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In hydrodynamic (HD) turbulence, an exact decomposition of the energy flux across scales
has been derived that identifies the contributions associated with vortex stretching and
strain self-amplification (Johnson, Phys. Rev. Lett., vol. 124, 2020 104501; J. Fluid Mech.,
vol. 922, 2021, A3) to the energy flux across scales. Here, we extend this methodology
to general coupled advection–diffusion equations and, in particular, to homogeneous
magnetohydrodynamic (MHD) turbulence. We show that several MHD subfluxes are
related to each other by kinematic constraints akin to the Betchov relation in HD. Applied
to data from direct numerical simulations, this decomposition allows for an identification
of physical processes and for the quantification of their respective contributions to the
energy cascade, as well as a quantitative assessment of their multi-scale nature through a
further decomposition into single- and multi-scale terms. We find that vortex stretching
is strongly depleted in MHD compared with HD, and the kinetic energy is transferred
from large to small scales almost exclusively by the generation of regions of small-scale
intense strain induced by the Lorentz force. In regions of large strain, current sheets are
stretched by large-scale straining motion into regions of magnetic shear. This magnetic
shear in turn drives extensional flows at smaller scales. Magnetic energy is transferred
from large to small scales predominantly by the aforementioned current-sheet thinning in
regions of high strain. The contributions from current-filament stretching – the analogue
to vortex stretching – and from bending of magnetic field-lines into current filaments by
vortical motion are both almost negligible, although the latter induces strong backscatter
of magnetic energy. Consequences of these results for subgrid-scale turbulence modelling
are discussed.
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1. Introduction

Turbulence in electrically conducting fluids and plasmas is of relevance to a variety
of processes in geophysical and astrophysical situations, as well as in industry (Weiss
& Proctor 2014; Davidson 2016) and for nuclear fusion under magnetic confinement.
For example, the solar wind is turbulent (Bruno & Carbone 2013), convection-driven
turbulence occurs in planetary cores and in the outer layers of stars (Jones 2011),
turbulence on ion and electron scales affects plasma confinement in magnetic confinement
fusion reactors (Freidberg 2007), and the heat transfer in liquid metal cooling applications
is dependent on the level of turbulence in the flow (Davidson 1999). Even though
these systems are very different in terms of features like the presence of strong
background magnetic fields, the level of magnetic field fluctuations, temperature gradients,
density fluctuations, domain geometry or the level of collisionality, they nonetheless
share fundamental nonlinear processes that define energy conversion and inter-scale
energy transfers, at least on scales where the fluid approximation is applicable. Even
in the simplest case of magnetohydrodynamic (MHD) turbulence, despite considerable
theoretical progress (e.g. Goldreich & Sridhar 1995; Biskamp 2003; Zhou, Matthaeus &
Dmitruk 2004; Petrosyan et al. 2010; Brandenburg, Sokoloff & Subramanian 2012; Tobias
& Cattaneo 2013; Beresnyak 2019; Oughton & Matthaeus 2020; Schekochihin 2022), the
physical nature of these processes remain opaque.

Moreover, the typical parameter ranges in which MHD turbulence develops in Nature
are far from those attainable with direct numerical simulation (DNS) (Plunian, Stepanov
& Frick 2013; Miesch et al. 2015; Schmidt 2015). As a consequence, the demand for
approximations and subgrid-scale (SGS) models for large-eddy simulation (LES) of MHD
turbulence that are able to capture the effects of unresolved small-scale fluctuations –
that govern important processes such as magnetic reconnection and plasma heating – is
increasing (Miesch et al. 2015). However, constructing such models is a challenge due
to small-scale anisotropy (Shebalin, Matthaeus & Montgomery 1983; Oughton, Priest &
Matthaeus 1994; Goldreich & Sridhar 1997; Tobias & Cattaneo 2013), strong intermittency
in the magnetic fluctuations as observed in numerical simulations (e.g. Mininni & Pouquet
2009; Sahoo, Perlekar & Pandit 2011; Yoshimatsu et al. 2011; Rodriguez Imazio et al.
2013; Meyrand, Kiyani & Galtier 2015) and in the solar wind (e.g. Veltri 1999; Salem et al.
2009; Wan et al. 2012; Matthaeus et al. 2015), insufficient magnetic-field amplification
and dynamo growth observed in LES of MHD turbulence (Haugen & Brandenburg 2006),
and whether magnetic-field fluctuations are maintained by the flow or by an external
electromagnetic force (Alexakis & Chibbaro 2022). For a summary of the SGS modelling
effort and its challenges, we refer to the review articles by Miesch et al. (2015) and
Schmidt (2015).

Here, we focus on energy transfer across scales in statistically stationary homogeneous
MHD turbulence in a saturated nonlinear dynamo regime without a mean magnetic field,
and with negligible levels or cross- and magnetic helicity. The total energy cascade
in this case is direct (Aluie & Eyink 2010), transferring energy from the large to the
small scales in a scale-local fashion. Herein, we use the term cascade to indicate a
mean flux and refer to pointwise upscale and downscale energy transfers as inverse
and direct transfer events, respectively, or in the former case also as backscatter. The
aims of this paper are: (i) to understand the physical mechanisms that govern the
MHD energy cascade and (ii) to quantify their importance and provide guidance for
SGS modelling (Johnson 2022). In terms of turbulence theory, this corresponds to
understanding physical properties of the SGS stresses as a function of scale. Eyink (2006)
introduced a viable approach for this that involves expanding the SGS tensors in terms
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MHD energy flux decomposition 3

of vector field gradients. Here, we follow a filtering approach, generalising an exact
gradient-based decomposition of the hydrodynamic (HD) energy fluxes (Johnson 2020,
2021) to coupled advection–diffusion equations and hence to the MHD equations. This
methodology distinguishes between terms that are local in scale, corresponding to the
first term in the gradient expansion and those which are truly multi-scale, providing a
closed expression for the remainder of the series expansion. Expressing SGS stresses
through vector-field gradients results in a decomposition of the energy fluxes in terms of
different tensorial contractions between strain-rate, vorticity, current and magnetic strain,
and as such facilitates the physical interpretation of such sub-fluxes. The provision of
closed expressions allows for a quantification of the relative contribution of all terms
to the energy cascade using data obtained by direct numerical simulation (DNS). In
homogeneous and isotropic HD turbulence, where only the inertial term is present, the
decomposition identifies three processes that transfer kinetic energy across scales, vortex
stretching, strain self-amplification and strain-vorticity alignment, and quantifies their
relative contribution to the energy cascade (Johnson 2020, 2021). Similarly, the direct
cascade of kinetic helicity is carried by three different processes, vortex flattening, vortex
twisting and vortex entanglement (Capocci et al. 2023).

In MHD, the total energy transfer can be split into four subfluxes, Inertial, Maxwell,
Dynamo and Advection,1 with the former two originating from the Reynolds and Maxwell
stresses in the momentum equation, and the latter two from stresses in the induction
equation that result in the advection and bending/stretching of magnetic field lines by
the flow. As Dynamo and Advection terms have a common physical origin, the electric
field, often only their sum is considered in a priori analyses of DNS data (Aluie 2017;
Offermans et al. 2018; Alexakis & Chibbaro 2022) and a posteriori in LES (Zhou &
Vahala 1991; Müller & Carati 2002; Grete et al. 2016; Kessar, Balarac & Plunian 2016;
Vlaykov et al. 2016). However, in the present work, it will prove instructive to consider
them separately. Here, we generalise and apply the aforementioned decomposition to each
of these four subfluxes.

In doing so, we identify a single process, current-sheet thinning, to be the main
contributor to the forward cascade of magnetic energy. Contributions from strain-induced
current-filament stretching, the formal analogue to vortex stretching, are subdominant.
Furthermore, we find that vortex-stretching and strain self-amplification are strongly
suppressed at all length scales. Instead the back-reaction of current-sheet thinning on the
flow through the Lorentz force constitutes the main transfer of kinetic energy from large
to small scales, with contributions related to current-filament stretching turning out to
be negligible.

The structure of the paper is as follows: we begin in § 2 with an outline of how the
generalised method can be applied to obtain MHD energy subfluxes. In § 3, we discuss the
numerical details and the associated datasets on which we performed the filtering analysis.
In § 4, we consider each subflux decomposition, showing results for both mean terms and
fluctuations. Ramifications of those results for SGS modelling are considered in § 5. In
§ 6, we discuss our main results and indicate future work directions. Several appendices
flesh out some aspects of the derivations and analysis.

2. Theory

In this section, we begin by sketching the derivation of the coarse-grained energy
equations for MHD and giving the definitions of the scale-space energy fluxes that appear

1We use these words capitalised to indicate that they refer to the SGS energy flux arising from the term with the
lowercase version of the name in the momentum or induction equation.
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in them. Subsequently, we show how each flux can be decomposed in terms of physically
distinct contributions, and discuss their physical interpretations.

2.1. Coarse-grained energy equations
Our starting point is incompressible three-dimensional (3-D) homogeneous MHD
turbulence. The primary dynamical variables are then the fluctuation velocity u(x, t)
and the fluctuation magnetic field b(x, t), where we measure the latter in Alfvén speed
units: b/

√
4πρ → b, with ρ the uniform mass density. We consider situations with no

mean magnetic field since these are more likely to exhibit global isotropy. The governing
equations, with allowance for hyper-dissipation, are

∂tui + ∂j
(
uiuj
) = −∂i

(
p + b2

2

)
+ ∂j

(
bibj
)+ να(−1)α+1∇2αui + Fi, (2.1)

∂tbi + ∂j
(
biuj
) = ∂j

(
uibj
)+ μα(−1)α+1∇2αbi, (2.2)

∇ · u = 0, ∇ · b = 0. (2.3)

Here, p is the pressure, F is a (large-scale) velocity forcing, να and μα are the
hyper-viscosity and hyper-resistivity, and α denotes the power of the Laplacian operator
employed in the hyper-dissipation. Standard Laplacian dissipation corresponds to the case
α = 1.

The MHD variables, and equations, may be spatially coarse-grained using a suitable
filtering field, G�(r) (Germano 1992; Aluie 2017). The role of G�(r) is to strongly
suppresses structure at scales less than the filtering scale �. For example, the filtered
velocity field is

ū�(x) =
∫

dr G�(r)u(x + r). (2.4)

This can be interpreted as a weighted average of u centred on the position x. The weighting
function G� decays very rapidly to zero at distances greater than a few � from x and satisfies
some other weak restrictions, such as smoothness and having a volume integral of unity.
Filtering is a linear operation and commutes with differentiation, properties of which we
will make considerable use below. From § 2.2 onwards, we will specialise to a Gaussian
filter, but in this section, a specific choice of filter is not needed.

Coarse-graining of (2.1)–(2.2) introduces four SGS stress tensors, τ �(·, ·), associated
with the advective-type nonlinear terms (those containing a ∂j). These each have the form

τ �( fi, gj) = figj
� − fi

�
gj
�, (2.5)

where f and g are the solenoidal vectors appearing in a gj∂j fi advective-type term. We
remark that with this notation, the advecting field is the second argument in a τ �(·, ·).

To obtain the equations governing the (pointwise) evolution of the coarse-grained
kinetic energy E�u(x, t) = 1

2 ū� · ū� and magnetic energy E�b(x, t) = 1
2 b̄� · b̄�, one filters

(2.1)–(2.2) and then multiplies by ū� and b̄�, respectively (e.g. Zhou & Vahala 1991; Kessar
et al. 2016; Aluie 2017; Offermans et al. 2018; Alexakis & Chibbaro 2022). The result can
be written as

∂tE�u + ∇ · J u = −Π I,� −ΠM,� − W� − Du + ū� · F̄ �, (2.6)

∂tE�b + ∇ · J b = −ΠA,� −ΠD,� + W� − Db, (2.7)

where the J terms account for the spatial transport of energy and the Π� terms embody
energy fluxes (i.e. transfer across scale �). Our sign convention for the definitions of the
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Π� (see below) means that Π� > 0 corresponds to forward transfer of energy, i.e. to
scales smaller than �. The D terms represent (hyper-)dissipative effects. Also present is
the resolved scale conversion (RSC) term, W� = b̄�i b̄

�
j ∂jū�i , here expressed as in Aluie

(2017). This appears with opposite sign in each equation, and represents an exchange
between large-scale kinetic and magnetic energies. An important point is that it is not
an energy flux term since it does not involve energy transfer across scale �. It supports
several interpretations including as: (i) the rate of work done on the large-scale flow
by the large-scale Lorentz force and (ii) the energy gained by b̄� as it is distorted by
ū� or vice versa. Detailed forms for the spatial transport currents, J u,J b, depend on
the form employed for W� and are available elsewhere (e.g. Kessar et al. 2016; Aluie
2017; Offermans et al. 2018; Alexakis & Chibbaro 2022), while the problem of Galilean
invariance has been addressed by Offermans et al. (2018).

