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (G95c)
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(P(0)
s )yx = (P(0)

s )xy, (G95d)

(P(0)
s )yy = 3

2
εs

∞∑
n=−∞

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[(
2n2

k2
⊥ρ̃2

s

+ k2
⊥ρ̃2

s

)
In

(
k2

⊥ρ̃2
s

2

)
− k2

⊥ρ̃2
s I′

n

(
k2

⊥ρ̃2
s

2

)]
, (G95e)

(P(0)
s )yz = 3iεs

2

∞∑
n=−∞

nk⊥
|k‖|

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
, (G95f )

(P(0)
s )zx = (P(0)

s )xz, (G95g)

(P(0)
s )zy = −(P(0)

s )yz, (G95h)

(P(0)
s )zz = 3

∞∑
n=−∞

n2

k2
‖ρ̃2

s

[
1 − n

|k‖|ρ̃s
Z
(

− n
|k‖|ρ̃s

)]
exp

(
−k2

⊥ρ̃2
s

2

)
In

(
k2

⊥ρ̃2
s

2

)
. (G95i)

In this calculation, we have utilised the approximation ζsn ≈ −n/|k‖|ρ̃s. Similarly to the
Maxwellian case, we can use the Bessel-function-summation identities (G24) and the
symmetry properties of the plasma dispersion function with a real argument to show that

(P(0)
s )xx = 3εs

{
1
2

+ exp
(

−k2
⊥ρ̃2

s

2

) ∞∑
n=−∞

n3

|k‖|k2
⊥ρ̃3

s

Re
[

Z
(

n
|k‖|ρ̃s

)]
In

(
k2

⊥ρ̃2
s

2

)}
= εsW(|k‖|ρ̃s, k⊥ρ̃s), (G96a)

(P(0)
s )xy = 3

√
πεs exp

(
−k2

⊥ρ̃2
s

2

)

×
∞∑

n=1

n2

|k‖|ρ̃s
exp

(
− n2

k2
‖ρ̃2

s

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
= −εsX(|k‖|ρ̃s, k⊥ρ̃s), (G96b)

(P(0)
s )xz = −3εs

{
k⊥

2|k‖| + exp
(

−k2
⊥ρ̃2

s

2

)

×
∞∑

n=−∞

n3

k⊥k2
‖ρ̃3

s

Re
[

Z
(

n
|k‖|ρ̃s

)]
In

(
k2

⊥ρ̃2
s

2

)}

= − k⊥
|k‖|εsW(|k‖|ρ̃s, k⊥ρ̃s), (G96c)

(P(0)
s )yx = (P(0)

s )xy, (G96d)
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(P(0)
s )yy = 3

2
εs

{
1 + exp

(
−k2

⊥ρ̃2
s

2

) ∞∑
n=−∞

2n3

|k‖|k2
⊥ρ̃3

s

Re
[

Z
(

n
|k‖|ρ̃s

)]
In

(
k2

⊥ρ̃2
s

2

)

+ k2
⊥ρ̃2

s exp
(

−k2
⊥ρ̃2

s

2

) ∞∑
n=−∞

n
|k‖|ρ̃s

× Re
[

Z
(

n
|k‖|ρ̃s

)][
In

(
k2

⊥ρ̃2
s

2

)
− I′

n

(
k2

⊥ρ̃2
s

2

)]}
,

= εsY(|k‖|ρ̃s, k⊥ρ̃s), (G96e)

(P(0)
s )yz = 3

√
πεs exp

(
−k2

⊥ρ̃2
s

2

)

×
∞∑

n=1

k⊥n2

k2
‖ρ̃s

exp

(
− n2

k2
‖ρ̃2

s

)[
I′

n

(
k2

⊥ρ̃2
s

2

)
− In

(
k2

⊥ρ̃2
s

2

)]
= − k⊥

|k‖|εsX(|k‖|ρ̃s, k⊥ρ̃s), (G96f )

(P(0)
s )zx = (P(0)

s )xz, (G96g)

(P(0)
s )zy = −(P(0)

s )yz, (G96h)

(P(0)
s )zz = 3εs

{
k2

⊥
2k2

‖
+ exp

(
−k2

⊥ρ̃2
s

2

) ∞∑
n=−∞

n3

|k‖|3ρ̃3
s

Re
[

Z
(

n
|k‖|ρ̃s

)]
In

(
k2

⊥ρ̃2
s

2

)}

= k2
⊥

k2
‖
εsW(|k‖|ρ̃s, k⊥ρ̃s), (G96i)

where the functions W(x, y), Y(x, y) and X(x, y) are defined by

W(x, y) ≡ 3
2

+ 3
xy2

exp
(

−y2

2

) ∞∑
m=−∞

m3 Re Z
(m

x

)
Im

(
y2

2

)
, (G97a)

X(x, y) ≡ 3
√

π

x
exp

(
−y2

2

) ∞∑
m=1

m2

[
Im

(
y2

2

)
− I′

m

(
y2

2

)]
exp

(
−m2

x2

)
, (G97b)

Y(x, y) ≡ W(x, y) − 3
2

y2G(x, y)
x

. (G97c)

G.4.2. Asymptotic limits of P (0)
s

As we have done for the other special functions defined in this paper, in this appendix
we provide asymptotic expressions in the limits where x and y are very small or large
for the special functions W(x, y), X(x, y) and Y(x, y) defined in (G97). These limits again
correspond to parallel and perpendicular wavenumbers that are very small or very large
with respect to the inverse Larmor radius of species s.

Considering various asymptotic limits in a systematic fashion, we find
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(i) x ∼ 1, y � 1

W(x, y) =
[

3
2

+ 3
2x

Re Z
(

1
x

)] [
1 + O

(
y2)] , (G98a)

X(x, y) = −3
√

π

2x
exp

(
− 1

x2

) [
1 + O

(
y2)] , (G98b)

Y(x, y) =
[

3
2

+ 3
2x

Re Z
(

1
x

)] [
1 + O

(
y2)] . (G98c)

(ii) x, y � 1

W(x, y) = 3x2
(
x2 − y2

)
2
(
x2 + y2

)2

[
1 + O

(
1

x2 + y2

)]
, (G99a)

X(x, y) = 3
√

πx2
(
y2 − 2x2

)
4
(
x2 + y2

)5/2

[
1 + O

(
1

x2 + y2

)]
, (G99b)

Y(x, y) = 3x2

2
(
x2 + y2

) [1 + O
(

1
x2 + y2

)]
. (G99c)

(iii) x � 1, y ∼ 1

W(x, y) = −3x2

2y2

[
1 − exp

(
−y2

2

)
I0

(
y2

2

)] [
1 + O

(
x2)] , (G100a)

X(x, y) = 3
√

π

x
exp

(
−y2

2

)[
I0

(
y2

2

)
− I1

(
y2

2

)]
× exp

(
− 1

x2

){
1 + O

[
exp

(
− 3

x2

)]}
, (G100b)

Y(x, y) = 3
2

y2 exp
(

−y2

2

)[
I0

(
y2

2

)
− I1

(
y2

2

)] [
1 + O

(
x2)] . (G100c)

(iv) x, y � 1

W(x, y) = − 3
4 x2 [1 + O

(
x2, y2)] , (G101a)

X(x, y) = 3
√

π

x
exp

(
− 1

x2

){
1 + O

[
exp

(
− 3

x2

)
, y2

]}
, (G101b)

Y(x, y) = [
3
2 y2 − 3

4 x2 − 9
8

(
x4 − 2

3 x2y2 + y4)]
× [

1 + O
(
x6, x4y2, x2y4, y6)] . (G101c)
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(v) x � 1, y � 1

W(x, y) = −3x2

2y2

[
1 + O

(
x2,

1
y2

)]
, (G102a)

X(x, y) = 3
xy3

exp
(

− 1
x2

){
1 + O

[
exp

(
− 3

x2

)
,

1
y2

]}
, (G102b)

Y(x, y) = 3
2
√

πy

[
1 + O

(
x2,

1
y2

)]
. (G102c)

Appendix H. Density perturbations for low-frequency modes

In this appendix, we derive an expression for the (Fourier-transformed) perturbation of
number density δ̂ns of species s associated with a low-frequency mode, in terms of the
expanded terms of the dielectric tensor Es = ω̃s‖E

(0)
s + ω̃2

s‖E
(1)
s + . . . of species s and the

perturbed electric field, δ̂E; we will show that δ̂ns is, in fact, independent of E(0)
s . We

then derive an expression for the perturbed density of all sub-ion-Larmor scale (kρi � 1),
low-frequency modes.

H.1. Derivation of general expressions
We begin with the continuity equation (2.4a), which describes the time evolution of the
density of species s in terms of itself and the bulk velocity of the same species. For any
small-scale, small-amplitude perturbed density δns and bulk velocity δV s of some (much
more slowly evolving, much larger-scale) quasi-equilibrium state with mean density ns0 �
δns and bulk velocity V s0 � δV s, viz.

ns = ns0 + δns, V s = V s0 + δV s, (H1a,b)

the continuity equation governing that perturbation is

∂δns

∂t
+ ns0∇ · δV s + V s0 · ∇δns = 0. (H2)

where we have neglected all terms that are quadratic in the perturbation amplitude,
and also the terms that are proportional to gradients of the equilibrium state, which by
assumption are much smaller than the remaining terms. Assuming the perturbation has
the form

δns = δ̂ns exp {i (k · r − ωt)} , (H3a)

δV s = δ̂V s exp {i (k · r − ωt)} , (H3b)

we deduce from (H2) that

δ̂ns = 1
ω

(
ns0k · δ̂V s + δ̂nsk · V s0

)
. (H4)

The perturbed velocity δ̂V s can be written in terms of the dielectric tensor of species s
using Ohm’s law (C13) and (2.96):

δ̂V s = − iω
4πZsens0

Es · δ̂E − δ̂ns

ns0
V s0, (H5)
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whence, by way of (H4),

δ̂ns = − i
4πZse

k · Es · δ̂E. (H6)

Finally, we note that the symmetries (2.102) of E(0)
s imply that it does not contribute to the

right-hand side of (H6), which implies in turn that

δ̂ns ≈ − iω̃2
s‖

4πZse
k · E(1)

s · δ̂E. (H7)

Thus, for low-frequency modes, δ̂ns is a function of the electric field and E(1)
s , but not

of E(0)
s .

