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Abstract

Alzheimer’s dementia (AD) is a progressive, neurodegenerative disease often accompanied by
neuropsychiatric symptoms that profoundly impact both patients and caregivers. Agitation is
among the most prevalent and distressing of these symptoms and often requires treatment.
Appropriate therapeutic interventions depend on understanding the biological basis of agitation
and how it may be affected by treatment. This narrative review discusses a proposed patho-
physiology of agitation in Alzheimer’s dementia based on convergent evidence across research
approaches. Available data indicate that agitation in Alzheimer’s dementia is associated with an
imbalance of activity between key prefrontal and subcortical brain regions. The monoamine
neurotransmitter systems serve as key modulators of activity within these brain regions and
circuits and are rendered abnormal in AD. Patients with ADwho exhibited agitation symptoms
during life have alterations in neurotransmitter nuclei and related systems when the brain is
examined at autopsy. The authors present a model of agitation in Alzheimer’s dementia in
which noradrenergic hyperactivity along with serotonergic deficits and dysregulated striatal
dopamine release contribute to agitated and aggressive behaviors.

Introduction

There are an estimated 6.5 million adults aged 65 years and older living with Alzheimer’s
dementia (AD) in the United States, and this population is expected to double by 2050.1

Neuropsychiatric symptoms (NPS) commonly occur over the course of AD and are among
the most disabling aspects of the disease. Among NPS, agitation is one of the most prevalent and
distressing. Approximately 45% of community-dwelling patients and 53% of nursing home
residents exhibit agitated behaviors during the course of AD, and agitation has been observed
across mild to severe stages of the disease.2,3

Agitation is defined by the International Psychogeriatric Association as a syndrome occurring
in patients with a cognitive impairment or dementia syndrome; manifesting as excessive motor
activity, verbal aggression, or physical aggression associated with emotional distress that is
persistent or recurrent for at least 2 weeks; producing behaviors severe enough to produce excess
disability; and not being attributable to another disorder.4 Agitation is characterized by disrup-
tive or aggressive behaviors such as shouting, cursing loudly, kicking, shoving, and hitting.
Agitation may place the patient and the caregiver in danger of harm. Agitation in Alzheimer’s
dementia is associated with significant negative patient outcomes, including accelerated disease
progression, functional decline, increased institutionalization, and increased mortality.5–7 Addi-
tionally, agitation in Alzheimer’s dementia is linked to high caregiver burden and increased
health care resource utilization and costs.6–8

Characterizing the pathophysiology of agitation contributes to understanding the biology of
the clinical manifestation of AD and is important for developing potential treatments for
agitation in Alzheimer’s dementia. AD is a progressive, neurodegenerative disease characterized
by β-amyloid protein (Aβ) plaques, tau protein pathology, and neurodegeneration.9 Accumu-
lating evidence indicates that NPS may be caused by dysfunction within specific neural circuits
affected by these pathologies; both structural and functional changes have been identified within
key prefrontal and subcortical regions in patients with agitation in Alzheimer’s dementia.10,11

The norepinephrine (NE), serotonin (5-HT), and dopamine (DA)monoamine neurotransmitter
systems are important modulators of activity within these brain regions and circuits and are
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markedly impacted by AD pathological changes.12–16 Dysfunction
of the monoamine neurotransmitter systems may contribute to
agitation symptoms by disrupting the balance of prefrontal and
subcortical activity in circuits required for normal behavioral func-
tion. Monoamine neurotransmitter systems may represent key
targets for the potential improvement of agitation symptoms
in AD.

This review synthesizes research observations into a proposed
pathophysiology of agitation in Alzheimer’s dementia, focusing on
the potential role of monoamine neurotransmitter systems and
related circuits. We first examine how an imbalance between
prefrontal and subcortical activity may underlie agitation symp-
toms in patients with AD. We then explore how monoamine
neurotransmitter systems may contribute to dysfunction in these
brain regions, examining noradrenergic, serotonergic, and dopa-
minergic system function in patients with AD and the evidence
linking these systemswith agitation symptoms. For each system, we
synthesize the available evidence to provide a hypothetical model of
the neurobiological basis of agitation symptoms. We discuss the
potential role of other neurotransmitter systems, including gluta-
mate and γ-aminobutyric acid (GABA), and comment on emerging
treatments for agitation in Alzheimer’s dementia and their thera-
peutic targets.