Our primary interest herein centres on the pointwise energy flux (at scale �) terms,
denoted by Π�(x, t), together with their volume averages,

〈
Π�
〉
. For any choice of filter,

these can be expressed in terms of contractions of filtered gradient tensors and SGS stress
tensors:

Π I,� = −∂ ū�i
∂xj

τ �(ui, uj), (2.8)

ΠM,� = ∂ ū�i
∂xj

τ �(bi, bj), (2.9)

ΠA,� = −∂ b̄�i
∂xj

τ �(bi, uj), (2.10)

ΠD,� = ∂ b̄�i
∂xj

τ �(ui, bj). (2.11)

Like the τ �(·, ·), these arise in connection with the four advection type nonlinearities
in (2.1)–(2.2) that we refer to as the Inertial, Maxwell (meaning from the Lorentz force),
Advection and Dynamo terms. Note the capitalisation. Taken together with (2.6) and (2.7),
these definitions of theΠ� terms mean that the interpretation of the direction of an energy
flux does not depend on which flux it is. This is why (2.9) and (2.11) lack a leading minus
sign. Specifically, a positive value for any one of these fluxes corresponds to transfer of
energy from scales greater than � to scales smaller than �. Clearly, Π I,� +ΠM,� is the net
flux of E�u, and ΠA,� +ΠD,� that for E�b. As is well known, ΠA,� and ΠD,� have a common
origin and may be readily combined to obtain the magnetic energy flux associated with
the curl of the induced electric field.

We remark that energy transfer in MHD turbulence has traditionally been discussed
in a Fourier-space approach (e.g. Dar, Verma & Eswaran 2001; Verma 2004; Alexakis,
Mininni & Pouquet 2005; Mininni, Montgomery & Pouquet 2005; Teaca et al. 2009;
Linkmann et al. 2017; Verma 2019). The filtering approach used here results in equivalent
expressions for the mean inertial flux if the filter is chosen to be a Galerkin projector.
However, in MHD, the two approaches differ in important details. In the Fourier-space
approach, the transfer terms originating from the Lorentz force (momentum equation) and
the field-line stretching term (induction equation) retain contributions that only involve
a coupling among resolved scales. That is, the RSC term W� is not separated out from
the fluxes. This is the reason these terms do not vanish in the limit of k → ∞ in the
Fourier-based approach, in contrast to the terms defined in (2.8)–(2.11) using the SGS
stresses, which therefore are genuine flux terms. As a consequence, the Fourier-based
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definitions can result in misinterpretations of the multi-scale nature of kinetic-to-magnetic
energy conversion and of the role of the Lorentz force in inducing kinetic energy transfer
across scales. For further details, see the works of Aluie (2017) and Offermans et al. (2018).
An in-depth discussion of the SGS-based definition of energy flux and a comparison with
the Fourier-based approach is supplied by Aluie & Eyink (2009).

2.2. Gaussian filter
Rather remarkably, the choice of a Gaussian filter enables an analytic determination of the
SGS stresses and fluxes in terms of field gradients with contributions from the resolved
scales and the subfilter scales. In the remainder of the paper, we therefore employ an
isotropic Gaussian filter

G�(r) = 1
(2π�2)3/2

exp
(

−|r|2
2�2

)
. (2.12)

2.3. Exact expressions for the τ � and Π�

Employing the Fourier transform of the Gaussian filter (2.12), Johnson (2020, 2021)
showed that the filtered version of an arbitrary field u(x, t) satisfies a diffusion equation,

∂ ū�j
∂(�2)

= 1
2
∇2ū�j , ū�j

∣∣
�=0

= uj(x, t), (2.13)

where �2 is the time-like variable. It was further shown that the associated SGS stress
tensor, τ �(ui, uj), obeys a forced version of this diffusion equation. The forcing term is
Ā�ikĀ

�
jk, where Ā�ik = ∂kū�i is the gradient tensor for the filtered field. An exact solution

for τ �(ui, uj) was obtained that depends on Āφik for all scales φ ≤ �. Substituting this
into the equation for the SGS Inertial flux, (2.8), produces an exact solution for this
flux corresponding to the exact summation of the perturbation series proposed by
Eyink (2006).

Happily, this approach is readily extended to MHD and may be used to calculate the
elements contained in (2.8)–(2.11). Below, we outline how to achieve this for the particular
case of the magnetic energy subflux (2.10) that originates with the advection term in
the induction equation (i.e. u · ∇b). More details, plus the general case of three distinct
solenoidal fields, are available in Appendix A; see also Appendix C and Capocci et al.
(2023).

We seek an exact solution for τ �(bi, uj) = biuj
� − bi

�
uj
�. Clearly, biuj

�
will also satisfy

(2.13) since that equation holds for any (Gaussian) filtered field. Together with the product
rule expansion of ∂(b̄�i ū

�
j )/∂�

2, this yields(
∂

∂�2
− 1

2
∇2

)
τ �(bi, uj) = B̄�ikĀ

�
jk, τ �=0(bi, uj) = 0, (2.14)

where B̄�ik = ∂kb̄�i is the gradient tensor for b̄�i . The solution can be written in the form

τ �(bi, uj) = �2 B̄�ikĀ
�
jk +

∫ �2

0
dθ

(
B

√
θ

ik A
√
θ

jk

φ

− B
√
θ

ik

φ

A
√
θ

jk

φ
)
, (2.15)

where φ = √
�2 − θ . The first term on the right-hand side is a ‘single-scale’ piece as it

contains only resolved scale terms (cf. Clark, Ferziger & Reynolds 1979). In terms of
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other work, it corresponds to the nonlinear model employed by Leonard (1975), Borue &
Orszag (1998) and Meneveau & Katz (2000), and is the first-order term in the expansion
of Eyink (2006). It is also the leading-order term of the power law expansion in the
filter limit going to zero relative of any filter kernel with finite moments (cf. § 13.4.4 of
Pope 2000).

The second term, involving an integral over all scales smaller than �, is manifestly
a multi-scale contribution that includes subfilter-scale field gradients. Note that the
integrand in (2.15) can itself be written as an SGS stress, but one based on the field
gradients rather than the fields themselves: τφ(B̄

√
θ

ik , Ā
√
θ

jk ).
Contracting with B̄�ij provides an exact expression for (2.10):

ΠA,� = −�2 B̄�ijB̄
�
ikĀ

�
jk − B̄�ij

∫ �2

0
dθ

(
B

√
θ

ik A
√
θ

jk

φ

− B
√
θ

ik

φ

A
√
θ

jk

φ
)

(2.16)

= ΠA,�
s +ΠA,�

m , (2.17)

where the subscripts s and m denote the single- and multi-scale contributions, respectively.
It is evident that all the SGS energy fluxes, (2.8)–(2.11), and also other SGS fluxes
(e.g. for helicities), can be written strictly in terms of (multi-scale) gradients of the
velocity and magnetic vector fields. Appendix A contains further details. When discussing
the individual SGS energy fluxes in § 4, we will make regular reference to (A3), the
generalised form of (2.17).

The tensor contractions present in (2.17) can be expressed as the trace of the matrix
products involved, after appropriate use of the transpose operation (superscript t). For
example, B̄�ijB̄

�
ikĀ

�
jk = Tr

{
(B̄�)t B̄�(Ā�)t

}
.

Further insight into the physics of the scale-space flux ΠA,� may be extracted
by expressing each gradient tensor as the sum of its index-symmetric and
index-antisymmetric components. Let us write Sij = (Aij + Aji)/2 and Ωij = (Aij − Aji)/2,
respectively the (velocity) rate-of-strain tensor and the rotation rate tensor, with Ωij =
−εijkωk/2 in terms of the vorticity ωk = εijk∂iuj. Similarly, Bij = Σij + Jij, where the
non-zero elements of Jij = (Bij − Bji)/2 = −εijkjk/2 are essentially the components of the
electric current density j = ∇ × b and the magnetic strain-rate tensor Σij = (Bij + Bji)/2.
We will of course require the filtered versions of all of these quantities.

Ostensibly, this decomposition gives eight single-scale and eight multi-scale sub-fluxes;
see (A7). However, properties of the trace of particular products of symmetric or
antisymmetric matrices mean some of these may vanish, cancel or be equivalent. In the
present case, one obtains, in connection with the single-scale contributions,

Tr
{(

B̄�
)t

B̄�
(
Ā�
)t} = Tr

{(
Σ̄� − J̄�

) (
Σ̄� + J̄�

) (
S̄� − Ω̄�

)}
(2.18)

= Tr
{
Σ̄�Σ̄�S̄� − J̄�J̄� S̄� + 2Σ̄�J̄�S̄�

}
, (2.19)

so that there are only three distinct subfluxes; see Appendix A for details. We write the
single-scale flux for the Advection term as

ΠA,�
s = Π

A,�
s,ΣΣS +Π

A,�
s,JJS + 2ΠA,�

s,ΣJS, (2.20)

where Π
A,�
s,PQR = −�2Tr

{
(P̄�)tQ̄�(R̄�)t

}
and each of P,Q,R are either symmetric or

antisymmetric tensors.
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id N α Eu Eb να εu εb Lu τ Re ηα / 10−3 kmax η
u
α kmax η

b
α �t / τ #

A1 2048 5 0.66 0.54 . 0.33 0.43 0.51 0.81 9931 2.0 1.38 1.37 1.1 18
H2 2048 4 3.84 — . 1.50 — 1.10 0.69 26000 2.3 1.57 — 1.0 6

TABLE 1. Simulation parameters and key observables, where N is the number of collocation
points in each coordinate, α is the power of ∇2 used in the hyper-diffusion, Eu the (mean)
total kinetic energy, να the kinematic hyperdiffusivity, εu and εb are the kinetic and magnetic
energy dissipation rates, Lu = (3π/4Eu)

∫ kmax
0 dkEu(k)/k the longitudinal integral scale, τ =

Lu/
√

2Eu/3 the large-scale eddy-turnover time, and Re is the Reynolds number. Furthermore,
ηα = (ν3

α/ε)
1/(6α−2), ηu

α = (ν3
α/εu)

1/(6α−2) and ηb
α = (μ3

α/εb)
1/(6α−2) are the hyperdiffusive

Kolmogorov scales calculated with respect to the total, viscous and Joule dissipation rates,
respectively, kmax the largest retained wavenumber component after de-aliasing, �t the mean of
the snapshots sampling intervals, and # indicates the number of snapshots used in the averaging.
The magnetic Prandtl number, Pm = να/μα , the ratio between the hyperviscosity and magnetic
hyperdiffusivity, equals unity for A1.

The multi-scale flux contributions which explicitly contain subfilter-scale fluctuations
can also be so decomposed, with the details given in Appendix A. The particular forms
for ΠA,�

m are discussed in § 4.3.

3. Methods and data

To quantify the four energy fluxesΠY,� present in (2.6)–(2.7), and their decompositions,
we employ outputs from numerical simulations of the MHD equations (2.1)–(2.3). To
obtain an appreciable inertial range, we use hyperdiffusion (α = 5), a comparison with
standard diffusive MHD (α = 1) is provided in Appendix E, always with να = μα. The
fluctuation fields, u and b, have zero means and there is no background magnetic field (i.e.
B0 = 0). The equations are solved using fully dealiased Fourier pseudospectral codes in a
triply periodic (2π)3 domain (Patterson & Orszag 1971; Canuto et al. 1988). The time
advancement is via a second-order Runge–Kutta scheme with dealiasing implemented
using the two-thirds rule.

As table 1 indicates, we use up to 20483 grid points. The spatial resolution of the
simulations is quantified by both the grid spacing �x = 2π/N and the hyper-diffusive
Kolmogorov scales ηu

α = (ν3
α/εu)

1/(6α−2) and ηb
α = (μ3

α/εb)
1/(6α−2), where εu and εb are the

mean kinetic and magnetic energy dissipation rates (Borue & Orszag 1995). For adequate
resolution, we require ηu

α/�x � 1.3 and ηb
α/�x � 1.3 (e.g. Donzis, Yeung & Sreenivasan

2008; Wan et al. 2010).
The forcing f applied to the system is a drag-free Ornstein–Uhlenbeck process, active in

the wavenumber band k ∈ [2.5, 5.0] for the MHD simulations, while the hydrodynamics
dataset H2 is forced in the band k ∈ [0.5, 1.5]. The snapshots, consisting of instantaneous
velocity and magnetic fields, have been sampled about once per large-scale turnover time
after the simulations reach statistically stationary states.