We note that the condition (2.109) implies that, for low-frequency modes,
quasi-neutrality is maintained:∑

s

Zsδ̂ns ≈ − i
4πe

∑
s

ω̃2
s‖k · E(1)

s · δ̂E = 0. (H8)

Thus, in a two-species plasma, the ion number density associated with a perturbation can
be calculated if the electron number density is known, and vice versa.

H.2. Special case: sub-ion-Larmor-scale modes in a two-species plasma
In the special case of a two-species plasma whose characteristic parallel wavenumber
satisfies k‖ρi � 1, a particularly simple expression for the perturbed number densities
of ions (and electrons) can be derived: the Boltzmann response. This arises because the
ion dielectric tensor Ei is unmagnetised, and so takes the simple form (valid for arbitrary
ω̃i = ω/kvthi) that was derived in Appendix G.1.5:

Ei ≈ E(UM)

i = ω2
pi

ω2
ω̃i

{(
I − k̂k̂

)
Z(ω̃i) + 2

[
ω̃i + ω̃2

i Z(ω̃i)
]

k̂k̂
}

. (H9)

It follows that

k · Ei · δ̂E ≈ ω2
pi

ω2
2ω̃2

i

[
1 + ω̃iZ(ω̃i)

]
k · δ̂E. (H10)

Now assuming that ω̃i � 1, it follows that

k · E(1)

i · δ̂E ≈ 2ω2
pi

ω2

k2
‖

k2
k · δ̂E. (H11)

Expression (H7) with s = i then gives

δ̂ni ≈ −Zeini0

Ti

k̂ · δ̂E
k

. (H12)

Finally, introducing the electrostatic potential ϕ, whose Fourier transform is related to the
electrostatic component of the electric field via

ϕ̂ = ik̂ · δ̂E
k

, (H13)
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we deduce that

δ̂ni ≈ −Zieini0

Ti
ϕ̂, (H14)

and

δ̂ne ≈ −Zieine0

Ti
ϕ̂, (H15)

where we have used the quasi-neutrality relation ne0 = Zini0 for the equilibrium state.

Appendix I. Calculating the electrostatic field from the transverse electric field

In Appendix G.1.3, it was shown that, for any distribution function with a small
anisotropy,

E(0)
s · k̂ = 0, (I1)

which implies that the leading-order terms (in ω̃s‖ � 1) of the dielectric tensor are
insufficient to determine the electrostatic field. To do this, we must go to the next order
in ω̃s‖ � 1. To illustrate how such a calculation is done, in this appendix, we derive an
expression for the electrostatic field component k̂ · δ̂E in terms of the transverse electric
field δ̂ET and special functions when the underlying particle distribution function is
Maxwellian.

To achieve this aim, we first derive a relation between the components of the electric
field in the coordinate basis {x̂, ŷ, ẑ}. We begin with the consistency condition (2.110)
appropriate for non-relativistic electromagnetic fluctuations

k · E · δ̂E = 0. (I2)

Writing k̂, E and δ̂E in the basis {x̂, ŷ, ẑ}, this becomes(
k⊥Exx + k‖Exz

)
δ̂Ex + (

k⊥Exy − k‖Eyz
)
δ̂Ey + (

k⊥Exz + k‖Ezz
)
δ̂Ez = 0. (I3)

Now considering the case of fluctuations that satisfy ω̃s‖ � 1 for all particle species s, and
expanding the components of the dielectric in ω̃s‖ � 1, we find(

k⊥E(1)
xx + k‖E(1)

xz

)
δ̂Ex + (

k⊥E(1)
xy − k‖E(1)

yz

)
δ̂Ey + (

k⊥E(1)
xz + k‖E(1)

zz

)
δ̂Ez = O(ω̃3

s‖), (I4)

where

E(1) =
∑

s

ω̃2
s‖E

(1)
s . (I5)

From (G26), we have

k⊥E(1)
xx + k‖E(1)

xz = −
∑

s

2k‖ω2
psω̃

2
s‖

ω2

∞∑
m=−∞

m
k⊥ρ̃s

Re Z
(

m
|k‖|ρ̃s

)

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)
, (I6a)
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k⊥E(1)
xy − k‖E(1)

yz =
∑

s

√
πk‖ω2

psω̃
2
s‖

ω2

∞∑
m=−∞

k⊥ρ̃s exp

(
− m2

k2
‖ρ̃2

s

)

× exp
(

−k2
⊥ρ̃2

s

2

)[
I′

m

(
k2

⊥ρ̃2
s

2

)
− Im

(
k2

⊥ρ̃2
s

2

)]
, (I6b)

k⊥E(1)
xz + k‖E(1)

zz =
∑

s

2k‖ω2
psω̃

2
s‖

ω2

[
1 +

∞∑
m=−∞

m
|k‖|ρ̃s

Re Z
(

m
|k‖|ρ̃s

)

× exp
(

−k2
⊥ρ̃2

s

2

)
Im

(
k2

⊥ρ̃2
s

2

)]
. (I6c)

Thus, we have the following relationship between δ̂Ex, δ̂Ey and δ̂Ez:

∑
s

k2
Ds

2k2
‖

{
− L

(|k‖|ρ̃s, k⊥ρ̃s
)
δ̂Ex + N

(|k‖|ρ̃s, k⊥ρ̃s
)
δ̂Ey

+
[

2 + k⊥
k‖

L
(|k‖|ρ̃s, k⊥ρ̃s

)]
δ̂Ez

}
= 0, (I7)

where kDs is the Debye wavenumber (D12), and L(x, y) and N(x, y) were defined previously
by (G32). Using the identities

δ̂Ex = k‖
k

δ̂E1 + k⊥
k

δ̂E3, (I8a)

δ̂Ey = δ̂E2, (I8b)

δ̂Ez = −k⊥
k

δ̂E1 + k‖
k

δ̂E3, (I8c)

we can rearrange (I7) to give

1
k‖k

(∑
s

k2
Ds

)
δ̂E3 =

∑
s

k2
Ds

2k2
‖

{[
k
k‖

L
(|k‖|ρ̃s, k⊥ρ̃s

)+ 2
k⊥
k

]
δ̂E1

− N
(|k‖|ρ̃s, k⊥ρ̃s

)
δ̂E2

}
. (I9)

Thus, the electrostatic field is related to the transverse field by

k̂ · δ̂E =
(∑

s

ZsTe

Ts

)−1∑
s

ZsTe

Ts

{[
k2

2k2
‖

L
(|k‖|ρ̃s, k⊥ρ̃s

)+ k⊥
k‖

]
δ̂E1

− k
2k‖

N
(|k‖|ρ̃s, k⊥ρ̃s

)
δ̂E2

}
. (I10)
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Appendix J. Methodology for characterising CET microinstabilities

In this appendix, we describe our method for calculating the real frequencies and growth
rates of microinstabilities driven by the CE electron- and ion-temperature-gradient, and
electron-friction terms when the Krook collision operator is assumed. The method follows
that outlined in § 2.5: that is, motivated by the considerations of § 2.3.4, we assume that all
significant CET microinstabilities are low frequency (ω � k‖vths for at least one particle
species), and derive algebraic dispersion relations of such microinstabilities (a particular
example of which is given by (2.118)). The growth rate of CET microinstabilities (and,
therefore, the stability of the electron and ion CE distribution functions (3.1a) and (3.1b))
as a function of their parallel and perpendicular wavenumbers k‖ and k⊥ is assessed
by solving this dispersion relation for the complex frequency ω, and then evaluating its
imaginary part.

As we explained in § 2.5, to construct the algebraic, low-frequency dispersion relation
for particular forms of CE distribution function for each particle species s, we must
evaluate its (leading-order) non-Maxwellian contribution to the dielectric tensor, Ps ≈ P(0)

s
(see (2.97) and (G10) for the precise relation of this quantity to the dielectric tensor
Es). This is done for the CE electron-friction term in Appendix J.1, and for the CE
temperature-gradient terms in Appendix J.2. We then deduce the algebraic dispersion
relations of CE electron-temperature-gradient-driven microinstabilities in Appendix J.3,
and of CE ion-temperature-gradient-driven microinstabilities in Appendix J.4. Within
these two appendices, respectively, we also present derivations of the (further) simplified
dispersion relations for the parallel CET whistler instability (Appendix J.3.1), the
parallel CET slow-hydromagnetic-wave instability (Appendix J.4.1), and the CET
long-wavelength KAW instability (Appendix J.4.2), from which the frequencies and
growth rates of these instabilities that are stated in § 3.3 are calculated.