Prefrontal and Subcortical Dysfunction in Agitation in
Alzheimer’s Dementia

Behavior involves a balance between bottom-up reactive responses
to stimuli, referred to as emotional drive, and top-down control
mechanisms that allow for the regulation of these responses,
referred to as executive control.17,18 This balance arises from
activity within a complex circuitry involving cortical and subcor-
tical brain regions, with the prefrontal cortex (PFC) and amygdala
emerging as key nodes of these circuits. The PFC guides many
aspects of executive control, including attention and working
memory, emotional regulation, and response inhibition, while
the amygdala—a key node within the limbic system—plays a
central role in the orchestration of emotional responses to sensory
input.17–19 These regions share dense reciprocal connections, with
the PFC downregulating reactive processes driven by the amyg-
dala.17,18

Disruption of the balance between the PFC and subcortical
regions is believed to contribute to NPS, including agitation in
Alzheimer’s dementia.10,11,17 Evidence from structural and func-
tional imaging studies as well as postmortem analyses indicates that
pathology within specific brain regions, including the PFC and
amygdala, may increase the risk of agitation. One study of post-
mortem brain tissue found that neurofibrillary tangle (NFT) bur-
den in the left orbitofrontal cortex was associated with both
agitation and chronic aberrant motor behavior; no relationship
with amyloid pathology was observed.20 A second study found that
the ratio of phosphorylated to total tau within the PFC positively
correlated with aggression.21 Similarly, structural magnetic reso-
nance imaging (MRI) studies of patients with AD have found that
agitation, aggression, and aberrant motor behavior were associated
with greater gray matter atrophy in the PFC and amygdala.22–24

Agitation has been linked to pathology in other brain regions
involved in emotional processing, including the anterior cingulate
cortex and insula.20,22,25 In a study of patients with AD, cerebro-
spinal fluid (CSF) levels of both total and phosphorylated tau were
associated with greater agitation, while there was no relationship

between levels of the 42-amino acid isoform of Aβ protein (Aβ1–42),
a biomarker of amyloid pathology, and agitation.26 Although AD is
characterized by both tau and amyloid pathology, these data sug-
gest that tau-mediated pathology may be more influential in the
biology of agitation in Alzheimer’s dementia.

Functional magnetic resonance imaging (fMRI) studies have
provided further evidence of an imbalance of activity between the
PFC and subcortical brain regions in patients with agitation. Fluor-
odeoxyglucose (FDG) positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) studies of
patients with ADhave demonstrated that agitation, aggression, and
aberrant motor behavior are associated with hypoperfusion and
decreased glucose metabolism within the PFC, as well as within
other regions, including the parietal, temporal, and cingulate cor-
tices and insula.27–30 Conversely, agitation is associated with ele-
vated amygdala reactivity to emotional stimuli. An fMRI study
showed that patients with AD had a significantly greater amygdala
response to both neutral and fearful faces compared to elderly
controls and that amygdala responses to familiar neutral faces were
positively correlatedwith severity of agitation and irritability symp-
toms.31

Collectively, these findings indicate that agitation in Alzhei-
mer’s dementia may arise from an imbalance between executive
control, mediated by the PFC, and emotional drive, mediated by
subcortical regions, including the amygdala (Figure 1). This imbal-
ance may arise in part from the accumulation of tau pathology and
neurodegeneration within key brain regions. A consequence of this
pathology is the dysfunction of the monoamine neurotransmitter
systems, which modulate the activity of neural circuits throughout
the brain and show substantial alterations over the course of
AD. The following sections review evidence suggesting that mono-
amine neurotransmitter system dysfunction may contribute to
agitation symptoms.

