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On Greenberg–Benois L-invariants and
Fontaine–Mazur L-invariants
Ju-Feng Wu

Abstract. We prove a comparison theorem between Greenberg–Benois L-invariants and Fontaine–
Mazur L-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of
Besser–de Shalit.

1 Introduction

Let f be a cuspidal normalized newform of weight 2k and level �0(pN), where p
is a prime number and N ∈ Z>0 such that p ∤ N . Consider the complex L-function
attached to f

L( f , s) =
∞

∑
n=1

an n−s .

One way to study L( f , s) is via p-adic method. That is, one can associate f with a
p-adic L-function Lp( f , s), which p-adically interpolates the algebraic part of the
special values L( f , j) for 1 ≤ j ≤ 2k − 1. In particular, the interpolation property at
s = k is given by the formula

Lp( f , k) = (1 − pk−1

ap
) L( f , k)

Ω f
,

where Ω f is the Deligne period of f at k ([6]).
Suppose moreover that ap = pk−1; the formula above shows that Lp( f , s) vanishes

at s = k. In the case when k = 1, Mazur–Tate–Teitelbaum conjectured in [15] that there
exists an invariant L( f ) such that

d
ds

Lp( f , s)∣s=k = L( f )L( f , k)
Ω f

.

This conjecture is known as the trivial zero conjecture and has been proven by
Greenberg–Stevens in [9]. Moreover, for higher weights, various generalizations of
the invariant L( f ) has been proposed. The following is an incomplete list:
• In [8], R. Greenberg constructed the L-invariants for Galois representations that

are ordinary at p and suggested a generalization of the trivial zero conjecture.
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• In [14], Fontaine–Mazur defined theL-invariant by studying the semistable module
(à la Fontaine) associated with a p-adic representation.

• In [5], R. Coleman proposed a construction of L-invariants as an application of his
p-adic integration theory.

• In [18], J. Teitelbaum proposed a construction of L-invariants by applying the
p-adic integration theory to p-adically uniformized Shimura curve.

All these L-invariants are known to be equal: Coleman–Iovita compared the second
and the third in [4]; Iovita–Spieß compared the second and the fourth in [13]; and the
comparison between the first and the second is a special case of [2, Proposition 2.3.7].

It is a natural question to ask whether one can establish a similar philosophy for
higher rank automorphic forms. Let us mention the following generalizations in our
consideration:
• In [2], D. Benois generalized Greeberg’s construction to Galois representations

of GalQ that satisfies some reasonable conditions. He also stated a trivial zero
conjecture in such a generality ([op. cit., pp. 1579]).

• In [1], Besser–de Shalit generalized both the Fontaine–Mazur L-invariants and
Coleman (or Teitelbaum) L-invariants by studying the p-adic cohomology groups
of p-adically uniformized Shimura varieties. It is conjectured in loc. cit. that these
two constructions give rise to the same L-invariants (or L-operators as called in
loc. cit.). Authors of loc. cit. also speculated that the existence of a trivial zero
conjecture for these two L-invariants. However, they were not able to provide an
explicit statement.
This article concerns the comparison between Benois’s L-invariants and the

Fontaine–Mazur type L-invariants of Besser–de Shalit. To explain our result, let
us fix some notations: Let F be a number field such that for every prime ideal p ⊂ OF
sitting above p, the maximal unramified extension of Qp in Fp is Qp itself; let E be a
large enough value field that is a finite extension over Qp . Suppose

ρ ∶ GalF → GLn(E)

is a Galois representation that is semistable at places above p. We further assume that
ρ satisfies the assumptions in §5.1. In particular, we assume the Frobenius eigenvalues
on the associated semistable modules are given by pm , . . . , pm−n+1 (for some suitable
m ∈ Z that is independent of the prime ideals sitting above p) and the monodromy is
maximal. We remark in the beginning that these assumptions are required so that we
can perform the following two constructions:
• Following the suggestion in [17] (see also [10]), one can consider the induction

IndQ
F ρ. Part of the assumptions then allows us to attach the L-invariant in Benois’s

style to IndQ
F ρ(m). This resulting L-invariant is denoted by LGB(ρ(m)), where

the subscript GB stands for “Greenberg–Benois”. We refer the readers to §3 for the
construction of LGB.

