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A largely untouched problem in the theory of inverse semigroups has been that of
finding to what extent an inverse semigroup is determined by its lattice of inverse
subsemigroups. In this paper we discover various properties preserved by lattice
isomorphisms, and use these results to show that a free inverse semigroup S'S'x is
determined by its lattice of inverse subsemigroups, in the strong sense that every
lattice isomorphism of 2F$x upon an inverse semigroup T is induced by a unique
isomorphism of S'S'x upon T. (A similar result for free groups was proved by
Sadovski (12) in 1941. An account of this may be found in Suzuki's monograph on the
subject of subgroup lattices (14)).

If S is an inverse semigroup, denote by (X) the inverse subsemigroup of S
generated by X, and write (X) =s S. We denote by i?(S) the lattice of inverse
subsemigroups of S, with meet and join defined in the usual way, and with the empty
inverse semigroup • as zero element. To cover the group case consistently, we will
treat D as a subgroup of every group.

By an L-isomorphism (also called structural isomorphism, or projectivity) of an
inverse semigroup S upon another T we mean a lattice isomorphism <P of if(S) upon
£e(T). Thus $ is a bijection such that U =£ V if and only if U<P=s V<P, for all
U, V G i?(S). Equivalently, <P and <2>~' preserve finite meets and joins.

If <j> is an isomorphism of an inverse semigroup S upon another T, the induced
L-isomorphism of S upon T is that defined by U<P = UQ, for U^S, UVD, and
•<*> = •.

1. L-isomorphisms

Throughout this section S and T are inverse semigroups, with semilattices of
idempotents, E(S) and E(T) respectively, and <P is an L-isomorphism of S upon T.
For the basic properties of inverse semigroups the reader is referred to (1).

If (P, =£) is any poset, and p, q G P, we write p\\q if p and q are incomparable, that
is neither p =£ q nor q =s p. Otherwise we write p\q and say p and q are comparable.
Also if q covers p (that is p < q and no r G P satisfies p < r < q) we write p <q.

Lemma 1.1. <P induces a bijection <f> of E(S) upon E(T) such that {e}<P = {e<f>},
for all e G E(S), and satisfying

(i) e\f if and only if e<t>\f<f>,
(ii) e\\f implies (ef)4> = («*)(/*).

Thus E(S)<P = E(T), and i ? (E(S) ) s i?(£(T)).
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Proof. For any inverse semigroup U, the sets {e}, e G E(U), are clearly the atoms
of the lattice %(U). Thus for each e G E{S), there is an idempotent / of T such that
{e}<P = {/"}. Put / = e<t>. Then <j> is bijective since <J> is.

To obtain (i), note that e\f if and only if (e, f) > (e). To prove (ii) suppose e^f. Then
But {(ef)<j>) = {e/}<*> C <e, /><*>, and hence

Finally, if / G £(T), then (/} = </<^"')$ « E(S)0, so that E(T)=s E(S)#. Similarly
E(S) =£ E(T)<P~\ Therefore E(S)<f> = £(T).

(In the special case of L-isomorphisms of semilattices, Sevrin showed (13) that,
conversely, each such mapping ("weak isomorphism" in his terminology) between
semilattices E and F induces an L-isomorphism. In Section 3 it will be seen that <j> is
not, in general, an isomorphism).

Corollary 1.2. The L-isomorphisms <P and 4>~x preserve [maximal] subgroups;
that is, G is a [maximal] subgroup of S if and only if G<P is a [maximal] subgroup of
T.

Proof. For any inverse semigroup U, G is a subgroup of U if and only if in
!£(U), G lies above exactly one atom.

Corollary 1.3. / / S is %-trivial (or, commonly, combinatorial), so is T.

An inverse semigroup S is said to be completely semisimple if no two ^-related
idempotents of S are comparable under the natural partial order of E(S):

es£/ i f fe /=e, e,fGE(S).

An equivalent property is that each principal factor of S is either completely 0-simple
or completely simple. By Theorem 2.54 of (1), S is then completely semisimple if and
only if it contains no inverse subsemigroup isomorphic with the bicyclic semigroup.
(Thus every finite inverse semigroup is completely semisimple). In any such semi-
group 3) = $.

Proposition 1.4. / / S is completely semisimple, so is T.