Figure 1 shows the time-averaged omnidirectional kinetic and magnetic spectra. The
peak in the kinetic spectrum is due to the activity of forcing for k ∈ [2.5, 5.0], while the
magnetic spectrum is considerably lower over that interval since the induction equation is
not forced. In the (approximate) inertial range, both spectra have approximately power law
scaling, with Eb(k) close to k−5/3 and Eu(k) significantly shallower. As is typically seen in
MHD simulations with no mean field, the Alfvén ratio, Eu(k) /Eb(k), is less than unity in
the inertial range, i.e. magnetic energy predominates at these scales.
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FIGURE 1. Time-averaged omnidirectional spectra for the velocity and magnetic field (run A1).
The grey region indicates the wavenumber band where the velocity field is forced: k ∈ [2.5, 5.0].

At high k, there is a steep and roughly coincident decrease of both spectra. This is a
consequence of two factors. First, the employment of hyperviscosity makes the dissipation
range more concentrated in the small scales, leading to the sharp fall-off. Second, unit
Prandtl number ensures that the dissipation wavenumber band is the same for the kinetic
and magnetic spectra. Note the clear superequipartition in the entire scaling range of
the spectra, with Eb(k) > Eu(k) for 10 ≤ k ≤ 400. Equipartition at large k in the inertial
range as previously predicted for decaying turbulence (Müller & Grappin 2004; Haugen
& Brandenburg 2006) is not observed, however, as Eb(k) is steeper than Eu(k) it does
approach Eu(k) resulting in approximate equipartition in the dissipative range.

To calculate an effective Reynolds number for a hyperdissipative system, we follow the
approach described by Buzzicotti et al. (2018). There, the standard (Laplacian dissipation)
integral-scale Reynolds number Re = ULu / ν ∝ (Lu / η2)

4/3 (e.g. Batchelor 1970; Pope
2000) is replaced with one based on the ratio between the integral scale Lu and the effective
dissipation range scale Id. Specifically, we employ

Re = C
(

Lu

Id

)4/3

, (3.1)

where Id = π / argmax
(
k2Eu(k)

)
is the scale where the dissipation spectrum k2Eu(k)

has a maximum. Here, C is a fit parameter that has to be estimated by comparing
(3.1) with the common definition of the Reynolds number in a standard-viscosity run.
Making use of this procedure, we obtain C = 40 and Re = 9931 for run A1 (table 1).
Generalisation of the Reynolds number for systems with hyper-dissipation has been
discussed by Spyksma, Magcalas & Campbell (2012).

Figure 2 displays the four MHD energy subfluxes, introduced in (2.6)–(2.7), and their
sum. Also shown is W�, the resolved scale conversion of kinetic energy to magnetic energy
(recall this does not represent energy transfer across �). The two panels present fluxes
obtained through different filters, results shown in figure 2(a) correspond to Galerkin
truncation and those shown in figure 2(a) to the Gaussian filter of (2.12). The data shown
in figure 2(a,b) are qualitatively similar but with quantitative differences. Focusing on
the similarities, we see that the Inertial term 〈Π I,�〉 is relatively weak and is the only
one to exhibit inverse transfer regions, in the intervals 1.5 × 102 � kηα � 2 × 10−1 and
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(a) (b)

FIGURE 2. Terms contributing to the MHD filtered energy flux across scale �, along with the
resolved scale conversion (kinetic to magnetic) term, as a function of the adimensional parameter
kηα = πηα/�: (a) Fourier filter; (b) Gaussian filter. All terms are normalised by the mean
total energy dissipation rate ε = εu + εb. The dashed horizontal line indicates the normalised
magnetic dissipation rate .. The error bars, although not fully visible, indicate one standard error.
See (2.6)–(2.7).

4 × 10−3 � kηα � 6 × 10−3. All the other subfluxes are associated with a direct cascade
from the large to the small scales. The energy transfer from the momentum equation of
(2.6) is almost entirely dominated by the Maxwell subflux (−�M,�) whose peak occurs
in proximity to the forcing region. In contrast, the advection term from the induction
equation (�A,�) is peaked at the small scales, close to the dissipative range. The conversion
term, W�, is positive and increases monotonically with kηα. Particularly for the Fourier
filter, it is roughly constant (i.e. scale independent) in the region 0.2 � kηα � 0.9 where
kinetic and magnetic subfluxes are in equipartition (Bian & Aluie 2019); see figure 11 in
Appendix D. Also evident is a sudden increase of W� in the dissipative range (kηα � 1),
due to hyperdiffusion, where the conversion rate saturates to εb as already pointed out by
Bian & Aluie (2019).

Turning to the differences between the two kinds of filtering, we observe that the
bandwidth of the inertial range plateau is narrower for the Gaussian filter case, roughly
kηα ∈ [0.04, 0.4] versus kηα ∈ [0.012, 0.7]. In general, the Gaussian filtering peaks are of
lower amplitude and a little less localised. Linked to this is a more gradual roll-off of the
fluxes at high kηα and a slower convergence of W� to εb with increasing k. These effects
arise because Gaussian filtering at scale � retains some effects from scales ≤ �, unlike the
situation for the sharp Galerkin truncation of the Fourier filter. For �D,�, there is also a
qualitative difference, with the high-k local minimum and maximum seen with the Fourier
filter essentially absent when the Gaussian filter is used.

4. Analysis and discussion
4.1. Inertial flux and comparison with hydrodynamics

The exact decomposition of the Inertial term �I,�, (2.8), is

Π I,� = Π
I,�
s,SSS +Π

I,�
m,SSS +Π

I,�
s,SΩΩ +Π

I,�
m,SΩΩ +Π

I,�
m,SΩS, (4.1)

where�I,�
s,S�S is not included as it is identically zero. This is the special case of (A3) where

all the fields are the velocity and naturally it coincides with the original decomposition
provided by Johnson (2020) for Navier–Stokes turbulence. It is thus of interest to
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(a) (b)

FIGURE 3. Contributions to the Inertial energy flux 〈�I,�〉 for (a) the HD dataset H2 and (b)
the MHD dataset A1, as a function of the (non-dimensionalised) reciprocal scale �, i.e. πηα/�.
All fluxes are normalised by the mean total energy dissipation rate . for the dataset. Filled
symbols correspond to single-scale contributions while hollow markers indicate multi-scale
contributions. Error bars are for one standard error. Both panels indicate that 〈�I,�

m,SSS〉 ≈
〈�I,�

m,S��〉. In panel (b), the purple arrow locates kηα = 5.4 × 10−2 (equivalent to kLu ≈ 14),
the value used for the probability density functions (p.d.f.s) shown in figures 4, 7 and 10.

investigate whether there are differences between the HD and MHD instances of (4.1),
and how these might arise.

Figure 3 compares these two cases. For the hydrodynamic case, panel (a), there is
a relatively clear and extended plateau for the total flux (and some of the subfluxes)
corresponding to an inertial range. In contrast, the MHD case shown in panel (b)
lacks such a plateau and the individual subfluxes are mostly much smaller than
their hydrodynamic counterparts. Indeed, only 〈�I,�

m,SS�〉 has values comparable to its
hydrodynamic counterpart, albeit with a different functional form, being negative for
almost all k. Intriguingly, this term is the only one that does not vanish point-wise in
two-dimensional (2-D) turbulence, as discussed by Johnson (2021).2 A depletion of the
inertial flux in MHD turbulence has been observed by Alexakis (2013) and Yang et al.
(2021) for configurations with large-scale electromagnetic forcing and by Offermans et al.
(2018) for a saturated dynamo at lower Reynolds number. We have verified that the relation
of Betchov (1956), 〈�I,�

s,SSS〉 = 3〈�I,�
s,S��〉, holds for both datasets, as it must.

Also of interest is that there appears to be an approximate multi-scale analogue of the
Betchov relation, with 〈�I,�

m,SSS ≈ 〈�I,�
m,S��〉. For hydrodynamics, this was already noted by

Johnson (2021) and justified by Yang et al. (2023). Evidently, this approximate degeneracy
also holds in this MHD situation, although the smallness of the terms makes this difficult
to appreciate from figure 3(b).

Having discussed mean fluxes, we now examine some statistical properties of their
pointwise contributions. Figure 4 presents standardised probability density functions
(p.d.f.s) of the MHD Inertial subfluxes at kηα = 5.4 × 10−2. It is evident that the
distributions are strongly non-Gaussian and exhibit very wide tails, with fluctuations at

2The energy flux decomposition for 2-D MHD turbulence is considered in Appendix C.
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(a) (b)

FIGURE 4. Standardised p.d.f.s of the MHD Inertial subfluxes �I,�
X at kηα = 5.4 × 10−2

(equivalent to kLu = 14) from dataset A1, where X identifies the specific subflux. (a) Single-scale
fluxes; (b) multi-scale fluxes.

tens of standard deviations. (As we shall see, this is a common characteristic for all the
MHD energy fluxes and subfluxes.) Most importantly, we observe strong backscatter in
all subfluxes. That is, the depletion of the mean Inertial flux results from cancellations
between forward and inverse transfer events made possible by an increase in backscatter
events. Similar observations for the total Inertial term have been reported by Offermans
et al. (2018), where a comparison between the kinematic, nonlinear and saturated stages
of the dynamo had been carried out. The variance, skewness and kurtosis for each p.d.f.
are reported in table 2. Although the p.d.f. of�I,�

s,S��, which corresponds to the scale-local
vortex stretching, has more asymmetrical tails than those of �I,�

s,SSS, the skewness for the
latter is nonetheless larger. The term �

I,�
s,S�S does not show up in figure 4 because it is

identically zero due to the symmetries of the tensors involved in the corresponding trace
of (A3). In contrast, panel (b) shows that . is the most negatively skewed p.d.f. among the
Inertial ones.

In connection with the approximate degeneracy between �I,�
m,SSS and �I,�

m,S�� discussed
above, figure 4(b) reveals that their p.d.f.s coincide up to events with a standardised
probability density of 10−7, potentially indicating that the approximate identity is true not
just on average but also for higher-order moments, although further analysis is required.

4.2. Maxwell flux
The decomposition of the energy flux associated with the Lorentz force, which we refer to
as the Maxwell term, �M,� of (2.9), contains an extra (single-scale) term with respect to
the Inertial flux. Specifically, from (A3), we obtain

ΠM,� = Π
M,�
s,SΣΣ +Π

M,�
m,SΣΣ +Π

M,�
s,SJJ +Π

M,�
m,SJJ +Π

M,�
s,SJΣ +Π

M,�
m,SJΣ. (4.2)

Terms of type S�� can be associated with strain rate amplification by magnetic shear,
while terms of type SJJ correspond to current-filament stretching that is analogous to
vortex stretching in HD. The last two terms are of type SJ� and describe the back-reaction
of the magnetic field on the flow or, more specifically, how the velocity strain rate is
modified (typically amplified) in connection with a current-sheet thinning process. As we
shall see, this is by far the dominant process. It proceeds as follows (figure 5). First, a
current sheet is stretched by large-scale straining motions into a magnetic shear layer, in
a process similar to vortex thinning in HD (Kraichnan 1976; Chen et al. 2006; Johnson
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�I,�
s �

I,�
s,SSS �

I,�
s,S�� �I,�

m �
I,�
m,SSS �

I,�
m,S�S �

I,�
m,S��

(
σ I

X
)2 1.107 0.652 0.114 2.522 0.107 0.303 0.109

SI
X 2.958 3.234 1.483 .1.558 1.424 .2.155 1.301

KI
X 39.18 41.48 29.68 17.15 18.96 15.42 17.50

�M,�
s �

M,�
s,S�� �

M,�
s,SJJ �

M,�
s,SJ� �M,�

m �
M,�
m,S�� �

M,�
m,SJ� �

M,�
m,SJJ(

σM
X
)2 0.112 0.014 0.0113 0.119 0.353 0.014 0.467 0.014

SM
X 3.207 0.326 .0.827 4.030 3.105 .2.176 3.417 .2.289

KM
X 32.22 32.71 31.09 39.88 21.34 27.96 24.60 28.46

�A,�
s �

A,�
s,��S �

A,�
s,�J� �

A,�
s,�JS �

A,�
s,J�S �

A,�
s,JJS(

σA
X
)2 0.206 0.014 0.004 0.030 0.030 0.011

SA
X 3.801 .0.333 .2.349 3.843 3.843 0.82

KA
X 42.16 32.71 53.12 38.90 39.90 31.08

�A,�
m �

A,�
m,�S� �

A,�
m,��� �

A,�
m,�J� �

A,�
m,�JS �

A,�
m,J�S �

A,�
m,JJS �

A,�
m,J�� �

A,�
m,JJ�(

σA
X
)2 0.084 0.003 0.006 0.002 0.007 0.003 0.002 0.002 0.001

SA
X 0.334 .1.616 .0.743 .2.011 .0.283 0.534 1.34 1.13 1.02

KA
X 28.99 24.04 25.74 25.92 24.45 26.22 27.48 27.20 29.75

�D,�
s �D,�

m(
σD

X
)2 0.039 0.055

SD
X .1.918 1.804

KA
X 35.61 25.41

TABLE 2. Values of variance
(
σ Y

X
)2, skewness SY

X =
〈(
�

Y,�
X − 〈�Y,�

X 〉
)3
〉
/
(
σ Y

X
)3 and kurtosis

KY
X =

〈(
�

Y,�
X − 〈�Y,�

X 〉
)4
〉
/
(
σ Y

X
)4 for the subflux p.d.f.s shown in figures 4–10, where X

indicates the subflux identifier and Y denotes the term identifier.