Monoamine System Dysfunction in Agitation in Alzheimer’s
Dementia

The noradrenergic, serotonergic, and dopaminergic systems orig-
inate primarily in brainstem nuclei and project throughout the
brain tomodulate the activity of numerous brain regions, including
prefrontal and subcortical regions.12–14 The balance of these sys-
tems is dynamic, with reciprocal connections existing among

Figure 1. Hypothesized imbalance between executive control (mediated by prefrontal
regions) and emotional drive (provided by subcortical regions, including the amygdala)
underlying agitation symptoms in patients with Alzheimer’s dementia. Abbreviations:
AMG, amygdala; PFC, prefrontal cortex.
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monoaminergic nuclei and their target regions as well as among
different monoamine systems.12,16,18

Norepinephrine

The noradrenergic system plays a key role in facilitating emotional
responses, including arousal and responses to salient stimuli, the
stress response, and fear and anxiety behaviors.12,32 The locus
coeruleus (LC) is the primary source of NE in the brain, with LC
neurons projecting to key regions, including the PFC and amyg-
dala.12,32 The activity of LC neurons is in turn modulated by
reciprocal projections from these target regions, with NE release
being driven by the amygdala and regulated by the PFC.12,18,32

Among the neurotransmitter systems examined in this review, a
particularly robust body of evidence implicates noradrenergic
hyperactivity in the pathophysiology of agitation in Alzheimer’s
dementia.

The noradrenergic system is severely impacted over the course
of AD. The LC is among the first brain regions impacted in AD,
with tau pathology and NFTs observed during the earliest stages of
the disease and neuron loss occurring as the disease progresses.9,33

Following the loss of LC neurons, the noradrenergic system
undergoes changes that may compensate for neuronal loss and
preserve NE signaling based on the following observations.15 First,
despite the loss of LC neurons in AD, CSF levels of NE and its
metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) have gen-
erally been reported to be unchanged or elevated relative to healthy
controls.34–37 This may be due to increased NE synthesis by the
remaining LC neurons, as supported by the finding of increased
expression of tyrosine hydroxylase, the rate-limiting step in NE
synthesis, in the LC neurons of patients with AD.38 Second,
increased α1-adrenoceptor expression—considered to be a
response to decreased NE levels—has been observed in the hippo-
campus and PFC in patients with AD.38,39 Third, AD is associated
with increased sprouting of dendrites and axonal projections to the
hippocampus and PFC by the remaining LC neurons.38–40

Several lines of evidence from patients with AD indicate that
compensatory changes in NE signaling following LC neurodegen-
eration are associated with agitation symptoms. First, agitation has
been associated with greater severity of LC neuron loss. One study
reported a negative correlation between number of LC neurons and
aggression,41 while a more recent study found an increased risk of
agitation to be associated with greater NFT burden during early
stages of the disease when NFTs are largely confined to the trans-
entorhinal cortex and brainstem regions, including the LC.42 Sec-
ond, despite the loss of LC neurons, positive correlations have been
reported between NE levels within the PFC and aggression and
between CSF levels of MHPG and behavioral symptom sever-
ity.43,44 Studies of these relationships are inconsistent, and several
failed to find significant associations between NE or MHPG levels
and aggression.45–48 Third, agitation is associated with changes in
NE receptor expression and function that may occur in response to
the loss of LC neurons.49 Finally, studies using yohimbine or
clonidine to challenge the noradrenergic system in patients with
AD indicate that agitation and aggression may be associated with
greater responsiveness of the noradrenergic system. In one study,
patients with AD showed greater increases in agitation compared
to controls following yohimbine administration that correlated
with CSF epinephrine levels.50 In a second study, aggression was
elevated in patients with a blunted growth hormone (GH) response
to clonidine, which is thought to reflect noradrenergic system
overactivity, compared to patients with a preserved GH response.51

Noradrenergic system hyperactivity may impair prefrontal
function and drive amygdala activity in part through the activation
of α1-adrenoceptors. One study examining α1-adrenoceptor bind-
ing in the PFC found that both receptor density and receptor
affinity were positively associated with aggression in patients with
AD.49 Evidence suggests that PFC neurons are highly sensitive to
changing NE levels, which are mediated in part by the activation of
different classes of adrenoceptors as the disease progresses. Low to
moderate levels of NE engage high-affinity α2-adrenoceptors.

