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Abstract

Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that
holds for almost all tuples of real numbers. We provide a fibre refinement, solving
a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was
only known on the plane, as previous approaches relied heavily on the theory of
continued fractions. Using reduced successive minima in lieu of continued fractions,
we develop the structural theory of Bohr sets of arbitrary rank, in the context
of diophantine approximation. In addition, we generalise the theory and result to
the inhomogeneous setting. To deal with this inhomogeneity, we employ diophantine
transference inequalities in lieu of the three distance theorem.

1. Introduction

1.1 Results
The Littlewood conjecture (circa 1930) is perhaps the most sought-after result in diophantine
approximation. It asserts that if α, β ∈ R then

lim inf
n→∞

n‖nα‖ · ‖nβ‖ = 0.

However, Gallagher’s theorem [Gal62] implies that if k > 2 then for almost all tuples
(α1, . . . , αk) ∈ Rk the stronger statement

lim inf
n→∞

n(log n)k‖nα1‖ · · · ‖nαk‖ = 0 (1.1)

is valid. Beresnevich, Haynes and Velani [BHV, Theorem 2.1 and Remark 2.4] showed that if k = 2
then for any α1 ∈ R the statement (1.1) holds for almost all α2 ∈ R. On higher-dimensional fibres,
the problem has remained visibly open until now [BHV, Problem 2.1]. We solve this problem.

Theorem 1.1. If k > 2 and α1, . . . , αk−1 ∈ R then for almost all αk ∈ R we have

lim inf
n→∞

n(log n)k‖nα1‖ · · · ‖nαk‖ = 0.

What we show is more general. The multiplicative exponent of the vector α = (α1, . . . , αk−1),
denoted ω×(α), is the supremum of the set of real numbers w such that, for infinitely many n ∈ N,
we have

‖nα1‖ · · · ‖nαk−1‖ < n−w.
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Theorem 1.2. Let k > 2, let α1, . . . , αk−1, γ1, . . . , γk−1 ∈ R, and assume that the multiplicative
exponent of α = (α1, . . . , αk−1) satisfies ω×(α) < (k − 1)/(k − 2). Let ψ : N → R>0 be a
decreasing function such that

∞∑
n=1

ψ(n)(log n)k−1 =∞. (1.2)

Then for almost all α ∈ R there exist infinitely many n ∈ N such that

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖ · ‖nα‖ < ψ(n).

The k = 2 case was established in [Cho18]. In that case, the condition becomes ω×(α) <∞,
which is equivalent to α being irrational and non-Liouville.

Theorem 1.1 will follow from Theorem 1.2, except in the case ω×(α) > (k − 1)/(k − 2).
However, in the latter case there exist arbitrarily large n ∈ N for which

‖nα1‖ · · · ‖nαk−1‖ < n−1−1/(k−1).

For these n, we thus have
n(log n)k‖nα1‖ · · · ‖nαk‖ = o(1)

for all αk. This completes the deduction of Theorem 1.1 assuming Theorem 1.2.
The hypothesis ω×(α) < (k − 1)/(k − 2) is generic. Indeed, it follows directly from the

work of Hussain and Simmons [HS18, Corollary 1.4], or alternatively from the prior but weaker
conclusions of [BV15, Remark 1.2], that the exceptional set{

α ∈ Rk−1 : ω×(α) >
k − 1

k − 2

}
has Hausdorff codimension 1/(2k − 3) in Rk−1. This is much stronger than the assertion that
the set of exceptions has Lebesgue measure zero.

Some condition on (α1, . . . , αk−1) is needed for Theorem 1.2. For example, if (α1, . . . , αk−1) ∈
Qk−1, then the nαi take on finitely many values modulo 1, so if the γi avoid these then

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖ � 1.

Khintchine’s theorem (Theorem 1.4) then refutes the conclusion of Theorem 1.2 in this scenario,
for appropriate ψ.

Theorem 1.2 is sharp, in the sense that the divergence hypothesis (1.2) is necessary, as we now
explain. Gallagher’s work [Gal62] shows, more precisely, the following (see [BV15, Remark 1.2]).

Theorem 1.3 (Gallagher). Let k > 2, and write µk for k-dimensional Lebesgue measure. Let
ψ : N → R>0 be a decreasing function, and denote by W×k (ψ) the set of (α1, . . . , αk) ∈ [0, 1]k

such that
‖nα1‖ · · · ‖nαk‖ < ψ(n)

has infinitely many solutions n ∈ N. Then

µk(W
×
k (ψ)) =


0 if

∞∑
n=1

ψ(n)(log n)k−1 <∞,

1 if
∞∑
n=1

ψ(n)(log n)k−1 =∞.
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In particular, the divergence part of this statement is sharp. Theorem 1.2 is stronger still, so
it must also be sharp, insofar as it is necessary to assume (1.2).

Some readers may be curious about the multiplicative Hausdorff theory. Owing to the
investigations of Beresnevich and Velani [BV15, § 1] and Hussain and Simmons [HS18], we now
understand that genuine ‘fractal’ Hausdorff measures are insensitive to the multiplicative nature
of such problems. With k ∈ Z>2 and ψ : N → R>0, let W×k (ψ) be as in Theorem 1.3, and denote
by Wk(ψ) the set of (α1, . . . , αk) ∈ [0, 1]k for which

max(‖nα1‖, . . . , ‖nαk‖) < ψ(n)

has infinitely many solutions n ∈ N. In light of [HS18, Corollary 1.4] and [BRV16, Theorem 4.12],
we have the Hausdorff measure identity

Hs(W×k (ψ)) = Hs−(k−1)(W1(ψ)) (k − 1 < s < k).