2021). This results in a stretching of the magnetic flux tubes in the sheet. By conservation
of magnetic flux, the magnetic field strength at the thereby generated smaller scales must
increase. That is, magnetic energy is transferred from large to small scales. (We will
revisit this process in § 4.3 in the context of the inter-scale transfer of magnetic energy.)
The magnetic rate-of-strain field associated with the resulting magnetic shear layer now
accelerates fluid along its extensional directions and slows it down in the compressional
directions, thereby generating a stronger rate-of-strain field across smaller scales.

It is instructive to consider the process in two dimensions, in analogy to the vortex
thinning of 2-D HD. In the reference frame of the rate-of-strain tensor at scale �, the
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associated terms are

Π
M,�
s,SJΣ(x) = 2λ�S(x) λ

�
Σ(x) j̄�(x) sin 2ψ(x), (4.3)

Π
M,�
m,SJΣ(x) = 2

∫ �2

0
dθ
∫

R3

Gφ(r) λ�S(x) λ
√
θ

Σ (x + r) j̄
√
θ (x + r) sin 2ψ(x + r) dr, (4.4)

where ±λS and ±λ� are the eigenvalues of the velocity and magnetic rate-of-strain tensors,
respectively, ψ the angle between the respective eigenvectors, and j the out-of-plane
component of the current density. As can be seen from these formulae, a maximum
energy transfer occurs when the principal axes of the magnetic rate-of strain tensor have
a ±45° angle to those of the velocity rate-of-strain tensor. Depending on the sign of the
out-of-plane current density and sin(2ψ), (4.3) and (4.4) result in a direct or an inverse
energy transfer. Figure 5 presents a schematic depiction of the process. A direct energy
transfer occurs if the angle between the principal axes of velocity and magnetic strain-rate
tensors is in the same rotational direction as the out-of-plane current. A similar, albeit less
straightforward, assessment is possible in three dimensions, where

Π
M,�
s,SJΣ(x) = 2�2S̄�ijJ̄

�
ikΣ̄

�
kj = 2�2

3∑
i=1

3∑
j=1

λ�iμ
�
j cos2 ψij, (4.5)

and similarly for the multi-scale term. Here, μ�j is the j−th eigenvalue of the symmetric

part of the product matrix J
�

ik�
�

kj (a contribution to the Maxwell SGS stress tensor) and ψij

the angle between the i−th eigenvector of S̄� and the j−th eigenvector of the symmetric
part of J

�

ik�
�

kj. For a forward cascade of kinetic energy, 〈�M,�〉 > 0, which implies that

S
�

ij J
�

ik�
�

kj should be preferentially positive. Due to the presence of the cosine squared factor,
this implies that the principal axes of the rate-of-strain tensor and those of the subscale
stress must preferentially align, resulting in a stretching of the magnetic flux tubes along
the extensional directions of the strain-rate tensor, as discussed above.

The subfluxes on the right-hand side of (4.2) and the total Maxwell flux are shown in
figure 6, as a function of (non-dimensionalised) reciprocal �. We see immediately that
the net energy transfer proceeds from large scales to small scales with the total Maxwell
flux 〈�M,�〉 being the dominant energy subflux for MHD, carrying approximately 80%
of the total energy dissipation rate at its peak. At large scales, the major contribution is
from the multi-scale term 〈�M,�

m,SJ�〉, switching to its single-scale partner, 〈�M,�
s,SJ�〉, as the

dissipation scale is approached. All remaining terms in (4.2) are negligible. Summarising
the mean Maxwell flux behaviour, we may say that the net kinetic energy transfer in MHD
proceeds by the back-reaction of the magnetic field on the flow during the aforementioned
current-sheet thinning process, while the contribution from current filament stretching and
strain-amplification by magnetic shear are negligible.

The p.d.f.s for the Maxwell energy fluxes are shown in figure 7. The predominance of
〈�M,�

m,SJ�〉 in the direct cascade can be also appreciated by examining its p.d.f., which is the
most positively skewed among the multi-scale terms of figure 7; see also table 2 for p.d.f.
moments. As can be seen from the data shown in figure 7, while all terms of type S��
and SJJ nearly vanish on average, fluctuations of approximately 60 standard deviations are
not uncommon, and their multi-scale contributions show considerable backscatter. That is,
the mean effects of current-filament stretching and strain-amplification by magnetic shear
on the flow are negligible because of cancellations between pointwise forward and inverse
transfers, and both these processes result in extreme backscatter events.
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(a) (b)

FIGURE 5. Two-dimensional sketch of current-sheet thinning and strain rate amplification by
the latter. A current sheet, J, is stretched by (a) large-scale strain S, into a magnetic shear layer
(b, red arrows). This induces a stretching of the magnetic flux tubes in the sheet. By conservation
of magnetic flux, the magnetic field strength at the thereby generated smaller scales increases.
That is, magnetic energy is transferred from large to small scales. The resulting magnetic shear
layer has an associated magnetic strain rate field, �, whose principal axes (solid blue arrows)
are at . to those of the large-scale strain rate tensor (straight black arrows). As the magnetic
shear will align with the extensional direction of the (velocity) strain rate tensor, this causes the
fluid to be accelerated along these extensional directions and slowed down in the compressional
directions, thereby generating a stronger rate-of-strain field across smaller scales, S′, indicated
by the dashed arrows. The principal axes of the large-scale strain rate tensor are denoted by
e1 in one extensional direction and e3 in one compressional direction and analogously for the
small-scale strain rate.

FIGURE 6. Contributions to the Maxwell energy flux .. Data are from dataset A1 and
normalised by the mean total energy dissipation rate .. Error bars indicate one standard error.
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(a) (b)

FIGURE 7. Standardised p.d.f.s for Maxwell subfluxes�M,�
X , at kηα = 5.4 × 10−2, from dataset

A1, where X represents the subflux identifier. (a) Single-scale fluxes; (b) multi-scale fluxes. Note
that the p.d.f.s for �M,�

m,S�� and �M,�
m,SJJ are approximately coincident.

In Appendix B, we show that the averages of the subfluxes �M,�
m,S�� and �M,�

m,SJJ can be
connected via an exact Betchov-like relation that holds for all homogeneous flows,

〈ΠM,�
m,SΣΣ〉 = 〈ΠM,�

m,SJJ〉 + 2〈ΠM,�
m,ΩΣJ〉. (4.6)

Note that the final term, �M,�
m,��J , does not appear in the Maxwell flux, (4.2), and our

numerical results indicate �M,�
m,S�� ≈ �

M,�
m,SJJ , see figure 6. Physically, we may interpret

this approximate identity as indicating that the net ‘strain-production’ by magnetic shear
is almost equal to the net strain production by current-filament stretching. However, we
stress again that these contributions to the interscale kinetic energy transfer are negligible.
Further discussion on terms associated with strain production and current-filament
stretching is provided in Appendix B.

4.3. Advection and dynamo fluxes
In this section, we focus on the decomposition of both the Advection term, �A,�, and the
Dynamo term, �D,�, as defined in (2.10)–(2.11). As is well known, these two SGS fluxes
share the same physical origin, namely the induced (fluctuation) electric field, and this is
associated with certain symmetries and equivalences between the Advection and Dynamo
subfluxes.

From the application of (A3), we find

ΠA,� = Π
A,�
s,ΣΣS +Π

A,�
m,ΣΣS +Π

A,�
m,ΣΣΩ +Π

A,�
s,ΣJS +Π

A,�
m,ΣJS +Π

A,�
s,ΣJΩ

+Π
A,�
m,ΣJΩ +Π

A,�
s,JΣS +Π

A,�
m,JΣS +Π

A,�
s,JΣΩ +Π

A,�
m,JΣΩ +Π

A,�
s,JJS +Π

A,�
m,JJS +Π

A,�
m,JJΩ,

(4.7)

ΠD,� = Π
D,�
s,ΣSΣ +Π

D,�
m,ΣSΣ +Π

D,�
s,ΣSJ +Π

D,�
m,ΣSJ +Π

D,�
m,ΣΩΣ +Π

D,�
s,ΣΩJ +Π

D,�
m,ΣΩJ

+Π
D,�
s,JSΣ +Π

D,�
m,JSΣ +Π

D,�
s,JSJ +Π

D,�
m,JSJ +Π

D,�
s,JΩΣ +Π

D,�
m,JΩΣ +Π

D,�
m,JΩJ, (4.8)

where we do not list terms that vanish identically, see Appendices A and F.
Figure 8 displays most of the Advection and Dynamo (sub)fluxes in separate panels.

For clarity, only the subfluxes relevant to the discussion below and to the net energy flux
are shown. The cyclic property of the trace can be used to show that some terms vanish
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(a) (b)

FIGURE 8. Decomposed fluxes for the (a) Advection term 〈�A,�〉 and (b) Dynamo term 〈�D,�〉.
Fluxes are normalised by the mean total energy dissipation rate ε for dataset A1. In panel (a),
〈�A,�

s,�JS〉 and 〈�A,�
s,J�S〉 perfectly coincide. The error bars indicate one standard error.

identically and that each Advection subflux (both single-scale and multi-scale) is equal to
(plus or minus) a partner Dynamo subflux; see the subfluxes expressions in Appendix F.
For this reason, in figure 8, the following subflux pairs are not displayed since they are
opposite in sign, �A,�

s,��S and �A,�
s,�S� as well as �A,�

s,�J� and �A,�
s,��J together with their

multi-scale counterparts. Hence, these cancel pairwise and make no contribution to the
net magnetic energy flux�A,� +�D,�; see Appendix F. In contrast, 〈�A,�

s,JJS〉 and�D,�
s,JSJ and

the related multi-scale terms, are equal and thus do contribute to the net flux.
Note, too, that the two Betchov relations (B6)–(B10) can provide another source of

symmetry, or approximate symmetry.
The physical interpretation of the respective terms is very similar to what has been

discussed for the Maxwell flux, except that now the effect of the flow on the magnetic field
must be considered. Recall from § 4.2 that the Maxwell flux terms of type SJ� correspond
to the stretching and, by incompressibility, thinning of current sheets into magnetic shear
layers, and that the back-reaction on the flow induced by this process is responsible for
the bulk of the kinetic energy transfer to smaller scales. As we shall see, and as expected
from the discussion of current-sheet thinning in § 4.2, this process also transfers most
magnetic energy from large to small scales. However, in contrast to the Maxwell flux
situation (dominated by a multi-scale term), here it is two of the Advection single-scale
terms, �JS and J�S, that carry most of the magnetic energy flux.