• We realized that the generalization of Fontaine–Mazur L-invariants suggested by
Besser–de Shalit can be translated to the world of semistable modules of a local
Galois representation. The other part of the assumptions in §5.1 then allow us to
attach L-invariants of Fontaine–Mazur style to each local Galois representation
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On Greenberg–Benois L-invariants and Fontaine–Mazur L-invariants 1143

ρp = ρ∣GalFp
for every prime p above p. We term suchL-invariantsLFM(ρp), where

the subscript FM stands for “Fontaine–Mazur”. We refer the readers to §4 for the
construction of LFM.
Our main result reads as follows.

Theorem 5.4 We have an equality

LGB(ρ(m)) = ∏
p∣p

−LFM(ρp),

where the index set runs through all prime ideals in OF sitting above p

Since there is a well-stated trivial zero conjecture for LGB(ρ(m)) in [2], our result
immediately supplies an affirmative answer to Besser–de Shalit’s speculation of the
relationship between their L-invariants and p-adic L-functions.

To close this introduction, let us mention that the generalization of L-invariants à
la Coleman (or Teitelbaum) suggested by Besser–de Shalit replaces Coleman’s integra-
tion theory with Besser’s theory of finite polynomial cohomology. Although they only
consider the case for the trivial coefficient (so that we can only see automorphic forms
of weight associated with the differential 1-forms), one can hope a generalization for
nontrivial coefficients by using finite polynomial cohomology with coefficients ([12]).
We wish to come back to this in future projects and hopefully to compare this type of
L-invariants with LFM(ρp) as suggested in [1].

Notations

• Through out this article, we fix a prime number p.
• Given a field F, we fix a separable closure F and denote by GalF = Gal(F/F) its

absolute Galois group.

2 Preliminaries on (φ, �)-modules

2.1 General (φ, �)-modules

Fix a compatible system of primitive p-power roots of unity (ζpn)n∈Z≥0 in Qp . Given
a finite extension K of Qp , consider K(ζp∞) = ⋃n∈Z≥0 K(ζpn) and denote by � = �K
the Galois group Gal(K(ζp∞)/K). Moreover, for any r ∈ [0, 1), let

Rr
K ∶= { f = ∑

i∈Z
a i T i ∶ a i ∈ Kunr ∩ K(ζp∞)

f is holomorphic on the annulus r ≤ ∣T ∣ < 1 }

and

RK ∶= ⋃
r∈[0,1)

Rr
K ,

where Kunr is the maximal unramified extension of K in Qp and the infinite union is
taken with respect to the inclusions Rr

K ↪ Rr′
K for r ≤ r′ < 1. We call the ring RK the
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1144 J.-F. Wu

Robba ring over K. It carries a φ-action and a �-action via the formula

φ(T) = (1 + T)p − 1 and γ(T) = (1 + T)χcyc(γ) − 1 for any γ ∈ �,

where χcyc is the cyclotomic character.
In what follows, we shall consider a more generalized version of RK . Let E be a

finite extension of Qp . We denote by RK ,E ∶= RK ⊗Qp E and call it the Robba ring over
K with coefficients in E. We linearize the actions of φ and � on RK ,E via φ ⊗ id and
γ ⊗ id, respectively. In what follows, we often assume E is large enough so that K ⊂ E.

By a (φ, �)-module over RK ,E , we mean a finite free RK ,E -module D together with
a φ-semilinear endomorphism φD and a semilinear action by �, which commute with
each other, such that the induced map

φD ∶ φ∗D = D ⊗φ RK ,E → D

is an isomorphism. We shall denote by Mod(φ ,�)
RK ,E

the category of (φ, �)-modules over
RK ,E .

Let RepK(E) the category of Galois representations of GalK with coefficients in E.
Then, by [2, Proposition 1.1.4], there is a fully faithful functor

D†
rig ∶ RepK(E) → Mod(φ ,�)

RK ,E
.

