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Abstract

In previous work, Ohno conjectured, and Nakagawa proved, relations between the
counting functions of certain cubic fields. These relations may be viewed as complements
to the Scholz reflection principle, and Ohno and Nakagawa deduced them as
consequences of ‘extra functional equations’ involving the Shintani zeta functions
associated to the prehomogeneous vector space of binary cubic forms. In the present
paper, we generalize their result by proving a similar identity relating certain degree-`
fields to Galois groups D` and F`, respectively, for any odd prime `; in particular, we
give another proof of the Ohno–Nakagawa relation without appealing to binary cubic
forms.

1. Introduction

Let N3(D) denote the number of cubic fields of discriminant D. The starting point of this
paper is the following theorem of Nakagawa [Nak98], which had previously been conjectured by
Ohno [Ohn97].

Theorem 1.1 [Ohn97, Nak98]. Let D 6= 1,−3 be a fundamental discriminant. We have

N3(D
∗) +N3(−27D) =

{
N3(D) if D < 0,

3N3(D) + 1 if D > 0,
(1.1)

where D∗ = −3D if 3 - D and D∗ = −D/3 if 3 | D.

This result is closely related to one that can be derived from the classical reflection principle
of Scholz [Sch32], which omits the terms N3(−27D) and provides for two possibilities for each
term on the right. The significance of D∗ is that Q(

√
D∗) is the mirror field of Q(

√
D), the

quadratic subfield of Q(
√
D, ζ3) distinct from Q(

√
D) and Q(ζ3).

Nakagawa deduced his result from a careful study of the arithmetic of binary cubic forms,
which yielded an ‘extra functional equation’ for the associated Shintani zeta functions. It
appears that such ‘extra functional equations’ might be a common feature in the theory of
prehomogeneous vector spaces; for example, in an unpublished manuscript, Nakagawa and Ohno
conjectured a related formula for the prehomogeneous vector space (Sym2 Z3 ⊗ Z2)∗, which, as
Bhargava demonstrated in [Bha04, Bha05], may be used to count quartic fields. Nakagawa has
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made substantial headway toward proving this formula, but it appears that there are still many

technical details to be overcome.

In this paper we demonstrate that the Ohno–Nakagawa results can be generalized in a

different direction, in which cubic fields are replaced by certain degree-` fields for any odd

prime `, using a framework involving class field theory and Kummer theory, and which also gives

another proof of Theorem 1.1.

For an odd prime `, we say that a degree-` number field is a D`-field if its Galois closure

is dihedral of order 2`, and an F`-field if its Galois closure has Galois group F`, defined

by

F` := 〈σ, τ : σ` = τ `−1 = 1, τστ−1 = σg〉 (1.2)

for a primitive root g (mod `). (Note that different primitive roots give isomorphic groups, but

for our purposes it will be important to specify which primitive root is taken.) For ` = 3 we have

D3 = F3 = S3, so this distinction is not apparent.

We observe the convention that discriminants always specify the numbers of pairs of complex

embeddings. These will be indicated by powers of D and −1 (e.g. if D is negative, Dk indicates k

pairs of complex embeddings and (−D)k indicates none). Thus (−1)r2 |D|k will mean that specific

discriminant with r2 pairs of complex embeddings (so this is different from, say, (−1)r2+2|D|k).
Subject to this convention, we write ND`

(D) and NF`
(D) for the number of D`- and F`-fields

of discriminant D. Our main theorems, like Theorem 1.1, will relate ND`
(D) and NF`

(D′) for

related values of D and D′.

For ` > 5, our methods will not relate all F`-fields of discriminant D′ to D`-fields; we require

an additional Galois-theoretic condition on our F`-fields, which we now describe. The Galois

closure E′ of each F`-field E that we count will be a degree-` extension of a degree-(` − 1)

field K ′, cyclic over Q (see Theorem 2.12). In turn, each K ′ will be a subfield of the degree-

2(` − 1) extension Kz := Q(
√
D, ζ`) (we assume D 6= (−1)(`−1)/2`); we call K ′ the mirror field

of K = Q(
√
D).

Choose and fix a primitive root g (mod `), and define τ to be the unique element of

Gal(Q(ζ`)/Q) with τ(ζ`) = ζg` ; we write τ also for the unique lift of this element to Gal(Kz/K),

as well as for its unique restriction to an element of Gal(K ′/Q). (We will have K ∩K ′ = Q.)

The group Gal(K ′/Q) acts on Gal(E′/K ′) by conjugation, and we require this action to

match (1.2) for the choices of τ and g already made. More precisely, suppose that E′ is such

an extension of K ′, let τ denote any lift of the τ ∈ Gal(K ′/Q) from the last paragraph to

Gal(E′/Q), and let σ ∈ Gal(E′/K ′) 6 Gal(E′/Q) be any element of order `. Then we require

that τστ−1 = σg. (This is independent of the choice of lift of τ and of σ.) We write N∗F`
(D) for

the number of F`-fields of discriminant D satisfying this condition.

We will show in Lemma 2.11 that any F`-field with the discriminants we count has a mirror

field as its C`−1 subfield. With notation as above, we must have τστ−1 = σg
′

for some primitive

root g′ modulo `, so our condition may be stated as requiring that g′ = g. Moreover, there

are many F`-fields whose discriminants we do not count: for example, fields of the form Q(
√̀
a)

for a ∈ Q×\Q×` and ` > 5; the C`−1 subfield of all these fields is Q(ζ`). Our work raises a

variety of questions regarding the relative frequencies of the fields being counted; we expect

that these questions may be quite difficult to answer, and in any case we leave them for later

investigation.

This brings us to the presentation of our main results.
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Theorem 1.2. For each negative fundamental discriminant D 6= −` we have

ND`
(D(`−1)/2) =



N∗F`
((−1)0``−2|D|(`−1)/2)

+N∗F`
((−1)0``|D|(`−1)/2) if ` - D,

N∗F`
((−1)0`(`−3)/2|D|(`−1)/2)

+N∗F`
((−1)0``|D|(`−1)/2) if ` | D and ` ≡ 1 (mod 4),

N∗F`
((−1)0`(`−5)/2|D|(`−1)/2)

+N∗F`
((−1)0``|D|(`−1)/2) if ` | D and ` ≡ 3 (mod 4).