Proof. Suppose T contains an inverse subsemigroup U isomorphic with the
bicyclic semigroup: thus U is ^f-trivial and E(U) is a chain. By Corollary 1.3,
V = t/<P"' is 3if-trivial, and by Lemma 1.1 (i), E(V) is a chain. However, if V contains
a non-idempotent x, then JCJC"1^X~'X and xx~'3)x~'x, which is impossible in S. So V, and
therefore U, is a semilattice, a contradiction.

The next sequence of results shows that if S is both completely semisimple and
5if-trivial, <P preserves much of the structure of 5.

Lemma 1.5. / / S is completely semisimple, suppose the element x of S is not in a
subgroup of S (or, equivalently, xx'1 ^ x'xx). Then (x)<P = (y) for some y in T.
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Proof. Since S is completely semisimple, (x)C\Jx = {x, x"1, xx~\ x~'x}. Further
(x)\{x, x~\xx~\ x~'x} is contained in the ideal I(x) of S. Then M = <JC>\{X, x"'} is the
maximum proper inverse subsemigroup of (x). Since <P maps i?((x)) isomorphically
upon i?((x)4>), M<P is the maximum proper inverse subsemigroup of (x)<P. Let
y G {x)<P\M<P\ then (x)<P = M4> v (y). So (x) = <y>#~' v M. But then x G (y>4>~\ that is

We now wish to show that in this situation, y can be chosen (in fact uniquely) so
that (xx~l)<f> = yy"1 and (x~lx)<f> = y~'y. To do this, we must examine the structure of
the semilattice of idempotents of a completely semisimple elementary inverse semi-
group (that is, one generated by a single element).

Suppose x generates (x) freely, that is {x)=&&\, the free inverse semigroup on
one generator. Then (Gluskin, (3)), every element of (JC) has a unique representation in
the form (x~px")x"(x'x~'') for integers p, q, r, with p, r, p + q, q + r s= 0, p + q + r~3>\.
(If p, q or r is zero, the corresponding term is deleted). The idempotents are then the
elements (x-pxp)(xrx"'), p, r=*0, p + r ^ l , with (x"pxp)(xrx-r) =s(x"V)(xmx-m) iff
p & k and r 3= m. (Note that x'"xp\\xrx~r for p, r s* 1, and an idempotent (x~px")(xrx~r)
is a product of 2 incomparable idempotents if and only if r^O and s#0) . Further
(x~pxp)x*(xrx"r)®(x~V)x'(xmx~m) iff p + q + r=k + l + m. As a consequence (JC) is
completely semisimple, 3) = $, and the ideals are all principal of the form (x)x"(x) =
/„, n > 1. We will denote also by /„ the Rees congruence (/„ x /„) (Ji.

Recall (11) that a congruence on E = E({x)) is said to be normal if it is the
restriction to E x E of some congruence on (JC). Denote by I'n the restriction of the
Rees congruence /„ to E x E. Eberhart and Selden showed (2; Theorem 3.4) that each
normal congruence on E is of the form l'n, I'nC\A or I'nr\B, for some n & 1, where
{x~'>xp)(xrx-r)A(x-kxk)(xmx-m) iff r=m, and B is defined dually. Let p be any
congruence on (x) such that p fl(£ x £) = I'nH A. In <*)/p, then, we have
(jr"jc")p2>(jcnjrn)p and (x""jc")p > (xnx-")p (since ((x~nxn)(xnx-"))A = (x"x-")A but
(JC~"JC", JC"JC~")£ A). So (x)/p is not completely semisimple.

Since every elementary inverse semigroup (a) is a factor of 3^3\ by some
congruence, if it is completely semisimple and not free, E((a)) = E((x)IIn) for some
n » l . Put %" = {(a)\E((a)) = E((x)IIn)}, n^\. (For example, S1 consists of the
cyclic groups). If (a)Gg"\ n ^ 2 , write 0a for its minimum idempotent; then any
non-zero idempotent of (a) can be uniquely expressed in the form (jc~pjcp)(jcrjc~r),
O*sp, r = £ n - l , l=£p + r = £ n - l . Thus \E((a))\ = (2 + 3 + • • • + n) + 1 = n(n + l)/2.

Lemma 1.6. Suppose (x) is any completely semisimple elementary inverse semi-
group, not a group, and <P is an L-isomorphism of (x) upon (y). Then, by replacing y
by y~\ if necessary, (JCJC~')<£ = yy"1 and (JC"~'JC)<£ = y~'y-

Proof. From the above discussion, we have two cases to consider (note that
from Lemma 1.1, |£«y»| = |JE«JC»|).