Moreover, by letting Mod(φ ,N)
K ,E (resp., Modφ

K ,E ) the category of (φ, N)-modules (resp.,
φ-modules) over K0 = K ∩ Qunr

p with coefficients in E, there is a functor (see, for
example, [2, §1.2.3])

Dst ∶ Mod(φ ,�)
RK ,E

→ Mod(φ ,N)
K ,E (resp., Dcris ∶ Mod(φ ,�)

RK ,E
→ Modφ

K ,E)

such that if ρ ∈ RepK(E) is semistable (resp., crystalline), then ([3, Théorème 0.2])

Dst(D†
rig(ρ)) = Dst(ρ) (resp., Dcris(D†

rig(ρ)) = Dcris(ρ)).

Here, Dst (resp., Dcris) is Fontaine’s semistable (resp., crystalline) functor ([7, 3]),
assigning a Galois representation in RepK(E) a (φ, N)-module (resp., φ-module)
over K0 with coefficients in E.

Now, let D be a (φ, �)-module over RK ,E . Recall the cohomology of D is defined
by the cohomology of the Herr complex

0 → D
x↦((φD−1)x ,(γ−1)x)�����������→ D ⊕ D

(x , y)↦(γ−1)x−(φD−1)y������������→ D → 0,

where γ is a (fixed) topological generator of �. Note that, given α = (x , y) ∈ D ⊕ D
such that (γ − 1)x − (φD − 1)y = 0, there is an extension

0 → D → Dα → RK ,E → 0

defined by

Dα = D ⊕RK ,E e , (φDα − 1)e = x , (γ − 1)e = y.(2.1)

It turns out that such an assignment gives rise to an isomorphism

H1(D) ≅ Ext1
(φ ,�)(RK ,E , D).
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Furthermore, we write H1
st(D) (resp., H1

f (D)) the subspace of H1(D), con-
sisting of those semistable (resp., crystalline) extensions Dα (i.e., those satisfy
rankK0⊗Qp E Dst(Dα) = rankK0⊗Qp E Dst(D) + 1 (resp., rankK0⊗Qp E Dcris(Dα) =
rankK0⊗Qp E Dcris(D) + 1)). According to [2, Proposition 1.4.2], if ρ ∈ RepK(E), then

H1
st(D†

rig(ρ)) ≅ H1
st(K , ρ) (resp., H1

f (D†
rig(ρ)) ≅ H1

f (K , ρ)),

where

H1
st(K , ρ) = ker (H1(K , ρ) → H1(K , ρ ⊗Qp Bst))

(resp., H1
f (K , ρ) = ker (H1(K , ρ) → H1(K , ρ ⊗Qp Bcris)))1

is the usual local Bloch–Kato Selmer group.
To conclude our discussion for general (φ, �)-modules, we mention that if D is

semistable,2 then H1
st(D) and H1

f (D) can be computed by complexes C●st and C●cris,
respectively ([2, Proposition 1.4.4]). Here,

C●st(D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dst(D) Dst(D)
Fil0

dR Dst(D) ⊕Dst(D) ⊕Dst(D)

Dst(D)

a ↦ (a , (φ − 1)a , N(a))

(a , b , c) ↦ N(b) − (pφ − 1)c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

C●cris(D) = [Dcris(D) a↦(a ,(φ−1)a)�������→ Dcris(D)
Fil0

dR Dcris(D)
⊕Dcris(D)] .

2.2 (φ, �)-modules of rank 1

Recall that (φ, �)-modules of rank 1 can be understood via continuous characters.
More precisely, given a continuous character δ ∶ K× → E× and fixing a uniformizer
ϖ ∈ K, we can write δ = δ′δ′′ with δ′∣O×K = δ∣O×K , δ′(ϖ) = 1 and δ′′(ϖ) = δ(ϖ),
δ′′∣O×K = 1. By local class field theory, δ′ defines a unique one-dimensional Galois
representation χδ′ ; that is,

χδ′ ∶ GalK
local Artin map�������→ K̂× ≅ O×K × Ẑ

(a ,b)↦δ′(a)������→ E× , 3

which admits its associated (φ, �)-module D†
rig(χδ′). However, we defineRK ,E(δ′′) =

RK ,E eδ′′ such that φ(eδ′′) = δ(ϖ)eδ′′ and γ(eδ′′) = eδ′′ . Then, the (φ, �)-module
associated with δ is defined to be

RK ,E(δ) ∶= RK ,E(δ′′) ⊗RK ,E D†
rig(χδ′).