(1.3)

For positive discriminants we obtain the following close analogue, reflecting the difference

between positive and negative D in the Ohno–Nakagawa relation.

Theorem 1.3. For each positive fundamental discriminant D 6= 1, ` we have

`ND`
(D(`−1)/2) + 1 =



N∗F`
((−1)(`−1)/2``−2D(`−1)/2)

+N∗F`
((−1)(`−1)/2``D(`−1)/2) if ` - D,

N∗F`
((−1)(`−1)/2`(`−3)/2D(`−1)/2)

+N∗F`
((−1)(`−1)/2``D(`−1)/2) if ` | D and ` ≡ 1 (mod 4),

N∗F`
((−1)(`−1)/2`(`−5)/2D(`−1)/2)

+N∗F`
((−1)(`−1)/2``D(`−1)/2) if ` | D and ` ≡ 3 (mod 4).

(1.4)

Nakagawa’s Theorem 1.1 is the ` = 3 case of these results.

In fact, we shall prove something slightly stronger: the right-hand sides of (1.3) and (1.4)

list two possibilities `b and `b
′

for the power of ` in the discriminants of F`-fields, but they do

not rule out other powers of ` that may occur in F`-field discriminants with the desired Galois

condition. Our proof (see Proposition 3.10) shows that in fact there are no F`-fields with the

given Galois condition and exponents of ` between 0 and (3`− 1)/2 other than the ones that

appear on the right-hand sides of (1.3) and (1.4). (Larger exponents do occur, and they appear

not to correspond to D`-fields.)

A special consideration arises when ` ≡ 1 (mod 4). Suppose that d 6= 1 is a fundamental

discriminant not divisible by `. Then D`-fields of discriminant D(`−1)/2 with D = d and D = d`

correspond, respectively, to F`-fields enumerated on the first and second cases on the right-hand

side of (1.3) or (1.4). It is easily checked that the discriminants and signatures of F`-fields

enumerated in the first terms of these two cases (for D = d and D = d`, respectively) are

identical, so that the only difference between them consists of the condition implied by the star.

It will be proved later that Q(
√
d) and Q(

√
`d) have the same mirror field when ` ≡ 1 (mod 4).

However, our definition of τ ∈ Gal(K ′/Q) involved lifting an element of Gal(Q(ζ`)/Q) to

Gal(Kz/K) and therefore depends on K. Writing τ ′ and τ ′′ for the elements τ determined

when K = Q(
√
d) and K = Q(

√
`d), respectively, we will see later (in Remark 3.9) that the

condition τ ′′στ ′′−1 = σg of (1.2) is equivalent to τ ′στ ′−1 = σ−g. (Note that for a primitive root

g (mod `) with ` ≡ 1 (mod 4), −g is also a primitive root.)

When ` = 5 there are only two primitive roots, so by letting g be either of them we find

that all F5-fields satisfy τ ′στ ′−1 = σg or τ ′στ ′−1 = σ−g. Therefore, by counting D5-fields of

discriminant with D = d and D = `d together, we obtain a corresponding count of F5-fields

without any Galois condition.
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Corollary 1.4. If D is a negative fundamental discriminant that is coprime to 5, we have

ND5(D2) +ND5(5D2) = NF5((−1)053|D|2) +NF5((−1)055|D|2) +NF5((−1)057|D|2); (1.5)

and if D 6= 1 is a positive fundamental discriminant that is coprime to 5, we have

5(ND5(D2) +ND5((5D)2)) + 2 = NF5((−1)253D2) +NF5((−1)255D2) +NF5((−1)257D2). (1.6)

Another (immediate) corollary of our results is that F`-fields of certain discriminants must
exist.

Corollary 1.5. For each positive fundamental discriminant D that is coprime to `− 1, there
exists at least one F`-field with discriminant of the form (−1)(`−1)/2`aD(`−1)/2, for some a as
described above. If ` ≡ 1 (mod 4), then there exist at least two.

Further directions. There are multiple directions in which one might seek extensions of our results.
The most obvious is to drop the requirement that D be a fundamental discriminant. However,
as was observed by Nakagawa, no simple relation appears to hold even for ` = 3. Examining a
table of cubic fields suggests that any result along these lines would need to account for more
subtle information than simply counts of field discriminants.

Similarly, one could attempt to allow additional factors of ` in our counts for D`-fields. This
might involve generalizations of the results in § 3, some of which are carried out in [CT13b, § 8],
along with further study of the sizes of various groups appearing in these results.

Motivated by Nakagawa’s results, one might try to prove a result counting ring discriminants.
In this context, Ohno and Nakagawa did obtain beautiful and simple relations among all
discriminants, by considering (equivalently): cubic rings (including reducible and nonmaximal
rings); binary cubic forms up to SL2(Z)-equivalence; or the Shintani zeta functions associated to
this lattice of binary cubic forms.

The equivalences between these objects do not naturally generalize to ` > 3, and in particular
there is no naturally associated zeta function which is known (to the authors, at least) to have
good analytic properties. Therefore, it seems that the Ohno–Nakagawa relations for cubic rings
may be special to the prime ` = 3. However, it is not out of the question that our work could be
extended to an Ohno–Nakagawa relation counting appropriate subsets of the set of rings of rank
`. In any case, work of Nakagawa [Nak96] and Kaplan et al. [KMTB13] (among others) suggests
that enumerating such rings is likely to be quite difficult.

Remark 1.6. As F. Calegari explained to us, alternative proofs of our results can also be given
in the language of cohomology and Galois representations, as a consequence of Poitou–Tate
duality [Poi67, Tat63] and a formula of Greenberg [Gre89] and Wiles [Wil95] (see also [DDT97,
Theorem 2.18]).