Loosely speaking, this reveals that multiplicatively approximating k real numbers at once is
the same as approximating one of the k numbers, save for a set of zero Hausdorff s-measure.
This is in stark contrast to the Lebesgue case s = k, wherein there are extra logarithms in the
multiplicative setting (compare Theorems 1.3 and 1.4). As discussed in [BV15, HS18], if s > k
then Hs(W×k (ψ)) = 0, irrespective of ψ, while if s 6 k − 1 then Hs(W×k (ψ)) =∞, so long as ψ
does not vanish identically.

1.2 Techniques
The proof of Theorem 1.2 parallels [Cho18], with a more robust approach needed for the
structural theory of Bohr sets. Recalling that

α = (α1, . . . , αk−1), γ = (γ1, . . . , γk−1)

are fixed, we introduce the auxiliary approximating function Φ = Φγ
α given by

Φ(n) =
ψ(n)

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
. (1.3)

The conclusion of Theorem 1.2 is equivalent to the assertion that for almost all α ∈ R there exist
infinitely many n ∈ N such that

‖nα‖ < Φ(n).

If Φ were monotonic, then Khintchine’s theorem [BRV16, Theorem 2.3] would be a natural and
effective approach.

Theorem 1.4 (Khintchine’s theorem). Let Φ : N → R>0. Then the measure of the set

{α ∈ [0, 1] : ‖nα‖ < Φ(n) for infinitely many n ∈ N}

is 
0 if

∞∑
n=1

Φ(n) <∞,

1 if

∞∑
n=1

Φ(n) =∞ and Φ is monotonic.
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For any n ∈ N the function α 7→ ‖nα‖ is periodic modulo 1, so Khintchine’s theorem implies
that if Φ is monotonic and

∑∞
n=1 Φ(n) =∞ then for almost all β ∈ R the inequality ‖nβ‖ < Φ(n)

holds for infinitely many n ∈ N. The specific function Φ defined in (1.3) is very much not
monotonic, so for Theorem 1.2 our task is more demanding. We place the problem in the context
of the Duffin–Schaeffer conjecture [DS41].

Conjecture 1.5 (Duffin–Schaeffer conjecture, 1941). Let Φ : N → R>0 satisfy

∞∑
n=1

ϕ(n)

n
Φ(n) =∞. (1.4)

Then for almost all β ∈ R the inequality

|nβ − r| < Φ(n)

holds for infinitely many coprime pairs (n, r) ∈ N× Z.

For comparison to Khintchine’s theorem, note that if Φ is monotonic then the divergence of∑∞
n=1 (ϕ(n)/n)Φ(n) is equivalent to that of

∑∞
n=1 Φ(n).

The Duffin–Schaeffer conjecture has stimulated research in diophantine approximation for
decades, and remains open. There has been some progress, including the Erdős–Vaaler theorem
[Har98, Theorem 2.6], as well as [Ais14, BHHV13, HPV12] and, most recently, [ALMT18]. For our
purpose, the most relevant partial result is the Duffin–Schaeffer theorem [Har98, Theorem 2.5].

Theorem 1.6 (Duffin–Schaeffer theorem). Conjecture 1.5 holds under the additional hypothesis

lim sup
N→∞

(∑
n6N

ϕ(n)

n
Φ(n)

)(∑
n6N

Φ(n)

)−1
> 0. (1.5)

Here ϕ is the Euler totient function, given by ϕ(n) =
∑

a6n
(a,n)=1

1.

If Φ were supported on primes, for instance, then the hypothesis (1.5) would present no
difficulties [Har98, p. 27], but in general this hypothesis is quite unwieldy. There have been very
few genuinely different examples in which the Duffin–Schaeffer theorem has been applied but, as
demonstrated in [Cho18], approximating functions of the shape Φγ

α are susceptible to this style
of attack.

We tame our auxiliary approximating function Φ by restricting its support to a ‘well-behaved’
set G, giving rise to a modified auxiliary approximating function Ψ = Ψγ

α (see §§ 5 and 6). The
Duffin–Schaeffer theorem will be applied to Ψ. By partial summation and the monotonicity of
Ψ, we are led to estimate the sums

TN (α,γ) :=
∑
n6N
n∈G

1

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
(1.6)

and

T ∗N (α,γ) :=
∑
n6N
n∈G

ϕ(n)

n‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
. (1.7)
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Specifically, we require sharp upper bounds for the first sum and sharp lower bounds for the
second. By dyadic pigeonholing, the former boils down to estimating the cardinality of Bohr sets

B = Bγ
α(N ; δ) := {n ∈ Z : |n| 6 N, ‖nαi − γi‖ 6 δi (1 6 i 6 k − 1)}. (1.8)

The latter, meanwhile, demands that we also understand the structure of B; we will be allowed
to impose a size restriction on the δi to make this work.

Bohr sets have been studied in other parts of mathematics, notably in additive combinatorics
[TV06, § 4.4]. The idea is that there should be generalised arithmetic progressions P and P ′, of
comparable size, for which P ⊆ B ⊆ P ′. This correspondence is well-understood in the context of
abelian groups, but for diophantine approximation the foundations are still being laid. In [Cho18],
the first author constructed P in the case k = 2 case using continued fractions, drawing inspiration
from Tao’s blog post [Tao12]. Lacking such a theory in higher dimensions, we will use reduced
successive minima in this article, and the theory of exponents of diophantine approximation will
be used to handle the inhomogeneity. We shall also construct the homogeneous counterpart of
P ′, in order to estimate the cardinality of B.