J.1. Dielectric response of CE electron-friction term
We first consider the CE electron-friction term when evaluating P(0)

e , defined in (2.97).
We showed in Appendix G.2 that, when a Krook collision operator was assumed, if ηT

e =
ηi = 0, then (see (G74))

(P(0)
e )11 = ηR

e

2
(M (0)

e )11, (J1a)

(P(0)
e )12 = ηR

e

2
(M (0)

e )12, (J1b)

(P(0)
e )21 = ηR

e

2
(M (0)

e )21, (J1c)

(P(0)
e )22 = ηR

e

2
(M (0)

e )22. (J1d)

It follows that the dispersion relation of all plasma modes is identical to that in a
Maxwellian plasma, only with shifted complex frequencies ω̃∗

e‖ ≡ ω̃e‖ + ηR
e /2. Since

Im(ω̃e‖) < 0 for all modes in a Maxwellian plasma, we conclude that Im(ω̃∗
e‖) < 0 also,

and hence the CE electron-friction term cannot drive any microinstabilities when a Krook
collision operator is employed: instead, it merely modifies the real frequency of the
waves. Thus, when characterising CET microinstabilities, we henceforth ignore the CE
electron-friction term, as well as the electron–ion-drift term (viz. ηR

e = ηu
e = 0).
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J.2. Dielectric response of CE temperature-gradient terms
Now consider the CE temperature-gradient terms. It is shown in Appendix G.3 that P(0)

s is
given by

(P(0)
e )11 = iηT

e
k2

k2
‖

I
(
k‖ρ̃e, k⊥ρ̃e

)
, (J2a)

(P(0)
e )12 = −iηT

e
k
k‖

J
(
k‖ρ̃e, k⊥ρ̃e

)
, (J2b)

(P(0)
e )21 = iηT

e
k
k‖

J
(
k‖ρ̃e, k⊥ρ̃e

)
, (J2c)

(P(0)
e )22 = iηT

e K
(
k‖ρ̃e, k⊥ρ̃e

)
, (J2d)

where the special functions I(x, y), J(x, y) and K(x, y) are defined by (G85). Note that ρ̃e <

0, by definition. The contribution P(0)

i associated with the CE ion-temperature-gradient
terms is given by

(P(0)

i )11 = iηi
k2

k2
‖

I
(
k‖ρi, k⊥ρi

)
, (J3a)

(P(0)

i )12 = −iηi
k
k‖

J
(
k‖ρi, k⊥ρi

)
, (J3b)

(P(0)

i )21 = iηi
k
k‖

J
(
k‖ρi, k⊥ρi

)
, (J3c)

(P(0)

i )22 = iηiK
(
k‖ρi, k⊥ρi

)
. (J3d)

J.3. Approximate dispersion relation of CE electron-temperature-gradient-driven
microinstabilities

We first consider microinstabilities for which ω̃e‖ = ω/k‖vthe ∼ ηT
e . It follows that ω̃i‖ =

ω/k‖vthi ∼ ηT
e μ−1/2

e � ηi. Therefore, the CE ion-temperature-gradient term is irrelevant
for such instabilities, and we need consider only the electron-temperature-gradient term.
We also assume that the Maxwellian contribution to the dielectric tensor, M i, can be
ignored for such microinstabilities – the validity of this assumption is discussed at the
end of this section.

The dispersion relation for microinstabilities under the ordering ω̃e‖ ∼ ηT
e ∼ 1/βe is

then given by (2.118), with M (0)
e and P(0)

e substituted for by (2.121) and (J2), respectively,[
ω̃e‖F

(
k‖ρ̃e, k⊥ρ̃e

)+ ηT
e I
(
k‖ρ̃e, k⊥ρ̃e

)+ ik2
‖d2

e

]
× [

ω̃e‖H
(
k‖ρ̃e, k⊥ρ̃e

)+ ηT
e K
(
k‖ρ̃e, k⊥ρ̃e

)+ ik2d2
e

]
+ [

ω̃e‖G
(
k‖ρ̃e, k⊥ρ̃e

)+ ηT
e J
(
k‖ρ̃e, k⊥ρ̃e

)]2 = 0. (J4)

We remind the reader that we have ordered k2d2
e ∼ ηT

e and kρe ∼ 1. Noting that βe =
ρ2

e /d2
e , we can rewrite the skin-depth terms as follows:

k2
‖d2

e = k2
‖ρ

2
e

βe
, k2d2

e = k2ρ2
e

βe
. (J5a,b)
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This allows for the dispersion relation (J4) to be arranged as a quadratic in the complex
variable ω̃e‖βe:

AT
(
k‖ρe, k⊥ρe

)
ω̃2

e‖β
2
e + BT

(
k‖ρe, k⊥ρe

)
ω̃e‖βe + CT

(
k‖ρe, k⊥ρe

) = 0, (J6)

where

AT
(
k‖ρe, k⊥ρe

) = FeHe + G2
e, (J7)

BT
(
k‖ρe, k⊥ρe

) = ηT
e βe (FeKe + HeIe + 2GeJe) + i

(
Fek2ρ2

e + Hek2
‖ρ

2
e

)
, (J8)

CT
(
k‖ρe, k⊥ρe

) = (
ηT

e βe
)2 (

IeKe + J2
e

)− k2k2
‖ρ

4
e + iηT

e βe
(
Iek2ρ2

e + Kek2
‖ρ

2
e

)
, (J9)

and Fe ≡ F(k‖ρ̃e, k⊥ρ̃e), Ge ≡ G(k‖ρ̃e, k⊥ρ̃e), etc. Solving (J6) gives two roots; restoring
dimensions to the complex frequency, they are

ω = Ωe

βe
k‖ρe

−BT ±
√

B2
T + 4ATCT

2AT
, (J10)

recovering (3.12). For a given wavenumber, we use (J10) to calculate the growth rates of
the perturbations – and, in particular, to see if positive growth rates are present. If they are,
it is anticipated that they will have typical size γ ∼ Ωe/βe ∼ ηT

e Ωe (or ω̃e‖ ∼ 1/βe ∼ ηT
e ).

When deriving (J10), we assumed that neglecting the Maxwellian ion response
was legitimate. It is clear that if ω̃i‖ � 1, then thermal ions are effectively static to
electromagnetic perturbations, and so their contribution M i to the dielectric tensor can
be ignored. In terms of a condition on ηT

e , the scaling ηT
e ∼ ω̃e‖ gives ηT

e � μ1/2
e , so

this regime is valid for sufficiently large ηT
e . For ω̃i‖ � 1, it is not immediately clear in

the same way that the ion contribution to the dielectric tensor is small. However, having
deduced the typical magnitude of the complex frequency of perturbations whilst ignoring
ion contributions, we are now able to confirm that our neglect of M i was justified.

Since kρe ∼ 1 under the ordering assumed when deriving (J4), we conclude that the
Maxwellian ion response is unmagnetised: kρi � 1. As a consequence, it can be shown
(see Appendix G.1.5) that the transverse components of M i are given by

(M i)11 = (M i)22 = ω̃iZ(ω̃i) , (M i)12 = (M i)21 = 0, (J11a,b)

where ω̃i ≡ ω/kvthi = k‖ω̃i‖/k. Then, estimating the size of the neglected Maxwellian ion
contribution to the dielectric tensor (assuming k‖ ∼ k) as compared with the equivalent
electron contribution, we find

(Ei)11

(E(0)
e )11

∼ (Ei)22

(E(0)
e )22

∼ μeω̃i

ω̃e‖
|Z(ω̃i) | ∼ μ1/2

e |Z(ω̃i) |, (J12)

where we have used Ei = μeM i and E(0)
e = ω̃e‖M (0)

e + P(0)
e (see § 2.5.3). Since |Z(z)| � 1

for all z with positive imaginary part (Fried & Conte 1961), we conclude that the ion
contribution to the dielectric tensor is indeed small for unstable perturbations, irrespective
of the value of ω̃i‖, and so its neglect was valid.
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J.3.1. Derivation of frequency and growth rate of the parallel CET whistler instability
The dispersion relation of unstable whistler waves with their wavevector parallel to B0

is obtained by taking the subsidiary limit k⊥ρe → 0 in (J4), and substituting ρ̃e = −ρe:[
ω̃e‖βe

√
π exp

(
− 1

k2
‖ρ2

e

)
+ ηT

e βe

√
π

2

(
1

k2
‖ρ2

e

− 1
2

)
exp

(
− 1

k2
‖ρ2

e

)
+ ik2

‖ρ
2
e

]2

+
{

ω̃e‖βe Re Z
(

1
k‖ρe

)
+ ηT

e βe

[
1

2k‖ρe
+
(

1
2k2

‖ρ2
e

− 1
4

)
Re Z

(
1

k‖ρe

)]}2

= 0.

(J13)

This can be factorised to give two roots; separating the complex frequency into real and
imaginary parts via ω = � + iγ , and defining

�̃e‖ ≡ �

k‖vthe
, γ̃e‖ ≡ γ

k‖vthe
, (J14a,b)

we have

�̃e‖βe = ηT
e βe

(
1

2k2
‖ρ2

e

− 1
4

)
+
(
ηT

e βe/2k‖ρe − k2
‖ρ

2
e

)
Re Z

(
1/k‖ρe

)[
Re Z

(
1/k‖ρe

)]2 + π exp
(−2/k2

‖ρ2
e

) , (J15a)

γ̃e‖βe =
√

π
(
ηT

e βe/2k‖ρe − k2
‖ρ

2
e

)[
Re Z

(
1/k‖ρe

)]2 exp
(
1/k2

‖ρ2
e

)+ π exp
(−1/k2

‖ρ2
e

) , (J15b)

whence (3.5) follows immediately.