Methods of proof and summary of the paper. The proofs involve the use of class field theory and
Kummer theory, along the lines developed by the first author and a number of collaborators (see,
e.g., [CDyDO06, Coh04, CM11, CT14, CT13a, CT13b]) to enumerate fields with fixed resolvent.
Especially relevant is the work [CT13b] of the first and third authors, which gives an explicit
formula for the Dirichlet series

∑
K |Disc(K)|−s, where the sum is over all D`-fields K with a

fixed quadratic resolvent. The results of the present paper (or, for the ` = 3 case, of Nakagawa)
are required to put this formula into its most explicit form, as a sum of Euler products indexed
by F`-fields. Our main theorem precisely determines the indexing set of F`-fields, and yields the
constant term in the main identity of [CT13b].
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Our work has an antecedent in the proof of the Scholz reflection principle, as presented
in Washington’s book [Was97], for instance. Let K,Kz and K ′ be as described previously.
The technical heart of this paper is the Kummer pairing of Corollary 3.2, together with
its consequence, Proposition 3.5. Our variant of the pairing relates the ray class group
Clb(Kz)/Clb(Kz)

` (for an ideal b to be described) to a subgroup of K×z /(K
×
z )` known as an

arithmetic Selmer group. Applying a theorem of Hecke will allow us to conclude, in contrast to
the situation in [Was97], that this pairing is perfect.

The pairing is also Galois equivariant, so we can isolate pieces of the ray class group
and Selmer group which ‘come from’ subfields of Kz: the Selmer group comes from K
(Proposition 3.4), and the ray class group comes from K ′ (Proposition 3.6). In Proposition 3.7
we see directly that this ray class group counts F`-fields. On the Selmer side, our argument is less
direct: computations from previous work yield Proposition 3.5, relating the size of this Selmer
group to |Cl(K)/Cl(K)`|. This latter class group counts the D`-fields enumerated in our main
theorems, as we recall in Lemma 2.8.

In § 2 we establish a variety of preliminary results on the arithmetic of D`- and F`-extensions.
The most involved result is Theorem 2.12, which guarantees that the Galois closure E′ of each
F`-field E that we count contains K ′, as required for our main theorems to make sense.

In § 3 we study the Kummer pairing as described above. We wrap up the proofs in § 4;
essentially the only part remaining is to compute the discriminants of the F`-fields being counted.
Finally, in § 5 we describe some numerical tests of our results, accompanied by a comment on
the Pari/GP program (available from the third author’s website) used to generate them.

2. Preliminaries

In this section we introduce some needed machinery and notation, and prove a number of results
about the D`- and F`-fields counted by our theorems. Throughout, ` is a fixed odd prime.

2.1 Group theory
We write Cr for the cyclic group of order r and Dr for the dihedral group of order 2r. When
r = ` is an odd prime, we write F` for the Frobenius group defined in (1.2). The Frobenius group
may be realized as the group of affine transformations x 7→ ax + b over F` with a ∈ F×` and
b ∈ F`. The subgroup generated by σ (equivalently, the subgroup of translations) is normal,
and all nontrivial proper normal subgroups contain 〈σ〉.

The following results are standard and easily checked (granting the basic results of class field
theory), so we omit their proofs.

Lemma 2.1. Suppose that K ⊂ K ′ ⊂ K ′′ is a tower of field extensions, with K ′/K, K ′′/K ′ and
K ′′/K all Galois, and write τ and σ for elements of Gal(K ′/K) and Gal(K ′′/K ′), respectively.
Then the following hold.

(i) Gal(K ′/K) acts on Gal(K ′′/K ′) by conjugation; for τ ∈Gal(K ′/K) and σ ∈Gal(K ′′/K ′),
the action is defined by τστ−1 := τ̃στ̃−1 for an arbitrary lift τ̃ of τ to Gal(K ′′/K).

(ii) If, further, K ′′ corresponds via class field theory to an `-torsion quotient Cla(K
′)/B of

a ray class group of K ′, on which τ ∈ Gal(K ′/K) acts by τ(x) = xa for some a ∈ F×` , then the
conjugation action of Gal(K ′/K) on Gal(K ′′/K ′) is given by τστ−1 = σa.

2.2 Background on conductors
We recall some basic facts about conductors of extensions of local and global fields,
following [Ser67].
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Definition 2.2. Let L/K be a finite abelian extension of local fields. Let p be the maximal
ideal of ZK . We define the local conductor f(L/K) to be the smallest integer n such that

1 + pn ⊆ NL/K(L×).

The local conductor thus gives us information about the ramification type of L/K. In
particular, we have the following result.

Proposition 2.3. (i) L/K is unramified if f(L/K) = 0, tamely ramified if f(L/K) = 1, and
wildly ramified if f(L/K) > 1.

(ii) If M/L/K is a tower of extensions of local fields with M/K abelian and L/K unramified,
then f(M/K) = f(M/L).

If K = Qp, we will sometimes write f(L) rather than f(L/Qp). Also, if L/K is an abelian
extension of global fields, p is a prime of K and P is a prime of L above p, we will sometimes
write fp(L/K) for f(LP/Kp), since this does not depend on P. Here, LP and Kp denote the
P-adic and p-adic completions of L and K, respectively.

Definition 2.4. Let L/K be a finite abelian extension of global fields, set

f0(L/K) =
∏
p

pfp(L/K),

and let f∞(L/K) denote the set of real places of K ramified in L. The global conductor of L/K
is defined to be the modulus f(L/K) = f0(L/K)f∞(L/K).

Proposition 2.5. If L/Q is a finite abelian extension, then f0(L/Q) is the ideal of Z generated
by the smallest number n such that L ⊆ Q(ζn).

Proposition 2.6. If L/K is a quadratic extension of global fields, then f0(L/K) = Disc(L/K).

2.3 The field diagram

We fix a primitive `th root of unity ζ` and a primitive root g (mod `). Let `∗ = (−1)(`−1)/2`, so
that Q(

√
`∗) is the unique quadratic subfield of Q(ζ`).