The basic idea is to lift B to a set B̃ ⊂ Zk. To determine the structure of B̃, we procure
a discrete analogue of John’s theorem, akin to that of Tao and Vu [TV08, Theorem 1.6]. The
structural data provided in [TV08] are insufficient for our purposes, as they only assert the
upper bound dim(P ) 6 k. By exercising some control over the parameters, which we may for
the problem at hand, we show not only that dim(P ) = k, but also that each dimension has
substantial length. In addition, we extend to the inhomogeneous case.

As in [Cho18], the totient function does average well: we show that ϕ(n)/n� 1 on average
over our generalised arithmetic progressions. This will eventually enable us to conclude that

T ∗N (α,γ) � TN (α,γ),

and to then complete the proof of Theorem 1.2 using the Duffin–Schaeffer theorem.

1.3 Open problems
1.3.1 The large multiplicative exponent case. It is plausible that Theorem 1.2 might hold

without the assumption ω×(α) < (k − 1)/(k − 2); as discussed in the introduction, some
assumption is necessary (irrationality, for example). This aspect has not been solved even in
the case k = 2, see [Cho18]. When k = 2, the hypothesis ω×(α) < (k − 1)/(k − 2) is equivalent
to α1 being irrational and non-Liouville and, whilst the former is necessary, the latter is likely
not.

1.3.2 The convergence theory. It would be desirable to have a closer convergence counterpart
to Theorem 1.2, in the spirit of [BHV, Corollary 2.1]. A homogeneous convergence statement
would follow from an upper bound of the shape∑

n6N

1

‖nα1‖ · · · ‖nαk−1‖
� N(logN)k−1

for the sums considered in [Bug09, Fre19, LV15], together with an application of the Borel–
Cantelli lemma. This bound is generically false [BHV, § 1.2.4] in the case k = 2, and when k > 3
is considered to be difficult to obtain even for a single vector (α1, . . . , αk−1); see the question
surrounding [LV15, Equation (1.4)]. It is likely that the logarithmically-averaged sums∑

n6N

1

n‖nα1‖ · · · ‖nαk−1‖
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are better-behaved. Perhaps the order of magnitude is generically (logN)k, as is known when
k = 2 (see [BHV, § 1.2.4]).

1.3.3 A special case of the Duffin–Schaeffer conjecture. In the course of our proof of
Theorem 1.2, we establish the Duffin–Schaeffer conjecture for a class of functions, namely
those modified auxiliary approximating functions of the shape Ψ = Ψγ

α. The task of proving
the Duffin–Schaeffer conjecture for the unmodified functions Φ = Φγ

α, however, remains largely
open, even in the simplest case k = 2.

1.3.4 Inhomogeneous Duffin–Schaeffer problems. Inhomogeneous variants of the Duffin–
Schaeffer conjecture have received some attention in recent years [BHV, Cho18, Ram17a,
Ram17b, Yu]. If we knew an inhomogeneous version of the Duffin–Schaeffer theorem, then the
following assertion would follow from our method.

Conjecture 1.7. Let k > 2, let α1, . . . , αk−1, γ1, . . . , γk ∈ R, and assume that the multiplicative
exponent of α = (α1, . . . , αk−1) satisfies ω×(α) < (k − 1)/(k − 2). Let ψ : N → R>0 be a
decreasing function satisfying (1.2). Then for almost all α ∈ R there exist infinitely many n ∈ N
such that

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖ · ‖nα− γk‖ < ψ(n).

It would follow, for instance, if we knew the following [Cho18, Conjecture 1.7].

Conjecture 1.8 (Inhomogeneous Duffin–Schaeffer theorem). Let δ ∈ R, and let Φ : N → R>0

satisfy (1.4) and (1.5). Then for almost all β ∈ R there exist infinitely many n ∈ N such that

‖nβ − δ‖ < Φ(n).

There is little consensus over what the ‘right’ statement of the inhomogeneous Duffin–
Schaeffer theorem should be. The assumption (1.5) may not ultimately be necessary, just as
it is conjecturally not needed when δ = 0. In the inhomogeneous setting, we do not at present
even have an analogue of Gallagher’s zero-full law [Gal61].

1.3.5 The dual problem. We hope to address this in future work.

Conjecture 1.9. Let α1, . . . , αk−1 ∈ R. For n ∈ Z write n+ = max(|n|, 2), and define

ψ : Z>2 → R>0

n 7→ n−1(log n)−k.

Then for almost all αk ∈ R there exist infinitely many (n1, . . . , nk) ∈ Zk such that

‖n1α1 + · · ·+ nkαk‖ < ψ(n+1 · · ·n
+
k ). (1.9)

To motivate this, observe that the conditions αk ∈ [0, 1] and (1.9) define a limit superior set
of unions of balls

En =

nk⋃
a=0

B

(
a− n1α1 − · · · − nk−1αk−1

nk
,
ψ(n1 · · ·nk)

nk

)
∩ [0, 1].

(Let us assume, for illustration, that n1, . . . , nk > 0. This is a simplification of reality.) Using
partial summation and the fact that∑

n6N

∑
n1···nk=n

1 �k N(logN)k−1,
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one can show that ∑
n1,...,nk∈N

µ(En)�
∞∑
n=2

1

n log n
=∞.

In view of the Borel–Cantelli lemmas, we would expect on probabilistic grounds that
lim supn→∞En has full measure in [0, 1], and one can use periodicity to extend this reasoning
to αk ∈ R.

1.4 Organisation
In § 2, we recall the relevant diophantine transference inequalities, in particular Khintchine
transference and that of Bugeaud and Laurent. Then, in § 3, we develop the structural theory
of Bohr sets, in this higher-dimensional diophantine approximation setting. This enables us to
prove that the Euler totient function averages well on our Bohr sets, in § 4, paving the way for us
to show that the sums TN (α,γ) and T ∗N (α,γ) are comparable, in § 5. With all of the ingredients
in place, we finish the proof of our main result, Theorem 1.2, in § 6.