18

However, increasing NE levels lead to the desensitization of
α2-adrenoceptors, particularly α2C-adrenoceptors, and engage
lower-affinity α1-adrenoceptors.

18,52 Within the PFC, activation
of α1-adrenoceptors is associated with impaired functioning.18

In contrast, amygdala function is enhanced by activation of
α1-adrenoceptors and stimulation of LC terminals, as demon-
strated by increased fear- and anxiety-related behaviors in rodent
studies, while antagonism of these receptors produces the opposite
effect.53–55 Consistent with these findings, agents that act as
α1-adrenoceptor antagonists have been reported to improve agita-
tion and aggression in patients with AD compared to placebo.56–58

The hypothesized role of noradrenergic system dysfunction in
agitation in Alzheimer’s dementia is summarized in Figure 2.
Following the loss of neurons in the LC, the noradrenergic system
undergoes compensatory changes, including increased NE syn-
thesis and sprouting of axonal projections by LC neurons with
elevated expression of α1-adrenoceptors in the PFC.38,39 Given
the opposing effects of elevated NE levels on PFC versus amygdala
function and the evidence linking elevated noradrenergic system
activity to agitation behaviors, increased NE signaling may con-
tribute to agitation in patients with AD by impairing the executive
and supervisory function of the PFC and increasing amygdala
activity.

Serotonin

AD is associated with marked serotonergic system deficits. The
raphe nuclei of the brainstem, which are the major sources of 5-HT
in the brain, show tau pathology during early stages of the disease

Figure 2. Hypotheticalmodel of noradrenergic systemdysfunction underlying agitation
in Alzheimer’s dementia. Neurodegeneration of LC neurons is accompanied by compen-
satory increases in noradrenergic system activity, including increased NE synthesis and
sprouting of axonal projections by LC neurons and increased α1-adrenoceptor expres-
sion in the PFC. This increase in NE signaling could impair PFC function and increase
amygdala activity through the activation of α1-adrenoceptors. Dashed orange circle
indicates NE neuron loss. Bolded orange arrows indicate increased NE release. Abbrevi-
ations: AMG, amygdala; LC, locus coeruleus; NE, norepinephrine; PFC, prefrontal cortex.
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and eventual loss of 5-HT neurons and their projections.9,16 Cor-
responding to this loss of 5-HT neurons, decreased levels of 5-HT
and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been
reported in CSF and in multiple brain regions, including the PFC,
amygdala, hippocampus, and temporal cortex.16,43,59 Decreased
levels of 5-HT receptors have been reported in multiple brain
regions, including decreased levels of 5-HT1A receptors in the
frontal cortex and hippocampus.16,60

The serotonergic system plays a key role in regulating aggres-
sion and impulsivity, with decreased central 5-HT signaling being
associated with increased aggression.13,61 This may occur in part
through the modulation of PFC and amygdala activity, as func-
tional imaging studies of healthy adults show that lowered central
5-HT levels via acute tryptophan depletion can alter PFC activity,
increase amygdala reactivity to emotional stimuli, and impact
prefrontal-amygdala connectivity.62,63 Dysfunction of the seroto-
nergic system is poised to contribute to agitation behaviors by
further disrupting PFC and amygdala function.

Several studies have reported relationships between decreased
5-HT or 5-HIAA levels and agitation. One postmortem study
associated overactivity in life, consisting of high ratings for walking
more, walking aimlessly, and trailing or checking on carers, with
decreased prefrontal 5-HT levels.59,64 Additional studies have
reported negative correlations between agitation and 5-HIAA
levels, particularly in the hippocampus but also in the PFC.43,46,48

Treatment with a selective serotonin reuptake inhibitor (SSRI) has
been reported to reduce agitation in patients with AD.65 Decreased
expression of 5-HT receptors, particularly in the temporal cortex,
has been linked to agitation in patients with AD. One study
reported a negative correlation between aggression and 5-HT1A

receptor density in the temporal cortex,66 with the same research
group reporting a similar trend in the hippocampus, although this
result did not reach statistical significance.60 Another study
reported that overactivity, as defined above, was predictive of
reduced 5-HT6 receptor levels in the temporal cortex.67 Agitation
and aggression are associated with abnormal responses to seroto-
nergic system challenge as indicated by greater increases in pro-
lactin concentrations following fenfluramine—a serotonin-
releasing agent, agonist of the serotonin 5-HT2 receptors, and σ1
receptor positive modulator—administration.68,69

