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Abstract

We prove that any continuous function can be locally approximated at a fixed point x0 by an uncountable
family resistant to disruptions by the family of continuous functions for which x0 is a fixed point. In that
context, we also consider the property of quasicontinuity.
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1. Introduction and preliminaries

Many papers examine disruptions of functions and dynamical systems with respect to
certain properties (see, for example, [7, 10, 11]). The basis of our considerations is
an observation articulated in Proposition 2.4, which states that distributional chaos for
continuous functions at an arbitrary point may be disrupted by the family of all contin-
uous functions. This prompts a natural question about the possibility of approximating
a continuous function by a ‘big’ family of functions resistant to disruptions. Whereas
approximating functions cannot be continuous, a natural requirement is to determine a
property ‘close’ to continuity. Taking into account research conducted in [1, 3, 9], the
chosen property is quasicontinuity (which is widely examined in real analysis).

Throughout the paper, we will use standard definitions and notation. Unless
otherwise stated, we will consider functions mapping the unit interval [0, 1] into
itself. Therefore, we will write (a, b), [a, b] and so on, instead of the intersections
(a, b) ∩ [0, 1], [a, b] ∩ [0, 1]. By N, we denote the positive integers. The symbol #(A)
means the cardinality of A. The symbol f |A denotes a restriction of the function f to A.
We denote the set of all fixed points of f by Fix( f ) (that is, x ∈ Fix( f ), if f (x) = x).

We employ the concept of a (discrete) dynamical system, following [2, 12]. Let X
be a compact space. A topological dynamical system (X, f ) (denoted by ( f )) is given
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by a map f : X → X. The evolution of the system is given by the successive iterations
of the map, that is, f 0(x) = x and f n(x) = ( f ◦ f n−1)(x) for x ∈ X and n ∈ N. For x ∈ X,
the set O f (x) = { f i(x) : i = 0, 1, 2, . . .} is called an orbit.

Let ( f ) be a dynamical system and let Y ⊂ X. For n ∈ N and ε > 0, we say that
a set E ⊂ Y is an (n, Y , ε)-separated set if for all distinct points x, y ∈ E, there exists
k ∈ [0, n − 1] ∩ N such that | f k(x) − f k(y)| > ε. Let sn( f , Y , ε) denote the maximal
cardinality of an (n, ε)-separated set in Y. The entropy of a dynamical system ( f ) on
Y ⊂ X is the number

h( f , Y) = lim
ε→0

lim sup
n→∞

1
n

log sn( f , Y , ε).

If Y = X, then we will omit the symbol X.
Let f : I → I, where I is a nondegenerate compact interval, be a continuous function

and let n ∈ {2, 3, . . .}. If J1, J2, . . . , Jn are nondegenerate, closed and pairwise disjoint
intervals such that J1 ∪ J2 ∪ · · · ∪ Jn ⊂ f (Ji) for all i ∈ {1, 2, . . . , n}, then (J1, J2, . . . , Jn)
is called an n-horseshoe for f.

Following [5], we say that a function f is quasicontinuous at a point x0 ∈ [0, 1]
if for any neighbourhood V of x0 and for any neighbourhood W of f (x0), there
exists a nonempty open set U ⊂ V such that f (U) ⊂ W. The function f is called
quasicontinuous if it is quasicontinuous at every point x ∈ [0, 1]. From now on, by
DQc, we denote the family of all Darboux and quasicontinuous functions.

Quasicontinuous dynamical systems (that is, systems such that f n is quasicon-
tinuous for n ∈ N) have been considered in [1, 3]. To ensure that all iterations of
a quasicontinuous dynamical system have this property, in [9], quasicontinuity was
connected with the Darboux property for the first time. The following lemma refers to
these considerations in a more general situation.

LEMMA 1.1. If f , g ∈ DQc, then g ◦ f ∈ DQc.

PROOF. Assume that f , g ∈ DQc. Obviously, g ◦ f is Darboux. For simplicity of
notation, we will use symbols (a, b), [a, b] and so on even in the case where a > b.