1.5 Notation
We use the Bachmann–Landau and Vinogradov notations: for functions f and positive-valued
functions g, we write f � g or f = O(g) if there exists a constant C such that |f(x)| 6 Cg(x)
for all x. The constants implied by these notations are permitted to depend on α1, . . . , αk−1.
Further, we write f � g if f � g � f . If S is a set, we denote the cardinality of S by |S| or #S.
The symbol p is reserved for primes. The pronumeral N denotes a positive integer, sufficiently
large in terms of α1, . . . , αk−1. When x ∈ R, we write ‖x‖ for the distance from x to the nearest
integer.

2. Diophantine exponents and transference inequalities

Beginning with Khintchine transference [BRV16, Khi26], the relationship between simultaneous
and dual approximation remains an active topic of research. Our focus will be on the
inhomogeneous theory of Bugeaud and Laurent [BL05], which builds upon foundational work
of Mahler on dual lattices from the late 1930s (see [Eve, Corollary 2.3] and the surrounding
discussion). For real vectors α = (α1, . . . , αd) and γ = (γ1, . . . , γd), this provides a lower bound
for the uniform simultaneous inhomogeneous exponent ω̂(α,γ) in terms of the dual exponent
ω∗(α). There have since been refinements and generalisations by a number of authors, among
them Beresnevich and Velani [BV10], Ghosh and Marnat [GM19], and Chow et al. [CGGMS].

We commence by introducing the simultaneous exponent ω(α) of a vector α = (α1, . . . , αd)
∈ Rd. This is the supremum of the set of real numbers w such that, for infinitely many n ∈ N,
we have

‖nαi‖ < n−w (1 6 i 6 d).

Comparing this to the multiplicative exponent ω×(α) defined in the introduction, it follows
immediately from the definitions that

dω(α) 6 ω×(α).

For α ∈ Rd, define ω∗(α) as the supremum of the set of real numbers w such that, for
infinitely many n = (n1, . . . , nd) ∈ Zd, we have

‖n1α1 + · · ·+ ndαd‖ 6 |n|−w.
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For α,γ ∈ Rd, define ω̂(α,γ) as the supremum of the set of real numbers w such that, for any
sufficiently large real number X, there exists n ∈ N satisfying

n < X, ‖nαi − γi‖ < X−w (1 6 i 6 d).

Below we quote a special case of the main theorem of [BL05].

Theorem 2.1 (Bugeaud–Laurent). If α,γ ∈ Rd then

ω̂(α,γ) > ω∗(α)−1.

In the context of Theorem 1.2, we have d = k − 1 and

ω(α) 6
ω×(α)

d
<

1

d− 1
.

Khintchine transference [BL10, Theorem K] gives

ω∗(α)

d+ (d− 1)ω∗(α)
6 ω(α) <

1

d− 1
,

and in particular
ω∗(α) <∞. (2.1)

Theorem 2.1 then furnishes a positive lower bound for ω̂(α,γ), uniform in γ. In what follows,
let ε be a positive real number, sufficiently small in terms of α1, . . . , αk−1. One may choose ε
according to

10k
√
ε =

1

ω×(α)
− k − 2

k − 1
∈ (0, 1].

3. The structural theory of Bohr sets

In this section, we develop the correspondence between Bohr sets and generalised arithmetic
progressions. In a different context, this is a fundamental paradigm of additive combinatorics
[TV06]. For diophantine approximation, the first author used continued fractions to describe
the theory in the case of rank-one Bohr sets in [Cho18]. In the absence of a satisfactory higher-
dimensional theory of continued fractions, we take a more general approach here, involving
reduced successive minima. Our theory is inhomogeneous, which presents an additional difficulty.
To handle this aspect, we deploy the theory of diophantine exponents, specifically Theorem 2.1
of Bugeaud and Laurent [BL05].

Let N be a large positive integer, and recall that we have fixed α ∈ Rk−1 with ω×(α) <
(k − 1)/(k − 2). The shift vector γ = (γ1, . . . , γk−1) is also fixed, and for certain values of δ =
(δ1, . . . , δk−1) we wish to study the structure of the Bohr set B = Bγ

α(N ; δ) defined in (1.8). This
rank-(k− 1) Bohr set B has the structure of a k-dimensional generalised arithmetic progression:
we construct such patterns P and P ′ with a number of desirable properties, including that
P ⊆ B ⊆ P ′. For concreteness, we introduce the notations

P (b;A1, . . . , Ak;N1, . . . , Nk) = {b+A1n1 + · · ·+Aknk : |ni| 6 Ni}

and
P+(b;A1, . . . , Ak;N1, . . . , Nk) = {b+A1n1 + · · ·+Aknk : 1 6 ni 6 Ni},
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when b, A1, . . . , Ak, N1, . . . , Nk ∈ N. The latter generalised arithmetic progression is proper if for
each n ∈ P+(b, A1, . . . , Ak, N1, . . . , Nk) there is a unique vector (n1, . . . , nk) ∈ Nk for which

ni 6 Ni (1 6 i 6 k), n = b+A1n1 + · · ·+Aknk.

Most of our structural analysis is based on the geometry of numbers in Rk. With

π1 : Rk → R

being projection onto the first coordinate, observe that B = π1(B̃), where

B̃ = {(n, a1, . . . , ak−1) ∈ Zk : |n| 6 N, |nαi − γi − ai| 6 δi (1 6 i 6 k − 1)}.

Meanwhile, our generalised arithmetic progressions will essentially be projections of suitably
truncated lattices. For v1, . . . ,vk ∈ Zk and N1, . . . , Nk ∈ N, define

P̃ (v1, . . . ,vk;N1, . . . , Nk) = {n1v1 + · · ·+ nkvk : |ni| 6 Ni}.