J.4. Approximate dispersion relation of CE ion-temperature-gradient-driven
microinstabilities

We now explain the method used to characterise microinstabilities driven by the
ion-temperature-gradient term. For these, we set the electron-temperature-gradient terms
to zero, ηT

e = 0, assume the ordering ω̃i‖ ∼ ηi, and anticipate that such microinstabilities
will occur on ion rather than electron scales, i.e. kρi ∼ 1. Under the ordering ω̃i‖ ∼
ηi � 1, it follows that ω̃e‖ ∼ μ1/2

e ω̃i‖ � 1; therefore, we can use (2.121) to quantity the
contribution of Maxwellian electrons to the total dielectric tensor. However, since kρi ∼ 1,
we must consider the matrix M (0)

e in the limit k‖ρe ∼ k⊥ρe ∼ μ1/2
e � 1. Asymptotic forms

of (2.121) appropriate for this limit are given by (G37), and lead to11

(M (0)
e )11 = O

[
exp

(
− 1

k2
‖ρ2

e

)]
, (J16a)

(M (0)
e )12 ≈ −i

k
k‖

[
k‖ρe + O(k3ρ3

e )
]
, (J16b)

(M (0)
e )21 = i

k
k‖

[
k‖ρe + O(k3ρ3

e )
]
, (J16c)

(M (0)
e )22 = i

[√
πk2

⊥ρ2
e + O(k4

⊥ρ4
e )
]
. (J16d)

11As noted in § 2.5.6, for k‖ρe � 1, the approximation (Me)11 ≈ ω̃e‖(M (0)
e )11 in fact breaks down, on account of

(M (0)
e )11 becoming exponentially small in k‖ρe � 1. However, it turns out that when k‖ρi ∼ k⊥ρi ∼ 1, (Me)11 � (M i)11,

and so this subtlety can be ignored for the CE ion-temperature-gradient-driven instabilities.
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We now combine (J16) with (2.121) for M (0)

i and (J3) for P(0)

i , and find the dispersion
relation for CE ion-temperature-gradient-driven microinstabilities by substituting the
dielectric tensor (2.108) into (2.117):[

ω̃i‖F
(
k‖ρi, k⊥ρi

)+ ηiI
(
k‖ρi, k⊥ρi

)+ ik2
‖d2

i

]
× [

ω̃i‖H
(
k‖ρi, k⊥ρi

)+ ηiK
(
k‖ρi, k⊥ρi

)+ ik2d2
i

]
+ [

ω̃i‖
[
G
(
k‖ρi, k⊥ρi

)+ k‖ρi
]+ ηiJ

(
k‖ρi, k⊥ρi

)]2 = 0, (J17)

where di = c/ωpi is the ion inertial scale, and we have ordered ηi ∼ 1/βi ∼ k2d2
i . This

dispersion relation is very similar to (J4), save for the addition of one term (the middle term
in the third line of (J17)) providing a linear coupling between the δ̂E1 and δ̂E2 components
of the electric-field perturbation. Similarly to (J10), the dispersion relation (J17) can be
written as a quadratic in ω̃i‖βi, which is then solved to give the following expression for
the complex frequency:

ω = Ωi

βi
k‖ρi

−B̃T ±
√

B̃2
T + 4ÃTC̃T

2ÃT

, (J18)

where

ÃT = FiHi +
[
Gi + k‖ρi

]2
, (J19)

B̃T = ηiβi
[
FiKi + HiIi + 2Ji

(
Gi + k‖ρi

)]+ i
(
Fik2ρ2

e + Hik2
‖ρ

2
e

)
, (J20)

C̃T = (ηiβi)
2 (IiKi + J2

i

)− k2k2
‖ρ

4
e + iηiβi

(
Iik2ρ2

e + Kik2
‖ρ

2
e

)
. (J21)

This expression is the one that is used to evaluate the real frequencies and growth rates of
ion-scale CET microinstabilities in § 3.3.3.

J.4.1. Derivation of frequency and growth rate of the parallel CET
slow-hydromagnetic-wave instability

We obtain the dispersion relation of the parallel slow-wave instability by considering
the general dispersion relation (J17) of CE ion-temperature-gradient-driven instabilities in
the limit k⊥ → 0:[

ω̃i‖βi
√

π exp

(
− 1

k2
‖ρ

2
i

)
+ ηiβi

√
π

2

(
1

k2
‖ρ

2
i

− 1
2

)
exp

(
− 1

k2
‖ρ

2
i

)
+ ik2

‖ρ
2
i

]2

+
{

ω̃i‖βi

[
Re Z

(
1

k‖ρi

)
+ k‖ρi

]
+ ηiβi

[
1

2k‖ρi
+
(

1
2k2

‖ρ
2
i

− 1
4

)
Re Z

(
1

k‖ρi

)]}2

= 0.

(J22)

As before, this can be factorised to give two roots; for ω̃i‖ = �̃i‖ + iγ̃i‖ (cf. (J14a,b)), it
follows that

�̃i‖βi = ηiβi

(
1

2k2
‖ρ

2
i

− 1
4

)
+

k‖ρi

[
Re Z

(
1

k‖ρi

)
+ k‖ρi

] (
ηiβi/4 − k‖ρi

)
[

Re Z
(

1
k‖ρi

)
+ k‖ρi

]2

+ π exp

(
− 2

k2
‖ρ

2
i

) , (J23a)
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γ̃i‖βi =
√

πk‖ρi
(
ηiβi/4 − k‖ρi

)[
Re Z

(
1

k‖ρi

)
+ k‖ρi

]2

exp

(
1

k2
‖ρ

2
i

)
+ π exp

(
− 1

k2
‖ρ

2
i

) . (J23b)

These can be rearranged to give (3.13).

J.4.2. Derivation of frequency and growth rate of the CET long-wavelength KAW
instability

In the limit k‖ρi � 1, k⊥ρi ∼ 1, the general dispersion relation (J17) of CE
ion-temperature-gradient-driven instabilities becomes

[
ω̃i‖(1 − Fi) − ηi

2
Gi

]2

+ k2
⊥ρ2

i

βi

[
i
√

π

(
Fi +

√
μeZ2

τ

)
ω̃i‖ − 1

βi
+ i

√
πηi

2

(
Gi − 1

2
Fi

)]
= 0, (J24)

where we remind the reader that Fi = F(k⊥ρi), Gi = G(k⊥ρi), with the functions F(α)

and G(α) being defined by (3.24). Equation (3.22) for the complex frequency of the CET
KAW modes in the main text is then derived by solving (J24) for ω̃i‖ = ω/k‖vthi.

Appendix K. Methodology for characterising CES microinstabilities

This appendix outlines the method used to determine the growth rates of
microinstabilities driven by the CE electron- and ion-shear terms. Once again (cf.
Appendix J), § 2.5 presents the general framework of our approach: determine a
simplified algebraic dispersion relation satisfied by the (complex) frequencies ω of CES
microinstabilities with parallel and perpendicular wavenumber k‖ and k⊥ under the
assumption that they are low frequency (viz. ω � k‖vths; cf. (2.94)), solve for ω, then
calculate the growth rate γ from its imaginary part (and the real frequency � from its
real part). To construct the dispersion relation, we first need to know the tensor P(0)

s
for a CE distribution function of the form (4.1); this result is given in Appendix K.1.
Then, in Appendix K.2.1, we determine an approximate quadratic dispersion relation
for CES microinstabilities, show in Appendix K.2.2 how that dispersion relation can
be used in certain cases to evaluate the CES instability thresholds semi-analytically,
then demonstrate the significant shortcomings of the quadratic approximation in
Appendix K.2.3. In Appendix K.3.1, we address these shortcomings by constructing
a revised quartic dispersion relation for CES microinstabilities. This quartic dispersion
relation is then used to derive simplified dispersion relations for the various different CES
microinstabilities discussed in the main text: the mirror instability in Appendix K.3.2,
the parallel (CES) whistler instability in Appendix K.3.3, the transverse instability in
Appendix K.3.4, the electron mirror instability in Appendix K.3.5, the parallel, oblique
and critical-line firehose instabilities in Appendices K.3.6, K.3.7 and K.3.8, the parallel
and oblique electron firehose instabilities in Appendices K.3.9 and K.3.10, the EST
instability in Appendix K.3.11 and the whisper instability in Appendix K.3.12. Finally, in
Appendix K.3.13, we derive the dispersion relation of the CET ordinary-mode instability –
the one CES (or CET) microinstability that does not satisfy ω � k‖vths for either electrons
or ions (see § 2.5.8) – directly from the hot-plasma dispersion relation.
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K.1. Dielectric response of CE shear terms
First, we evaluate the elements of P(0)

s :

(P(0)
s )11 = εs

k2

k2
‖

W
(
k‖ρ̃s, k⊥ρ̃s

)
, (K1a)

(P(0)
s )12 = −εs

k
k‖

X
(
k‖ρ̃s, k⊥ρ̃s

)
, (K1b)

(P(0)
s )21 = εs

k
k‖

X
(
k‖ρ̃s, k⊥ρ̃s

)
, (K1c)

(P(0)
s )22 = εsY

(
k‖ρ̃s, k⊥ρ̃s

)
, (K1d)

where the special functions W(x, y), Y(x, y) and X(x, y) are defined by (G97). These results
are derived in Appendix G.4.