1Here, Bst and Bcris are, respectively, Fontaine’s semistable and crystalline period rings.
2In fact, the condition can be loosen to being potentially semistable, but we do not need such a

generality here.
3Here, K̂× is the profinite completion of K×. Note that the isomorphism K̂× ≅ O×K × Ẑ depends on the

choice of ϖ, which is fixed.
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In particular, the cyclotomic character GalK → O×E has the associated (φ, �)-
module D†

rig(χcyc). By [16, Lemma 2.13], we know that

D†
rig(χcyc) = RK ,E(NmK

Qp
(z)∣NmK

Qp
(z)∣),

where NmK
Qp

is the norm function from K to Qp .

Lemma 2.1. Let δ ∶ K× → E× be the character

δ(z) =
⎛
⎜
⎝

∏
σ ∶K↪Qp

σ(z)mσ
⎞
⎟
⎠
∣NmK

Qp
(z)∣

such that all mσ ≥ 1.
• If (Dst(RK ,E(δ))∨(χcyc))

φ=1 is nonzero, then the inclusion H1
st(RK ,E(δ)) ↪

H1(RK ,E(δ)) is an isomorphism.
• If (Dst(RK ,E(δ))∨(χcyc))

φ=1 = 0, then the inclusion H1
f (RK ,E(δ))↪H1

st(RK ,E(δ))
is an isomorphism.

Proof By [2, Corollary 1.4.5], we have the formula

dimE H1
st(RK ,E(δ)) − dimE H1

f (RK ,E(δ)) = dimE (Dst(RK ,E(δ))∨(χcyc))
φ=1 .

Applying [17, Proposition 2.1 & Lemma 2.3], we know that

dimE H1
st(RK ,E(δ)) ≤ [K ∶ Qp] + 1 and dimE H1

f (RK ,E(δ)) = [K ∶ Qp].

The lemma then follows easily. ∎

Suppose δ ∶ K× → E× is a continuous character as in Lemma 2.1. Suppose RK ,E(δ)
is semistable and so rankK0⊗Qp E Dst(RK ,E(δ)) = 1. We fix a K0 ⊗Qp E-basis vδ for
Dst(RK ,E(δ)) and define

β∗δ = − cl(0, 0, vδ), α∗δ = cl(vδ , 0, 0) ∈ H1(C●st(RK ,E(δ))) = H1
st(RK ,E(δ)).4

Lemma 2.2. Suppose η ∶ K× → E× is a continuous character of the form η(z) =
∏σ ∶K↪Qp

σ(z)nσ with all nσ ≤ 0. Suppose

0 → RK ,E(δ) → D → RK ,E(η) → 0

is a semistable extension (in the sense of §2.1). Then,

image (∂ ∶ H0(RK ,E(η)) → H1(RK ,E(δ))) ⊂ H1
st(RK ,E(δ)).

Moreover, there exists a unique L(D) ∈ E such that

β∗δ +L(D)α∗δ ∈ image ∂.

4We use such notations due to [2, Theorem 1.5.7].
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Proof First of all, it follows from [2, Proposition 1.2.7] that RK ,E(η) is also
semistable. Hence, by applying [op. cit., Proposition 1.4.4], we know that

H0(RK ,E(η)) = H0
st(RK ,E).