To orient the reader, we declare in advance that we will choose Ai = |π1(vi)| for all i.
Our primary objective in this section is to prove the following lemma.

Lemma 3.1 (Inner structure). Assume

N−ε 6 δi 6 1 (1 6 i 6 k − 1). (3.1)

Then there exists a proper generalised arithmetic progression

P = P+(b;A1, . . . , Ak;N1, . . . , Nk)

contained in B, for which

|P | � δ1 · · · δk−1N, Ni > N ε (1 6 i 6 k), N
√
ε 6 b 6

N

10

and
gcd(A1, . . . , Ak) = 1. (3.2)

Our approach to analysing B̃ is similar to that of Tao and Vu [TV08]. Under our hypotheses,
we are able to obtain the important inequalities Ni > N ε (1 6 i 6 k), and also to deal with the
inhomogeneous shift. These two features are not present in [TV08], which is more general.

3.1 Homogeneous structure
We begin with the homogeneous lifted Bohr set

B̃0 :=

{
(n, a1, . . . , ak−1) ∈ Zk : |n| 6 N

10
, |nαi − ai| 6

1

10
δi (1 6 i 6 k − 1)

}
.

This consists of the lattice points in the region

R :=

{
(n, a1, . . . , ak−1) ∈ Rk : |n| 6 N

10
, |nαi − ai| 6

1

10
δi (1 6 i 6 k − 1)

}
.

Define
λ = (δ1 · · · δk−1N)1/k, S = λ−1R.
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Let λ1 6 λ2 6 · · · 6 λk be the reduced successive minima [Sie89, Lecture X] of the symmetric
convex body S. Corresponding to these are vectors v1, . . . ,vk ∈ Zk whose Z-span is Zk, and for
which vi ∈ λiS (1 6 i 6 k). By the first finiteness theorem [Sie89, Lecture X, § 6], we have

λ1 · · ·λk �k vol(S)−1 � 1. (3.3)

We choose moduli parameters Ai = |π1(vi)| (1 6 i 6 k). As

det(v1, . . . ,vk) = ±1,

we must have (3.2).
Next, we bound λ1 from below. We know that

v1 ∈ λ1S =
λ1
λ
R

has integer coordinates, so with n = |π1(v1)| we have

1 6 n 6
λ1

10λ
N, ‖nαi‖ 6

λ1
10λ

δi (1 6 i 6 k − 1),

and so
‖nα1‖ · · · ‖nαk−1‖ � (λ1/λ)k−1δ1 · · · δk−1 � (λ1/λ)k−1.

On the other hand

‖nα1‖ · · · ‖nαk−1‖ � n−ε−ω
×(α) � (Nλ1/λ)−ε−ω

×(α).

Together, the previous two inequalities yield

(λ1/λ)k−1+ω
×(α)+ε � N−ε−ω

×(α),

and using (3.1) now gives

λ1 � λN (−ε−ω×(α))/(k−1+ω×(α)+ε) � N (1−ε(k−1))/k+(−ε−ω×(α))/(k−1+ω×(α)+ε).

This enables us to bound λk from above: from (3.3), we have

λk � λ1−k1 � N (k−1)((ω×(α)+ε)/(k−1+ω×(α)−ε)−(1−ε(k−1))/k).

As ε is small and ω×(α) < (k − 1)/(k − 2), the exponent is strictly less than

(k − 1)

(
(k − 1)/(k − 2)

k − 1 + (k − 1)/(k − 2)
− 1

k

)
− 2ε =

1

k
− 2ε.

(We interpret the left-hand side as a limit if k = 2.) Indeed, the function

f(x, y) =
x+ y

k − 1 + x− y
is uniformly bi-Lipschitz in each component on [ω×(α), (k − 1)/(k − 2)]× [0, 1], and so

f

(
k − 1

k − 2
, 0

)
− f(ω×(α), ε) > 3ε.

Since
λ� N (1−ε(k−1))/k,

with ε small and N large, we conclude that λ > kλk(N
ε + 1). We now specify our length

parameters

Ni =

⌊
λ

kλi

⌋
> N ε (1 6 i 6 k).

For i = 1, 2, . . . , k, we have vi ∈ (λi/λ)R∩ Zk. The triangle inequality now ensures that

P̃ (v1, . . . ,vk;N1, . . . , Nk) ⊆ B̃0. (3.4)
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3.2 Finding and adjusting a base point
By (2.1) and Theorem 2.1, together with the fact that ε is small, we have ω̂(α,γ) > ε. Hence,
in light of (3.1), there exists b0 ∈ N such that

b0 6
N

20
, ‖b0αi − γi‖ 6

δi
20

(1 6 i 6 k − 1).

By Dirichlet’s approximation theorem [BRV16, Theorem 4.1], choose s ∈ N such that

s 6 bN/20c, ‖sαi‖ 6 bN/20c−1/(k−1) (1 6 i 6 k − 1).

As ε is small and ω(α) 6 ω×(α)/(k − 1) < 1/(k − 2), there exists δ ∈ (0, 1/(k − 2 +
√
ε) −

ω(α)). Now

N−1/(k−1) > max
i6k−1

‖sαi‖ � s−δ−ω(α),

and so

s� N1/((k−1)(δ+ω(α))).

Since N is large and δ + ω(α) < 1/(k − 2 +
√
ε), we glean that

s > N (k−2+
√
ε)/(k−1) > N

√
ε.

We modify our basepoint by putting b := b0 + s. By the triangle inequality, this ensures that

N
√
ε 6 b 6

N

10
, ‖bαi − γi‖ 6

δi
10

(1 6 i 6 k − 1).