Now, let x0 ∈ [0, 1], V = (x0 − δ, x0 + δ) and W = (g( f (x0)) − ε, g( f (x0)) + ε). Of
course, it is sufficient to consider only the case when there is δ1 > 0 such that
f ([x0 − δ1, x0 + δ1]) � { f (x0)}.

Put A0 = [x0 − δ, x0 + δ]. Then f (A0) 	 f (x0) is a nondegenerate interval. Obvi-
ously, there exists p1 ∈ ( f (x0) − ε, f (x0) + ε) ∩ ( f (A0)\{ f (x0)}).

Now, let A1 = [ f (x0), p1]. Then A1 ⊂ f (A0). In the case where g(A1) =
{g( f (x0))}, the proof is straightforward. So let us consider the situation g(A1) �
{g( f (x0))}. The Darboux property of g implies that there is p2 ∈ (g( f (x0)) −
ε, g( f (x0)) + ε) ∩ (g(A1)\{g( f (x0))}). Put A2 = [g( f (x0)), p2] ⊂ g(A1). It is imme-
diate that there exists y2 ∈ A2\{g( f (x0)), g( f (x0 − δ)), g( f (x0 + δ)), g(p1), p2} ⊂
(g( f (x0)), p2). Consequently, there is y1 ∈ A1 such that y2 = g(y1). Obviously,
y1 ∈ ( f (x0), p1)\{ f (x0 − δ), f (x0 + δ)}. By quasicontinuity of g at y1, there is an open
set U1 ⊂ ( f (x0), p1)\{ f (x0 − δ), f (x0 + δ)} such that g(U1) ⊂ (g( f (x0)), p2) ⊂ A2 ⊂ W.
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Now, choose z1 ∈ U1. One can find y0 ∈ A0 such that z1 = f (y0). Then y0 ∈ V\{x0}.
By quasicontinuity of f at y0, we infer that there is an open set U0 ⊂ V\{x0} such that
f (U0) ⊂ U1. It is easy to check that g( f (U0)) ⊂ W. �

In connection with distributional chaos, we will use the notation and concepts
introduced in [13]. Let ( f ) be a dynamical system and x, y ∈ [0, 1]. For t > 0, the
functions,

Φ
∗( f )
x,y (t) = lim sup

n−→∞

1
n

#({ j ∈ [0, n − 1] ∩ N : | f j(x) − f j(y)| < t}),

Φ
( f )
x,y (t) = lim inf

n−→∞

1
n

#({ j ∈ [0, n − 1] ∩ N : | f j(x) − f j(y)| < t}),

are respectively called upper and lower distribution function of x and y for the
dynamical system ( f ).

Let x, y ∈ [0, 1]. We shall say that a pair (x, y) is a DC-pair for a dynamical system
( f ) if Φ∗( f )

x,y (t) = 1 for any t > 0 and there exists t0 > 0 such that Φ( f )
x,y (t0) = 0. A set

S ⊂ [0, 1] is called a distributionally scrambled set (DS-set for brevity) for a dynamical
system ( f ) if #(S) > 1 and each pair of distinct points x, y ∈ S forms a DC-pair. A
dynamical system ( f ) is distributionally chaotic if there exists an uncountable DS-set
for this system.

The concept of the S-DC1 point is a slight modification of the DC1 point introduced
in [7]. We say that x0 is an S-DC1 point (point focusing distributional chaos) for a
dynamical system ( f ) (briefly, x0 is an S-DC1 point for f ) if for any ε > 0, there exist an
uncountable DS-set S for the dynamical system ( f ) and a strictly increasing sequence
{nk}k∈N ⊂ N such that f nk (S) ⊂ (x0 − ε, x0 + ε).

