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Abstract
In [A. Capozzoli, C. Curcio, A. Liseno, MMS, Pizzo Calabro, Italy, 2022], the problem of mod-
eling a source/scatterer using an equivalent radiator has been addressed and an approach has
been given and numerically assessed.

Once dimensioned the radiating panel, a practical implementation can be provided by a
non-uniform array. The element positions should be chosen so that the array is capable to
approximate, with an adequate accuracy, the fields radiated by the equivalent radiator. Here,
the array element positioning is performed by exploiting a quadrature rule which takes into
account that the singular functions supported on the region of interest associated to the most
significant singular values of the radiation operator are related to those supported on the equiv-
alent panel by a radiation integral. The quadrature rule enables also to choose a set of weights
which are essential in the definition of the element excitation coefficients from the knowledge
of the source distribution on the equivalent panel. For simplicity, a one-dimensional problem
with a Legendre quadrature rule is considered.The approach is numerically assessed by check-
ing the capability of the array to radiate, with a satisfactory degree of accuracy, the singular
functions associated to the region of interest.

Introduction

Modeling a source or a scatterer using an equivalent radiator is of interest in many applications
as antenna synthesis [1], electromagnetic compatibility [2], the design of complex waveform
generators [3], computational electromagnetics and inverse scattering [4, 5].

The problem can be framed as an extension of one of the classical equivalence theorems. It
can be formulated as that of determining the shape and dimensions of a radiating surface capa-
ble to produce, in a targeted region of space Ω, an electromagnetic field as close as possible to
that generated by any “primary” radiator/scatterer, contained in a prefixed region of space Γ,
according to a prefixed tolerance. In [6], the dimensioning problem has been dealt with as the
determination of effective subspaces associated to the two operators linking the radiator/scat-
terer or the equivalent radiating panel Γ to their respective fields radiated over the region of
interest. A solution has been provided by aid of the singular value decomposition (SVD) of the
two mentioned operators. In particular, the singular functions of such operators associated to
the significant singular values identify the linear subspaces to which the fields radiated by the
radiator/scatterer and by the panel belong.The dimensions of the equivalent radiator are deter-
mined to reduce, as much as possible, the error by which the field radiated by the equivalent
panel approximates the primary one, independently from any allowed primary field itself. In
[6], the case of a flat and rectangular Γ and of a flat and rectangular Ω parallel to Γ has been
considered. For the sake of simplicity, a scalar problem has been dealt with.

Once dimensioned the radiating panel, a practical implementation is in order. A possibility is
to consider a discretization of the equivalent panel based on the use of a non-uniformly spaced
array of radiators, a problem already explored in [7]. The element positions should be properly
chosen so that the array is capable to approximate, with an adequate degree of accuracy, any field
radiated by the equivalent radiator. Following the idea in [7], in this paper, the array element
positioning is worked out by exploiting a quadrature rule [8–10] transforming an integration
into a summation. In other words, taking into account that the singular functions supported
on the region of interest associated to the significant singular values of the radiation operator
are related to those supported on the equivalent panel by a radiation integral, the quadrature
rule replaces the integral representation of the singular functions into an approximation by a
weighted summation.The quadrature rule defines also a set of weights which are essential in the
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Figure 1. Geometry of the radiating panel.

definition of the element excitation coefficients from the knowl-
edge of the source distribution on Γ.

For the sake of simplicity, in this paper, we consider a
one-dimensional problem and a Legendre quadrature rule. The
approach is numerically assessed by checking the capability of
the array to radiate, within a prefixed tolerance, all the singular
functions associated to the region of interest.

The paper is organized as follows. In section “The Radiation
Operator and Its SVD,” the radiation operator from the equiv-
alent panel to the region of interest is briefly introduced along
with its SVD. In “Legendre Quadrature” section, the guidelines
for the Legendre quadrature rule are recalled. Section “Panel
Discretization” is devoted to the panel discretization by the
quadrature-defined array. The performance of the approach is
assessed in the following section. Finally, conclusions are drawn
and future developments are foreseen in last section.

The radiation operator and its SVD

The geometry of the problem is depicted in Fig. 1. We consider
the two-dimensional case of a strip source with current J(x′) =
J(x′) ̂iy, radiating in free-space and laying on a radiating panel of
size 2a′ whose field is of interest over a portionΩ of a quiet plane of
size 2a. The only (y) component of the radiated field is denoted by
E(x, z) and is expressed, apart from the unessential factor−𝜔𝜇0/4,
as:

E(x, z) = 𝒜(J) = ∫
a′

−a′
J(x′)H(2)

0 (𝛽R)dx′,

z = d, x ∈ (−a, a),
(1)

where𝜔 is the angular frequency,𝜇0 is the free-spacemagnetic per-
meability of the embedding medium, H(2)

0 is the Hankel function
of zero-th order and second kind, R = √(x − x′)2 + d2 and 𝒜 is
the radiation operator mapping J into the field on (−a, a).