With the base point, moduli parameters, and length parameters specified, we have how defined
the generalised arithmetic progression

P = P+(b, A1, . . . , Ak, N1, . . . , Nk).

3.3 Projection, properness, and size
First and foremost, we verify the inclusion P ⊆ B. Any n ∈ P has the shape

n = b+
∑
i6k

niπ1(vi)

for some integers n1 ∈ [−N1, N1], . . . , nk ∈ [−Nk, Nk]. By (3.4) and the triangle inequality, we
have

|n| 6 b+
∑
i6k

NiAi 6
N

10
+
N

10
< N

and, for i = 1, 2, . . . , k − 1,

‖nαi − γi‖ 6 ‖bαi − γi‖+

∥∥∥∥π1(∑
j6k

njvj

)
αi

∥∥∥∥ 6
δi
10

+
δi
10

< δi.

We conclude that P ⊆ B.
Second, we show that P is proper. Suppose that integers ni,mi ∈ {1, 2, . . . , Ni} (1 6 i 6 k)

satisfy

b+ n1A1 + · · ·+ nkAk = b+m1A1 + · · ·+mkAk.

2224

https://doi.org/10.1112/S0010437X19007589 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007589


Higher-rank Bohr sets and diophantine approximation

Then, with (x1, . . . , xk) = (n1, . . . , nk)− (m1, . . . ,mk), we have∑
i6k

xi|π1(vi)| = 0.

With yi = xi · sgn(π1(vi)) and y = (y1, . . . , yk)
T , we now have

π1(My) = 0,

where M = (v1, . . . ,vk) ∈ GLk(Z). Moreover

My ∈ P̃ (v1, . . . ,vk;N1, . . . , Nk) ⊆ B̃0,

so we draw the a priori stronger conclusion that My = 0. As M is invertible, we obtain y = 0,
so x = 0, and we conclude that P is proper.

Finally, as P is proper, its cardinality is readily computed as

|P | = N1 · · ·Nk �
∏
i6k

(λ/λi)
k � λk = δ1 · · · δk−1N.

This completes the proof of Lemma 3.1.

3.4 Structure outside Bohr sets, and an upper bound on the cardinality
In this subsection we provide an ‘outer’ construction, complementing the structural lemma of
the previous subsection. For the purpose of Theorem 1.2, we only require this for homogeneous
Bohr sets (those with γ = 0). A standard counting trick will then enable us to handle the shift
γ, accurately bounding the size of Bγ

α(N ; δ). Put τ =
√
ε.

Lemma 3.2 (Outer structure). If

N−τ 6 δi 6 2 (1 6 i 6 k − 1)

then there exists a generalised arithmetic progression

P ′ = P (0;A1, . . . , Ak;N1, . . . , Nk)

containing B0
α(N ; δ), for which |P ′| � δ1 · · · δk−1N .

Proof. We initially follow the proof of Lemma 3.1, with τ in place of ε. Now, however, we enlarge
the Ni by a constant factor: let Ck be a large positive constant, and choose Ni = bCkλ/λic > N τ

for i = 1, 2, . . . , k. The cardinality of P ′ is bounded above as

|P ′| �k N1 · · ·Nk � δ1 · · · δk−1N,

so our only remaining task is to show that B0
α(N ; δ) ⊆ P ′. We establish, a fortiori, that

B̃0
α(N ; δ) ⊆ P̃ ′.

Let (n, a1, . . . , ak−1) ∈ B̃0
α(N ; δ). Since v1, . . . ,vk generate Zk, there exist n1, . . . , nk ∈ Z

such that
n := (n, a1, . . . , ak−1)

T = n1v1 + · · ·+ nkvk.

Let M = (v1, . . . ,vk) ∈GLk(Z), and for i = 1, 2, . . . , k let Mi be the matrix obtained by replacing
the ith column of M by n. Now Cramer’s rule gives

|ni| = |det(Mi)|.

Observe that n ∈ 10λS and vi ∈ λiS. Determinants measure volume, so by (3.3) we have

ni � |λλ1 · · ·λk/λi| �k |λ/λi|.

As Ck is large, we have |ni| 6 Ni, and so n ∈ P̃ ′. 2
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Corollary 3.3 (Cardinality bound). If

N−τ 6 δi 6 1 (1 6 i 6 k − 1)

then
#Bγ

α(N ; δ)� δ1 · · · δk−1N.

Proof. We may freely assume that Bγ
α(N ; δ) is non-empty. Fix n0 ∈ Bγ

α(N ; δ). By the triangle
inequality, the function n 7→ n− n0 defines an injection of Bγ

α(N ; δ) into B0
α(N ; 2δ), so

|Bγ
α(N ; δ)| 6 max{1, |B0

α(N ; 2δ)|}.

An application of Lemma 3.2 completes the proof. 2

4. The preponderance of reduced fractions

In this section, we use the generalised arithmetic progression structure to control the average
behaviour of the Euler totient function ϕ on

B̂γ
α(N ; δ) := Bγ

α(N ; δ) ∩ [N
√
ε, N ].

The AM–GM inequality [Ste04, ch. 2] will enable us to treat each prime separately, at which
point we can employ the geometry of numbers.

Lemma 4.1 (Good averaging). Let N−ε 6 δ1, . . . , δk−1 6 1. Then∑
n∈B̂γ

α(N ;δ)

ϕ(n)

n
� δ1 · · · δk−1N.