In our considerations a special role is played by the ‘local approximation of
functions’, which we obtain by means of equivalence classes considered in [6,
11]. Let f , g be some functions, x0 ∈ [0, 1] and ε > 0. Then one can consider the
equivalence relation f (ε/x0)g⇔�( f , g) ∪ f (�( f , g)) ∪ g(�( f , g)) ⊂ (x0 − ε, x0 +

ε), where �( f , g) = {x : f (x) � g(x)}. By the symbol [ f ]εx0
, we denote the equivalence

class of f under relation ε/x0.
Many papers treat disruptions of dynamical systems (for example, [7, 10, 11]). We

will adapt this term to the situation which we consider.
Let f be a function, F a family of functions and let ε > 0, x0 ∈ [0, 1]. We define the

family Dε( f ,F , x0) = {g ◦ f ∈ [ f ]εx0
: g ∈ F }. Each function belonging to Dε( f ,F , x0)

is called an ε-disruption of f at x0.
By C, we mean the family of all continuous functions f : [0, 1]→ [0, 1] and we put

FIX(C, x0) = { f ∈ C : x0 ∈ Fix( f )}.
Let us observe that if we consider any function f ∈ FIX(C, x0), then for all ε > 0, it

is easy to find a function g ∈ Dε( f , FIX(C, x0), x0) such that x0 is not an S-DC1 point
of g. Therefore, our attention will be focused on a situation when x0 ∈ S-DC1 cannot
be removed by disruptions. It is why we adopt the following definition.

Let P(x0) be some property of functions at x0 ∈ [0, 1]. We will say that a family
of functions K is resistant to disruptions by a family of functions F with respect to
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the property P(x0) if each function f ∈ K has the property P(x0) and there exists μ > 0
such that for any function g ∈ K , each function ξ ∈ Dμ(g,F , x0) has the property P(x0).
If K = { f }, we will say that the function f is resistant to disruptions by a family F
with respect to the property P(x0). Otherwise, we will say that f is not resistant to
disruptions by F with respect to P(x0).

2. Various kinds of points and resistance to disruptions

In the theory of dynamical systems, a special role is played by attraction (for example,
the well-known Lorenz attractor), including attracting points [4]. Usually, this relates
to fixed points, even for noncontinuous functions [8]. In our considerations, we
examine points with the opposite property, although they will also be associated with
fixed points.

We say that x0 ∈ [0, 1] is a nonattracting point of a function f if for any α > 0, there
exists σ ∈ (0,α) such that

f ([x0 − σ, x0 + σ]) = [x0 − σ, x0 + σ] = f −1([x0 − σ, x0 + σ]).

PROPOSITION 2.1. If x0 ∈ [0, 1] is a nonattracting point of f, then x0 ∈ Fix( f ).

PROOF. Assume that f and x0 satisfy the assumptions of the proposition. Fix ε > 0
and let {δn}n∈N ⊂ (0, ε) be a strictly decreasing sequence converging to 0 such
that f ([x0 − δn, x0 + δn]) = [x0 − δn, x0 + δn] for n ∈ N. Obviously, for any n ∈ N,
we have f (x0) ∈ f ([x0 − δn, x0 + δn]). Hence, f (x0) ∈ ⋂∞n=1 f ([x0 − δn, x0 + δn]) =
⋂∞

n=1[x0 − δn, x0 + δn] = {x0}. �

The following proposition explains the name ‘nonattracting point’.

PROPOSITION 2.2. If x0 ∈ [0, 1] is a nonattracting point of f, then for any x � x0, there
exists δx > 0 such that O f (x) ∩ [x0 − δx, x0 + δx] = ∅.

PROOF. Let us adopt the notation used in the proposition. Without loss of generality,
we can assume that x0 ∈ (0, 1). Let x ∈ [0, 1]\{x0} and let α = |x − x0|. It follows that
there exists δx ∈ (0,α) such that f ([x0 − δx, x0 + δx]) = [x0 − δx, x0 + δx] = f −1([x0 −
δx, x0 + δx]).

Now we will proceed by induction to show that f n(x) � [x0 − δx, x0 + δx] for
n = 0, 1, 2, . . . . Put n = 0. Since δx ∈ (0,α), it it easy to see that f 0(x) = x �
[x0 − δx, x0 + δx].