Focusing on the Advection term, from figure 8(a), we observe that the net flux is
everywhere positive and peaked at smaller scales, roughly at the end of the inertial
range. Recall that the Maxwell flux is peaked at larger scales (figure 6). Due to the
cyclic property of the trace, the terms �A,�

s,�JS and �A,�
s,J�S are equal while, because of the

symmetry of the tensors involved, the subfluxes �A,�
s,JJ� and �A,�

s,��� together with �D,�
s,J�J

and �D,�
s,��� are identically zero. It is also apparent from figure 8(a) that the remaining

Advection terms make negligible contributions to the net flux. We note that ��S type
terms correspond to magnetic shear amplification due to straining motions and those
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(a) (b)

FIGURE 9. Sketch of current-filament stretching. A current filament J, with associated magnetic
field b, is (a) stretched by large-scale strain, S with two contractional and one extensional
direction into (b) a longer and thinner filament along the extensional direction. This induces
a stretching of the magnetic flux tubes in the filament. By conservation of magnetic flux, the
magnetic field strength at the thereby generated smaller scales increases (red arrows). That is,
magnetic energy is transferred from large to small scales. This process is analogous to vortex
stretching in hydrodynamic turbulence. The principal axes of the large-scale strain rate tensor
are denoted by e1 in the extensional direction and e2 and e3 in the contractional directions.

of type JJS to current filament stretching – the analogue to vortex stretching in HD
– as depicted in figure 9. Terms of type �J� encode bending of magnetic field lines
into current filaments by rotational flow, i.e. a change in the magnetic-field geometry
induced by vortical motion. Thus, the net Advection term is primarily due to single-scale
contributions, being approximately equal to 2�A,�

s,�JS, and it carries approximately 40% of
the total energy flux at its peak.

For the Dynamo term, �D,�, we observe that the net flux is almost flat in the inertial
range, substantially positive definite for these scales (figure 8b) and responsible for
approximately 15% of the total energy flux. All subfluxes, except �D,�

s,�SJ shown in yellow
and�D,�

s,JS� indicated by the filled purple symbols, are negligible. However, using the cyclic
property once again, one can show that �D,�

s,�SJ = −�D,�
s,JS�; hence, these two terms cancel

out and do not contribute to the net flux. In contrast to the Advection term, the major
contributions to the net Dynamo term are from subleading single and multi-scale subfluxes
of various types, with each contributing only 1–2 % to the total energy flux adding up to a
total of approximately 15% of the total energy flux. In summary, single-scale current-sheet
thinning is the dominant process transferring magnetic energy across scales. It solely
originates from the advective term in the induction equation.

Consider now the p.d.f.s. As a consequence of the symmetries between Dynamo and
Advection subfluxes, only the Advection p.d.f.s are shown in figures 10(a) and 10(c),
respectively for the single-scale terms and the multi-scale terms. It is striking that
the p.d.f. of �A,�

s,�J�, which describes the bending of magnetic field lines into current
filaments by rotational flow, is by far the most strongly fluctuating with huge fluctuations
of more than 100 standard deviations, also showing strong magnetic backscatter. In
contrast, the aforementioned current-sheet thinning process, that is mostly responsible for
the forward cascade of magnetic energy, shows weak magnetic backscatter. The other
Advection subflux p.d.f.s, both single-scale and multi-scale, span a range comparable
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(a) (b)

(c) (d)

FIGURE 10. Standardised p.d.f.s for dataset A1 at kηα = 5.4 × 10−2. (a) Single-scale
Advection subfluxes �A,�

X , where X represents the subflux identifier, and (b) net single-scale
fluxes for the Dynamo (�D,�

s ) and Advection terms (�A,�
s ). In the x-axis titles for panels (b) and

(d), Y = A or D, as appropriate. Note that �A,�
s,�JS = �

A,�
s,JS� (see figure 8). (c,d) As for panels

(a,b) except for the multi-scale subfluxes of�A,� and�D,�. Note that panels (c,d) have the same
x-axis range as figures 4 and 7.

with those associated with the p.d.f.s for the Inertial and Maxwell fluxes. Moreover, all
the multi-scale fluxes (Advection and Dynamo) have quite similar p.d.f.s, and thus so do
the net multi-scale flux p.d.f.s (figure 10d). In the case of the net single-scale p.d.f.s, the
Advection–Dynamo agreement is still good in the cores of the distributions, but there is a
significant difference at larger negative fluctuations (figure 10b).

4.4. Total energy flux, .
In the preceding subsections, we analysed the four contributions to the incompressible
MHD energy flux, finding that each of them may be reasonably well approximated using
just some of the subfluxes. These approximations may now be assembled to give an
approximate form for the mean total MHD energy flux. Specifically, we suggest that

〈
Π�
〉 = 〈Π I,�

〉+ 〈ΠM,�
〉+ 〈ΠA,�

〉+ 〈ΠD,�
〉 ≈ −2〈ΠM,�

s,SJΣ〉 − 〈ΠM,�
m,SJΣ〉 (4.9)

= 4�2 〈Tr
{
(S̄�)tJ̄ �(Σ̄�)t

}〉
(4.10)

+ 2

〈∫ �2

0
dθ Tr

{(
S̄�
)t (

J̄
√
θ
(
Σ̄

√
θ
)tφ

− J̄
√
θ
φ (

Σ̄
√
θ
)tφ
)}〉

(4.11)
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is a suitable expression. Note that, after using cyclic properties of the trace, this is
expressed only in terms of two of the Maxwell subfluxes, one single-scale and one
multi-scale. These are discussed in § 4.2 and we remind the reader that all subflux
definitions can be found in Appendix F. Interestingly, the terms on the right-hand side
of (4.11) are part of a group of terms that remain non-zero in 2-D MHD; see Appendix C.
We intend to explore this intriguing feature in future work.

Equation (4.11) demonstrates that the mean total energy flux in MHD turbulence is
largely given by the stretching and thinning of current-sheets into magnetic shear layers by
large-scale strain, resulting in a transfer of magnetic energy from large to small scales.
In addition, there is a back-reaction of this process on the flow, whereby the ensuing
magnetic strain-rate field accelerates fluid along its extensional directions and slows it
down in the compressional directions, thereby generating a stronger strain-rate field across
smaller scales, as shown schematically in figure 5.

4.5. Current-sheet thinning and magnetic reconnection
As a means of inter-scale energy transfer, the current-sheet thinning process can only
proceed as described in an inertial range, i.e. at scales where Joule and viscous dissipation
are negligible. As the dissipative scales are approached, Alfvén’s theorem ceases to
hold and magnetic reconnection can occur, with associated changes to the topology of
the magnetic field. Interestingly, models of MHD reconnection are geometrically very
similar to the inertial-range energy transfer process described here. For example in the
Sweet–Parker model (Parker 1957; Sweet 1958), a current sheet is thinned by a flow
that pushes magnetic field lines closer and closer together. Eventually, when the distance
between the field lines approaches scales where Joule dissipation becomes important,
the topological conservation of the magnetic field is broken and magnetic field-lines
reconnect. That is, the continuation of the current-sheet thinning process described herein,
and shown conceptually in figure 5, to smaller and smaller scales can lead naturally to
magnetic reconnection.

5. Consequences for MHD subgrid-scale modelling

MHD LES modelling usually proceeds through variations on the Clark and
Smagorinsky models, here shown for simplicity for the HD case,

τCLARK
ij = �2∂kū�i ∂kū�j (5.1)

for the Clark model (Clark et al. 1979; Pope 2000),3 where we note that this model
corresponds to what we have herein called single-scale flux contributions (see the first
term on the right-hand side of (2.15)), and the Smagorinsky model

τ SMAG
ij = −2νeS̄�ij, (5.2)

where . is the turbulent or eddy viscosity given by

νe = (CS�)
2
√

S̄�ijS̄
�
ij, (5.3)

with . being a free parameter, the Smagorinsky constant (Smagorinsky 1963). This is the
case for incompressible MHD (Zhou & Vahala 1991; Müller & Carati 2002; Kessar et al.
2016). Moreover, adaptations have been made for the compressible case (Chernyshov,

3The factor 1/12 that figures in the original definition of the Clark model has here been absorbed in the filter scale
�2.
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Karelsky & Petrosyan 2010; Grete et al. 2016; Vlaykov et al. 2016), for channel flow at
high magnetic Reynolds number (Hamba & Tsuchiya 2010; Jadhav & Chandy 2021, 2023)
and for extensions of MHD taking various levels of microphysics terms into account,
such as Hall MHD (Miura, Araki & Hamba 2016) or Braginskii-extended (two-fluid)
MHD (Miura, Hamba & Ito 2017), with the latter specifically focussed on the ballooning
instability in stellarator devices. Most such approaches use the same SGS model for
the inertial and Maxwell stresses based on velocity-field gradients with eddy viscosities
involving either only the strain rate tensor or a weighted sum of the squared strain rate and
the squared current, and similarly structured SGS models for the induction equation, with
either heuristics or trial-and-error approaches to find suitable values for model constants.
In what follows, we briefly discuss how the present results can be used to construct suitably
structured SGS models for each SGS-stress in the MHD equations.

In terms of SGS modelling, our simulation-based results suggest that the Inertial
terms can be neglected and a dissipative model, such as the Smagorinsky model, for
the Maxwell stresses should suffice to capture the (leading-order) mean effects. In terms
of fluctuations, we find that the observed mean Inertial flux depletion is caused by
considerable backscatter in all Inertial subfluxes (see figure 4). This could suggest that
a more sophisticated model would be required for the Inertial term. However, in 3-D
HD turbulence, backscatter-free SGS models such as the standard static Smagorinsky
closure perform well in capturing high-order statistics, that is, anomalous exponents
and multifractal predictions for the correlation between velocity-field increments and
SGS stresses (Linkmann, Buzzicotti & Biferale 2018). Furthermore, as the SGS stresses
enter the filtered Navier–Stokes equation only through their divergence, this results in
a degree of (gauge) freedom to determine model stress tensors that produce much less
backscatter than those constructed using the standard definition (Vela-Martín 2022). In
fact, backscatter can be traced back to spatial fluxes disconnected from the (scale-space)
energy transfer and as such does not require modelling (Vela-Martín 2022).

For the magnetic energy transfers, we observe the net transfers are from large to small
scales, suggesting again that dissipative models should suffice. Indeed, as multi-scale
terms in our flux decomposition are negligible, a Clark-type model involving only the
coupling between current and strain-rate tensors may work well for a nonlinear saturated
non-helical (small-scale) dynamo. However, additional stabilising terms may be required
as the Clark (or gradient) model is know to result in numerically unstable LES of a mixing
layer in HD (Vreman, Geurts & Kuerten 1996, 1997) and for MHD (Müller & Carati 2002;
Kessar et al. 2016), as discussed in further detail below. Similar to the Inertial term results,
we observe considerable backscatter in the magnetic energy fluxes (see figure 10), and it
remains to be seen if the aforementioned results by Linkmann et al. (2018) on the effect of
SGS closures on high-order statistics carry over from HD to MHD.

For a non-helical saturated dynamo, as is the case here, Müller & Carati (2002) and
Kessar et al. (2016) carried out MHD LES with Clark-type models constructed from
the full velocity and magnetic-field gradients for the sum of the Reynolds and Maxwell
SGS stress in the momentum equation and for the magnetic stresses, resulting in unstable
simulations as in the HD case. Using a priori analyses of DNS data, Kessar et al. (2016)
trace the instabilities back to the Clark terms transferring an insufficient amount of kinetic
and magnetic energy to small scales, and to a production of backscatter. According to our
analysis, for the momentum equation, the former effect is due to the Maxwell stress having
a significant multi-scale component which is not captured in the Clark model. Concerning
the latter, we also observe strong backscatter from the kinetic and magnetic single-scale
subfluxes except for terms connected with current-sheet thinning, see figures 4, 7 and 10.
Furthermore, a Clark model based on the full gradients by generalisation of (5.1) to MHD

https://doi.org/10.1017/S0022377824000898 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000898


22 D. Capocci, P.L. Johnson, S. Oughton, L. Biferale and M. Linkmann

will introduce effects that are not present in the full MHD dynamics especially concerning
the Maxwell and magnetic stresses, as all combinations of vorticity, strain, current and
magnetic strain are included in the model and equally weighted,

τ
CLARK,M
ij = �2∂kb̄�i ∂kb̄�j = �2 (Σ̄�

ikΣ̄
�
jk + Σ̄�

ikJ̄
�
jk + J̄�ikΣ̄

�
jk + J̄�ikJ̄

�
jk

)
, (5.4)

τ
CLARK,A
ij = �2∂kb̄�i ∂kū�j = �2 (Σ̄�

ikS̄
�
jk + J̄�ikS̄

�
jk + Σ̄�

ikΩ̄
�
jk + J̄�ikΩ̄

�
jk

)
, (5.5)

τ
CLARK,D
ij = �2∂kū�i ∂kb̄�j = �2 (S̄�ikΣ̄�

jk + Ω̄�
ikΣ̄

�
jk + S̄�ikJ̄

�
jk + Ω̄�

ikJ̄
�
jk

)
. (5.6)

Our analysis, however, shows that only terms stemming from the coupling between current
and strain-rate tensors are significant, with all remaining contributions to the net Maxwell
and magnetic fluxes being negligible. Thus, retaining these contributions in an SGS model
may substantially (and inappropriately) affect the small-scale structure of the flow and
the magnetic field, and lead to an overestimation of backscatter. It remains to be seen
if backscatter-related instabilities can be suppressed if only the current-sheet thinning
(CST) terms,

τ
CST,M
ij = �2 (Σ̄�

ikJ̄
�
jk + J̄�ikΣ̄

�
jk

)
, (5.7)

τ
CST,A
ij = �2 (Σ̄�

ikS̄
�
jk + J̄�ikS̄

�
jk

)
, (5.8)

τ
CST,D
ij = �2 (S̄�ikΣ̄�

jk + S̄�ikJ̄
�
jk

)
, (5.9)

are retained. That is, both magnetic strain and current density tensors must be included in
SGS models as recently discussed by Alexakis & Chibbaro (2022).