(i) If (x) is free, then (y) must also be. Since the maximal elements of E((y)) are
yy"1 and y~'y, we may, by replacing y by y"' if necessary, assume that (xx~l)<f> =£ yy"1;
thus (xx~x)<j>* y-"y", p 5* 1. Now if (xx"1)^ = (y"pyp)(yry"r) for p, r > 1, then (xx"')</> is
a product of incomparable idempotents, and xx~' is also (by Lemma 1.1 (ii)), a
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contradiction. So (xx~})<f> = yry~r, for some rs= 1. In view of Lemma 1.1 (i) a similar
argument shows that if s > 1, (xsx~*)<f> = y"y~" for some q> 1 (depending on s), that
(jc~';t)<£ = y^y*1 for some p 3= 1 and that (y~'y)<£ = x~kxk for some it > 1. Consider the
idempotent g = (x~"xk)(xx~l) = (x~kxk)(x-lx)(xx-}) of <x>. Now g<f> =
(y"'y)(yry"r), since XJC"'||X"*JC*. But similarly if k* 1, g0 = (JC"
U - " J C ( : ) ^ ( ^ - 1 X ) ^ ( ^ - | ) 0 = (y-1y)(y-pyp)(yry-r) = (y-pyp)(/y- ') . Thus p = 1, that is
(x xx)t}> = y 'y, contradicting k^\. Thus Jt = 1 and (x~xx)<j> = y"'y. Similarly (xx~x)4> =
yy"1.

(ii) If (x)e%", n&2, then since |£«y» | = |E«x»| , y £ g " also. Again we may
assume Ouc~')</> =£ yy"1. Note that 0x<f> = 0y (since for any ( f l ) £ f , n 3= 2, 0a is the only
idempotent comparable with every other). By similar arguments to those used in (i),
(xx~])<j> = yry"r for some r, 1 =£ r =£ n — 1. Now (y~pyp)(y 'y~') = 0y for each p such that
« - r « p « n - l , that is (y"pyp)^~' • (JCT1) = 0x. But (y'"y")</>"' = x"*xfc, for some
fc 5= 1, as above; therefore (x~kxk)(xx~l) = 0x, possible only for k = n - 1. Since fc has
only one value and since <j>~1 is injective, p can have only one value; that is, r=\.
Hence (xx~')<£ = yy"1. Similarly (x~lx)<f> = y"'y.

Combining this lemma with the previous one, we obtain the following.

Proposition 1.7. Suppose S is completely semisimple, and the element x of S is not
in a subgroup. Then there exists a unique element y of T such that (x)<P = (y),
Occ~')<£ = yy~' and (x~'x)(£ = y"'y.

Proof. Only the uniqueness remains to be shown, and this follows immediately
from the complete semisimplicity of (y), for only {y} and {y"1} can generate (y)
irredundantly.

Recall that the set ^(U) of /-classes of an inverse semigroup U forms a poset
under the ordering Jx « Jy if and only if x €E UyU (x, y £ U). Note that Jx « Jy if and only
if there are idempotents eE.Jx, f&Jy such that e=£/, (by, for example (1; §8.4
Exercise 3)).

Proposition 1.8. // S is completely semisimple, and e,f£ E(S), then e<j>3)f4> if and
only if e3)f. Thus <P induces a bijection <j> of Jp(S) upon $(J) such that

(i) J\h if and only if Jltf>\J24>, / „ / 2 e ^ ( S ) , and
(ii) |E(T) nJ<f>\ = \E(S) HJ\ for all J G jP(S).

Proof. If ejEE(S), eSdf and e^f, then e = xx~\ / = JC'JC for some x G S, not in
a subgroup. Thus (x)<P = (y), for some y G T such that e<f> = yy"1 and f<f> = y"'y. Thus
e<t>3)f<f>. The converse follows similarly.

For any /-class / of S, define J<f> = Je4, G / ( T ) where e G E(S) HJ. Since 3) = / , <f>
is well-defined, and is a bijection of / ( S ) upon / ( T ) since <f>: E(S)-> E(T) is a
bijection. The statement (i) follows from Lemma 1.1 (i), and (ii) is immediate.

If we now require in addition that S be #f-trivial, no non-idempotent of S lies in a
subgroup, and so we may extend the bijection </> of E(S) upon E(T) to a bijection <f>
of S upon T, by defining x<f>, for each non-idempotent x of S, to be the (unique)
element y of T obtained in Proposition 1.7.
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Theorem 1.9. Let S be completely semisimple and ffl-trivial. Then <P induces a
unique bijection <f> of S upon T satisfying (i) (x)<P = (x<f>), and (ii) (*<£)"' = x'l<f>, and
(xx~l)<f> = (x<f>)(x<j>)'\ for all x G S. Thus if <P is induced by an isomorphism of S upon
T, it is induced by a unique such isomorphism, namely, <f>.