Now put n = 1. Suppose, contrary to our claim, that f (x) ∈ [x0 − δx, x0 + δx].
This clearly forces x ∈ f −1([x0 − δx, x0 + δx]) = [x0 − δx, x0 + δx]. However, x �
[x0 − δx, x0 + δx], which is a contradiction.

Finally, let us assume that f i(x) � [x0 − δx, x0 + δx] for some i ∈ N and suppose that
f i+1(x) ∈ [x0 − δx, x0 + δx]. Then, f i(x) ∈ f −1([x0 − δx, x0 + δx]) = [x0 − δx, x0 + δx],
which leads us to a contradiction. �

Let us now note a useful lemma.
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LEMMA 2.3. Let f be a function. If there is x0 ∈ [0, 1] such that f ([x0 − δ, x0 + δ]) =
[x0 − δ, x0 + δ] = f −1([x0 − δ, x0 + δ]) and x0 − δ ∈ (0, 1) for some δ > 0 (respectively
x0 + δ ∈ (0, 1)) is a continuity point of f, then f (x0 − δ) ∈ {x0 − δ, x0 + δ} (respectively
f (x0 + δ) ∈ {x0 − δ, x0 + δ}).

PROOF. Consider f , δ, x0 and x0 − δ satisfying the assumptions of the lemma. There
is no loss of generality in assuming that x0 ∈ (0, 1). Thus, f (x0 − δ) ∈ [x0 − δ, x0 + δ].
Suppose, contrary to our claim, that f (x0 − δ) ∈ (x0 − δ, x0 + δ).

Fix ε > 0 such that f (x0 − δ) − ε, f (x0 − δ) + ε ∈ (x0 − δ, x0 + δ). Since f is con-
tinuous at x0 − δ, it follows that there is r ∈ (0, ε) such that f ((x0 − δ − r, x0 − δ)) ⊂
( f (x0 − δ) − ε, f (x0 − δ) + ε).

Now, choose y ∈ (x0 − δ − r, x0 − δ) so that f (y) ∈ ( f (x0 − δ) − ε, f (x0 − δ) + ε) ⊂
[x0 − δ, x0 + δ]. According to our assumption f −1([x0 − δ, x0 + δ]) = [x0 − δ, x0 + δ]
and f (y) ∈ [x0 − δ, x0 + δ], we have f −1( f (y)) ⊂ [x0 − δ, x0 + δ]. In particular, y ∈
f −1( f (y)), so that y ∈ [x0 − δ, x0 + δ], which contradicts the fact that y ∈ (x0 − δ −
r, x0 − δ).

The proof of f (x0 + δ) ∈ {x0 − δ, x0 + δ} runs in a similar way. �

The following statement shows the purposefulness of the considerations in
Theorem 2.8.

PROPOSITION 2.4. Let f be a continuous function such that x0 ∈ (0, 1) is a nonattract-
ing point of f. Then f is not resistant to disruptions by FIX(C, x0) with respect to the
property ‘x0 is an S-DC1 point’.

PROOF. Let us adopt the notation used in the proposition. Fix μ > 0. Since x0 is a
nonattracting point of f, it follows that there is γ ∈ (0, μ) such that f ([x0 − γ, x0 + γ]) =
[x0 − γ, x0 + γ] = f −1([x0 − γ, x0 + γ]). Again, let us fix δ ∈ (0, γ) such that f ([x0 −
δ, x0 + δ]) = [x0 − δ, x0 + δ] = f −1([x0 − δ, x0 + δ]). Now, consider the function g given
by the formula

g(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x for x ∈ [0, x0 − γ] ∪ [x0 + γ, 1],
x0 for x ∈ [x0 − δ, x0 + δ],
linear on the intervals [x0 − γ, x0 − δ], [x0 + δ, x0 + γ].

It is easy to see that g is continuous and g ◦ f ∈ [ f ]μx0 . Furthermore, x0 is not an S-DC1
point for g ◦ f , since this function is constant on [x0 − δ, x0 + δ]. �

For later reference, we note a known fact.