We denote by {𝜎l, ul(x′), vl(x)}+∞
l=0 the singular system of 𝒜,

where the 𝜎l’s are the singular values, the ul’s are the right sin-
gular functions expanding the radiating current J and the vl’s are
the left singular functions expanding the radiated field E. From a
practical point of view, the spectral representation of the radiation
operator can be limited to the only part of the singular system cor-
responding to the singular values deemed to be significant, namely,
{𝜎l, ul(x′), vl(x)}L−1

l=0 . In other words,

E(x, d) = 𝒜(J) =
L−1

∑
l=0

𝜎l < J, ul >(−a′,a′) vl(x), (2)

where < ⋅, ⋅ >(−a′,a′) is the scalar product in ℒ2(−a′, a′). As a
consequence, the field radiated by J belongs essentially to the finite
dimensional space spanned by the vl’s, l = 0, … , L − 1.

Legendre quadrature

In this section, we shortly review Legendre quadrature which will
be used in section “Panel Discretization”.

To this end, let us firstly state that, following a change of vari-
ables, any one-dimensional integral over a domain (b, c) can be set
up as an integral over (−1, 1), namely:

∫
c

b
f (x)dx = c − b

2 ∫
1

−1
f ( c − b

2 𝜉 + b + c
2 ) d𝜉, (3)

where f is a generic complex-valued function of a real variable.
Following the application of an N points Gaussian quadrature,

the integral in (3) can be expressed as:

∫
c

b
f (x)dx = c − b

2

N−1

∑
n=0

wn f ( c − b
2 𝜉n + b + c

2 ) , (4)

where the {𝜉n}N−1
n=0 are the quadrature nodes and the {wn}N−1

n=0 are
the quadrature weights. The quadrature nodes are expressed as
the zeros of the Nth degree orthogonal polynomials pn(𝜉), while
the quadrature weights, which are all real and positive, are also
expressible in terms of the same orthogonal polynomials [11]. The
polynomials pn(𝜉) are defined by the following recursive relation:

pn+1(𝜉) = (𝜉 − 𝛼n)pn(𝜉) − 𝛽npn−1(𝜉), n = 0, 1, … , (5)

with p0(𝜉) = 1 and p−1(𝜉) = 0 and the𝛼n’s and the𝛽n’s specifically
define the relevant polynomials. The Legendre quadrature theory
states that, once defined the tridiagonal symmetric Jacobi matrix:

M
N

=

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0 √𝛽1 0
√𝛽1 𝛼1 √𝛽2

√𝛽2 ⋱
⋱ ⋱ √𝛽N−1

0 √𝛽N−1 𝛼N−1

⎤
⎥
⎥
⎥
⎥
⎦

, (6)

the quadrature nodes can be determined as its eigenvalues, while
the quadrature weights can be retrieved according to its eigenvec-
tors [12]. In particular, the weights are expressed as:

wn = 𝛽0𝛾2
n1, n = 0, … ,N − 1, (7)

where 𝛾n1 is the first component of the corresponding eigenvector
𝛾
n
.
For our purposes, Legendre quadrature is employed for which

𝛼n = 0, n = 0, … ,N − 1, and 𝛽0 = 2 and 𝛽n = (4 − n−2)−1,
n = 1, … ,N − 1.
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Figure 2. Array geometry.

Figure 3. Percentage mean square error.

Panel discretization

In this section, we introduce a discrete version of the panel (array)
capable to synthesize any field radiated by J over Ω. The array
will generally be non-uniform and since, according to eq. (2), any
field radiated over Ω is represented as a sum of functions vl’s,
l = 0, … , L − 1, then the array must be capable to radiate any
individual vl over Ω within the prefixed accuracy.

Here, the radiating panel is replaced by a linear, non-uniform
array made of N elements located on the x′ axis, having unique
positions x′ = (x′

0, x′
1, … , x′

N−1) and complex excitation coeffi-
cients bl = (bl0, bl1, … , blN−1), l = 0, … , L − 1, which depend
on the field vl to be represented (see Fig. 2). The element positions
and excitation coefficients are determined according to quadrature
rules [8–10], in this paper dealt with as the above recalled Legendre
quadrature.

Figure 4. Quadrature nodes.

Figure 5. Quadrature weights.

Table 1. Element spacings

n dn n dn

0 0.11𝜆 19 1.1𝜆

1 0.20𝜆 20 1.1𝜆

2 0.28𝜆 21 1.1𝜆

3 0.37𝜆 22 1.1𝜆

4 0.45𝜆 23 1.0𝜆

5 0.53𝜆 24 1.0𝜆

6 0.61𝜆 25 0.97𝜆

7 0.68𝜆 26 0.92𝜆

8 0.75𝜆 27 0.87𝜆

9 0.81𝜆 28 0.82𝜆

10 0.87𝜆 29 0.75𝜆

11 0.92𝜆 30 0.70𝜆

12 0.97𝜆 31 0.61𝜆

13 1.0𝜆 32 0.53𝜆

14 1.0𝜆 33 0.45𝜆

15 1.1𝜆 34 0.37𝜆

16 1.1𝜆 35 0.28𝜆

17 1.1𝜆 36 0.20𝜆

18 1.1𝜆 37 0.11𝜆

To reach the targeted goal, the field radiated by the array overΩ
is represented as:

El(x, d) =
N−1

∑
n=0

blnH
(2)
0 (𝛽Rn), l = 0, … , L − 1, (8)

https://doi.org/10.1017/S175907872300123X
Downloaded from https://www.cambridge.org/core. IP address: 18.218.133.182, on 26 Dec 2024 at 20:43:36, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S175907872300123X
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


52 Capozzoli et al.

where Rn = √(x − x′
n)2 + d2. Synthesizing an array discretizing

the radiating panel amounts to finding x′ and bl, l = 1, … , L, so
that:

El(x, d) = vl(x), l = 1, … , L, |x| ≤ a. (9)

Due to the link between left and right singular functions:

vl(x) = 1
𝜎l

∫
a′

−a′
H(2)

0 (𝛽R)ul(x′)dx′, (10)

the quadrature enables representing approximately the vl’s by sum-
mations as:

vl(x) ≃ ̃vl(x) = 1
𝜎l

N−1

∑
n=0

wnH
(2)
0 (𝛽Rn)ul(x′

n), (11)

where w = (w0,w1, … ,wN−1) is a unique set of quadrature
weights. On comparing eqs. (8), (9) and (11), then the array exci-
tation coefficients are:

bln = wn
ul(x′

n)
𝜎l

, l = 0, … , L − 1. (12)

We remark that the developed approach does not introduce lim-
itations on the class of fields that can be equivalently radiated by
the considered array since E(x, d) belongs to the space spanned by
vl(x), l = 0, … , L− 1, and the addressed quadrature rule, as it will
be clearer in the next section, allows to adequately represent all the
relevant singular functions vl(x)’s.

Numerical results

In this section, we provide results to validate the quadrature tech-
nique for the discretization of the radiating panel.

To this end, we consider the same results of the panel dimen-
sioning problem in [6] and consider a domain Γ with a′ = 14𝜆, a
domain Ω with a = 5𝜆 and a reciprocal distance of d = 10𝜆. With
this setup, L= 18.

The first step toward the array definition is the choice of the
number of elements N. The order of the quadrature depends on
the order of the polynomials one wants to integrate exactly. An
N-nodes quadrature integrates exactly Legendre polynomials of
degree up to 2N−1. From this point of view, when increasingN, we
expect that the overall performance of the array improve. In order
to assess the array performance, the percentage mean square error
(PMSE) is adopted:

Φ(x′,w) = 100 ⋅
∑L−1

l=0 ‖ ̃vl(x) − vl(x)‖2

L . (13)

For the considered test case, the PMSE against N is reported
in Fig. 3. Once assigned the maximum tolerable PMSE, the num-
ber N of nodes to be employed can be determined. In particular,
from Fig. 3, to reach a maximum PMSE of 1%, we should have
N ≥ 39. As a consequence, henceforth a Legendre quadrature rule
with N = 39 is considered for which PMSE = 0.96%.

Figs. 4 and 5 display the array element positions and weights
wn’s corresponding to a Legendre quadrature rule with N = 39.
On the other side, Table 1 reports the interelement spacings dn =
xn+1 − xn. As it can be seen, the spacing between outermost two
elements on the left and on the right is very small and thus unprac-
tical to realize. In order to avoid too close interelement spacings,
we change the quadrature rule by replacing elements electrically
too close each other with a single element having coordinate and
weight equal to the average of their respective coordinates and

Figure 6. Radiated singular function v0(x).

Figure 7. Radiated singular function v4(x).

weights. Obviously, such a procedure introduces further errors.
Nevertheless, as it will be shortly clear, the performance of the
array is not impaired. Indeed, Figs. 6, 7, 8 and 9 enable the com-
parison between the singular functions vl’s radiated by the panel
and the ̃vl’s approximated by the array for l = 0, 4, 10, 13. A
very good match between the twos can be appreciated. Analogous
results have been observed for all the other relevant singular
functions.

Conclusions and future developments

A practical implementation of a continuous equivalent radiating
panel synthesized according to [6] has been considered and pro-
vided by a non-uniform array. The element positions have been
chosen by a quadrature rule so that the array is capable to approxi-
mate, with an adequate degree of accuracy, the fields radiated by the
equivalent radiator.The quadrature rule has enabled also to choose
a set of weights which are essential in the definition of the element
excitation coefficients from the knowledge of the source distribu-
tion on the equivalent panel. Indeed, the capability of switching
from a radiated field to another is based on the reconfigurability of
the element excitation coefficients.
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Figure 8. Radiated singular function v10(x).

Figure 9. Radiated singular function v13(x).

For the sake of simplicity, a one-dimensional problem with
a Legendre quadrature rule has been considered. The approach
has been numerically assessed by checking the capability of the
array to radiate, with a satisfactory degree of accuracy, the singular
functions associated to the region of interest.

Future developments will involve the optimization of the ele-
ment position and weights [7] by taking also into account con-
straints concerning the minimum allowed interelement spac-
ing and the maximum allowed size [13, 14] and the extension
to the two-dimensional case using two-dimensional quadrature
rules [15].
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