K.2. Quadratic approximation to dispersion relation of CE shear-driven
microinstabilities

K.2.1. Derivation
Considering the relative magnitude of ω̃i‖ = ω/k‖vthi and ω̃e‖ = ω/k‖vthe � ω̃i‖,

we observe that, unlike CET microinstabilities, CES microinstabilities satisfy the
low-frequency condition (2.94) for both electrons and ions. This claim holds because any
microinstability involving the CE electron-shear term must satisfy ω̃e‖ ∼ εe � (me/mi)

1/2,
where the last inequality arises from the scaling relation εe ∼ (me/mi)

1/2εi given by
(2.42d); thus, from the scaling relation (2.106) with Te = Ti, it follows that ω̃i‖ ∼
εe(mi/me)

1/2 ∼ εi � 1. Therefore, it is consistent to expand both the Maxwellian electron
and ion terms in ω̃s‖ � 1.

We therefore initially approximate E as follows:

E ≈ ω̃e‖E
(0) = ω2

pe

ω2

(∑
s

ω̃s‖μsM
(0)
s +

∑
s

μsP
(0)
s

)
, (K2)

where the expansion of M s and Ps in ω̃s‖, i.e.

M s
(
ω̃s‖, k

) ≈ ω̃s‖M (0)
s (k) , Ps

(
ω̃s‖, k

) ≈ P(0)
s (k) , (K3a,b)

applies to both ion and electron species. By analogy to the derivation presented in § 2.5.5,
this approximation gives rise to a simplified dispersion relation (cf. (2.117))(

ω̃e‖E
(0)

11 − k2c2

ω2

)(
ω̃e‖E

(0)

22 − k2c2

ω2

)
+
(
ω̃e‖E

(0)

12

)2
= 0. (K4)

We emphasise that, here, each component of E(0) has both electron and ion contributions.
Expressing ω̃i‖ = ω̃e‖μ−1/2

e in (K2), (K4) can be written as[
ω̃e‖(M (0)

e + μ1/2
e M (0)

i )11 + (P(0)
e + μ1/2

e P(0)

i )11 − k2d2
e

]
×
[
ω̃e‖(M (0)

e + μ1/2
e M (0)

i )22 + (P(0)
e + μ1/2

e P(0)

i )22 − k2d2
e

]
+
[
ω̃e‖(M (0)

e + μ1/2
e M (0)

i )12 + (P(0)
e + μ1/2

e P(0)

i )12

]2
= 0. (K5)
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Combining the expressions (K1) for P(0)
s with (2.121) for M (0)

s and substituting M (0)
s and

P(0)
s into (K5) gives[

iω̃e‖
(
Fe + μ1/2

e Fi
)+ εe

(
We + μ1/2

e Wi
)− k2

‖d2
e

]
× [

iω̃e‖
(
He + μ1/2

e Hi
)+ εe

(
Ye + μ1/2

e Yi
)− k2d2

e

]
+ [

iω̃e‖
(
Ge + μ1/2

e Gi
)+ εe

(
Xe + μ1/2

e Xi
)]2 = 0, (K6)

where we have used εi = εeμ
−1/2
e . For brevity of notation, we have also defined Fs ≡

F(k‖ρ̃s, k⊥ρ̃s), Gs ≡ G(k‖ρ̃s, k⊥ρ̃s) and so on.
Using (2.58b) for the terms ∝ d2

e explicitly introduces a βe dependence into (K6). After
some elementary manipulations, we obtain the quadratic

ASω̃
2
e‖β

2
e + iBSω̃e‖βe − CS = 0, (K7)

where

AS = (
Fe + μ1/2

e Fi
) (

He + μ1/2
e Hi

)+ (
Ge + μ1/2

e Gi
)2

, (K8a)

BS = (
He + μ1/2

e Hi
) [

k2
‖ρ

2
e − εeβe

(
We + μ1/2

e Wi
)]− 2εeβe

(
Ge + μ1/2

e Gi
) (

Xe + μ1/2
e Xi

)
+ (

Fe + μ1/2
e Fi

) [
k2ρ2

e − εeβe
(
Ye + μ1/2

e Yi
)]

, (K8b)

CS = [
k2

‖ρ
2
e − εeβe

(
We + μ1/2

e Wi
)] [

k2ρ2
e − εeβe

(
Ye + μ1/2

e Yi
)]

+ ε2
e β

2
e

(
Xe + μ1/2

e Xi
)2

. (K8c)

As before, this can be solved explicitly for the complex frequency

ω = Ωe

βe
k‖ρe

−iBS ±
√

−B2
S + 4ASCS

2AS
. (K9)

From this expression, we can extract the real frequency � and the growth rate γ explicitly.
In the case when 4ASCS > B2

S, we have two oppositely propagating modes with the same
growth rate:

� = ±Ωe

βe
k‖ρe

√
−B2

S + 4ASCS

2AS
, (K10a)

γ = Ωe

βe
k‖ρe

BS

2AS
. (K10b)

For 4ASCS < B2
S, both modes are non-propagating, with distinct growth rates

γ = Ωe

βe
k‖ρe

BS ±
√

B2
S − 4ASCS

2AS
. (K11)

K.2.2. Semi-analytic estimates of CES instability thresholds using quadratic
approximation

In the case of non-propagating modes whose growth rate is given by (K11), we can
determine semi-analytic formulae for the thresholds of any instabilities. This is done by
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noting that, at marginal stability, ω̃e‖ = 0. Therefore, it follows from (K7) that CS = 0, or,
equivalently,[

k2
‖ρ

2
e − εeβe

(
We + μ1/2

e Wi
)] [

k2ρ2
e − εeβe

(
Ye + μ1/2

e Yi
)]+ ε2

e β
2
e

(
Xe + μ1/2

e Xi
)2 = 0.

(K12)
This is a quadratic in εeβe which can be solved exactly to give the threshold value of εeβe
as a function of perpendicular and parallel wavenumber,

εeβe = 1
2

[(
We + μ1/2

e Wi
) (

Ye + μ1/2
e Yi

)+ (
Xe + μ1/2

e Xi
)2
]−1

×
(

k2ρ2
e

(
We + μ1/2

e Wi
)+ k2

‖ρ
2
e

(
Ye + μ1/2

e Yi
)

±
{[

k2ρ2
e

(
We + μ1/2

e Wi
)+ k2

‖ρ
2
e

(
Ye + μ1/2

e Yi
)]2

−4k2
‖k2ρ4

e

[(
We + μ1/2

e Wi
) (

Ye + μ1/2
e Yi

)+ (
Xe + μ1/2

e Xi
)2
]}1/2

)
. (K13)

Expression (K13) is used in §§ 4.4.1 and 4.4.7 to evaluate the wavevector-dependent
thresholds of the CES ion and electron firehose instabilities, respectively.

K.2.3. Shortcomings of quadratic approximation
In contrast to quadratic approximations to the dispersion relations of CET

microinstabilities being sufficient to characterise all instabilities of note (see,
e.g. Appendix J.3), not all CES microinstabilities are captured by the quadratic dispersion
relation (K7), because there are important microinstabilities whose correct description
requires keeping higher-order terms in the ω̃s‖ � 1 expansion. The mathematical reason
for this is that some microinstabilities occur in wavenumber regimes where either k‖ρi � 1
and/or k‖ρe � 1. As a result, the issues raised in § 2.5.6 regarding the commutability of
the ω̃s‖ � 1 and k‖ρs � 1 limits must be carefully resolved. In Appendix G.1.6, it is shown
that, if k‖ρs � 1/ log (1/ω̃s‖), then the dominant contributions to (M s)xx, (M s)xz and (M s)zz
arise from the quadratic term in ω̃s‖ � 1 expansion, namely

(M s)xx ≈ ω̃2
s‖(M

(1)
s )xx, (K14a)

(M s)xz ≈ ω̃2
s‖(M

(1)
s )xz, (K14b)

(M s)zz ≈ ω̃2
s‖(M

(1)
s )zz. (K14c)

If k⊥ρs � k‖ρsω̃
1/2
s‖ , then

(M s)yy ≈ ω̃2
s‖(M

(1)
s )yy. (K15)

In the {e1, e2, e3} coordinate frame, this means that the dominant contributions to each
component of M s are (see Appendix G.1.3)

(M s)11 ≈ ω̃2
s‖(M

(1)
s )11 = k2

k2
‖
ω2

s‖(M
(1)
s )xx + 2ω̃2

s‖

[
k2

⊥
k2

+ k⊥
k‖

L
(
k‖ρ̃s, k⊥ρ̃s

)]
, (K16a)

(M s)12 ≈ ω̃s‖(M (0)
s )12 = k

k‖
ω̃s‖(M (0)

s )xy, (K16b)

(M s)13 ≈ ω̃2
s‖(M

(1)
s )13 = −ω̃2

s‖

[
2k⊥k‖

k2
+ L

(
k‖ρ̃s, k⊥ρ̃s

)]
, (K16c)
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(M s)22 ≈ ω̃s‖(M (0)
s )22 + ω̃2

s‖(M
(1)
s )22 = ω̃s‖(M (0)

s )yy + ω̃2
s‖(M

(1)
s )yy, (K16d)

(M s)23 ≈ ω̃2
s‖(M

(1)
s )23 = −k‖

k
ω̃2

s‖N
(
k‖ρ̃s, k⊥ρ̃s

)
, (K16e)

(M s)33 ≈ ω̃2
s‖(M

(1)
s )33 = 2k2

‖
k2

ω̃2
s‖, (K16f )

where the special functions L(x, y) and N(x, y) are given by (G32). The quadratic
dispersion relation (K7) must, therefore, be revised to capture correctly all relevant
microinstabilities.