Proof. With <f> defined as above, properties (i) and (ii) are immediate from
Proposition 1.7. The uniqueness of <f> follows from the uniqueness of the element y
chosen in the lemma. Finally, if 0: S-» T is an isomorphism inducing <P, properties (i)
and (ii) are clearly satisfied by 8, so 8 = </>.

As an immediate consequence of this theorem, Aut(S), the group of automor-
phisms of S (completely semisimple and $f-trivial) is isomorphic with a subgroup of
Aut(i?(S)), the group of automorphisms of %(S).

Corollary 1.10. / / S is finite 3€-trivial, so is T, and \S\ = \T\.

Proof. As noted earlier, every finite inverse semigroup is completely semisimple.

Corollary 1.11. // S is completely semisimple and 3^-trivial, and x G S, then x has
finite order iff x<f> has.

Proof. From Gluskin's representation of 5F$\ given earlier, every element of (x)
can be expressed (not necessarily uniquely) in the form (x'"xp)xq(xrx~r) for some
integers p, q, r. Thus (JC) is finite iff x has finite order.

2. Free Inverse Semigroups

Denote by 5F$x the free inverse semigroup on the set X. If X is finite, |X| = n, we
may instead write 2F$n.

Theorem 2.1. Every L-isomorphism of S'Sx upon an inverse semigroup T is
induced by a unique isomorphism of 2F$X upon T.

To prove this result we need firstly some properties of SF$X- We use Munn's
representation of &$x by birooted trees, and refer the reader to (8) for all definitions
and elementary results. The following theorem summarises the various properties
which we will need.

Theorem 2.2. (Munn (8), Reilly (10), McAlister and McFadden (5)). For any set X,
(i) ZFS'x is 3€-trivial and completely semisimple;

(ii) ?F3>x is E-unitary (alternatively "reduced" or "proper"), that is, x,e£ 2F-$x,
e2 = e and xe = e imply x2 = x;

(iii) there is a one-to-one correspondence J >-> T(J) between the ^-classes of 2F#x
and the (isomorphism classes of) word-trees on X, such that / , < J2 if and only if
T(/,) D T(J2), and such that J = {(T(J), a, /3)|a, 0 G V(T(J))};

(iv) the idempotents of 9$x are the birooted trees (T,a,a), a G V(T), and
(T,,a, a)«(T2,/3,/3) // and only if TtDT2 and a = /3. Thus each $-class is finite,
having \T(J)\ idempotents.
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If, then, / &£(&fx), define d(J) = |T( / ) | - 1, and for each idempotent e of &#x,
let d(e) = d(Je) be its depth (following Munn (8)). From Theorem 3.5 of (8), every chain
of idempotents between two comparable idempotents of 3F$X is finite, and
(and thus giSPSx)) has the ascending chain condition.

By (i) of Theorem 2.2, we can apply Theorem 1.9. For the remainder of this
section, we assume that 4> is an L-isomorphism of SP^x upon an inverse semigroup T.

Proposition 2.3. The induced map 4> of ${<F$x) upon $(T) is an order-isomor-
phism.

Proof. Since J'i&Jtx) has the ascending chain condition, to show <f> is isotone, it
is clearly sufficient to show that /,<£ <J2(j) for any Ju J2E#(&yx) such that /, <J2.
Put T, = T(/,), and T2 = T(/2). Then T, D T2 and T, is obtained from T2 by the
addition of exactly one extra vertex /3 to T2 and a corresponding edge a/3, for some
vertex a of T2.

Let e = (T,, a, a) and / = (T2, a, a). Thus e <f and e G /,, / £ J2. Since T2 has at
least two vertices, it has an extremity y^a and a corresponding edge 8y, for some
vertex S of T2. Let T3 be the tree obtained from T, by removing this vertex y and
edge By, and put g = (T3, a, a). Then e = fg and /||g, so by Lemma 1.1, e<f> = (f<f>)(g(f>).
Therefore e<f> <f<f>, and so Ji<f> < J2<f>.

On the other hand, suppose Ji\\J2. Then e\\f for all e in i i (S)n/ i and for all / in
E(S)nj2, that is e<t>\\f<j>, by Lemma l.l(i). By Proposition 1.8,

Corollary 2.4. T/ie induced map <f> of E(S'Jx) upon E(T) is an isomorphism.