LEMMA 2.5 [12]. If f : I → I is a continuous function, where I is a nondegenerate
compact interval, then ( f ) is distributionally chaotic if and only if there exists an
integer n ≥ 1 such that f n has a 2-horseshoe.

Note that the term ‘S-DC1 point’ has been introduced for self maps. In the next
theorem, we do not have that situation, so we refer to the relevant properties without
using this notion.
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THEOREM 2.6. Let p′ ≤ p < q ≤ q′ and let f : [p, q]→ [p′, q′] be a continuous
function, for which there exist points p < a < b < c < d < q such that f (a) = a = f (d)
and f (b) = d = f (c). Then there exists an uncountable set S such that

O f (s) ⊂ [a, b] ∪ [c, d] for s ∈ S,

and if s, z ∈ S are distinct points, thenΦ∗( f )
s,z (t) = 1 for all t > 0, and there is some t0 > 0

such that Φ( f )
s,z (t0) = 0.

PROOF. Let us adopt the notation in the lemma. Set a1= sup{x∈ [a, b] : f (x)=a},
b1= inf{x ∈ [a, b] : f (x)=d, x > a1}, c1= sup{x∈ [c, d] : f (x)=d}, d1 = inf{x∈ [c, d] :
f (x) = a, x > c1}. We see at once that f (a1) = a = f (d1), f (b1) = d = f (c1) and p <
a1 < b1 < c1 < d1 < q.

Now, let us consider the function f0 : [p, q]→ [p, q] defined by

f0(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a for x ∈ [p, a1] ∪ [d1, q],
f (x) for x ∈ [a1, b1] ∪ [c1, d1],
d for x ∈ [b1, c1].

One can easily see that f0 is a continuous function with the property f0([a1, b1]) =
[a, d] = f0([c1, d1]).

We will show that there exists a DS-set S for ( f0). Clearly, ([a1, b1], [c1, d1]) forms
a horseshoe for f0. By Lemma 2.5, there exists an uncountable DS-set S0 for ( f0).

Now, we will prove that

#({x ∈ S0 : O f0 (x) � [a1, b1] ∪ [c1, d1]}) ≤ 1. (2.1)

Suppose, contrary to our claim, that there exist two distinct points x1, x2 ∈ S0 and
n1, n2 ∈ N such that ( f0)ni (xi) � [a1, b1] ∪ [c1, d1] for i ∈ {1, 2}. Therefore, ( f0)ni+1(xi) ∈
{a, d}. Let us note that if ( f0)ni+1(xi) = a (for some i ∈ {1, 2}), then ( f0)m(xi) = a for
m ≥ ni + 1 and likewise, if ( f0)ni+1(xi) = d, then ( f0)ni+2(xi) = a. Put n0 = max{n1 + 2,
n2 + 2}. It follows that ( f0)n(xi) = a for n ≥ n0 and i ∈ {1, 2}. Recall that x1, x2 ∈ S0,
and hence for some t0 > 0,

Φ
( f0)
x1,x2 (t0) = lim inf

n−→∞

1
n

#({ j ∈ [0, n − 1] ∩ N : |( f0) j(x1) − ( f0) j(x2)| < t0}) = 0. (2.2)

However, one can infer that

1
n

#({ j ∈ [0, n − 1] ∩ N : |( f0) j(x1) − ( f0) j(x2)| < t0}) ≥
n − n0

n
for any n > n0,

which obviously leads us to a contradiction with (2.2). This proves (2.1).
Put S = S0\{x ∈ S0 : O f0 (x) � [a1, b1] ∪ [c1, d1]}. From (2.1), we conclude that S is

an uncountable set. Of course, if x ∈ S, then O f0 (x) ⊂ [a1, b1] ∪ [c1, d1], which leads to
the conclusion that S ⊂ [a1, b1] ∪ [c1, d1].