The effects of 5-HT aremediated by 7 families of 5-HT receptors
(5-HT1 to 5-HT7) expressed on both excitatory glutamatergic
neurons and inhibitory interneurons.13 5-HT1A receptors within
the PFC and amygdala appear to be particularly important for
modulating behaviors relevant to agitation, including aggression
and impulsivity. In rodents, stimulation of 5-HT1A receptors in the
PFC reduced aggression and impulsivity,13,70 while stimulation of
5-HT1A receptors in the amygdala decreased amygdala activity as
well as fear- and anxiety-related behaviors.71,72 In healthy adults,
PET imaging studies using a radioligand selective for the 5-HT1A

receptor have shown correlations between aggressive or impulsive
traits and 5-HT1A binding in the PFC and amygdala.73,74 Finally,
treatment with an agent acting as a 5-HT1A partial agonist has been
reported to improve agitation symptoms in patients with AD.57,58

The hypothesized role of serotonergic system dysfunction in
agitation in Alzheimer’s dementia is summarized in Figure 3. The
role of 5-HT signaling in regulating activity of key neural circuits
combined with evidence of serotonergic system deficits in both
agitation-related behaviors and AD suggests that 5-HT signaling
deficits may contribute to agitation in patients with AD by con-
tributing to the disruption of PFC and amygdala function. The key
role of the 5-HT1A receptor in regulating aggression and

impulsivity suggests that these behaviors and agitation in Alzhei-
mer’s dementia may be mediated in part by altered activation of
these receptors.

Dopamine

Historically, the dopaminergic system has been viewed as being
relatively spared in AD compared to the other monoamine neuro-
transmitter systems.16More recent studies suggest that, while AD is
associated with relatively little loss of DA neurons, dopaminergic
system dysfunction may contribute to cognitive deficits and NPS
associated with AD. Recent imaging studies have reported that
patients with AD exhibit disrupted connectivity of the mesocorti-
colimbic DA system, consisting of dopaminergic projections from
the ventral tegmental area (VTA) to cortical and limbic areas.14,75

Relative sparing of dopaminergic projections in the context of
serotonergic system disruption provides a foundation for the dys-
regulation of DA release, contributing to agitation and aggres-
sion.16 Specifically, serotonergic projections to the substantia
nigra (SN) and VTA regulate DA release from DA neurons.76,77

Given the evidence linking agitation in Alzheimer’s dementia to
serotonergic system deficits, a decrease in 5-HT levels predicts an
altered striatal DA release in response to specific stimuli.

The dopaminergic system is involved in a number of processes,
including the regulation of voluntary movement and reward pro-
cessing.78,79 Increased activation of the dopaminergic system has
been linked to agitation and aggression, with rodent studies show-
ing that aggression was associated with striatal DA release and
activation ofD2 receptors, while antagonism of striatal D2 receptors
decreased aggression.80–82 Similarly, treatment with agents acting
as D2 receptor partial agonists or antagonists has been reported to
improve agitation and aggression in patients with dementia.57,58,83

The potential role of dysregulated DA release in agitation is
supported by studies in patients with AD. Several studies reported
that aggression was associated with relative preservation of the
dopaminergic system as indicated by higher CSF and plasma
concentrations of the DAmetabolite homovanillic acid and greater
cell count in the SN.84–86 Recently, agitation was linked with

Figure 3. Hypotheticalmodel of serotonergic systemdysfunction underlying agitation
in Alzheimer’s dementia. Loss of 5-HT inputs to the PFC combined with decreased
5-HT1A receptor expression and activation may contribute to PFC dysfunction and
aggression, while loss of 5-HT inputs to the amygdala could result in increased
amygdala reactivity via decreased 5-HT1A activation. Dashed green circle indicates
5-HT neuron loss. Dashed green arrows indicate decreased 5-HT release. Abbrevia-
tions: 5-HT, serotonin; AMG, amygdala; PFC, prefrontal cortex; RN, raphe nuclei.
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increased functional connectivity between the VTA and the hip-
pocampus and cerebellum, supporting a potential role of altered
DA release in agitation in Alzheimer’s dementia.14