Taking the cohomology of the short exact sequence in the lemma, we have a commu-
tative diagram

H0(RK ,E(η)) H1(RK ,E(δ))

H0
st(RK ,E(η)) H1

st(RK ,E(δ))

∂

∂

,

which shows the first claim.
Since RK ,E(η) is semistable and it is of rank 1 over RK ,E , it is crystalline

and Dst(RK ,E(η)) = Dcris(RK ,E(η)). This is because the monodromy operator is
nilpotent. We consider the commutative diagram

0 Dst(RK ,E(δ)) Dst(D) Dst(RK ,E(η)) 0

0 Dst(RK ,E(δ))
Fil0

dR Dst(RK ,E(δ))
⊕Dst(RK ,E(δ))2 Dst(D)

Fil0
dR Dst(D)

⊕Dst(D)2 Dst(RK ,E(η))
Fil0

dR Dst(RK ,E(η))
⊕Dst(RK ,E(η))2 0

0 Dst(RK ,E(δ)) Dst(D) Dst(RK ,E(η)) 0

induced by the short exact sequence in the lemma, where the rows are exact and
the columns are the semistable complexes. Let vη be the element in Dst(RK ,E(η))
that gives rise to the basis of H0(RK ,E(η)) as in [17, Proposition 2.1]. In particular,
vη ∈ Fil0

dR Dst(RK ,E(η)) and φ(vη) = vη . Using the relation Nφ = pφN , one deduces
that 1 and p−1 are Frobenius eigenvalues of Dst(D). We choose a lift ṽη ∈ Dst(D)
such that φ(ṽη) = ṽη . This then implies that N(ṽη) has Frobenius eigenvalue p−1. The
commutativity of the diagram then yields

ṽη vη

(ṽη , 0, N(ṽη)) 0

.

Applying the exactness of the middle row, we see that

(ṽη , 0, N(ṽη)) = a(vδ , 0, 0) − b(0, 0, vδ).

Since N(ṽη) is a basis for the Frobenius eigensubspace of Dst(D) on which φ acts
via p−1, we see that b is invertible. We then conclude that

∂ ∶ H0(RK ,E(η)) → H1
st(RK ,E(δ)), cl(vη) ↦ aα∗δ + bβ∗δ .

Therefore, L(D) ∶= a/b. ∎
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3 Greenberg–Benois L-invariants

In this section, we first discuss the construction of Greenberg–Benois L-invariant
over Q in §3.1 by summarizing Benois’s construction in [2, §2] (in particular [op. cit.,
(26)]). Then we follow the strategy in [17], generalizing Benois’s construction to
general number fields by considering inductions of Galois representations (§3.2).

3.1 Greenberg–Benois L-invariants over Q

To define Greenberg–Benois L-invariants over Q, we start with a Galois
representation

ρ ∶ GalQ → GLn(E),

which is unramified outside a finite set of places. We denote by

S = {� ∶ ρ∣GalQ�
is ramified} ∪ {p,∞}

and let QS be the maximal extension of Q that is unramified outside S.
Recall the Bloch–Kato Selmer group associated with ρ: Given v ∈ S, define the local

Selmer groups

H1
f (Qv , ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ker (H1(Q� , ρ) → H1(I� , ρ)) , if v = � ∤ p∞,
ker(H1(Qp , ρ) → H1(Qp , ρ ⊗Qp Bcris)), if v = p,
H1(R, ρ), if v = ∞,

where I� stands for the inertia group at �. Then, the Bloch-Kato Selmer group
associated with ρ is defined to be

H1
f (Q, ρ) ∶= ker

⎛
⎝

H1(GalQS , ρ) → ⊕
v∈S

H1(Qv , ρ)
H1

f (Qv , ρ)
⎞
⎠

.

Let ρp ∶= ρ∣GalQp
. We follow [2, §2.1.2, 2.1.4] and proceed with the following

conditions:
(B1) The local representation ρp is semistable with Hodge–Tate weights k1 ≤ k2

≤ ⋯ ≤ kn , giving rise to the de Rham filtration Fil●dR Dst(ρ).
(B2) The Frobenius action on Dst(ρp) is semisimple at 1 and p−1.
(GB1) H1

f (Q, ρ) = 0 = H1
f (Q, ρ∨(1)).5

(GB2) H0(GalQS , ρ) = 0 = H0(GalQS , ρ∨(1)).
(GB3) The associated (φ, �)-module D†

rig(ρp) has no saturated subquotient6 iso-
morphic to Uk ,m with k ≥ 1 and m ≥ 0 ([2, §2.1.2]), where Uk ,m is the unique
crystalline (φ, �)-module sitting in a nonsplit short exact sequence

0 → RQp ,E(∣z∣zk) → Uk ,m → RQp ,E(z−m) → 0.