What is left is to show that S is a DS-set for ( f ). It is easy to prove, by induction,
that ( f0)n(x) = f n(x) for all x ∈ S and all n ∈ N ∪ {0}. Hence, for any z1, z2 ∈ S and any
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t > 0, we have 1 = Φ∗( f0)
z1,z2 (t) = Φ∗( f )

z1,z2 (t). Now, fix t1 > 0 such that Φ( f0)
z1,z2 (t1) = 0. Thus,

by (2.2), 0 = Φ( f0)
z1,z2 (t1) = Φ( f )

z1,z2 (t1). This finishes the proof of the theorem. �

Building the intuition related to the concept of a nonattracting point, let us note the
following statement.

PROPOSITION 2.7. Let f be a Darboux function and x0 ∈ (0, 1) be a nonattracting point
of f. Then, for any δ > 0 such that f ([x0 − δ, x0 + δ]) = [x0 − δ, x0 + δ] = f −1([x0 −
δ, x0 + δ]), there are two possibilities:

f ([x0 − δ, x0)) = [x0 − δ, x0) and f ((x0, x0 + δ]) = (x0, x0 + δ]

or

f ([x0 − δ, x0)) = (x0, x0 + δ] and f ((x0, x0 + δ]) = [x0 − δ, x0).

PROOF. Let us adopt the notation used in the proposition. Clearly, Proposition 2.1
implies that x0 ∈ Fix( f ). First, let us prove that

x0 � f ([x0 − δ, x0 + δ]\{x0}). (2.3)

Suppose, contrary to our claim, that x0 ∈ f ([x0 − δ, x0 + δ]\{x0}). Assume, for example,
that x0 ∈ f ([x0 − δ, x0)). Then there is t ∈ [x0 − δ, x0) such that f (t) = x0. By the
definition of a nonattracting point, we conclude that there exists σ ∈ (0, x0 − t) such
that

f ([x0 − σ, x0 + σ]) = [x0 − σ, x0 + σ] = f −1([x0 − σ, x0 + σ]). (2.4)

Of course, t ∈ f −1([x0 − σ, x0 + σ]). Moreover, we have t � [x0 − σ, x0 + σ] (because
t < x0 − σ), and hence f −1([x0 − σ, x0 + σ])\[x0 − σ, x0 + σ] � ∅, contrary to (2.4).
This contradiction proves that x0 � f ([x0 − δ, x0)).

In the case where x0 ∈ f ((x0, x0 + δ]), the proof runs in a similar way. This finishes
the proof of (2.3).

Now, let α ∈ f ([x0 − δ, x0)). Then there exists a ∈ [x0 − δ, x0) such that f (a) = α.
According to (2.3), we obtain α � x0. Consequently, we have two possibilities. First,
let us suppose that α ∈ [x0 − δ, x0). We start by showing that in this case,

f ([x0 − δ, x0)) ⊂ [x0 − δ, x0). (2.5)

Suppose, contrary to (2.5), that there is a point b ∈ [x0 − δ, x0) such that f (b) > x0.
Then, a, b ∈ [x0 − δ, x0) and f (a) = α < x0 < f (b). Since f is Darboux, it follows that
there exists c ∈ [x0 − δ, x0) satisfying f (c) = x0, and in consequence, x0 ∈ f ([x0 −
δ, x0)), contrary to (2.3). Thus, f ([x0 − δ, x0)) ⊂ (−∞, x0). According to our assump-
tion f ([x0 − δ, x0)) ⊂ [x0 − δ, x0 + δ], it follows that f ([x0 − δ, x0)) ⊂ [x0 − δ, x0]. This
combined with (2.3) proves (2.5).