The hypothesized role of dopaminergic system dysfunction in
agitation in Alzheimer’s dementia is summarized in Figure 4. The
dopaminergic system is less severely impacted by AD pathology
compared to the other monoamine neurotransmitter systems, and
there is some evidence that agitationmay be associatedwith relative
preservation of DA signaling. Preservation of DA signaling com-
bined with serotonergic system deficits could give rise to dysregu-
lation of DA release in the striatum, contributing to increased
agitation and aggression.

Summary of monoamine neurotransmitter system dysfunction
in agitation in Alzheimer’s dementia

The potential roles of the monoamine neurotransmitter systems in
agitation inAlzheimer’s dementia are summarized in Figure 5. This
evidence-based model suggests that agitation arises from an imbal-
ance between executive control mediated by prefrontal brain
regions and emotional drive provided by subcortical brain regions,
including the amygdala.10,11 AD is associated with marked alter-
ations in the monoamine neurotransmitter systems, providing the
basis for this imbalance.14–16 Noradrenergic system hyperactivity
combined with serotonergic system deficits may result in PFC
dysfunction and elevated amygdala reactivity, while dysregulated
DA release in the striatum may contribute to agitated and aggres-
sive behaviors.

Other Neurotransmitter Systems

While evidence suggests that disruption of the monoamine neuro-
transmitter systems may be a key aspect of agitation in Alzheimer’s
dementia pathophysiology, disruption of other neurotransmitter
systems, such as glutamate and γ-aminobutyric acid (GABA), may
also contribute to agitation symptoms.

Glutamate is the primary excitatory neurotransmitter in the
brain, with glutamatergic projections from the PFC providing
top-down control over subcortical regions, including the amyg-
dala.17 AD is associated with dysfunctional glutamate transmis-
sion, which may contribute to agitation and aggression by
disrupting frontal cortex function (Figure 6).87 Patients with AD
show reduced glutamate reuptake inmultiple brain regions, includ-
ing the frontal cortex, possibly reflecting interference byAβ plaques
with the function of glutamate transporters.87,88 Decreased reup-
take could result in elevated glutamate levels as indicated by studies
reporting elevated CSF levels of glutamate and its precursor

Figure 5. Hypothetical model of monoamine neurotransmitter system dysfunction
underlying agitation in Alzheimer’s dementia. Increased NE signaling combined with
5-HT signaling deficits may contribute to PFC dysfunction and increased amygdala
reactivity through the increased activity of α1-adrenoceptors and decreased activity of
5-HT1A receptors. Dysregulated DA signaling may contribute to agitation and aggres-
sion via activation of striatal D2 receptors. Collectively, these effects contribute to an
imbalance between executive control and emotional drive. Dashed orange and green
circles indicate NE and 5-HT neuron loss, respectively. Solid purple circle indicates DA
neuron preservation. Bolded orange and purple arrows indicate increased NE and DA
release, respectively. Dashed green arrows indicate decreased 5-HT release. Abbrevi-
ations: 5-HT, serotonin; AMG, amygdala; DA, dopamine; LC, locus coeruleus; NE,
norepinephrine; PFC, prefrontal cortex; RN, raphe nuclei; SN, substantia nigra; STR,
striatum; VTA, ventral tegmental area.

Figure 4. Hypothetical model of dopaminergic system dysfunction underlying agita-
tion in Alzheimer’s dementia. Preserved dopaminergic projections combined with a
loss of regulation of DA release by serotonergic neurons could result in activation of
striatal D2 receptors, which are implicated in agitated and aggressive behaviors.
Dashed green and solid purple circles indicate 5-HT neuron loss and DA neuron
preservation, respectively. Dashed green and bolded purple arrows indicate decreased
5-HT release and increased DA release, respectively. Abbreviations: 5-HT, serotonin;
DA, dopamine; RN, raphe nuclei; SN, substantia nigra; STR, striatum; VTA, ventral
tegmental area.