Let D be a fundamental discriminant, and let K = Q(
√
D), where we assume that D 6= `∗

(although we could presumably handle this case as well).
Write Kz = K(ζ`), with [Kz : Q] = 2(`−1) and Γ = Gal(Kz/Q) ∼= C2×(Z/`Z)×. By Kummer

theory, degree-` abelian extensions of Kz are all of the form Kz(α
1/`) for some α ∈ Kz. Write τ

and τ2 for the elements of Γ fixing K and Q(ζ`), respectively, with τ(ζ`) = ζg` and τ2 nontrivial
on K. We also write

T = {τ − g, τ2 + 1}, T ∗ = {τ − 1, τ2 + 1} ⊆ F`[Γ]. (2.1)

The mirror field K ′ of K is the fixed field of τ2τ
(`−1)/2; more explicitly,

K ′ = Q
(
(ζ` − ζ−1` )

√
D
)

= Q(ζ` + ζ−1` )
(√
−D(4− (ζ` + ζ−1` )2)

)
. (2.2)

In particular, K ′ is a quadratic extension of the maximal totally real subfield of Q(ζ`), it is cyclic
of degree `− 1 over Q, with Galois group generated by the restriction of τ to K ′, and its unique
quadratic subfield is equal to Q(

√
`∗ ) if ` ≡ 1 (mod 4) and equal to Q(

√
D`∗ ) if ` ≡ 3 (mod 4).
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We therefore have the following diagrams of fields in the ` ≡ 1 (mod 4) and ` ≡ 3 (mod 4)

cases, respectively.

Kz = K(ζ`)

τ

τ (`−1)/2τ2
τ2

ττ2

Kz = K(ζ`)

τ

τ (`−1)/2τ2

τ2

K ′ Q(ζ`)

τ

K ′ Q(ζ`)

τQ(
√
D`∗) K = Q(

√
D) Q(

√
`∗) K = Q(

√
D) Q(

√
D`∗) Q(

√
`∗)

Q Q

The mirror field of Q(
√
D`∗) is fixed by (ττ2)

(`−1)/2τ2, which equals τ (`−1)/2τ2 if ` ≡ 1 (mod 4)

and equals τ (`−1)/2 if ` ≡ 3 (mod 4). Hence, if ` ≡ 1 (mod 4) then the fields K and Q(
√
D`∗) share

the same mirror field, and if ` ≡ 3 (mod 4) then they do not. If ` = 3, then K ′ = Q(
√
D`∗) and

Q(ζ`) = Q(
√
`∗), so the second row of the diagram should be identified with the third.

Notation for splitting types. We write (as is fairly common) that a prime p of a field K has

splitting type (fe11 f
e2
2 . . . f

eg
g ) in L/K if pZL = Pe1

1 Pe2
2 · · ·P

eg
g with f(Pi|p) = fi for each i.

2.4 Selmer groups of number fields

In § 3 our results will be phrased in terms of the `-Selmer group, which measures the failure of

the local–global principle for local `th powers to be global `th powers. We recall the relevant

terminology here; see also [Coh00, § 5.2.2].

Definition 2.7. Let L be a number field. The group of `-virtual units V`(L) consists of all u ∈ L×
for which uZL = a` for some fractional ideal a of L or, equivalently, all u ∈ L× for which vp(u)

is divisible by ` for all primes p of L. The `-Selmer group is the quotient S`(L) = V`(L)/L×`.

If L = Kz, then the `-Selmer group is a finite `-group, and it fits into a split exact sequence

1 →
U(Kz)

U(Kz)`
→ S`(Kz) → Cl(Kz)[`] → 1 (2.3)

of F`[Γ]-modules.

In addition, we write b = (1− ζ`)`ZKz , and for each Γ-invariant ideal c of ZKz dividing b we

write

Rc = Clc(Kz)/Clc(Kz)
`, Gc = Rc[T ], (2.4)

where T has been defined above. (For any F`[Γ]-module M , M [T ] denotes the subgroup

annihilated by all the elements of T .) Because ` is totally ramified in Kz, any such c must

be of the form (1− ζ`)aZKz for some integer a 6 `.

2.5 The arithmetic of D`-extensions

Our main theorems relate counts of D`- and F`-extensions of a given discriminant. These fields

will be constructed as subfields of their Galois closures, and our next results (and Proposition 3.7)

establish the connection between these two ways of counting fields.
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Lemma 2.8. Let D be a fundamental discriminant. Then the set of D`-fields of discriminant
D(`−1)/2 is equal to the set of degree-` subfields of unramified cyclic degree-` extensions
L/Q(

√
D), and each prime dividing ` has splitting type (1212 . . . 121) in each such D`-field.

In particular, if k = Q(
√
D), then up to isomorphism there are |Cl(k)/Cl(k)`|/(`− 1) of

them.

Recall that our convention of writing discriminants in the form Disc(F ) = (−1)r2(F )|Disc(F )|
specifies the number of complex embeddings of each such field.

Proof. This can be extracted from [Coh00, Theorem 9.2.6, Proposition 10.1.26 and Theorem
10.1.28]. 2

Remark 2.9. Our lemma does not count D`-fields of discriminant (4D)(`−1)/2 arising from degree-
` extensions of Q(

√
D) which are ramified at 2. An example of such a field is the field generated

by a root of x3 − x2 − 3x+ 5 of (non-fundamental) discriminant −2267.
Related considerations also occur on the F` side; for example, the F5-field generated by a

root of x5 − 2x4 + 4x3 + 12x2 − 24x+ 10, with discriminant (−1)22453532, in which 2 is totally
ramified is a non-example of a field counted by our results.

2.6 The arithmetic of F`-extensions
We now study the arithmetic of F`-extensions as well as the mirror fields K ′. This section
concludes with Theorem 2.12, which states that if E is an F`-field of appropriate discriminant,
then its Galois closure must contain K ′.

Lemma 2.10. Let D 6= 1,±` be a fundamental discriminant, and let K ′ be the mirror field of
K := Q(

√
D). Then

e`(K
′/Q) =

{
`− 1 if ` - D or ` ≡ 1 (mod 4),

(`− 1)/2 if ` | D and ` ≡ 3 (mod 4),

Disc(K ′) =


``−2(−D)(`−1)/2 when ` - D,

``−2(−D/`)(`−1)/2 when ` | D and ` ≡ 1 (mod 4),

``−3(−D/`)(`−1)/2 when ` | D and ` ≡ 3 (mod 4),

and ep(K
′/Q) = 2 for each prime p 6= ` dividing D.