K.3. Quartic approximation to dispersion relation of CE shear-driven microinstabilities
K.3.1. Derivation of general quartic CES dispersion relation

To assess how the new terms identified in § K.2.3 change the dispersion relation (K6),
we now return to the full hot-plasma dispersion relation (2.75), which we write in the form

(
E11 − k2c2

ω2
− E2

13

E33

)(
E22 − k2c2

ω2
+ E2

23

E33

)
+
(
E12 − E13E23

E33

)2

= 0. (K17)

Reminding the reader that, for a two-species plasma,

E =
∑

s

Es = ω2
pe

ω2

∑
s

μs (M s + Ps) , (K18)

and also that the electrostatic component of the dielectric tensor is determined by the
Maxwellian components only (which in turn are equal for electrons and ions when
Ti = Te – see Appendix D.2), viz.

E33 ≈ ω̃2
e‖E

(1)

33 = ω2
pe

ω2

∑
s

μsω̃
2
s‖(M

(1)
s )33 = 4ω2

pe

ω2
ω̃2

e‖
k2

‖
k2

, (K19)

we show in Appendix G.1.7 that, in the limit k‖ρs � 1,

[(M s)13]2

(M (1)
s )33

� (M s)11, (K20a)

(M s)13(M s)23

(M (1)
s )33

� ω̃e‖(M s)12 � (M s)12, (K20b)

[(M s)23]2

(M (1)
s )33

� ω̃e‖(M s)22 � (M s)22. (K20c)

On the other hand, the shear-perturbation components Ps satisfy

(Ps)11 ∼ (Ps)22 � (Ps)12. (K21)
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Substituting for M s and Ps in (K18) using (K16) and (K3b), respectively, and then
substituting (K18) into (K17), we obtain the following quartic dispersion relation:{

ω̃2
e‖

[
(M (1)

e + M (1)

i )11 − (M (1)
e + M (1)

i )2
13

2(M (1)
e )33

]
+ (P(0)

e + μ1/2
e P(0)

i )11 − k2d2
e

}

×
{
ω̃2

e‖
[
(M (1)

e + M (1)

i )22

]
+ ω̃e‖

[
(M (0)

e + μ1/2
e M (0)

i )22

]
+ (P(0)

e + μ1/2
e P(0)

i )22 − k2d2
e

}
+ ω̃2

e‖
[
(M (0)

e + μ1/2
e M (0)

i )12

]2
= 0. (K22)

We have assumed kρe � kρi � 1 and so we now have additional quadratic terms for both
electrons and ions, as explained in § K.2.3.

We note that the dispersion relation (K22) is similar to (K6) except for the addition of
two quadratic terms in ω̃e‖, and the absence of the linear terms ω̃e‖(M (0)

s )11 and (P(0)
s )12.

This motivates our approach to finding modes at arbitrary wavevectors: we solve a quartic
dispersion relation that includes all the terms in (K22) and also those linear terms which
were present in (K6), but absent in (K22). Explicitly, this dispersion relation is{−ω̃2

e‖
[

4
3 We + 4

3 Wi + 1
4 (Le + Li)

2]+ iω̃e‖
(
Fe + μ1/2

e Fi
)+ εe

(
We + μ1/2

e Wi
)− k2

‖d2
e

}
× [−ω̃2

e‖
(

4
3 Yi + 4

3 Ye
)+ iω̃e‖

(
He + μ1/2

e Hi
)+ εe

(
Ye + μ1/2

e Yi
)− k2d2

e

]
+ [

iω̃e‖
(
Ge + μ1/2

e Gi
)+ εe

(
Xe + μ1/2

e Xi
)]2 = 0, (K23)

where Ls ≡ L(k‖ρ̃s, k⊥ρ̃s). The special functions W(x, y) and Y(x, y), defined in (G97),
appear due to their relationship to the matrix (M (1)

s ) (derived in Appendix G.1.2)

W
(
k‖ρ̃s, k⊥ρ̃s

) = − 3
4(M

(1)
s )xx, (K24a)

Y
(
k‖ρ̃s, k⊥ρ̃s

) = − 3
4(M

(1)
e )yy, (K24b)

combined with the identity

(M (1)
e + M (1)

i )11 − (M (1)
e + M (1)

i )2
13

2(M (1)
e )33

= −k2

k2
‖

[
4
3

We + 4
3

Wi + 1
4

(Le + Li)
2
]

, (K25)

proven in Appendix G.1.7.
The dispersion relation (K23) recovers all the roots of interest because it captures

approximate values for all of the roots of the dispersion relations (K7) and (K22) in
their respective wavenumber regions of validity. We note that, in situations when there
are fewer than four physical modes (e.g. in the k‖ρe � 1 regime), solving (K23) will also
return non-physical modes that are the result of the addition of higher-order terms in
a regime where such terms are illegitimate. However, by construction, such modes can
be distinguished by their large magnitude (ω̃e‖ ∼ 1) as compared with the others. We
acknowledge that our approach does not maintain consistent orderings: indeed, depending
on the scale of a particular instability, there may be terms retained that are, in fact, smaller
than other terms we have neglected when carrying out the ω̃i‖ � 1 expansion. However,
unlike the quadratic dispersion relation (K7), the quartic dispersion relation (K23) always
captures the leading-order terms for arbitrary wavevectors, and so provides reasonable
approximations to the complex frequency of all possible CES microinstabilities.
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K.3.2. Derivation of frequency and growth rate of the CES mirror instability
To derive the CES mirror instability’s growth rate when it is close to marginality, we

consider the dispersion relation (K23) under the orderings (4.6a,b), viz.

k‖ρi ∼ k2
⊥ρ2

i ∼ Γi � 1, ω̃i‖ = μ−1/2
e ω̃e‖ ∼ Γi

βi
, (K26a,b)

where Γi = �βi − 1, and Δ = Δi + Δe = 3(εi + εe)/2. Using the asymptotic identities
(G37) for the special functions Fs, Gs, Hs, Ls and Ns and (G101) for Ws, Xs and Ys, (K23)
becomes, after dropping terms that are asymptotically small under the ordering (K26a,b),

i
√

πk2
⊥ρ2

i ω̃i‖ + Δ

(
k2

⊥ρ2
i − 1

2
k2

‖ρ
2
i − 3

4
k4

⊥ρ4
i

)
− k2ρ2

i

βi
= 0, (K27)

which in turn can be rearranged to give (4.7) in § 4.3.1 and the subsequent results. We
note that, save for the term ∝ Ge, which cancels to leading order with its ion equivalent,
and the term ∝ Ye, which we retain in order to capture correctly the mirror instability’s
exact stability threshold, the electron terms in (K23) are negligibly small under the
ordering (K26a,b). We also observe that by assuming frequency ordering (K26a,b), we
have removed the shear-Alfvén wave from the dispersion relation. As we demonstrate
when characterising the growth rate of firehose-unstable shear-Alfvén waves (see § 4.4.3
and Appendix K.3.7), a different ordering is required to extract this mode (which is, in any
case, stable for Δi > 0).

To derive the growth rate of long-wavelength (k‖ρi ∼ k⊥ρi � 1) mirror modes away
from marginality, when Γi � 1, we adopt the alternative ordering (4.9a,b), which is
equivalent to

ω̃i‖ ∼ 1
βi

∼ Δ � 1. (K28)

Again using the identities (G37) and (G101) to evaludate the special functions, the
dispersion relation (K23) is then

i
√

πk2
⊥ρ2

i ω̃i‖ + Δ

(
k2

⊥ρ2
i − 1

2
k2

‖ρ
2
i

)
− k2ρ2

i

βi
= 0, (K29)

which, after some algebraic manipulation, gives (4.11) in § 4.3.1 and the subsequent
results.

Finally, the expression (4.16) for the growth rate of sub-ion-Larmor scale mirror modes
is derived by adopting the orderings (4.14a,b):

k‖ρi ∼ k⊥ρi ∼ (Δiβi)
1/2 � 1, ω̃i‖ ∼ Δ

1/2
i

β
1/2
i

, (K30a,b)

and then using the asymptotic identities (G35) for evaluating Fi, Gi, Hi, Li and Ni, (G37)
for Fe, Ge, He, Le and Ne, (G99) for Wi, Xi and Yi and (G101) for We, Xe and Ye. Once
again neglecting small terms under the assumed ordering, the dispersion relation (K23)
simplifies to a quadratic of the form (K6):[

−Δi

2

2k2
‖
(
k2

‖ − k2
⊥
)

k4
+ k2

‖ρ
2
i

βi

](
−Δi

k2
‖

k2
+ k2ρ2

i

βi

)
− ω̃2

i‖k2
‖ρ

2
i = 0 , (K31)

from which follow (4.16) and the subsequent results in § 4.3.1.
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K.3.3. Derivation of frequency and growth rate of the parallel CES whistler instability
We derive the expressions (4.21) for the real frequency and growth rate of the parallel

CES whistler instability by adopting the ordering (4.20a,b)

ω̃e‖ ∼ Δe ∼ 1
βe

, k‖ρe ∼ 1, (K32a,b)

and evaluating Fs, Gs, Hs, Ls and Ns via (G34), and Ws, Xs and Ys via (G98). The special
functions with s = i are simplified further by assuming additionally that k‖ρi � 1. Under
these assumptions and simplifications, the dispersion relation (K23) becomes{

iω̃e‖
√

π

[
exp

(
− 1

k2
‖ρ2

e

)
+ μ1/2

e

]
+ Δe

[
1 + 1

k‖ρe
Re Z

(
1

k‖ρe

)
+ μ1/2

e

]
− k2

‖ρ
2
e

βe

}2

+
{

iω̃e‖Re Z
(

1
k‖ρe

)
− Δe

k‖ρe

[
√

π exp

(
− 1

k2
‖ρ2

e

)
+ μe

]}2

= 0, (K33)

where we have substituted ρ̃e = −ρe, and the only ion terms that we retain – the terms
proportional to μ1/2

e or μe – are those that we find to affect the dispersion relation
qualitatively (as explained in the main text, these terms are formally small under the
assumed ordering, but cannot be neglected in certain subsidiary limits, e.g. k‖ρe � 1,
which we will subsequently wish to explore). (K33) can then be factorised to give
two complex roots, the real and imaginary parts of which become (4.21a) and (4.21b),
respectively.