Figure 6. Hypothetical model of glutamatergic system dysfunction underlying agita-
tion in Alzheimer’s dementia. Decreased glutamate reuptake may contribute to
increased NMDAR activation, resulting in PFC neuron dysfunction and excitotoxicity.
Decreased top-down regulation from the PFC may result in increased amygdala
reactivity. Dashed blue arrow indicates decreased PFC regulation of the amygdala.
Abbreviations: AMG, amygdala; NMDAR, N-methyl-D-aspartate receptor; PFC, prefron-
tal cortex.
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glutamine in patients with AD.89 Elevated glutamate levels may
disrupt frontal cortex function, with elevated levels impairing
normal cognitive processes and extreme elevations driving excito-
toxicity through extrasynaptic glutamate N-methyl-D-aspartate
(NMDA) receptors.87,88 Agents acting as NMDA receptor antag-
onists improve agitation in patients with AD.90

GABA is the primary inhibitory neurotransmitter in the brain.91

During normal brain activity, activation of excitatory glutamatergic
neurons and inhibitory GABAergic interneurons maintains a bal-
ance of activity within neural circuits.91,92 While GABAergic neu-
rons and receptors have been viewed as being more resistant to AD
pathology than other systems, recent research indicates that the
GABAergic system undergoes substantial changes in AD.92 Tau
pathology and neurodegeneration of GABAergic interneurons
have been observed in multiple brain regions, including the hip-
pocampus and cortex, along with decreases in brain and CSF levels
of GABA.91,92 Disruption of GABAergic neuron function may lead
to an imbalance between excitation and inhibition within neural
circuits, potentially contributing to cognitive impairments and
behavioral disturbances in AD.91,92

Insights From Emerging Pharmacological Treatments

The increasing prevalence of AD and the burden of agitation in
Alzheimer’s dementia for patients and caregivers alike underscore
the need for new therapies that can address NPS, including agita-
tion in patients with AD. One agent, brexpiprazole, has been
approved by the US Food and Drug Administration (May 2023)
for the treatment of agitation associated with dementia due to
Alzheimer’s disease, and 6 agents being developed for treatment
of agitation symptoms in patients with AD are in phase
3 clinical trials (as per the federal database ClinicalTrials.gov
on September 25, 2023): dexmedetomidine (α2-adrenoceptor
agonist), citalopram (SSRI), masupirdine (5-HT6 antagonist),
AVP-786 (dextromethorphan plus quinidine), AXS-05 (dextro-
methorphan plus bupropion), and nabilone (cannabinoid partial
agonist). Consistent with the proposed role of monoamine neu-
rotransmitter system dysfunction in agitation in Alzheimer’s
dementia, 2 of the 6 agents currently in phase 3 clinical trials,
along with brexpiprazole, act on the noradrenergic, serotonergic,
or dopaminergic systems.

Brexpiprazole has a high affinity for noradrenergic
α-adrenoceptors, in addition to its high affinity for serotonergic
and dopaminergic receptors. Brexpiprazole acts as an antagonist at
α1B-adrenoceptors while also serving as a partial agonist at 5-HT1A

serotonergic and D2 dopaminergic receptors.57,93 Additionally,
brexpiprazole acts as an antagonist at α2C-adrenoceptors and
5-HT2A serotonergic receptors.93 Hypothetically, α1B-adrenoceptor
antagonism and 5-HT1A partial agonismmay support PFC function
and reduce amygdala function by blocking the deleterious effects of
elevated NE and restoring 5-HT signaling, while D2 receptor partial
agonism may regulate striatal DA activity.