A further challenge for LES modelling of MHD turbulence is to accurately capture the
transfer of magnetic to kinetic energy (Haugen & Brandenburg 2006) and vice versa. Using
standard Smagorinsky models for both the momentum and induction equations, Haugen
& Brandenburg (2006) showed that the Smagorinsky constant can be fine-tuned to obtain
a good agreement between filtered DNS and LES for kinetic energy spectra, but only at
the expense of a strong suppression of the (nonlinear) dynamo. Moreover, as discussed by
Offermans et al. (2018), the resolved-scale conversion term must either be fully accounted
for in LES, resulting in the need to resolve all scales where this term is active, or in the
present case of a saturated dynamo, a model including an extra term accounting for the
under-resolved dynamo effect must be provided.

In this paper, we have only considered the no mean magnetic field situation.
The presence of a strong background magnetic field is likely to require an SGS
modelling approach that differs from those just discussed, as the ensuing anisotropy and
two-dimensionalisation of magnetic- and velocity-field fluctuations may result in partial
inverse fluxes. We will report results on configurations with strong background magnetic
fields in due course. Similarly, the large-scale (helical) dynamo requires an investigation
in its own right, and the magnetic-field growth at large scales is likely to require a different
type of SGS modelling approach, as Kessar et al. (2016) report that the Clark and even a
standard static Smagorinsky model result in unstable LES.

The method discussed here can be readily extended to Hall and two-fluid MHD
and other fluid models for plasma turbulence. For instance, the applicability of the
Smagorinsky closure to Hall MHD has been assessed by an a priori analysis using sharp
filtering (Miura & Araki 2012) prior to the deployment of said closure (Miura et al. 2016).
An a priori analysis and decomposition of the Hall flux in analogy to the results presented
here could lead to a better understanding of the physics of the interscale magnetic energy
transfer induced by the Hall effect and thus to a refinement of Hall-MHD SGS models.
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Finally, we point out that a new LES method, so-called physics-inspired coarsening (PIC),
has been devised recently (Johnson 2022). In the homogeneous case, this approach reduces
to Gaussian filtering and the representation of SGS stresses in terms of field gradients as
generalised herein. In PIC, the velocity field advanced in LES is formally obtained by
artificial viscous smoothing, with the required pseudo-diffusion being introduced through
an auxiliary Stokes equation. This approach may be generalisable to MHD and more
complex fluid models applicable to plasma turbulence.

6. Conclusions

Generalising a method introduced by Johnson (2020) for Navier–Stokes turbulence,
we have presented a general analytical method for obtaining exact forms for inter-scale
fluxes in advection–diffusion equations through products of vector-field gradients, and
applied it to kinetic and magnetic energy fluxes in homogeneous MHD turbulence. The
aim was to provide expressions for subfluxes that are physically interpretable in terms of
the action of the magnetic field on the flow and vice versa. A quantification thereof is of
interest for the fundamental understanding of cascade processes in MHD turbulence, and
also provides guidance as to what physics needs to be captured in subgrid-scale models
and how such models should be constructed so that they preserve, at least approximately,
empirical features of the mean energy fluxes and their fluctuations.

In MHD, scale-space energy fluxes are defined as the contraction of velocity- or
magnetic-field gradients with the appropriate subgrid-scale stresses. Rewriting these in
terms of symmetric and antisymmetric components of field-gradients tensors yields terms
with clear physical meanings. For example, strain and vorticity in the case of the velocity
field, and current and magnetic strain/shear for the magnetic field. Expressing the MHD
SGS stresses in terms of vorticity, rate-of-strain, current and magnetic rate-of-strain
results in an exact decomposition of magnetic and kinetic energy fluxes in terms of
interactions between the symmetric and antisymmetric components of velocity- and
magnetic-field gradients.

The kinetic energy flux comprises two terms, the Inertial flux (as in hydrodynamics)
and a flux term associated with the action of the Lorentz force on the flow. The former
is decomposed into terms associated with vortex stretching, strain self-amplification and
strain-vorticity alignment. A term-by-term comparison between the Inertial fluxes in HD
and MHD turbulence shows that all Inertial subfluxes are depleted due to cancellations
between forward scatter and backscatter events, and are indeed almost negligible in
MHD turbulence. That is, the physics of the kinetic energy cascade is very different in
statistically steady MHD turbulence as compared with HD turbulence, as vortex stretching
and strain self-amplification have, on average, very little effect. In MHD turbulence,
almost all kinetic energy is transferred downscale by a current-sheet thinning process:
in regions of large strain, current sheets are stretched by large-scale straining motion
into regions of magnetic shear. This magnetic shear in turn drives extensional flows at
smaller scales. The magnetic energy is mainly transferred from large to small scales
by the aforementioned current-sheet thinning in regions of high strain, while the mean
contributions from current-filament stretching – the analogue to vortex stretching – and
bending of magnetic field lines in high magnetic strain regions into current filament by
vortical motion are almost negligible. The latter effect, which results in a change in the
magnetic field geometry at small scales is associated with strong magnetic backscatter.
A decomposition into single- and multi-scale components of the subfluxes shows that the
mean kinetic energy flux induced by the back-reaction of current-sheet thinning on the
flow has a strong multi-scale component especially at large scales where the magnetic
field is weak, while the multi-scale component of the magnetic energy flux is almost
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negligible. We consistently observe that the multi-scale components of the respective flux
terms fluctuate less than the single-scale components.

Finally, we note that the method can be further expanded in various directions.
Within MHD turbulence, for instance, decompositions of the magnetic helicity and
cross-helicity fluxes could identify the physics driving these respective cascades with
potential implication for selective decay for decaying MHD turbulence. Kinetic energy
transfer across scales and its conversion to magnetic energy, and vice versa, depend
on the value of the magnetic Prandtl number (Brandenburg & Rempel 2019). The
methodology introduced here could be used to quantify the .-dependence of the different
physical processes involved in the energy cascade. Another possibility would be to include
temperature fluctuations. An extension or application to compressible flows would be of
interest especially for astrophysical plasmas. As flux terms associated with any advective
nonlinearity can be analysed by this method, a decomposition of Hall MHD and of fluid
models of ion- or electron-temperature-gradient turbulence (Ivanov et al. 2020; Adkins
et al. 2022; Ivanov, Schekochihin & Dorland 2022) may be of interest for the magnetic
confinement fusion community.
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Appendix A. General formulation of advective-type SGS flux terms

In § 2.3, we derived, following Johnson (2020, 2021), the form for the scale-filtered
magnetic energy flux associated with the u · ∇b term of the induction equation. Here, we
outline how this approach is generally applicable for flux terms involving three distinct
fields, connected with an (unfiltered) term of the form x · (z · ∇) y, where x, y and z are
solenoidal, but otherwise arbitrary, 3-D vector fields (they are not coordinate vectors).
For appropriate mappings of x, y, z to u and b, this will yield any of the desired
MHD SGS energy fluxes, (2.8)–(2.11). Moreover, the SGS fluxes associated with helically
decomposed hydrodynamics and MHD (Waleffe 1993; Lessinnes et al. 2011; Linkmann
et al. 2015; Alexakis 2017; Alexakis & Biferale 2018; Yang et al. 2021) and the kinetic,
magnetic and cross-helicities may be obtained using similar special cases, see Capocci
et al. (2023) for a decomposition of the kinetic helicity flux in Navier–Stokes turbulence.

The SGS stresses at scale � associated with z · ∇y are

τ �( yi, zj) = yizj
� − yi

�zj
�, (A1)

where the choice of the filter kernel is for now arbitrary. Clearly,
(
τ �( yi, zj)

)t = τ �
(
zi, yj

)
,

where (·)t denotes matrix transpose. Note that the advecting field is z. Contracting the
SGS stress against the gradient tensor of a third arbitrary field, x, yields the general SGS
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flux term

Π�
xyz = − (∂jx̄�i

)
τ �( yi, zj). (A2)

Here, we have included a leading minus sign in (A2). However, if one wishes to have
��

xyz > 0 always correspond to forward transfer – as we have elected to do herein – this
may not be correct. It depends on the sign the z · ∇y term has when it is written on the
right-hand side of the underlying advection–diffusion equation. For the MHD momentum
equation, for example, the Lorentz force term has y = z = b and the minus sign for the
associated kinetic energy flux (with x = u) should be absent. See §§ 2.1 and 4.2. When
it is appropriate to do so, the minus sign and its propagation into other equations in this
appendix is easily removed.

In the special case that τ �( yi, zj) is index-symmetric, only the index-symmetric part of
∂jx�i contributes. This is the situation for the kinetic energy flux in HD (Germano 1992)
and by analogy in MHD, see e.g. Zhou & Vahala (1991), Kessar et al. (2016), Aluie
(2017), Offermans et al. (2018) and Alexakis & Chibbaro (2022). In general, however,
the index-antisymmetric part of ∂jx�i is also needed.

As shown by Johnson (2021), (A2) may also be expressed entirely in terms of (products
of) the gradient tensors for x, y, z and integrals over them. Denoting the respective gradient
tensors as ∂jxi = Xij , ∂jyi = Yij and ∂jzi = Zij, we have

Π�
xyz = −�2 X̄�

ij Ȳ�ik Z̄�jk − X̄�
ij

∫ �2

0
dθ

(
Y

√
θ

ik Z
√
θ

jk

φ

− Y
√
θ

ik

φ

Z
√
θ

jk

φ
)

(A3)

= Π�
s,xyz +Π�

m,xyz, (A4)

where φ = √
�2 − θ and

√
θ correspond to all filter scales smaller than �, and the

subscripts s and m stand for single-scale and multi-scale. Equivalently, expressed in terms
of the matrix trace operation, this is

Π�
xyz = −�2Tr

{
(X̄�)t Ȳ� (Z̄�)t

}
−
∫ �2

0
dθTr

{
(X

�
)t

[
Y

√
θ
(Z

√
θ
)t
φ

− Y
√
θ
φ

(Z
√
θ
)t
φ
]}

. (A5)

Thus, both the single-scale and the multi-scale terms may be expressed as (integrals of)
the trace of the appropriate filterings and transposes of the product of the three gradient
tensors.

Splitting the gradient tensors into their index symmetric and antisymmetric parts, e.g.
X
� = S

�

X +�
�

X , produces a decomposition of (A5) that facilitates physical interpretation
of the subterms. For the single-scale terms, one has, modulo the −�2 factor,

Tr
{(

X̄�
)t

Ȳ�
(
Z̄�
)t}

= Tr
{(

S̄�X − Ω̄�
X

) (
S̄�Y S̄�Z + Ω̄�

Y S̄�Z − S̄�YΩ̄�
Z − Ω̄�

YΩ̄�
Z

)}
(A6)

= Tr
{
S̄�XS̄�Y S̄�Z + (S̄�X − Ω̄�

X

) (
Ω̄�

Y S̄�Z − S̄�YΩ̄�
Z

)+ Ω̄�
XΩ̄�

YΩ̄�
Z

−S̄�XΩ̄�
YΩ̄�

Z − Ω̄�
XS̄�Y S̄�Z

}
, (A7)

which in general does not simplify further.
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Simplifications do ensue, however, for special cases when one or more of X, Y, Z are
equal. One makes use of matrix properties like �YSY + St

Y�t
Y is a symmetric matrix and

the square of any (square) matrix is a symmetric matrix. For example, when Y = Z, as is
relevant for the Inertial (�I,�

s ) and Maxwell (�M,�
s ) fluxes, we obtain

Tr
{(

X̄�
)t

Ȳ�
(
Ȳ�
)t} = Tr

{
S̄�XS̄�Y S̄�Y − S̄�XΩ̄�

YΩ̄�
Y + S̄�X

[
Ω̄�

Y S̄�Y + (Ω̄�
Y S̄�Y
)t]}

. (A8)

Examples with X = Y and X = Z relate to the Advection and Dynamo magnetic energy
SGS fluxes. See § 4.3.