Proof. Any prime p 6= ` dividing D is unramified in both Kz/K and Kz/K
′, so the formula for

vp(Disc(K ′)) follows by transitivity of the discriminant.
If ` - D, primes above ` are totally ramified in Q(ζ`)/Q, hence in Kz/K, hence not in Kz/K

′,
and hence in K ′/Q. If ` | D and ` ≡ 1 (mod 4), this argument with K replaced by Q(

√
`∗D)

yields the same result. Finally, if ` | D and ` ≡ 3 (mod 4), then Q(
√
D`∗) is unramified at ` and

is a subextension of K ′, so e`(K
′/Q) = (`− 1)/2. In each of these cases, v`(Disc(K ′)) is uniquely

determined by (2.5) below.
The power of −1 in Disc(K ′) follows from the formula K ′ = Q((ζ` − ζ−1` )

√
D); since K ′ is

Galois, it is either totally real or totally complex. 2

Lemma 2.11. Suppose that F/Q is a C`−1-field, with |Disc(F )| equal to |D|(`−1)/2 times some
(positive or negative) power of ` for a fundamental discriminant D. Then F is equal to the mirror
field of Q(

√
D) or Q(

√
`∗D), with discriminant given by Lemma 2.10.
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In other words, if F has the same discriminant and signature as a mirror field K ′, then

F ∼= K ′. If local exceptions are allowed at ` and infinity, then F must be one of the fields K ′

enumerated in Lemma 2.10, and knowing the discriminant and signature suffices to determine

which.

Proof. First of all, we claim that ep(F/Q) is uniquely determined by Disc(F ) for each prime p.

If p 6= 2, then p is not wildly ramified in F , and ep(F/Q) can be determined from the formula

vp(Disc(F )) = (`− 1)

(
1− 1

ep(F/Q)

)
. (2.5)

If p = 2 is ramified in F , then v2(Disc(F )) equals either `−1 or 3(`−1)/2 and the ramification

is wild. There is a unique intermediate field Q ⊆ F ′ ⊆ F with [F : F ′] = 2 that contains the inertia

field. We claim that v2(Disc(F ′)) = 0: if not, then by transitivity of the discriminant we would

have v2(Disc(F ′)) = (` − 1)/4, which would imply that 2 is ramified in F ′ with e2(F
′/Q) = 2

by the analogue of (2.5), but this is absurd as 2 | [F ′ : Q]. Therefore v2(Disc(F ′)) = 0 and

e2(F/Q) = 2.

We also note that any other prime p 6∈ {2, `} which ramifies in F satisfies ep(F/Q) = 2 and

p is unramified in F ′.

The inertia groups generate Gal(F/Q) because they generate a subgroup of Gal(F/Q) whose

fixed field is everywhere unramified. If ` ≡ 1 (mod 4), the inertia group at ` must therefore be all

of C`−1. If ` ≡ 3 (mod 4), the inertia group could be the full Galois group or its index-2 subgroup,

and these two cases may be distinguished by v`(Disc(F )).

Write D1 = `|D| if ` -D and D1 = |D| if ` |D. By Proposition 2.5 we have F ⊆ Q(ζD1), as we

see by computing local conductors: each prime p 6= ` is unramified in F ′, so by Propositions 2.3

and 2.6 and transitivity of the discriminant we have fp(F ) = vp(Disc(FP/F
′
p)) = vp(D), where

p and P are primes of F ′ and F above p and p, respectively. Moreover, the prime ` is tamely

ramified in F , so that f`(F ) = 1 by Proposition 2.3.

Write Gal(Q(ζD1)/Q) as
∏
pap ||D1

(Z/pap)× and Gal(Q(ζD1)/F ) = A ⊂ Gal(Q(ζD1)/Q). For

each p, A ∩ (Z/pap)× is the inertia group of primes above p in Q(ζD1/F ), so multiplicativity of

ramification degrees implies that [(Z/pap)× : A ∩ (Z/pap)×] = ep(F/Q).

Write Bp := (Z/pap)× and B′p := A ∩Bp for each p. For p 6∈ {2, `}, B′p is the unique index-2

subgroup of Bp, and B′` is either trivial or the unique order-2 subgroup of B`, as determined

above by v`(Disc(F )). Now B′2 is of index 2 in B2; if 4 ‖ D then B′2 is uniquely determined, and

if 8 ‖ D there are two possibilities for B′2. We claim that this information uniquely determines A,

except in the 8 ‖D case where both possibilities can occur. Since the mirror fields of Lemma 2.10

satisfy all the same properties, this claim establishes the lemma.

The claim is easily checked: there is a unique subgroup B ⊆
∏
p 6=`Bp of index 2 that contains∏

p 6=`B
′
p; it consists of vectors (bp)p 6=` for which bp 6∈ B′p for an even number of p. Moreover,

B` contains a unique element b` of order 2. If e` = ` − 1, then A must consist of {1} × B and

{b`}×(
∏
p 6=`Bp−B). If e` = (`− 1)/2, then A = {1, b`}×B; to see that no other `-component is

possible, we use the fact that ` ≡ 3 (mod 4) to show that B` contains no elements of order 4. 2

At this point we highlight the Brauer relation (see [FT93, Theorems 73 and 75]): if E/Q
is a degree-` extension with Galois closure E′ such that Gal(E′/Q) ∼= F`, and if F is the C`−1
subextension of E′, then

ζ(s)`−1ζE′(s) = ζE(s)`−1ζF (s), (2.6)
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which implies that

Disc(E′) = Disc(E)`−1 Disc(F ). (2.7)

(This relation also holds for the infinite place.) This follows from a computation involving the

characters of F`.

The above relation also implies that Disc(E) = Disc(F )N (f(E′/F )), where f(E′/F ) is the

conductor of the abelian extension E′/F .

We can now conclude that, given suitable conditions on Disc(E), F must be a mirror field.

Later we will apply this result to count these F`-fields using class field theory.

Theorem 2.12. Suppose that E/Q is an F`-field with Disc(E) equal to (−D)(`−1)/2 times an

arbitrary power of ` for a fundamental discriminant D. Let E′ be the Galois closure of E, and

let F/Q be the unique subextension of degree `− 1.

Then E′/F is unramified away from the primes dividing `, and F is equal to the mirror field

K ′ of Q(
√
D).

Proof. For the first claim, it suffices to prove that no prime p 6= ` can totally ramify in E/Q.

This is immediate for primes p 6∈ {2, `}, as vp(E) < `−1. However, the p = 2 case is more subtle:

Remark 2.9 illustrates that it cannot be treated by purely local considerations.