Dexmedetomidine is an α2-adrenoceptor agonist currently used
in intensive care units for its sedative properties and has been
proposed as an acute treatment for agitation.94 Consistent with
the hypothesized role of noradrenergic hyperactivity in agitation in
Alzheimer’s dementia, the effects of dexmedetomidine are thought
to be mediated by the activation of presynaptic α2-autoreceptors,
which inhibit NE release.95

Citalopram is an SSRI whose clinical benefits are primarily
associated with its S-enantiomer (escitalopram).65,96 The efficacy

of SSRIs is believed to be driven in part by the desensitization of
somatodendritic 5-HT1A autoreceptors ultimately resulting in
increased 5-HT release in target regions, which is consistent with
the hypothesized role of serotonergic system deficits in agitation in
Alzheimer’s dementia.97

Although not currently in phase 3 clinical trials as per Clini-
calTrials.gov, prazosin is a centrally acting α1-adrenoceptor antag-
onist previously shown to improve behavioral symptoms in AD
patients with agitation and aggression.56 Hypothetically, antago-
nism of postsynaptic α1-adrenoceptors may address agitation
symptoms by preventing the effects of noradrenergic hyperactivity.

Four of the 6 agents in phase 3 clinical trials act on targets
beyond the monoamine neurotransmitter systems. Masupirdine
is a serotonin 5-HT6 receptor antagonist whose efficacy may
arise from modulation of neurotransmitters implicated in agi-
tation, including glutamate, GABA, and NE, as well as acetyl-
choline.98,99

AVP-786 is the deuterated form of AVP-923, a combination of
the NMDA receptor antagonist and σ1 receptor agonist dextrome-
thorphan and the cytochrome P450 2D6 (CYP2D6) inhibitor
quinidine.100 AXS-05 is a combination of dextromethorphan and
the NE and DA reuptake inhibitor and CYP2D6 inhibitor bupro-
pion.90 NMDA receptor antagonism may reduce agitation by
protecting against the effects of elevated glutamate transmission,
such as disrupted frontal cortex function.

Nabilone is a synthetic cannabinoid that acts as a partial agonist
at cannabinoid CB1 and CB2 receptors.

101 Nabilone may indirectly
influence the neurotransmitter systems implicated in agitation, as
the endocannabinoid system modulates the activity of other neu-
rotransmitter systems, including the monoamine, glutamatergic,
and GABAergic systems.102 Cannabinoid receptors are expressed
in brain regions associated with monoaminergic signaling, includ-
ing the amygdala, cerebral cortex, basal ganglia, and striatum, and
evidence suggests that cannabinoid receptor expression is corre-
lated with tauopathy and subsequent neurodegeneration.102,103

Limitations

One limitation of this review is the potential impact of other NPS,
as patients with dementia frequently experience multiple NPS.104

While this review focused on studies of patients with agitation in
Alzheimer’s dementia, it is possible that the study results were
influenced by the presence of additional NPS.

A second limitation is that the proposed pathophysiology of
agitation in Alzheimer’s dementia discussed in this review does not
distinguish between domains of agitation, which include excessive
motor activity, verbal aggression, and physical aggression, as it has
been suggested that different aspects of agitation may arise from
different structural and functional deficits.4,10,78 While there has
been relatively little study of the pathophysiology associated with
different domains of agitation, several studies discussed in this
review provide potential insights. PFC dysfunction was associated
withmultiple forms of agitation, including aggression and aberrant
motor behavior, as well as physical and verbal agitation, suggesting
that loss of executive control may contribute to multiple agitation
domains.20,23,27,28,30 Additionally, several studies reported that
alterations in the noradrenergic system were associated with
aggressive behavior but not overactivity or physically nonaggres-
sive behavior, suggesting that noradrenergic system dysfunction
may be particularly important in the development of verbal or
physical aggression.41–43,49 Further study of the pathophysiology
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underlying different agitation domains would improve under-
standing of the neurobiological basis of NPS in AD.

Conclusion

This review synthesized research observations to provide a hypo-
thetical model for the pathophysiology of agitation in Alzheimer’s
dementia with a focus on the monoamine neurotransmitter sys-
tems. Agitation may arise from disrupted top-down executive
control and elevated bottom-up emotional drive mediated by
prefrontal and subcortical brain regions, respectively. The mono-
amine neurotransmitter systems are key modulators of these brain
regions and showmarked alterations in AD. Noradrenergic hyper-
activity along with serotonergic deficits and dysregulated dopa-
mine release may contribute to agitation symptoms by disrupting
the balance between executive control and emotional drive. These
neurotransmitter abnormalities may point to development of spe-
cific types of agents useful in the control of agitation.
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