Turning to the multi-scale contributions in (A3), these may of course be similarly
decomposed. Since the filtering operation is linear, the integrand can be split into the
sum of four terms that each have the same structure as the original integrand, e.g.

τφ
(

S̄
√
θ

Y , Ω̄
√
θ

Z

)
= S

√
θ

Y Ω

√
θ

Z

φ

− S
√
θ

Y

φ

Ω

√
θ

Z

φ

. (A9)

After integration and contraction with
(

X
�
)t

= S
�

X − �
�

X , this gives eight, in general
distinct, multi-scale contributions. Once again, special cases such as Y = Z may mean
some of these eight are zero, or equivalent or cancel. The needed particular instances are
discussed in the subsections of § 4.

A.1. Special cases
Here, we list specific examples of (A2) that are relevant to the HD and/or MHD
equations.

(i) x, y, z → u. This yields the usual Navier–Stokes energy flux, �� = −S
�

ij τ
�(ui, uj).

Due to the index symmetry of the SGS stress tensor, only the symmetric part of the
gradient tensor of . plays a direct role, as noted previously.

(ii) y, z → u; x → ω = ∇ × u, the vorticity. This corresponds to the Navier–Stokes
helicity flux, �H,� = −2 S

�

ω ij τ
�(ui, uj). As for the previous case, the symmetry of

the SGS stress means that the flux can be written in terms of just the symmetric part
of the gradient tensor of vorticity, namely S

�

ω ij = (∂jω
�
i + ∂iω

�
j ) / 2.

(iii) y → u, z → b, x → a together with y → b, z → u = ∇ × a; x → a, where a
such that b = ∇ × a is the magnetic vector potential. Here, the flux is that for the
MHD magnetic helicity, �B,� = −2 ∂ja�i

(
τ �(ui, bj)− τ �(bi, uj)

)
.

(iv) x, y, z ∈ {u, b}: MHD kinetic energy, magnetic energy and cross-helicity fluxes.
Regarding the energy fluxes, their exact decompositions and quantifications are
discussed in detail in the main body of this work. Decomposition of the MHD
helicity fluxes will be examined in a future paper.

(v) As an additional level of analysis, we may also consider various projections of the
fields onto subspaces of particular interest. For instance, after decomposing the
velocity field – using a basis constructed from eigenfunctions of the curl operator
– into positively and negatively helical fields u±, such that u = u+ + u− (Waleffe
1993; Lessinnes et al. 2011; Linkmann et al. 2015; Alexakis 2017; Alexakis &
Biferale 2018; Yang et al. 2021), the following SGS stresses occur in the evolution
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equations for .:

τ �ij (u
±,u±) = u±

i u±
j

� − u±
i

�

u±
j

�

, (A10)

τ �ij (u
±,u∓) = u±

i u∓
j

� − u±
i

�

u∓
j

�

, (A11)

τ �ij (u
∓,u±) = u∓

i u±
j

� − u∓
i

�

u±
j

�

. (A12)

Appendix B. Two extended Betchov relations for MHD

Here, we derive two MHD analogues of the exact kinematic relation between
components of the velocity-gradient tensor introduced by Betchov (1956) and use them
to obtain relations between several MHD energy subfluxes.

Recall that Betchov (1956) showed that 〈Aij Ajk Aki〉, where Aij = ∂jui, etc. As a first step,
we wish to prove a similar relation between gradients of filtered fields, where the filtering
scale on each field need not be the same. Specifically, we demonstrate that〈

Ā�ij B̄m
jk B̄m

ki

〉 = 0, (B1)

where �,m are two generic filtering scales, and Bij = ∂jbi is an (unfiltered) gradient
tensor related to a solenoidal magnetic field. The above gradient tensors can be,
in principle, calculated in different positions.4 Using incompressibility and periodic
boundary conditions one obtains〈

Ā�ijB̄
m
jk B̄m

ki

〉 = 〈∂i
(
Ā�ijB̄

m
jk b̄m

k

)〉− 〈∂k
(
Ā�ijB̄

m
ji b̄m

k

)〉+ 〈∂j
(
Ā�ikB̄

m
ji b̄m

k

)〉
− 〈Ā�ikB̄m

ji B̄m
kj

〉
. (B2)

This yields (B1) since the averages of the gradients vanish when the boundary conditions
are periodic (or the system is homogeneous), and we are left with a quantity equal to
its negative.

The next step is to decompose each gradient tensor of (B1) in terms of its symmetric
and antisymmetric parts:〈(

S̄�ij + Ω̄�
ij

) (
Σ̄m

jk + J̄m
jk

) (
Σ̄m

ki + J̄m
ki

)〉 = 0. (B3)

Exploiting the symmetries of the tensors involved yields the identity

− 〈S̄�ij Σ̄m
jk Σ̄

m
ki

〉 = 〈S̄�ij J̄m
jk J̄m

ki

〉+ 2
〈
Ω̄�

ij Σ̄
m
jk J̄m

ki

〉
. (B4)

This can be considered as a generalised Betchov identity for MHD. As a special case, we
note that if the magnetic field becomes equal to the velocity field and we remove the filters,
then (B4) collapses to the standard Betchov relation.

Equation (B4) is multi-scale but not in the form of energy fluxes. To obtain such
a relation, we calculate its convolution with the Gaussian filter, with filter scale φ =√
�2 − m2, and integrate over the filter scale m, following what was done in the right-hand

side of (2.15). The result is 〈
Π

M,�
m,SΣΣ

〉 = 〈ΠM,�
m,SJJ

〉+ 2
〈
Π

M,�
m,ΩΣJ

〉
, (B5)

which corresponds to (4.6) in the main body of the paper. The single-scale version of this
relation (m subscripts replaced with s) also holds, as can be seen by setting � = m in (B4),

4For instance, 〈A�ij(x, t)B
m
jk(x + r′, t)B

m
ki(x + r′′, t)〉, where r′, r′′ are displacement vectors.
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i.e. 〈
Π

M,�
s,SΣΣ

〉 = 〈ΠM,�
s,SJJ

〉− 2
〈
Π

A,�
s,JΣΩ

〉
. (B6)

Note that this mixes terms from the momentum equation with one from the induction
equation, with the last term being equivalent to 〈�M,�

s,��J〉 by the cyclic property of the
trace.

In § 4.2, we infer from the simulation p.d.f.s that �M,�
m,S�� ≈ �

M,�
m,SJJ , where both these

terms appear as averaged quantities in (B5). We can recover the pointwise identity relative
to the subfluxes appearing in (B5) taking into account the (not averaged) gradients from the
right-hand side of (B2). As a consequence,�M,�

m,��J should be cancelled by the contribution
from the gradients.

In addition to (B1), we can prove another exact identity that reads〈
B̄�ij
(
B̄m

jk Ām
ki + Ām

jk B̄m
ki

)〉 = 0. (B7)

This is obtained by employing incompressibility and periodic boundary conditions on〈
B̄�ij B̄m

jk Ām
ki

〉 = 〈∂k
(
b̄�i B̄m

kj Ām
ji

)〉− 〈∂j
(
b̄�i b̄m

k ūm
j,ik

)〉
+ 〈∂i

(
B̄�ij b̄m

k Ām
jk

)〉− 〈B̄�ij Ām
jk B̄m

ki

〉
. (B8)

Clearly, the structure of this term may be of interest for Advection and Dynamo subfluxes.
Decomposing each gradient tensor in terms of the symmetric and antisymmetric parts
yields 〈

Σ̄�
ij Σ̄

m
jk S̄m

ki

〉+ 〈Σ̄�
ij J̄m

jk Ω̄
m
ki

〉+ 〈J̄�ij Σ̄m
jk Ω̄

m
ki

〉+ 〈J̄�ij J̄m
jk S̄m

ki

〉 = 0, (B9)

and, following manipulations similar to those yielding (B5), this can be mapped into a
relation between subfluxes〈

Π
A,�
m,ΣΣS

〉+ 〈ΠA,�
m,JΣΩ

〉 = 〈ΠA,�
m,ΣJΩ

〉+ 〈ΠA,�
m,JJS

〉
, (B10)

whose single-scale counterpart coincides with (B6). These two relations may be used to
write the decomposition of the total MHD energy flux more compactly and to assist with
physical interpretations.

B.1. Further observations
From figure 6, it can be observed that the multi-scale terms 〈�M,�

m,S��〉 and 〈�M,�
m,SJJ〉 are

approximately equal, albeit being very small compared with terms of type SJ�. This is
reminiscent of the similar relation for two multi-scale Inertial subfluxes discussed in § 4.1.
However, in the present case, the structure of the fields is different since the subfluxes of
�M,� are formed from one velocity gradient tensor and two magnetic gradient tensors.

Since our numerical results indicate that 〈�M,�
m,S��〉 ≈ 〈�M,�

m,SJJ〉, (4.6) implies that
〈�M,�

m,��J〉 ≈ 0, as is also seen for the�I,�
m,�S� Inertial term (in both the HD and MHD cases)

that has the same symmetric/antisymmetric tensorial structure. Equation (4.6) reveals that
the difference between 〈�M,�

m,S��〉 and 〈�M,�
m,SJJ〉 is governed by 〈�M,�

m,��J〉, a term that does
not contribute to the energy balance, because in (2.9), only the symmetric part of the
gradient tensor survives after the contraction with the symmetric SGS stress τ �(bi, bj).
Thus, we may posit a physical explanation for why 〈�M,�

m,��J〉 ≈ 0 by arguing that the values
of 〈�M,�

m,S��〉 and 〈�M,�
m,SJJ〉 are essentially determined by the energy balance of the system,

and hence cannot be altered by a quantity that does not contribute to this.
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Furthermore, we observe in figure 7(b) that the p.d.f.s for �M,�
m,S�� and �

M,�
m,SJJ are

roughly coincident, especially along the tails. Recall that a similar feature was seen with
the analogous Inertial multi-scale subfluxes. Further quantitative confirmation of this
approximate congruence is given by the similarity of the relevant moments listed in table 2.
These types of approximate identity hold when there is an interplay of either three velocity
gradient tensors (Inertial term – HD and MHD) or one velocity and two magnetic gradient
tensor (Maxwell term). However, they do not occur when we study the same structure of
subfluxes associated with one vorticity and two velocity gradient tensors in the context
of helicity flux (see Capocci et al. (2023)). This suggests that the approximate identity is
unlikely to be of kinematic origin, although the exact version, (4.6), is a kinematic result.

Appendix C. Two-dimensional MHD
C.1. Algebraic setting

In the 2-D case, we can express the strain-rate and rotation-rate tensors associated with the
incompressible field X = (X1,X2) in the following way:

SX =

⎛
⎜⎝ ∂1X1

∂2X1 + ∂1X2

2
∂2X1 + ∂1X2

2
−∂1X1,

⎞
⎟⎠ (C1)

ΩX = 1
2

(
0 ∂2X1 − ∂1X2

−∂2X1 + ∂1X2 0

)
:= ωX

(
0 −1
1 0

)
, (C2)

where we have already enforced the incompressibility on the trace of (C1) and
defined ωX = (∂1X2 − ∂2X1) to make the notation more compact. Given an additional
incompressible field Y, it is straightforward to verify that SY and �X satisfy the commutator
algebra:

[SY,ΩX] = 2 (SY · ΩX) , (C3)

where, unlike the general 3-D scenario, the product SY · ΩX is a symmetric and traceless
tensor. It is also useful to note that the product of two strain-rate tensors related to
different gradient tensors can be decomposed as the sum of a symmetric tensor and an
antisymmetric one:

SX · SY =
(
∂1X1∂1Y1 + 1

4
(∂1X2 + ∂2X1) (∂1Y2 + ∂2Y1)

)
· I

+ 1
2
(−∂1X1 (∂1Y2 + ∂2Y1)+ ∂1Y1 (∂1X2 + ∂2X1)) ·

(
0 −1
1 0

)
(C4)

:= σ(X,Y) I + α(X,Y) Ω̂, (C5)

where I is the 2 × 2 identity matrix and �̂ is the antisymmetric and traceless matrix
that defines the 2-D rotation-rate tensor of (C2). The (scalar) auxiliary functions σ and
α embody the functional part multiplying I and �̂, respectively; moreover, they are
respectively symmetric and antisymmetric under argument exchange symmetry, i.e.