So suppose to the contrary that 2 is totally ramified in E, so that 4 ‖ D. We first claim that

2 is unramified in E/E′ and therefore (because ` and `−1 are coprime) also in F/Q. To see this,

we work locally. Any totally and tamely ramified extension of Q2 is of the form Q2(α), where α

is a root of xe−π, with π being a uniformizer of Q2 (see [Lan94, Proposition 12 in II, § 5]). Such

extensions do not ramify further when we pass to the Galois closure.

For every other prime p 6= 2, ` dividing D, primes above p are unramified in E′/F ; so (2.6)

and (2.5) imply that ep(F/Q) = 2.

Therefore, |Disc(F )| equals (|D|/4)(`−1)/2 times a power of `, so that Disc(F ) is determined

by Lemma 2.11. In particular, since −D/4 is a fundamental discriminant and D/4 is not, F is

totally real if −(−D/4) = D/4 is positive and totally imaginary if D is negative. However, the

condition for Disc(E) implies that E′, and hence F , is totally real if and only if −D is positive.

We therefore have a contradiction.

Now we conclude from (2.7) that Disc(E) = `c Disc(F ) for some c > 0, so that F satisfies

the conditions of Lemma 2.11. This implies the second claim; when ` ≡ 3 (mod 4), the possibility

that K ′ is the mirror field of Q(
√
`∗D) is ruled out because the signature of E determines that

of F . 2

3. The Kummer pairing and F`-fields

In this section we introduce the Kummer pairing and use it to obtain two different expressions

for the size of the group Gb (introduced at the end of § 2.4), each of which corresponds to one

of the field counts in the main theorems. Ideas for this section were contributed by Hendrik

Lenstra, and we thank him for his help.

We begin with the following consequence of a classical result of Hecke.

Proposition 3.1. Suppose that Nz = Kz(
√̀
α). Then f(Nz/Kz) | b if and only if α is an `-virtual

unit.

Proof. See [Coh00, Theorem 10.2.9]. 2
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Corollary 3.2. Let µ` denote the group of `th roots of unity. There exists a perfect,
Γ-equivariant pairing of F`[Γ]-modules

Rb × S`(Kz) → µ`.

Proof. This is simply the Kummer pairing: let M/Kz be the abelian `-extension corresponding
by class field theory to Rb, which is the compositum of all cyclic degree-` extensions of Kz with
conductors dividing b. If a ∈ Rb, as usual we denote by σa ∈ Gal(M/Kz) the image of a under
the Artin map. Thus, by the above proposition, if α ∈ S`(Kz) and α is a virtual unit representing
α, we have Kz(

√̀
α) ⊂M and we define the pairing by

(a, α) 7→ σa(
√̀
α)/
√̀
α ∈ µ`,

which does not depend on any choice of representatives. It is classical and immediate that this
pairing is perfect and Γ-equivariant, i.e. that 〈τ1(a), τ1(α)〉 = τ1(〈a, α〉) for any τ1 ∈ Γ. 2

Corollary 3.3. We have a perfect pairing

Gb × S`(Kz)[T
∗] → µ`.

In particular,
|Gb| = |S`(Kz)[T

∗]|.

Proof. Applying the Γ-equivariance of the pairing of the preceding corollary, and recalling that
τ(ζ`) = ζg` , for any j we obtain a perfect pairing

Rb[τ − gj ]× S`(Kz)[τ − g1−j ] → µ`.

Taking j = 1 yields a perfect pairing between Rb[τ − g] and S`(Kz)[τ − 1]; similarly, since
τ2 leaves ζ` fixed, we obtain a perfect pairing between Gb = Rb[τ − g, τ2 + 1] and S`(Kz)[τ − 1,
τ2 + 1]. 2

Proposition 3.4. We have S`(Kz)[T
∗] ' S`(K).

Proof. We have an evident injection

S`(K) ↪−→ S`(Kz)[τ − 1],

which is also surjective: if α ∈ Kz satisfies τ(α)/α = γ` for some γ, x ∈ Kz, then NKz/K(γ)` =
NKz/K(γ) = 1 (since ζ` /∈ K). By Hilbert 90 applied to Kz/K, there exists β ∈ Kz with γ =

β/τ(β); hence τ(αβ`)/(αβ`) = 1, and so a = αβ` is a virtual unit of Kz and also of K because
([Kz : K], `) = 1.

Therefore S`(Kz)[T
∗] = S`(Kz)[τ − 1, τ2 + 1] ' S`(K)[τ2 + 1]. On the other hand, we have

that trivially
S`(K) = S`(K)[τ2 + 1]⊕ S`(K)[τ2 − 1],

and we claim that S`(K)[τ2 − 1] is trivial: if α ∈ K satisfies τ2(α) = αγ` for some γ ∈ K, then
by applying τ2 again we deduce that (γτ2(γ))` = 1 and hence γτ2(γ) = 1, so that by a trivial
case of Hilbert 90 we have γ = τ2(β)/β for some β ∈ K and hence τ2(α/β

`) = α/β`. Thus α/β`

is a virtual unit of Q equivalent to α, and since S`(Q) is trivial, this proves our claim and hence
the proposition. 2

We therefore have the equality |Gb| = |S`(K)|, which we use to obtain the following result.

Proposition 3.5. We have

|Gb| =

{
|Cl(K)/Cl(K)`| if D < 0,

`|Cl(K)/Cl(K)`| if D > 0.
(3.1)
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Proof. By the exact sequence (2.3) and [CDyDO02, Proposition 2.12], the proofs of which can
be adapted to K without change, and since dimF`

(U(K)/U(K)`) = 1− r2(D), where (as usual)
r2 = 1 if D < 0 and r2 = 0 if D > 0, we obtain

|S`(K)| = `1−r2(D)|Cl(K)/Cl(K)`|,
yielding the proposition. 2

Note that the last statement generalizes [CM11, Proposition 7.7].
By Lemma 2.8 it thus follows that D`-fields can be counted in terms of Gb. We now show

that the same is true of F`-fields. We begin by showing that Gb can be ‘descended’ to K ′,
generalizing [CT14, Proposition 3.4].

Proposition 3.6. Let c = (1− ζ`)aZKz be any Γ-invariant ideal dividing b.
(i) There is an isomorphism

Clc(Kz)

Clc(Kz)`
[T ] →

Clc′(K
′)

Clc′(K ′)`
[τ − g],

where K ′ is the mirror field of K = Q(
√
D) and c′ = c ∩K ′.