Proof. If e,fGE(&J>x) with e<f, then Je<Jf, so Je<i) = J^ < Jrf = J/4>. Since
, e4><f<f>. If e||/, then e</)||/</> by Lemma 1.1(1).

Corollary 2.5. T is E-unitary.

Proof. Suppose T contains a non-idempotent y and an idempotent / such that
y/ = /. By Theorem 1.9, y = x<f>, f = e<j>, for some non-idempotent x and idempotent e
of 2F$x- Now by a result of Reilly (10), (x) = SF$X, so it has infinite order. By Corollary
1.11, then, so does y. Since T is completely semisimple and Sif-trivial (by Proposition
1.4), xk+1 G I(xk) for each k s= 1, and so the idempotents y~V, ks*l are distinct. But
yf = f implies ykf = f, k > 1, and so y^y* ^ f, k^ \. Thus £(T) has an infinite chain of
idempotents y~'y > y~2y2> • • • > y^y* > • • • > / . From the previous result, however,
E(T)= E(&$x), contradicting the remarks following Theorem 2.2. So T is E-unitary.

&$x is generated by a set which we may clearly identify with X. Further, if y G T,
then y<£~' = xt... xn, for some *, e X UX'\ 1 =s / =£ n. (For any subset A of an inverse
semigroup, by A'1 we mean {a~'\a G A}). Thus y<£~' G <*,) v • • • v (*„), so y G <*,</>> v
• • • v <*„<£). Hence T = (X<f>). The freeness of ^ ^ x thus asserts the existence of a
unique homomorphism 6 of &J>X upon T such that x6 = x<f>, x G X. In fact *0 = x</>
and (XJC"')0 = (jcx"')<^ for all x G X UA"1 (since ^ satisfies (ii) of Theorem 1.9).
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Theorem 2.1 will be proved by showing that 0 and <f> are identical. Firstly,
however, we need some further properties of the idempotents of S'^x-

An element a of S'^x is said to be a reduced word (in X UX"1) if a = X\... xn for
some x , , . . . , xn G X UX~l such that x,-^ xf+\, 1 =£ i =s n - 1. In this case, the descrip-
tion is unique and the number n is called the length of a. U e = aa~\ then d(e) = n. It
is an easy consequence of Theorem 2.2 that any idempotent of 8F$X can be expressed
in the form 11"=, r,rj\ for some reduced words r, in X UX"1, 1 =£ i « n. Since 0 and <f>
are morphisms on E(2F$X), to show 0 = <j> on f s ( ^ x ) it is therefore sufficient to
prove the following result.

Lemma 2.6. Let a be a reduced word in 2F$x- Then (aa~x)0 = (aa'x)<f>.

Proof. We proceed by induction on the length l(a) of a. From the comments
above, the result is true for words of length 1.

Assume, then, that the result is true for all reduced words of length less than n.
Since <f> is injective, this implies in particular that bO is non-idempotent for all reduced
words b, l(b)< n.

Let a = x , . . . xn be a reduced word of length n, n ^ 2, x, G X UX~'. Denote by bt

the subword x , . . . x, of length /, 1 « / =s n, by ct the subword x , + i . . . xn of length n - j ,
O s S j s s n - 1 , and by d, the idempotent (bT*bi)(CiCT'), l = £ / « n - l . By L e m m a l.l(ii)
and the induction hypothesis , dfi = dj<f>, l ^ i ^ n - l .

Now E(Ja) = {aa'\a~ia}U{di\l^i^n-l}. From Proposition 1.8, E(Ja<t>) =
{(aa-l)<f>,(a~la)<t>}l){di<f>\l^i^n-l}. Since n & 2, aa~'3)du so (aa~')0 G £(/„<£).
Now d&biiCiCT1) = acr '^aa" ' , so that if (aa~')0 = </,<£(= d.-0) for some /, 1 =s i =s n - 1,
then d(09e(bi0)(CiC7l)6. But T is 5if-trivial and E-unitary, so ft,0 is idempotent, a
contradiction. Thus (aa~')0 is either (aa~l)<f> or (a"'a)^>. If (aa~x)d = (a"'a)^>, we note
that aa~x < bn-\b~nl\, so (afl"')8 *(^- i*»- i )^ = C'»-i''n-i)^ But $ is an isomorphism
on E(!F$x), so a~xa =s fcn_,i>~I,. By considering lengths of words we deduce that
a'xa < bn-\b~n

x-\. By representing a by its birooted tree (Theorem 2.2) it follows that
x*' = xn-k+i, 1 « k « n. If n is even, n = 2m, say, then x^1 = xm+,, a contradiction, and
if n is odd, n = 2 m + l, say, then x '̂+i = xm+i, again a contradiction. Therefore
(aa~')0 = (aa~')<f>, and the result follows by induction.