Now, we will show that in this case,

f ((x0, x0 + δ]) = (x0, x0 + δ]. (2.6)
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From the considerations above and the equality f ([x0 − δ, x0 + δ]) = [x0 − δ, x0 + δ], it
follows that

(x0, x0 + δ] ⊂ f ((x0, x0 + δ]). (2.7)

Now we will show the opposite inclusion. Let e ∈ (x0, x0 + δ]. From (2.7), there
exists o ∈ (x0, x0 + δ] such that e = f (o). Suppose, contrary to our claim, that there
is h ∈ (x0, x0 + δ] such that f (h) < x0. We have o, h ∈ (x0, x0 + δ] and f (h) < x0 <
e = f (o). Since f is Darboux, there exists z ∈ (x0, x0 + δ] satisfying f (z) = x0, that
is, x0 ∈ f ((x0, x0 + δ]), contrary to (2.3). Thus, f ((x0, x0 + δ]) ⊂ (x0,∞). Moreover,
f ((x0, x0 + δ]) ⊂ [x0 − δ, x0 + δ] ∩ (x0,∞) = (x0, x0 + δ]. Thus from (2.7), we obtain
f ((x0, x0 + δ]) = (x0, x0 + δ], which proves (2.6).

From (2.3), (2.5), (2.6) and the assumed equality f ([x0 − δ, x0+ δ])= [x0− δ, x0+ δ],
we have f ([x0 − δ, x0)) = [x0 − δ, x0).

For other cases, the proof runs in a similar way. �

As pointed out in the Section 1, Proposition 2.4 suggests a question about
the possibility of approximating the continuous functions by a family resistant to
disruptions with respect to the property connected with an S-DC1 point. The answer
is given in the next theorem.

Let Qc(x0) (respectively S-DC1(x0)) denote the property of functions such that x0 is
a quasicontinuity point of a function (respectively x0 is an S-DC1 point of a function).
Now we will state and prove the main result of our paper.

THEOREM 2.8. Let f be a continuous function such that x0 ∈ [0, 1] is a nonattracting
point of f. Then for any ε > 0, there exists an uncountable family K ⊂ Dε( f , DQc, x0),
which is resistant to disruptions by the family FIX(C, x0) with respect to the following
properties:

(a) the property Qc(x0);
(b) the property S-DC1(x0).

PROOF. Without loss of generality, we can assume that x0 ∈ (0, 1) (if x0 ∈ {0, 1},
the proof is analogous). By Proposition 2.1, it is obvious that x0 ∈ Fix( f ). We shall
examine this proof for fixed ε > 0. Obviously, there exists δ ∈ (0, ε), which is a number
such that f ([x0 − δ, x0 + δ]) = [x0 − δ, x0 + δ] = f −1([x0 − δ, x0 + δ]).

By Proposition 2.7, we can find a strictly monotone sequence {xn}n∈N ⊂ (x0 − δ, x0)
converging to x0 such that { f (xn)}n∈N is strictly monotone and f (xn) � x0 for all n ∈ N.

We will consider the case when { f (xn)}n∈N is strictly decreasing. This implies that
{ f (xn)}n∈N ⊂ (x0, x0 + δ]. Let us put sn = min{x ∈ [xn, xn+1] : f (x) = f (xn+1)} for n ∈ N.
Continuity of f implies that

f (xn+1) = f (sn) < f (xn), f ([xn, sn)) ⊂ ( f (xn+1), 1] and x0 � f ([xn, sn]).

For each α ∈ (x0 − x2, x0 − x1), let βα = x0 + α ∈ (x0, x0 + δ). Let us choose zn ∈ [xn, sn]
such that f (zn) = f (sn) + 1

2 ( f (xn) − f (sn)) for n ∈ N. Then, we define the functions gα :
[0, 1]→ [0, 1] for α ∈ (x0 − x2, x0 − x1) by
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gα(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x for x ∈ [0, x0] ∪ [x0 + δ, 1],
x1 for x ∈ { f (xn) : n ∈ N},
βα for x ∈ { f (zn) : n ∈ N},
linear on the intervals [ f (xn+1), f (zn)], [ f (zn), f (xn)], [ f (x1), x0 + δ]

for n ∈ N.