(ii) We have:

(a) c′ = pa if either ` is unramified in K or ` ≡ 1 (mod 4), where p is the unique prime
of K ′ above `;

(b) c′ = pda/2e if ` is ramified in K and ` ≡ 3 (mod 4), where q = p or q = pp′ depending
on whether there is a unique prime p or two distinct primes p and p′ of K ′ above `.

Proof. Since τ2 and τ (`−1)/2 each act by −1 on Gc, τ
(`−1)/2τ2 acts trivially. Writing e =

(1 + τ2τ
(`−1)/2)/2, decomposing 1 as e+ (1− e) = (1 + τ2τ

(`−1)/2)/2 + (1− τ2τ (`−1)/2)/2 in F`[Γ]
and noting that Gc is annihilated by 1 − e, we see that the elements of Gc are exactly those
elements of Clc(Kz)/Clc(Kz)

` that can be represented by an ideal of the form aτ2τ
(`−1)/2(a),

which we check is of the form a′ZKz for some ideal a′ of K ′.
As we check, we obtain a well-defined, injective map Gc → (Clc′(K

′)/Clc′(K
′)`)[τ − g]. To

see that it is surjective, observe that any class in (Clc′(K
′)/Clc′(K

′)`)[τ − g] is represented by
I ∼ I1+` for some ideal I of ZK′ , and with a = I(1+`)/2 we have I1+`ZKz = aτ2τ

(`−1)/2(a).
For (ii)(a), recall that ` is totally ramified in K ′ by Lemma 2.10, so we must show that

c ∩K ′ = pa. As ` is unramified in Q(
√
D), we have e`(Kz/Q) = `− 1, and if P is a prime of Kz

above p, then vp(x) = vP(x) for any x ∈ K ′, hence the result.
For (ii)(b), Lemma 2.10 implies that ` has ramification index (`− 1)/2 in K ′, and hence each

prime of K ′ above ` has ramification index 2 in Kz/K
′; that is, 2vp(x) = vP(x), and the result

follows. 2

We can now obtain the desired bijection for F`-fields, adapting [CT14, Proposition 4.1].

Proposition 3.7. For each Γ-invariant ideal c | b, there exists a bijection between the following
two sets:

• the set of subgroups of index ` of Gc = (Clc(Kz)/Clc(Kz)
`)[T ];

• the set of degree-` extensions E/Q (up to isomorphism) for which the Galois closure E′ has
Galois group F` and contains K ′, with the conductor f(E′/K ′) dividing c′ = c ∩ K ′, such
that τστ−1 = σg for any generator σ of Gal(E′/K ′).

Remark 3.8. Recall that the element τστ−1 ∈ Gal(E′/K ′) is well-defined by Lemma 2.1. Also,
note that f(E′/K ′) is Γ-invariant, because E′ is fixed by τ2, courtesy of Proposition 3.6.
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Proof. By Proposition 3.6, it suffices to exhibit a bijection between the set of field extensions as
above and subgroups of index ` of G′c′ := (Clc′(K

′)/Clc′(K
′)`)[τ − g], where c′ = c ∩K.

Given such a subgroup, we produce a degree-` extension of the desired type. Write A′ :=
Clc′(K

′)/Clc′(K
′)`; then, decomposing A′ into eigenspaces for the action of τ (as we can, because

the order of τ is coprime to `), write A′ ∼= G′c′×A′′ where A′′ is the sum of the other eigenspaces.
Subgroups B ⊆ G′c′ of index ` are in bijection with subgroups B′ = B × A′′ ⊆ A′ of index

` that contain A′′. For each B′, class field theory gives a unique extension E′/K ′, cyclic of
degree `, of conductor dividing c′, for which the Artin map induces an isomorphism G′c′/B

′ ∼=
Gal(E′/K ′). Furthermore, E′ is Galois over Q because Gc′ and B′ are τ -stable. Each B yields a
distinct E′, and as the action of Gal(K ′/Q) on the class group matches the conjugation action of
Gal(K ′/Q) on Gal(E′/K ′), we have Gal(E′/Q) ' F` with presentation as in the second set in the
proposition. The extension E can be taken to be any of the isomorphic degree-` subextensions
of E′.

Finally, we note that all the steps are reversible, establishing the desired bijection. 2

Remark 3.9. We now justify the remark made after the statement of our main results concerning
the notation * and the primitive roots ±g.

Suppose that ` ≡ 1 (mod 4), ` - D, and τ is a generator of Gal(Kz/K), so that ττ2 is a
generator of Gal(Kz/Q(

√
D`∗)). Then K and Q(

√
D`∗) = Q(

√
D`) have the same mirror field.

Replacing K with Q(
√
D`) is equivalent to replacing τ with ττ2 and thus T = {τ − g, τ2 + 1}

with {ττ2−g, τ2+1} or, equivalently, {τ+g, τ2+1}. Thus, if we study D`-extensions with resolvent
Q(
√
D`), where τ is still regarded as a generator of Gal(Kz/Q(

√
D)), we obtain the same results

with g replaced by −g. In particular, in the previous lemma we obtain field extensions E with
τστ−1 = σ−g.

We now show that the set of conductors f(E′/K ′) that can occur in Proposition 3.7 is quite
limited.

Proposition 3.10. The conductors f(E′/K ′) of fields counted in Proposition 3.7 are restricted
to the following values:

• if ` - D, v`(f(E
′/K ′)) ∈ {0, 2};

• if ` | D and ` ≡ 1 (mod 4), v`(f(E
′/K ′)) ∈ {0, (`+ 3)/2};

• if ` | D and ` ≡ 3 (mod 4), v`(f(E
′/K ′)) ∈ {0, 2, (`+ 5)/2}.