Proof. Let P ⊂ B̂γ
α(N ; δ) denote the generalised arithmetic progression from Lemma 3.1. Since∑

n∈B̂γ
α(N ;δ)

ϕ(n)

n
>
∑
n∈P

ϕ(n)

n
,

and since |P | � δ1 · · · δk−1N , the AM–GM inequality implies that it suffices to establish that

X :=

(∏
n∈P

ϕ(n)

n

)1/|P |
� 1. (4.1)

To this end, we observe that the well-known relation

ϕ(n)

n
=
∏
p|n

(1− 1/p)

permits us to rewrite X as

X =
∏
p6N

(1− 1/p)αp ,

where αp = |P |−1|{n ∈ P : n ≡ 0 mod p}|. It therefore remains to show that

αp � p−ε. (4.2)
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Indeed, once we have (4.2) at hand, we can infer that

log(1/X) 6
∑
p

αp log(1 + 2/p)�
∑
p

p−ε log(1 + 2/p),

whereupon the trivial inequality log(1 + 2/p) 6 2/p yields

log(1/X)�
∑
p

p−1−ε � 1,

implying (4.1).
We proceed to establish (4.2). We may suppose that αp > 0, which allows us to fix positive

integers n∗1 6 N1, . . . , n
∗
k 6 Nk for which

b+A1n
∗
1 + · · ·+Akn

∗
k ≡ 0 mod p.

If n ∈ P then there exist unique n1, . . . , nk ∈ N such that ni 6 Ni (1 6 i 6 k) and n = b+A1n1+
· · ·+Aknk. If, further, p|n, then

b+A1n1 + · · ·+Aknk ≡ 0 mod p.

Now

A1n
′
1 + · · ·+Akn

′
k ≡ 0 mod p, (4.3)

where n′i = ni − n∗i (1 6 i 6 k) are integers such that (n′1, . . . , n
′
k) lies in the box

B := [−N1, N1]× · · · × [−Nk, Nk] ⊆ Rk.

In particular, the quantity |P |αp is bounded above by the number of integer solutions to (4.3)
in the box B.

Let J denote the set of i ∈ {1, . . . , k} such that p|Ai, and let J c be its complement in
{1, . . . , k}. We note from (3.2) that

|J | 6 k − 1.

Thus, the number N of solutions to (4.3) is at most
∏
i∈J (2Ni + 1) times the number of

integer vectors (n′′1, . . . , n
′′
|J c|) in the box BJ :=

∏
i∈J c [−Ni, Ni] which, additionally, satisfy the

congruence ∑
i∈J c

Ain
′′
i ≡ 0 mod p. (4.4)

As (4.4) defines a full-rank lattice in R|J c| of determinant p, we can exploit a counting result
due to Davenport [Dav51]; see also [BW13] and [Thu93, p. 244]. Our precise statement follows
from [BW13, Lemmas 2.1 and 2.2].

Theorem 4.2 (Davenport). Let d be a positive integer, and S ⊂ Rd compact. Suppose both the
two following conditions are met.

(i) Any line intersects S in a set of points which, if non-empty, consists of at most h intervals.

(ii) The condition (i) holds true, with j in place of d, for any projection of S onto a j-dimensional
subspace.
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Moreover, let µ1 6 · · · 6 µd denote the successive minima, with respect to the Euclidean unit
ball, of a (full-rank) lattice Λ ⊂ Rd. Then∣∣∣∣|S ∩ Λ| − vol(S)

det Λ

∣∣∣∣�d,h

d−1∑
j=0

Vj(S)

µ1 · · ·µj
,

where Vj(S) is the supremum of the j-dimensional volumes of the projections of S onto any
j-dimensional subspace, and for j = 0 the convention V0(S) = 1 is to be used.

As BJ satisfies the hypotheses of Theorem 4.2, with h = 1 and d = |J c|, and with each
Vj(BJ ) less than the surface area of BJ , we obtain

N �
(∏
i∈J

Ni

)(∏
i∈J c Ni

p
+
∑
i∈J c

∏
j∈J c Nj

Ni

)
.

Here we have used the fact that µd > · · · > µ1 > 1, which follows from our lattice being a
sublattice of Zd. Therefore

αp �
(∏
i∈J c

Ni

)−1(∏
i∈J c Ni

p
+
∑
i∈J c

∏
j∈J c Nj

Ni

)
� 1

p
+

1

min{Ni : i ∈ J c}
,

and Lemma 3.1 guarantees that Ni > N ε > pε for i = 1, . . . , k. Now (4.2) follows, and the proof
is complete. 2

5. Generalised sums of reciprocals of fractional parts

As in [BHV, Cho18], an essential part of the analysis is to estimate generalisations of sums of
reciprocals of fractional parts. Recall that we fixed real numbers α1, . . . , αk−1 and γ1, . . . , γk−1,
with ω×(α1, . . . , αk−1) < (k − 1)/(k − 2), from the beginning. As in [Cho18], we restrict the
range of summation. Let

G = {n ∈ N : ‖nαi − γi‖ > n−
√
ε (1 6 i 6 k − 1)}.

We consider the sums TN (α,γ) and T ∗N (α,γ) defined in (1.6), (1.7), and show that

TN (α,γ) � T ∗N (α,γ) � N(logN)k−1. (5.1)

We begin with an upper bound.

Lemma 5.1. We have
TN (α,γ)� N(logN)k−1.

Proof. First, we decompose TN (α,γ) so that the size parameters δi determine dyadic ranges:

TN (α,γ) =
∑

i1,...,ik−1∈Z

∑
n6N,n∈G

2−(ij+1)<‖nαj−γj‖62−ij

1

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
.

For each j 6 k − 1 there are O(logN) choices of ij for which the inner sum is non-zero, owing
to our choice of G. Therefore the inner sum is non-zero O((logN)k−1) times. Furthermore, the
inner sum is bounded above by( ∏

j6k−1
2ij+1

)
#Bγ

α(N ; 2−i1 , . . . , 2−ik−1)

which, by Corollary 3.3, is O(N). This completes the proof. 2
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We also require a lower bound for T ∗N (α,γ).