Theorem 2.1 now follows immediately, for by the comments immediately preced-
ing Lemma 2.6, 6 = <£ on idempotents. Therefore for any a G tP-Px, (ad)(ad)~' =
(aa~')<j> = (a<f>)(a4>)~[ and (a6)~\a6) = (a~la)<(> = (a<t>)~\a<t>), so ad = a<f> (from trivi-
ality of $f on T). The uniqueness of 0 is a consequence of the uniqueness of (f>, in
Theorem 1.9.

An immediate consequence of Theorem 2.1 is that Aut( i?(^x)) is isomorphic
with A u t ( ^ * ) . O'Carroll (9) has shown that A u t ( ^ n ) s{i/r6 SB\(-x)tfi = -(xt/0, for
all x G B}, where B = {k G Z | -n =s /c ̂  n}, and SB is the symmetric group on B. Thus

has 2"/i! elements.

3. Finite Inverse Semigroups

Since every finite inverse semigroup semigroup is completely semisimple, the
results of Section 1 apply to finite $f-trivial inverse semigroups. In particular we see
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from Lemma 1.1 and Theorem 1.9 that if S and T are finite ^-trivial and are
L-isomorphic, \E(S)\ = | £ ( r ) | and \S\ = |T|. In addition, such inverse semigroups have
the basis property (4), whereby any two minimal generating sets (bases) for an inverse
subsemigroup have the same number of elements, this number being the rank of the
inverse subsemigroup. From Theorem 1.9, it is clear that rank 5 = rank T. (See the
discussion following Corollary 2.5).

However, the following non-isomorphic semilattices can be easily shown to have
isomorphic lattices of inverse subsemigroups (that is, subsemilattices).

Fig. 1

For any semilattice E, define TE as the inverse subsemigroup of $E (the symmetric
inverse semigroup on E) consisting of the isomorphisms between principal ideals of
E. Munn introduced TE and showed (6,7) that E(TE) = E, that TE is fundamental (that
is, TE has no non-trivial congruences contained in 26), and further that any
fundamental inverse semigroup with semilattice isomorphic with E can be embedded
in TE- Also, TE is 5if-trivial if and only if each principal ideal has trivial group of
automorphisms.

Theorem 3.1. Let E be a finite semilattice such that
(i) each non-maximal idempotent of E is covered by at least two idempotents of E.
Then every L-isomorphism of E upon an inverse semigroup F is induced by a

(unique) isomorphism of E upon F.
If further, E satisfies
(ii) each principal ideal has trivial group of automorphisms, then any inverse

semigroup L-isomorphic with TE is isomorphic with TE.

Proof. Suppose E satisfies (i), and <t> is an L-isomorphism of E upon F, inducing
the bijection 4> of Lemma 1.1. Now if e, f G E and e < f, then e is not maximal, and so
e = fg for some g G E, g||/. Thus eij> = (f<(>)(g<t>), so e<f> <f4>. Since E is finite, for any
e,f EL7, with e < f, there is a chain e = e0 < ex < e2 < • • • < en = / of elements of E.
Thus e<f> </<£, and so <f> is an isomorphism, (as in the proof of Corollary 2.4).

Now suppose E satisfies (ii) in addition, and <P is an L-isomorphism of TE upon T.
Then <£(E) = SE(E(T)), and so, from (i), E = E(T). From (ii), TE, and so T, is
$f-trivial. Then T is isomorphic with an inverse subsemigroup of TE. But TE is finite,
and \T\ = \TE\. So T=TE.

The free semilattice Sf5£n on a set of n elements satisfies (i)—thus we have an
analogue of Theorem 2.1 for free semilattices. There are numerous examples of
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semilattices satisfying both (i) and (ii) (since, for example, any finite semilattice whose
principal ideals are chains satisfies (ii)).

In general, however, TE is not determined by i?(TE), even in the $f-trivial case.
For example the semilattices Et and E2 cited earlier satisfy (ii) of Theorem 3.1 (but
not (i)), but direct calculation shows
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