K.3.4. Derivation of frequency and growth rate of the CES transverse instability
To obtain the growth rate (4.29b) of the two CES transverse modes, we take directly the

unmagnetised limit of the full CES dispersion relation (K23) under the orderings

k⊥ρe ∼ k‖ρe ∼ (Δeβe)
1/2 � 1, ω̃e‖ ∼ Δe � 1, (K34a,b)

and then employ asymptotic identities (G35) for Fs, Gs, Hs, Ls and Ns, and (G99) for Ws,
Xs and Ys. We then obtain a dispersion relation similar to (K6), but with two separable
roots:[

iω̃e‖
√

π
k3

‖
k3

+ Δe
k2

‖(k
2
‖ − k2

⊥)

k4
− k2

‖ρ
2
e

βe

](
iω̃e‖

√
π

k‖
k

+ Δe
k2

‖
k2

− k2ρ2
e

βe

)
= 0. (K35)

When rearranged, the first bracket gives expression (4.29a), and the second bracket
gives (4.29b).

K.3.5. Derivation of frequency and growth rate of the CES electron mirror instability
When its marginality parameter Γe = Δeβe − 1 is small, the growth rate (4.35) (and zero

real frequency) of the CES electron mirror instability’s can be derived from the dispersion
relation (K23) by adopting the ordering (4.34), viz.

k2
⊥ρ2

e ∼ k‖ρe ∼ ω̃e‖βe ∼ Γe � 1, (K36)

and assuming that Γe � μ1/2
e . This latter inequality implies that 1 � k‖ρi � k⊥ρi, so we

use the asymptotic identities (G35) to simplify Fi, Gi, Hi, Li and Ni, (G99) to simplify Wi,
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Xi and Yi, (G37) for Fe, Ge, He, Le and Ne, and (G101) for We, Xe and Ye. Collecting terms,
using the identity Δe = (1 + Γe)/βe, and keeping only leading-order ones, the dispersion
relation simplifies to

3
2βe

k2
‖ρ

2
e

(
−Γe

βe
k2

⊥ρ2
e + 3

2βe
k2

‖ρ
2
e + 3

4βe
k4

⊥ρ4
e + i

√
πk2

⊥ρ2
e ω̃e‖

)
− ω̃2

e‖k2
‖ρ

2
e = 0. (K37)

Because the discriminant of the quadratic (K37) is negative, it follows that its solution
satisfies ω = iγ , with γ being given by (4.35).

To derive the expression (4.39) for the complex frequency of long-wavelength electron
mirror modes, we adopt the ordering (4.38),

ω̃e‖ ∼ kρe

βe
∼ Δekρe, (K38)

and then consider the subsidiary limit k‖ρe ∼ k⊥ρe ∼ μ1/4
e � 1 of the dispersion relation

(K23). Using the asymptotic identities (G35) for Fi, Gi, Hi, Li and Ni, (G37) for Fe, Ge,
He, Le and Ne, (G99) for Wi, Xi and Yi and (G101) for We, Xe and Ye, we find that{

Δe

2

[
k2

‖ρ
2
e − μ1/2

e

2k2
‖
(
k2

‖ − k2
⊥
)

k4

]
+ k2

‖ρ
2
e

βe

}

×
[

Δe

2

(
k2

‖ρ
2
e − 2k2

⊥ρ2
e − μ1/2

e

2k2
‖

k2

)
+ k2ρ2

e

βe

]
− ω̃2

e‖k2
‖ρ

2
e = 0, (K39)

where both the CE ion- and electron-shear terms are kept on account of their equal size
under the assumed ordering. Solving for ω gives (4.39).

K.3.6. Derivation of frequency and growth rate of the parallel CES firehose instability
The relevant orderings of parameters to adopt in order to derive the complex frequency

(4.47) of the parallel CES firehose instability is (4.45), viz.

ω̃i‖ ∼ 1

β
1/2
i

∼ |Δi|1/2 ∼ k‖ρi � 1, (K40)

with an additional small wavenumber-angle condition k⊥ρi � β
−3/4
i (which we shall

justify a posteriori). Under this ordering, the special functions Fs, Gs, Hs, Ls and Ns can
be simplified using (G37), and Ws, Xs and Ys using (G101), and so the dispersion relation
(K23) reduces to (

ω̃2
i‖ − Δi

2
− 1

βi

)2

− ω̃2
i‖

4
k2

‖ρ
2
i = 0, (K41)

where the only non-negligible electron term is the one ∝ ω̃e‖Ge. Similarly to the CES
mirror instability (see Appendix K.3.2), this term cancels to leading order with its ion
equivalent, and the next-order electron term is much smaller than the equivalent ion term.
This dispersion relation can be rearranged to give (4.47).

We also note that, in deriving (K41) from (K23), we have assumed that the linear term
∝ ω̃e‖μ1/2

e Hi is much smaller than the quadratic term ∝ ω̃2
e‖Yi; their relative magnitude is
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given by
ω̃e‖μ1/2

e Hi

ω̃2
e‖Yi

∼ k2
⊥ρ2

i

ω̃i‖k2
‖ρ

2
i

∼ β
3/2
i k2

⊥ρ2
i . (K42)

Thus, this assumption (which it is necessary to make in order for there to be both
left-handed and right-handed Alfvén modes in high-β plasma) is only justified if the
small-angle condition k⊥ρi � β

−3/4
i � 1 holds true.

K.3.7. Derivation of frequency and growth rate of the oblique CES firehose instability
To derive the oblique firehose’s growth rate (4.52), we use the ordering (4.51), viz.

ω̃i‖ ∼ 1

β
1/2
i

∼ |Δi|1/2 ∼ k2
‖ρ

2
i ∼ k2

⊥ρ2
i � 1. (K43)

Simplifying the special functions Fs, Gs, Hs, Ls and Ns via (G37), and Ws, Xs and Ys via
(G101), the dispersion relation (K23) becomes

i
√

π

(
ω̃2

i‖ − Δi

2
− 1

βi

)
k2

⊥ρ2
i ω̃i‖ − ω̃2

i‖
4

(
k2

‖ρ
2
i − 3

2
k2

⊥ρ2
i

)2

= 0, (K44)

where, in contrast to the quasi-parallel firehose, the linear term ∝ ω̃e‖μ1/2
e Hi in (K23)

is larger than the quadratic term ∝ ω̃2
e‖Yi. (K44) can be solved to give two roots: ω ≈

0, corresponding to the stable slow mode (whose damping rate is asymptotically small
under the assumed ordering), and the expression (4.52) for the complex frequency of the
(sometimes firehose-unstable) shear-Alfvén mode.

K.3.8. Derivation of frequency and growth rate of the critical-line CES firehose
instability

To characterise the growth of the critical-line firehose when βi � 106, we set k⊥ =
2k‖/3, and order

ω̃i‖ ∼ β
−3/5
i ∼ k6

‖ρ
6
i ∼

∣∣∣∣Δi + 2
βi

∣∣∣∣1/2

. (K45)

The dispersion relation (K23) transforms similarly to (K44) in this case, with two
important exceptions: first, the term in (K23) ∝ ω̃e‖Ge + μ1/2

e ω̃e‖Gi is O(k5
‖ρ

5
i ) on the

critical line, rather than O(k3
‖ρ

3
i ); secondly, our choice of ordering requires that we retain

O(k4
‖ρ

4
i ). This gives

i
√

π

(
ω̃2

i‖ − 1
2
Δi − 1

βi
− 5

8
Δik2

‖ρ
2
i

)
ω̃i‖ − 6889

13 824
ω̃2

i‖k6
‖ρ

6
i = 0. (K46)

To obtain the expression (4.57) for the critical-line firehose’s growth rate in the limit
βi � 106 that is valid under the ordering (4.56), we consider the subsidiary limit∣∣∣∣Δi + 2

βi

∣∣∣∣ � β
−6/5
i , (K47)

in which case (K46) becomes

i
√

π

(
ω̃2

i‖ − Δi

2
− 1

βi

)
ω̃i‖ − 6889

13 824
ω̃2

i‖k6
‖ρ

6
i = 0. (K48)

The expression (4.57) follows from solving (K48) for ω (and once again neglecting the
ω ≈ 0 solution).
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The expression (4.61) for the growth of critical-line firehose modes when βi 
−2/Δi � 106, can be deduced by considering the opposite subsidiary limit to (K47), viz.∣∣∣∣Δi + 2

βi

∣∣∣∣ � β
−6/5
i . (K49)

In this limit, (K46) simplifies to

i
√

π

(
ω̃2

i‖ + 5
4βi

k2
‖ρ

2
i

)
ω̃i‖ − 6889

13 824
ω̃2

i‖k6
‖ρ

6
i = 0. (K50)

Noting that the quadratic (K50) has a negative discriminant, we deduce that ω = iγ ; then
solving (K50) for γ gives (4.61).