Lemma 5.2. We have

T ∗N (α,γ)� N(logN)k−1.

Proof. First observe that if N
√
ε 6 n 6 N and

‖nαi − γi‖ > N−ε (1 6 i 6 k − 1)

then n ∈ G. It therefore suffices to prove that∑
N
√
ε6n6N

‖nαi−γi‖>N−ε

ϕ(n)

n‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
� N(logN)k−1. (5.2)

Before proceeding in earnest, we note from Lemma 4.1 and Corollary 3.3 that if N−ε 6 δ1, . . . ,
δk−1 6 1 then ∑

n∈B̂γ
α(N ;δ)

ϕ(n)

n
� δ1 · · · δk−1N, (5.3)

wherein the implied constants depend at most on α1, . . . , αk−1.
Let η be a constant which is small in terms of the constants implicit in (5.3), and put

δ = (δ1, . . . , δk−1). We split the left-hand side of (5.2) into �η (logN)k−1 sums, for which
N−ε 6 δ1, . . . , δk−1 6 1, of the shape∑

n∈B̂γ
α(N ;δ)\B̂γ

α(N ;ηδ)

ϕ(n)

n‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
. (5.4)

Each of these sums exceeds ηk−1(δ1 · · · δk−1)−1 times∑
n∈B̂γ

α(N ;δ)\B̂γ
α(N ;ηδ)

ϕ(n)

n
=

∑
n∈B̂γ

α(N ;δ)

ϕ(n)

n
−

∑
n∈B̂γ

α(N ;ηδ)

ϕ(n)

n
.

Since the right-hand side is � δ1 · · · δk−1N , by (5.3) and η being small, we conclude that the
quantity (5.4) is �η N . As η only depends on α, this entails (5.2), and thus completes the
proof. 2

As TN (α,γ) > T ∗N (α,γ), the previous two lemmas imply (5.1).

6. An application of the Duffin–Schaeffer theorem

In this section, we finish the proof of Theorem 1.2. The overall strategy is to apply the Duffin–
Schaeffer theorem (Theorem 1.6) to the approximating function

Ψ(n) = Ψγ
α(n) =


ψ(n)

‖nα1 − γ1‖ · · · ‖nαk−1 − γk−1‖
if n ∈ G,

0 if n /∈ G.
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A valid application of the Duffin–Schaeffer theorem will complete the proof, so we need only
verify its hypotheses, namely

∞∑
n=1

ϕ(n)

n
Ψ(n) =∞ (6.1)

and ∑
n6N

ϕ(n)

n
Ψ(n)�

∑
n6N

Ψ(n). (6.2)

The inequality (6.2) is only needed for an infinite strictly increasing sequence of positive integers
N , but we shall prove a fortiori that for all large N we have∑

n6N

ϕ(n)

n
Ψ(n)�

∑
n6N

ψ(n)(log n)k−1 (6.3)

and ∑
n6N

Ψ(n)�
∑
n6N

ψ(n)(log n)k−1. (6.4)

Observe, moreover, that (1.2) and (6.3) would imply (6.1). The upshot is that it remains to prove
(6.3) and (6.4).

Recall the sums TN (α,γ) and T ∗N (α,γ) considered in the previous section, and let N0 ∈ N
be a large constant. By partial summation and the fact that

ψ(n) > ψ(n+ 1),

we have the lower bound∑
n6N

ϕ(n)

n
Ψ(n) > ψ(N + 1)T ∗N (α,γ) +

N∑
n=N0

(ψ(n)− ψ(n+ 1))T ∗n(α,γ).

Applying Lemma 5.2 to continue our calculation yields

∑
n6N

ϕ(n)

n
Ψ(n)� ψ(N + 1)N(logN)k−1 +

N∑
n=N0

(ψ(n)− ψ(n+ 1))n(log n)k−1.

As ψ(n) > ψ(n+ 1) and
∑

m6n(logm)k−1 6 n(log n)k−1, we now have

∑
n6N

ϕ(n)

n
Ψ(n)� ψ(N + 1)

∑
m6N

(logm)k−1 +

N∑
n=N0

(ψ(n)− ψ(n+ 1))
∑
m6n

(logm)k−1.

Another application of partial summation now gives

∑
n6N

ϕ(n)

n
Ψ(n)�

N∑
n=N0

ψ(n)(log n)k−1,

establishing (6.3).
We arrive at the final piece of the puzzle, which is (6.4). By partial summation, we have∑

n6N

Ψ(n) = ψ(N + 1)TN (α,γ) +
∑
n6N

(ψ(n)− ψ(n+ 1))Tn(α,γ).
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Observe that if n 6 N0 then Tn(α,γ) 6 TN0(α,γ)� 1. Thus, applying Lemma 5.1 to continue
our calculation yields

∑
n6N

Ψ(n)� 1 + ψ(N + 1)N(logN)k−1 +

N∑
n=N0

(ψ(n)− ψ(n+ 1))n(log n)k−1.

Partial summation tells us that
∑

m6n(logm)k−1 � n(log n)k−1, and so

∑
n6N

Ψ(n)� 1 + ψ(N + 1)

(∑
m6N

(logm)k−1
)

+
N∑

n=N0

(ψ(n)− ψ(n+ 1))
∑
m6n

(logm)k−1.

A further application of partial summation now gives

∑
n6N

Ψ(n)� 1 +
N∑

n=N0

ψ(n)(log n)k−1.

This confirms (6.4), thereby completing the proof of Theorem 1.2.
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