5Here, by confusing ρ with its underlying vector space, ρ∨ = Hom(ρ, E) is the dual representation of
ρ and ρ∨(1) is the twist of ρ∨ by the cyclotomic character.

6Here, by “saturated”, we mean the following: A saturated (φ, �)-submodule of a (φ, �)-module is a
(φ, �)-submodule that has a torsion-free quotient. A saturated subquotient is a subquotient arising from
saturated (φ, �)-submodules; in particular, a saturated subquotient is torsion-free.

https://doi.org/10.4153/S0008439524000638 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000638
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Given a regular submodule D ⊂ Dst(ρp) (i.e., a (φ, N)-submodule such that
Dst(ρp) = D ⊕ Fil0

dR Dst(ρp)), Benois defines a five-step filtration

DGB
i ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = −2,
(1 − p−1φ−1)D + N(Dφ=1), i = −1,

D, i = 0,
D + Dst(ρp)φ=1 ∩ N−1(Dφ=p−1), i = 1,

Dst(ρp), i = 2.

(3.1)

Such a filtration then yields a filtration on D†
rig(ρp) by

FilGB
i D†

rig(ρp) = D†
rig(ρp) ∩ (DGB

i ⊗Qp RQp ,E[1/t]) ,

where t = log(1 + T) ∈ RQp ,E .
Using this filtration, we define the exceptional subquotient

W ∶= FilGB
1 D†

rig(ρp)/FilGB
−1 D†

rig(ρp).

By [2, Proposition 2.1.7], we have

W ≅ W0 ⊕ W1 ⊕ M rank W0 = dimE H0(W∨(1)),
GrGB

0 D†
rig(ρp) ≅ W0 ⊕ M0 with rank W1 = dimE H0(W),

GrGB
1 D†

rig(ρp) ≅ W1 ⊕ M1 rank M0 = rank M1 ,

where M, M0, and M1 sit inside a short exact sequence

0 → M0 → M → M1 → 0.

Moreover, one has

H1(W) = coker (H1(FilGB
−1 D†

rig(ρp)) → H1(FilGB
1 D†

rig(ρp))) ,

H1
f (W) = coker (H1

f (FilGB
−1 D†

rig(ρp)) → H1
f (FilGB

1 D†
rig(ρp))) ,

and dimE H1(W)/H1
f (W) = eD = rank M0 + rank W0 + rank W1 ([2, §2.2.1]).

Under the assumption (GB1) and (GB2), one applies Poitou–Tate exact sequence
and deduces an isomorphism

H1(GalQS , ρ) ≅ ⊕
v∈S

H1(Qv , ρ)
H1

f (Qv , ρ) .

Note that the latter space contains an eD-dimensional subspace H1(W)
H1

f (W)
≅

H1(FilGB
1 D†

rig(ρ p))

H1
f (Qp ,ρ) . We then define H1(D, ρ) to be the image of H1(W)

H1
f (W)

in H1(GalQS , ρ).
To define the L-invariant, we further assume that

(GB4) W0 = 0 and the Hodge–Tate weights for GrGB
1 D†

rig(ρp) are positive (see [2,
Proposition 1.5.9]).
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Benois shows that there is a decomposition ([2, §2.1.9] (see also the discussion in
[11, §1.2]))

H1(GrGB
1 D†

rig(ρp)) ≅ H1
f (GrGB

1 D†
rig(ρp)) ⊕ H1

c(GrGB
1 D†

rig(ρp))

and isomorphisms

H1
f (GrGB

1 D†
rig(ρp)) ≅ Dcris(GrGB

1 D†
rig(ρp)) ≅ H1

c(GrGB
1 D†

rig(ρp)).

There are natural morphisms ρD ,? ∶ H1(D, ρ) → Dcris(GrGB
1 D†

rig(ρp)) (for ? ∈ { f , c})
making the diagram

Dcris(GrGB
1 D†

rig(ρp)) H1
f (GrGB

1 D†
rig(ρp))

H1(D, ρ) H1(GrGB
1 D†

rig(ρp))

Dcris(GrGB
1 D†

rig(ρp)) H1
c(GrGB

1 D†
rig(ρp))

≅

ρD , f

ρD ,c

≅

commutative. Under the assumption of (GB4), Benois shows that ρD ,c is an isomor-
phism, and so one can define the Greenberg–Benois L-invariant attached to ρ (with
respect to D) as

LGB(ρ) = LGB(ρ, D) ∶= det (ρD , f ○ ρ−1
D ,c) ∈ E .