α(X,Y) = −α(Y,X), σ (X,Y) = σ(Y,X). (C 6)

Thus, if we swap the fields X, Y in (C5), we obtain

SY · SX = σ(X,Y) I − α(X,Y) Ω̂. (C7)
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In terms of tensor traces, the decomposition of (C5) and (C3) lead to three relevant
identities, viz.:

Tr {SXSYSZ} = 0, (C8)

Tr {SXSXΩY} = 0, (C9)

Tr {SXΩYΩZ} = 0, (C10)

where (C10) vanishes because �Y �Z ∝ I and SX is traceless.
With these properties in mind, we are ready to specialise (2.8)–(2.9) to the 2-D

MHD situation. This will involve appropriate simplifications of the single/multi-scale
decompositions like (2.17).

C.2. SGS energy subfluxes
As a consequence of (C8)–(C10), in both single-scale and multi-scale cases, the terms
involving the contraction of either three strain-rate tensors, three rotation rate tensors, or
one strain-rate and two rotation rate tensors vanish. Hence, the 2-D Inertial SGS flux is
solely due to �I,�

m,S�S (Johnson 2021):

Π I,� = −2
∫ �2

0
dθ Tr

{
S̄�
[
Ω

√
θ

S
√
θ
φ

− Ω

√
θ
φ

S
√
θ
φ
]}

. (C11)

As mentioned in § 4.1, this is the only Inertial term that ‘survives’ in 3-D MHD (i.e. is not
approximately zero; see figure 3), especially if we add a background magnetic field in the
equations of motion (not shown).

The 2-D Maxwell flux contains one single-scale and one multi-scale term,

ΠM,� = −2 �2Tr
{

S̄� Σ
�

J̄�
}

+ 2
∫ �2

0
dθ Tr

{
S̄�
[

J
√
θ
Σ

√
θ
φ

− J
√
θ
φ

Σ

√
θ
φ
]}
, (C12)

and the Dynamo and the Advection fluxes formally contain two further multi-scale terms:

ΠA,� = −2 �2Tr
{
Σ̄� J̄� S̄�

}−
∫ �2

0
dθ Tr

{
−J

�

[
Σ

√
θ

S
√
θ
φ

− Σ

√
θ
φ

S
√
θ
φ
]

+Σ̄�

[
J

√
θ

S
√
θ
φ

− J
√
θ
φ

S
√
θ
φ
]

− Σ̄�

[
Σ

√
θ
Ω

√
θ
φ

− Σ

√
θ
φ

Ω

√
θ
φ
]}
, (C13)

ΠD,� =
∫ �2

0
dθ Tr

{
−J̄�

[
S

√
θ
Σ

√
θ
φ

− S
√
θ
φ

Σ

√
θ
φ
]

+Σ̄�

[
Ω̄

√
θΣ̄

√
θ
φ

− Ω̄
√
θ
φ

Σ̄
√
θ
φ
]

− Σ̄�

[
S

√
θ
J

√
θ
φ

− S
√
θ
φ

J
√
θ
φ
]}
. (C14)
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FIGURE 11. Scale-filtered fluxes for the kinetic and magnetic energy, normalised by the mean
total energy dissipation rate ε = εu + εb, as a function of the adimensional parameter kηα =
πηα/�. The p.d.f.s shown in figures 12–14 are calculated for the value of kηα indicated by the
thick (black) arrow, while the thin (grey) arrow denotes the value of kηα used to calculate the
p.d.f.s shown in § 4. Also shown is the kinetic–magnetic energy conversion term W�. The green
dashed horizontal line corresponds to the y-axis value of 0.5. The error bars, although not fully
visible, indicate one standard error.

After straightforward algebraic manipulations, we obtain the expression for �� that
corresponds to the total energy flux for 2-D MHD filtered at the scale �:

Π� = Π I,� +ΠM,� +ΠD,� +ΠA,�

= −4�2Tr
{
Σ̄� J̄� S̄�

}+ 2
∫ �2

0
dθ Tr

{
−S̄�

[
Ω

√
θ

S
√
θ
φ

− Ω

√
θ
φ

S
√
θ
φ
]

+S̄�
[

J
√
θ
Σ

√
θ
φ

− J
√
θ
φ

Σ

√
θ
φ
]

+ J
�

[
Σ

√
θ

S
√
θ
φ

− Σ

√
θ
φ

S
√
θ
φ
]}

. (C15)

Clearly, this has one single-scale and three distinct multi-scale contributions.

Appendix D. Equipartition subrange p.d.f.s

Here, we show some p.d.f.s for the MHD energy subfluxes for a filter scale that lies
in the region where there is approximate equipartition between the magnetic and kinetic
energy fluxes. The p.d.f.s presented in the main body of the paper are calculated for a
larger scale.

Figure 11 displays the net kinetic energy flux,�I,� +�M,�, and the net magnetic energy
flux, �A,� +�D,�, obtained using the Fourier filter and dataset A1. In essence, it is a
rearrangement of figure 2. An equipartition region is evident for 0.2 � kηα � 0.6, where
the magnetic and kinetic energy subfluxes reach approximately 50% of the total energy
flux, as indicated by the green dashed line. See Bian & Aluie (2019) for a discussion of
this feature. Moreover, this equipartition region is also the region where the conversion
term . of (2.7) saturates and becomes scale-independent.

Figure 12 displays energy (sub)fluxes for MHD dataset A1 for the filter scale kηα =
0.27. Comparing these figures with those presented in § 4, it is apparent that the p.d.f.s in
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(a) (b)

FIGURE 12. Standardised p.d.f.s of Inertial subfluxes �I,�
X at kη = 0.27, where X represents

the subflux identifier. (a) Single-scale fluxes; (b): multi-scale fluxes.

(a) (b)

FIGURE 13. As for figure 12 but for the Maxwell energy fluxes, �M,�
X .

id N Eu Eb ν εu εb Lu τ Re η /10−3 kmaxη
u kmaxη

b �t /τ #

A4 2048 0.73 0.38 . 0.22 0.52 0.55 0.79 2144 1.8 1.68 1.35 1.1 18

TABLE 3. Simulation parameters and key observables for the standard diffusive MHD dataset
A4; see definitions in table 1 setting α = 1.

the equipartition region have fluctuations that are some three times larger. Recall that the
p.d.f.s in figures 4, 7 and 10 were calculated for the larger scale kηα = 5.4 × 10−2. As we
approach the dissipative range, the p.d.f.s develop even broader tails (not shown).

Appendix E. Comparison with standard diffusive MHD

The aim of this section is to repeat part of the analyses from §§ 3–4 on dataset A4 (see
table 3) that employs the standard diffusive MHD equations. The results are discussed and
compared with those from the hyper-dissipative run.

In figure 15, the kinetic and magnetic spectra of figure 1 and the standard diffusive
MHD counterparts have been displayed together. Apart from the similarities concerning
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(a) (b)

(c) (d)

FIGURE 14. Standardised p.d.f.s. at kηα = 0.27. (a) Single-scale Advection subfluxes �A,�
s,X ,

where X represents the subflux identifier. (b) Single-scale net fluxes for the Dynamo and
Advection terms, respectively�D,�

s and�A,�
s , where Y = D or A identifies the term. The subflux

�A,�
s is shown in both panels. (c,d) P.d.f.s of multi-scale Advection and Dynamo subfluxes,

respectively.

the peaks and the large-scale behaviour (connected with the identical forcing scheme), we
observe that spectra from standard viscosity dataset A4 present a shorter power-law scaling
and a consequent smoother fall in the dissipative range. Nonetheless, corresponding
spectra are qualitatively similar.

Figure 16 describes the net kinetic energy fluxes, �I,� +�M,�, and the net magnetic
energy fluxes, �A,� +�D,�, obtained via employment of the Fourier filter on both the
standard-diffusivity dataset A4 and the hyperviscous-diffusivity dataset A1. This plot can
be considered as a rearrangement of figure 2, with the RSC term omitted. The most
relevant difference between the two datasets is a striking reduction of the bandwidth
of the inertial range related to dataset A4. From a subfluxes perspective, this feature is
accompanied by the absence of an equipartition range: the magnetic and kinetic energy
subfluxes do not each reach ≈ 50% of the total energy flux, the level indicated by the
green line.

With regards to the exact decomposition of the SGS stresses, the panels of figure 17
illustrate the standard-dissipation counterparts of figures 3(b), 6 and 8, which are being
used as a comparison for the following analysis. Starting from panel (a), we notice a
weaker depletion in the averaged Inertial transfer whose peak, at kη ≈ 0.01, accounts for
20% of the total energy flux. We consider this feature to be a low-Re effect. To reinforce
this view, we note that the maximum of 〈�I,�〉 increases as Re decreases (not shown) and
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FIGURE 15. Time-averaged omnidirectional spectra for the velocity and magnetic field. The
grey region indicates the wavenumber band where the velocity field is forced: k ∈ [2.5, 5.0]. The
more transparent dotted curves have already been displayed in figure 1, while those characterised
by a continuous line correspond to the standard viscosity dataset A4.

FIGURE 16. Scale-filtered fluxes for the mean kinetic and magnetic energy, normalised by the
mean total energy dissipation rate ε = εu + εb, as a function of the adimensional parameter
kη = πη / �. The dashed and more transparent curves refer to hyperviscous-diffusion dataset
A1, while those identified by a continuous line are associated with standard-diffusive dataset
A4.

that a similar profile in the mean Inertial transfer was already observed by Offermans et al.
(2018). However, an increase in the Inertial transfer is compensated by an overall decrease
of the Maxwell flux in panel (b), where the value of the latter is slightly reduced (relative
to A1), diminishing even more as Re decreases (not shown). Moreover, �M,� decays faster
as kη increases as a consequence of a shift towards the small-scales of the maximum of
�

M,�
s,SJ� and to a less pronounced skewness of �M,�

m,SJ� . Thus, we conclude that these two
effects are responsible for the lack of an equipartition range where the total kinetic subflux
�I,� +�M,� flattens reaching equipartition with the total magnetic flux �D,� +�A,�.
Finally, both the total advection and dynamo subfluxes, respectively panels (c) and (d),
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(a) (b)

(c) (d)

FIGURE 17. Decomposed fluxes for dataset A4 normalised by its mean total energy dissipation
rate, ε. (a) Inertial term 〈�I,�〉, (b) Maxwell term 〈�M,�〉, (c) Advection term 〈�A,�〉 and (d)
Dynamo term 〈�D,�〉. The error bars, although not visible, indicate one standard error.

present relatively decreased values at their peaks compared with the corresponding curves
from hyperdissipative dataset A1; as expected, those maxima also keep decreasing with Re
(not shown). In addition, 〈�A,�〉 shows, on logarithmic scale, a remarkable even-symmetry
with respect to kη ≈ 0.12 that can be extended to the coincident averages of �A,�

s,�JS and
�

A,�
s,J�S. In conclusion, it is worth emphasising that the absence of a flattening region of

the total magnetic subflux �A,� +�D,� is ostensibly caused by a shift towards the large
scales of the mean advection flux combined with a substantial reduction of the averaged
total dynamo5 subflux.

Appendix F. Subfluxes definitions

In this section, we provide the definitions of all the subfluxes appearing in the
decomposition of the MHD energy fluxes. As highlighted in § 3, for the subfluxes �I,�

s,S�S,
�

I,�
m,S�S and�M,�

s,SJ� ,�M,�
m,SJ� , there is an extra factor of two that arises from the symmetry of

the corresponding SGS stress tensors. Because in (2.6) and (2.7) the fluxes appear with the
same leading signs, both the Maxwell and the Dynamo subfluxes in the definition below
acquires an additional minus sign.

5Unlike the results for the hyper-dissipative dataset A1, those for the standard Laplacian dissipation run clearly
indicate that, on average, the most negligible subflux is truly �D,�.
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F.1. Inertial
The following subfluxes are identical to the hydrodynamic counterpart from Johnson
(2020, 2021):

Π
I,�
s,SSS = −�2 Tr

{(
S̄�
)t

S̄�
(
S̄�
)t}
, (F1)

Π
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Π
I,�
s,SΩS = −2�2 Tr
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F.2. Maxwell
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F.3. Advection
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Π
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F.4. Dynamo
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