When βi � 106, the appropriate ordering to adopt in order to simplify the dispersion
relation of critical-line is no longer (K51a,b), but instead

ω̃i‖ ∼ 1√
βi log βi

∼
∣∣∣∣Δi + 2

βi

∣∣∣∣1/2

, k‖ρi ∼ 1√
log βi

. (K51a,b)

Under this ordering, the term ∝ μ1/2
e ω̃e‖Fi in (K23) is retained, while the term ∝ ω̃e‖Ge +

μ1/2
e ω̃e‖Gi is neglected. This gives[

ω̃2
i‖ + i

√
π

k2
‖ρ

2
i

exp

(
− 1

k2
‖ρ

2
i

)
ω̃i‖ − 1

2
Δi − 1

βi
− 5

8
Δik2

‖ρ
2
i

]
ω̃i‖ = 0. (K52)

To obtain the expression (4.65) for the critical-line firehose instability’s growth rate in
the case when ordering (4.64a,b) holds – that is, when Δiβi + 2| ∼ 1, we consider the
appropriate subsidiary limit of (K52)∣∣∣∣Δi + 2

βi

∣∣∣∣ � 1
βi log βi

. (K53)

In this case, the last term in the square brackets on the left-hand side of (K52) can be
neglected, leaving the only non-trivial roots to satisfy

ω̃2
i‖ + i

√
π

k2
‖ρ

2
i

exp

(
− 1

k2
‖ρ

2
i

)
ω̃i‖ − Δi

2
− 1

βi
= 0, (K54)

whence (4.65) follows immediately. The case of growth when Δi  −2/βi can be
recovered from the opposite subsidiary limit∣∣∣∣Δi + 2

βi

∣∣∣∣ � 1
βi log βi

. (K55)

In this case, the dispersion relation of the critical-line firehose modes is

ω̃2
i‖ + i

√
π

k2
‖ρ

2
i

exp

(
− 1

k2
‖ρ

2
i

)
ω̃i‖ + 5

4βi
k2

‖ρ
2
i = 0, (K56)

which, when solved for the growth rate γ = −iω, gives (4.68).
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K.3.9. Derivation of frequency and growth rate of the CES parallel electron firehose
instability

This derivation is identical to that given in Appendix K.3.3 for the frequency and growth
rate of the parallel CES whistler instability, and the same expressions (4.21) are used in
§ 4.4.7.

K.3.10. Derivation of frequency and growth rate of the CES oblique electron firehose
instability

The complex frequency (4.86) of the electron-firehose modes with μ1/2
e � k‖ρe �

k⊥ρe ∼ 1 is derived by applying the ordering

ω̃e‖ ∼ |Δe| ∼ 1
βe

(K57)

to (K23) and using the asymptotic identities (G35) for Fi, Gi, Hi, Li and Ni, (G36) for Fe,
Ge, He, Le and Ne, (G99) for Wi, Xi and Yi and (G100) for We, Xe and Ye. We obtain the
simplified dispersion relation{

−Δe
k2

‖
k2

⊥

[
1 − exp

(
−k2

⊥ρ2
e

2

)
I0

(
k2

⊥ρ2
e

2

)]
− k2

‖ρ
2
e

βe

}

×
{(

i
√

πω̃e‖ + Δe
)

k2
⊥ρ2

e exp
(

−k2
⊥ρ2

e

2

)[
I0

(
k2

⊥ρ2
e

2

)
− I1

(
k2

⊥ρ2
e

2

)]
− k2ρ2

e

βe

}
− k2

‖ρ
2
e ω̃

2
e‖ exp

(−k2
⊥ρ2

e

) [
I0

(
k2

⊥ρ2
e

2

)
− I1

(
k2

⊥ρ2
e

2

)]2

= 0. (K58)

Introducing the special functions F(k⊥ρe) and H(k⊥ρe) given by (4.89), and then
rearranging (K58), leads to (4.86).

K.3.11. Derivation of frequency and growth rate of the CES EST instability
To derive the expression (4.97) for the growth rate of the EST instability in the limits

μ1/2
e � k‖ρe � 1 � k⊥ρe � β1/7

e , and Δeβe � 1, we apply the orderings (4.96a–c), viz.

k⊥ρe ∼ (Δeβe)
1/2, ω̃e‖ ∼ Δ5/2

e β3/2
e , k‖ρe ∼ 1√

log |Δe|βe
� 1 (K59a–c)

to (K23). We then use the asymptotic identities (G35) for Fi, Gi, Hi, Li and Ni, (G38) for
Fe, Ge, He, Le and Ne, (G99) for Wi, Xi and Yi and (G102) for We, Xe and Ye to give

i
ω̃e‖

k⊥ρe

{
i

ω̃e‖
k3

⊥ρ3
e

[
4 exp

(
− 1

k2
‖ρ2

e

)
+ √

πμ1/2
e k3

‖ρ
3
e

]
− Δe

k2
‖ρ

2
e

k2
⊥ρ2

e

− k2
‖ρ

2
e

βe

}
− k2

‖ρ
2
e ω̃

2
e‖

πk6
⊥ρ6

i

= 0,

(K60)
where the only ion contribution that is not always small, and thus cannot be neglected,
is the term proportional to μ1/2

e . Solving for the frequency gives ω ≈ 0 – corresponding
to a damped mode whose frequency is asymptotically small under the assumed ordering
(K59a–c) – and the EST mode, whose growth rate is given by (4.97).
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K.3.12. Derivation of frequency and growth rate of the CES whisper instability
In the limits μ1/2

e � k‖ρe � 1 � k⊥ρe and Δeβe � 1 under the orderings

ω̃e‖ ∼ 1

β
2/7
e

∼ 1
k2

⊥ρ2
e

∼ 1
Δeβe

, k‖ρe ∼ 1√
log |Δe|βe

� 1, (K61a,b)

the dispersion relation (K23) becomes

i
ω̃e‖

k⊥ρe

{
k2

‖ρ
2
e

k2
⊥ρ2

e

4ω̃2
e‖√

πk⊥ρe
+ i

4ω̃e‖
k3

⊥ρ3
e

exp

(
− 1

k2
‖ρ2

e

)
− Δe

k2
‖ρ

2
e

k2
⊥ρ2

e

− k2
‖ρ

2
e

βe

}
− k2

‖ρ
2
e ω̃

2
e‖

πk6
⊥ρ6

e

= 0,

(K62)
where we have once again evaluated Fi, Gi, Hi, Li and Ni using (G35), Fe, Ge, He, Le and
Ne using (G38), Wi, Xi and Yi using (G99) and We, Xe and Ye using (G102), and neglected
all terms that are small under the ordering (K61a,b). Solving for the non-trivial root of
(K62) gives the expression (4.105) for the complex frequency of whisper waves.

K.3.13. Derivation of frequency and growth rate of the CES ordinary-mode instability
Because the low-frequency assumption ω̃e‖ � 1 is broken in the regime of relevance

to the CES ordinary-mode instability, the dispersion relation (K23) is not valid; to
characterise these modes, we must instead return to considering the full hot-plasma
dispersion relation.

We choose to categorise the ordinary-mode instability for modes with k‖ = 0. In this
special case, the plasma dielectric tensor simplifies considerably, and has the convenient
property that

ẑ · E = (
ẑ · E · ẑ

)
ẑ (K63)

if the particle distribution functions have even parity with respect to the parallel velocity
v‖ (Davidson 1983) – a condition satisfied by the CE distribution functions (4.1). Thus,
perturbations whose associated eigenmode satisfies δ̂E = δ̂Ezẑ decouple from other
modes in the plasma. The dispersion relation for such modes follows from (2.4.1):

Ezz − c2k2
⊥

ω2
= 0. (K64)

In terms of matrices M s and Ps defined by (2.97), this can be written∑
s

(M s)zz +
∑

s

(Ps)zz − k2
⊥d2

e = 0. (K65)

For k‖ = 0, the matrix components (M s)zz and (Ps)zz are given by (see (G17i) and (G93i))

(M s)zz = −
∞∑

n=−∞

ω

ω − nΩ̃s

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
, (K66a)

(Ps)zz = −3εs

2

∞∑
n=−∞

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)
= −Δs. (K66b)
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Therefore, the dispersion relation (K65) becomes

k2
⊥d2

e = −
∑

s

me

ms

[
Δs +

∞∑
n=−∞

ω

ω − nΩ̃s

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)]

= −
∑

s

me

ms

[
Δs +

∞∑
n=1

2ω2

ω2 − n2Ω̃2
s

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)]
. (K67)

Since the left-hand side of (K67) is real, and the imaginary part of the right-hand side is
non-zero if and only if the complex frequency ω has non-zero real and imaginary parts, we
conclude that all solutions must be either purely propagating, or purely growing modes.
Looking for purely growing roots, we substitute ω = iγ into (K67), and deduce that

∑
s

me

ms

[ ∞∑
n=1

2γ 2

γ 2 + n2Ω̃2
s

exp
(

−k2
⊥ρ̃2

s

2

)
In

(
k2

⊥ρ̃2
s

2

)]

= −k2
⊥d2

e −
∑

s

me

ms

[
Δs + exp

(
−k2

⊥ρ̃2
s

2

)
I0

(
k2

⊥ρ̃2
s

2

)]
. (K68)

Neglecting the ion contributions (which are smaller than the electron ones by a (me/mi)
1/2

factor) and considering Δe < 0, we arrive at (4.113).
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