3.2 Greenberg–Benois L-invariants over general number fields

To define the Greenberg–Benois L-invariants over general number fields, we follow
the idea in [17] (see also [10]) and consider the induction of a Galois representation.
More precisely, let F be a number field and suppose we are given a Galois representa-
tion

ρ ∶ GalF → GLn(E),

where E is (again) a finite extension of Qp . We shall consider the induction IndQ
F ρ

and define S similarly as before.
Assume the following conditions hold for ρ:

(B1) For each place p∣p in F, ρp = ρ∣GalFp
is semistable with Hodge–Tate weights

kp,σ ,1 ≤ kp,σ ,2 ≤ ⋯ ≤ kp,σ ,n , where σ ∶ Fp ↪ Qp .
(B2) For each place p∣p in F, the Frobenius action on Dst(ρp) is semistable at 1

and p−1.
(GB1) H1

f (Q, IndQ
F ρ) = 0 = H1

f (Q, IndQ
F ρ∨(1)).

(GB2) H0(GalQS , ρ) = 0 = H0(GalQS , ρ∨(1)).
(GB3) The associated (φ, �)-module D†

rig((IndQ
F ρ)p) = ⊕p∣p D†

rig(ρp) has no sat-
urated subquotient isomorphic to Uk ,m with k ≥ 1 and m ≥ 0 ([2, §2.1.2]).
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For every p∣p, choose a regular subomdule Dp ⊂ Dst(ρp). Then, D ∶= ⊕p∣p Dp ⊂
⊕p∣p Dst(ρp) = D†

rig((IndQ
F ρ)p) is a regular submodule.7 Moreover, if W0, M0, M1

(resp., Wp,0, Mp,0, Mp,1) are the corresponding subquotients of D†
rig((IndQ

F ρ)p)
(resp., D†

rig(ρp)) with respect to D (resp., Dp), then we have decompositions

W0 = ⊕
p∣p

Wp,0 , M0 = ⊕
p∣p

Mp,0 , M1 = ⊕
p∣p

Mp,1 .

Hence, by assuming
(GB4) Wp,0 = 0 for every p∣p and the Hodge–Tate weights for GrGB

1 D†
rig((IndQ

F ρ)p)
are all positive,

we may then follow the same recipe and define the Greenberg–Benois L-invariant
attached to ρ (with respect to {Dp}p∣p)

LGB(ρ) = LGB(ρ, {Dp}p∣p) ∶= LGB(IndQ
F ρ, D) ∈ E .

4 Fontaine–Mazur L-invariants

To define the Fontaine–Mazur L-invariants, we fix a finite extension K over Qp . We
shall be considering Galois representations

ρ ∶ GalK → GLn(E),

where E is (again) a finite extension of Qp . In what follows, we consider the (φ, N)-
module Dst(ρ) associated with ρ. Note that if K0 is the maximal unramified extension
of Qp in K, then Dst(ρ) is a priori a K0-vector space. However, we shall linearize
everything by base change to E.

Let q be the order of the residue field of K. We further assume ρ enjoys the following
properties:
(B1) The representation ρ is semistable with Hodge–Tate weights kσ ,1 ≤ kσ ,2 ≤

⋯ ≤ kσ ,n−1 ≤ kσ ,n , where σ ∶ K ↪ Qp . The Hodge–Tate weights give rise to
the de Rham filtration Fil●dR Dst(ρ) = [Filk●,1

dR Dst(ρ) ⊃ Filk●,2
dR Dst(ρ) ⊃ ⋯ ⊃

Filk●,n
dR Dst(ρ)].