Proof. We work with the extensions E′′/Kz which correspond to the extensions E′/K ′ by
Proposition 3.6. Unraveling the definition of Gc, we see that the conductor of such an extension
can equal (1− ζ`)aZKz if and only if

1 + P a

1 + P a+1
[T ] 6= 0,

where P = (1− ζ`)ZKz if this ideal is prime and P is one of the two primes dividing (1− ζ`)ZKz

otherwise. The case a = 0 is not excluded from any of the cases listed above; so assuming a > 1,
we use the inverse Artin–Hasse logarithm and exponential maps in exactly the same way as
in [CDyDO02, p. 177] to conclude that

P a

P a+1
[T ] 6= 0. (3.2)

Necessary conditions for (3.2) were given in Theorem 1.2 of [CDyDO03], a study of cyclotomic
fields by the first author, Diaz y Diaz and Olivier. In all cases, P and Kz have the same meaning
here as in [CDyDO03].
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• If ` - D, let K have the same meaning as here, and consider the τ − g eigenspace with
e(p) = 1; then Theorem 1.2 implies that a ≡ 2 (mod `− 1).

• If ` | D and D ≡ 1 (mod 4), let K of [CDyDO03] be Q(
√
D`), so that the T eigenspace lies

within the τ−g(`+1)/2 eigenspace. Then Theorem 1.2 implies that a ≡ (`+ 3)/2 (mod`−1).

• If ` | D and D ≡ 3 (mod 4), then again K has the same meaning in [CDyDO03] as here;
now e(p) = 2, so a ≡ 2 (mod (`− 1)/2).

So, given that a 6 `−1, we obtain respectively in these three cases for f(E′′/Kz) that a ∈ {0, 2},
a ∈ {0, (`+ 3)/2} and a ∈ {0, 2, (`+ 3)/2}. By Proposition 3.6, the corresponding values for
f(E′′/Kz) are a, a and 2da/2e; so a ∈ {0, 2}, a ∈ {0, (`+ 3)/2} and a ∈ {0, 2, (`+ 5)/2},
respectively. 2

4. Proofs of the main results

Proof of Theorem 1.2. Let K = Q(
√
D) with D < 0. The key to the proof is the identity |Gb| =

|Cl(K)/Cl(K)`| of Proposition 3.5. By Lemma 2.8, (|Gb| − 1)/(`− 1) equals the number of
D`-extensions with discriminant (−1)(`−1)/2D(`−1)/2. Simultaneously, Propositions 3.6 and 3.7
imply that (|Gb|−1)/(`− 1) is the number of F`-extensions whose Galois closure E′ contains the
mirror field K ′, with f(E′/K ′) | b ∩K, and with τστ−1 = σg as described there. Theorem 2.12
implies that the Galois closure of each F`-field described in the theorem must contain K ′, so
it remains only to prove that the condition f(E′/K ′) | b ∩ K coincides with the discriminant
conditions on the F`-fields counted in the theorem.

First, assume that `≡ 1 (mod 4) or ` -D (or both). Then Lemma 2.10 implies that Disc(K ′) =
``−2(−D)(`−1)/2 or Disc(K ′) = ``−2(−D/`)(`−1)/2 if ` - D or ` | D, respectively. Thus we have

v`(Disc(E′)) = `(`− 2) + (`− 1)fp(E
′/K ′), (4.1)

where p is the unique (totally ramified) ideal of K ′ above `. Writing k = fp(E
′/K ′),

Propositions 3.6, 3.7 and 3.10 imply that the fields counted are precisely those with k ∈ {0, 2}
or k ∈ {0, (`+ 3)/2} for ` - D and ` | D, respectively, so the Brauer relation (2.7) implies that
v`(Disc(E)) ∈ {`− 2 + k} with k as above.

If instead ` ≡ 3 (mod 4) and ` | D, then we have Disc(K ′) = ``−3(−D/`)(`−1)/2 and

v`(Disc(E′)) ∈
{

(`− 3)`+ (`− 1)k : k ∈ {0, 2, (`+ 5)/2}
}

(4.2)

with k 6= 2, because the `-adic valuation of the discriminant of a degree-` field cannot be `− 1.
For each prime q 6= ` dividing D, E′/K ′ is unramified at primes over q, so by (2.7) we have

vq(Disc(E)) = vq(Disc(K ′)). Also, E must be totally real, because K ′ is and [E′ : K ′] is odd.
Put together, in all cases this shows that Disc(E) is equal to D(`−1)/2 times a power of ` as
prescribed in Theorem 1.2, finishing the proof. 2

Proof of Theorem 1.3. The proof is essentially identical, now using the D > 0 case of
Proposition 3.5, applying the identity ` · (`a − 1)/(`− 1) + 1 = (`a+1 − 1)/(`− 1), and obtaining
the signature of E by (2.7). 2

5. Numerical testing

Our work began with `= 5, by inspecting the Jones and Roberts database of number fields [JR13]
and finding patterns that called for explanation. However, for ` > 5, this database does not
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contain enough fields for a reasonable test, and it does not include the Galois conditions featuring

in our theorems.

We therefore wrote a program using Pari/GP [PAR14] to compute the relevant number fields,

the source code of which is available from the third author’s website.1 A few comments on this

program follow.

Thanks to the relation Disc(E) = Disc(F )N (f(E′/F )) given after (2.6), to enumerate F`-fields

(possibly with certain conditions, including discriminant and/or Galois restrictions), it is enough

to enumerate suitable C`−1-fields F (which is very easy) and for each such field enumerate suitable

conductors f of C`-extensions E′/F such that E′/Q is Galois. Luckily, these Galois conditions

imply that these suitable conductors are very restricted, since they must be of the form f = na,

where n is an ordinary integer and a is an ideal of F divisible only by prime ideals of F which

are above ramified primes of Q and which in addition must be Galois stable.

For each conductor f of this form, we compute the corresponding ray class group, and if it

has cardinality divisible by `, we compute the corresponding abelian extension and then check

which subfields of degree ` of that extension satisfy our conditions.

Note that for our purposes, we only count the F`-extensions that satisfy our conditions. Our

program can also compute them explicitly, thanks to the key Pari/GP program rnfkummer, for

which the algorithm is described in detail in Chapter 5 of the first author’s book [Coh00].

Our numerical testing was moderately extensive for ` = 5 and ` = 7, but rather limited

for ` = 11 and ` = 13, as the complexity of our algorithms grows rapidly with `. We verified

our results and found F`-fields with all the powers of ` given in our main theorems, with the

exception of 134. The computational complexity of our algorithm severely limited the amount of

testing we could conduct with ` = 13; we speculate that the power of ` not found is uncommon

but does exist.
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