Put fα = gα ◦ f for α ∈ (x0 − x2, x0 − x1) and let K = { fα : α ∈ (x0 − x2, x0 − x1)}.
An easy computation shows that K ⊂ [ f ]εx0

.
We are now in a position to show that for each α ∈ (x0 − x2, x0 − x1), the function fα

is resistant to disruptions by the family FIX(C, x0) with respect to each of the properties
(a) and (b). Fix α0 ∈ (x0 − x2, x0 − x1) and put μ = (x0 − x3)/2. Obviously, fα0 ∈ DQc.
Fix ξ ∈ Dμ( fα0 , FIX(C, x0), x0), that is, ξ = τ ◦ fα0 , where τ ∈ FIX(C, x0). By Lemma
1.1, the function ξ ∈ DQc.

Now we will prove that x0 is an S-DC1 point for the dynamical system (ξ). To
do so, fix σ ∈ (0, μ). Recall that ξ = τ ◦ fα0 = τ ◦ gα0 ◦ f , where τ ∈ FIX(C, x0) and,
moreover, ξ ∈ [ fα0 ]μx0 . Obviously, there exists m ∈ N such that xm ∈ (x0 − σ, x0). Note
that fα0 (xm) = x1 = fα0 (xm+1) and fα0 (zm) = βα0 . Moreover,

ξ(xm+1) = ξ(xm) < x0 −
α0

2
< x0 +

α0

2
< ξ(zm). (2.8)

The first inequality of (2.8) is obtained by showing that ξ(xm) < x1 + μ. Indeed,
we show that ξ(xm) = x1. Conversely, suppose that ξ(xm) � x1. Since ξ ∈ [ fα0 ]μx0 , we
conclude by our supposition that xm, fα0 (xm) ∈ (x0 − μ, x0 + μ). However, fα0 (xm) =
x1 � (x0 − μ, x0 + μ) ⊂ (x1, x0 + α0), which is a contradiction. Thus, ξ(xm) = fα0 (xm) =
x1 < x1 + μ < x1 +

1
2α0 < x0 − 1

2α0.
To prove the last inequality of (2.8), it is sufficient to observe that ξ(zm) = βα0 .

Indeed, suppose contrary to our claim that ξ(zm) � βα0 . Since ξ ∈ [ fα0 ]μx0 , we have
zm, fα0 (zm)∈ (x0 − μ, x0 + μ). However, fα0 (zm)=βα0 � (x0 − μ, x0 + μ)⊂ (x1, x0 + α0),
which is a contradiction. Therefore, ξ(zm) > βα0 − μ > βα0 − 1

2α0 = x0 +
1
2α0. Since

ξ|[xm,sm] is a continuous function, (2.8) shows that there is a ∈ (xm, zm) such that
ξ(a) = a. Moreover, there exists d ∈ (zm, sm) such that ξ(d) = a. We shall also
conclude from (2.8) that ξ(zm) > x0 +

1
2α0 > d and ξ(d) = a < d. By continuity

of ξ|[xm,sm], it follows that there exists c ∈ (zm, d) such that ξ(c) = d. Furthermore,
ξ(a) = a < d < ξ(zm) and ξ|[xm,sm] is Darboux, and hence there is a point b ∈ (a, zm)
such that ξ(b) = d.

Finally, xm < a < b < c < d < sm. The above considerations show that ξ|[xm,sm] :
[xm, sm]→ [0, 1] satisfies the assumptions of Theorem 2.6 (with p′ = 0, p = xm, q =
sm, q′ = 1). Consequently, there exists an uncountable DS-set S for (ξ) such that
Oξ(s) ⊂ [a, b] ∪ [c, d] for all s ∈ S.

What is left is to show that there is a sequence {nk}k∈N such that S ⊂ ξnk (S) ⊂ (x0 −
σ, x0 + σ). For this purpose, let us put {nk}k∈N = {1, 2, . . .}. Fix s ∈ S. Then, by Theorem
2.6, we have ξnk (s) ∈ Oξ(s) ⊂ [a, b] ∪ [c, d] ⊂ (x0 − σ, x0 + σ) for any n ∈ N. �
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