(B2) The linearized Frobenius eigenvalues on Dst(ρ) are qm , . . . , qm−n+1.
(FM1) Let D(i)

(φ ,N) be the eigenspace in Dst(ρ) on which the Frobenius acts via qm−i ,
and we assume that the induced monodromy operator N on D(i)

(φ ,N) gives an
isomorphism

N ∶ D(i)
(φ ,N) → D(i+1)

(φ ,N).

7Note that Dst(IndQp
Fp

ρp) is nothing but Dst(ρp) (a priori a K0 ⊗Qp E-module) viewing as a E-vector
space.
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(FM2) Define Frobenius filtration Filφ
● Dst(ρ) by Filφ

j Dst(ρ) ∶= ∑i>n−1− j D(i)
(φ ,N) and

assume the orthogonality

Dst(ρ) = Filk●, i
dR Dst(ρ) ⊕ Filφ

i Dst(ρ).

Lemma 4.1. Keep the notations and the assumptions as above. We abuse the notation
and denote by Grn−1

dR Dst(ρ) ∶= Filk●,n−1
dR Dst(ρ)/Filk●,n

dR Dst(ρ). Then, we have an inclu-
sion

Grn−1
dR Dst(ρ) ↪ D(0)

(φ ,N) ⊕ D(1)
(φ ,N).

Proof Indeed, we have a sequence of identifications

D(0)
(φ ,N) ⊕ D(1)

(φ ,N) =
Filφ

n Dst(ρ)
Filφ

n−2 Dst(ρ)

=
Filφ

n Dst(ρ) ⊕ Filk●,n−2
dR Dst(ρ)

Filφ
n−2 Dst(ρ) ⊕ Filk●,n−2

dR Dst(ρ)

=
Filφ

n Dst(ρ) ⊕ Filk●,n−2
dR Dst(ρ)

Dst(ρ)

=
Filφ

n Dst(ρ) ⊕ Filk●,n−2
dR Dst(ρ)

Filφ
n Dst(ρ) ⊕ Filk●,n

dR Dst(ρ)

=
Filk●,n−2

dR Dst(ρ)
Filk●,n

dR Dst(ρ)
,

where the third and the forth identifications follow from the orthogonality
assumption. ∎

Lemma 4.2. For every i, we have

rankK0⊗Qp E D(i)
(φ ,N) = 1.

Moreover, m < kσ ,n for every σ ∶ K ↪ Qp.

Proof Consider the twisted Galois representation ρ(m). One can similarly
define the Frobenius filtration Filφ

● Dst(ρ(m)), and we denote by D(i)
(φ ,N)(m) the

graded pieces. Since each Filφ
i Dst(ρ(m)) is a (φ, N)-module, [2, Proposition

1.2.7 (ii)] implies that we have an associated filtration Fil●D†
rig(ρ(m)) such that

Dst(Fil●D†
rig(ρ(m))) = Filφ

i Dst(ρ(m)).
Consider Grn D†

rig(ρ(m)). One sees that

Dst(Grn D†
rig(ρ(m))) = D(0)

(φ ,N)(m),

on which the semistable Frobenius acts via 1. Hence, by [17, Proposition 2.4],
Grn D†

rig(ρ(m)) is crystalline and
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Grn D†
rig(ρ(m)) ≅ RK ,E(δ) with δ(z) = ∏

σ ∶K↪Qp

σ(z)−kσ ,n+m .

This shows that rankK0⊗Qp E D(0)
(φ ,N)(m) = 1. Using the formula in loc. cit., one also sees

that kσ ,n > m.
Since rankK0⊗Qp E D(0)

(φ ,N)(m) = 1, we see that rankK0⊗Qp E D(0)
(φ ,N) = 1. The result

then can be concluded by applying (FM1). ∎

Thanks to Lemma 4.1 and Lemma 4.2, we can now define the Fontaine–Mazur
L-invariant. Let v0 be a K0 ⊗Qp E-basis for D(0)

(φ ,N) and let v1 ∶= Nv0, which is a a
K0 ⊗Qp E-basis for D(1)

(φ ,N). The Fontaine–Mazur L-invariant attached to ρ is then
defined to be LFM(ρ) ∈ K0 ⊗Qp E such that

v0 −LFM(ρ)v1 ∈ Grn−1
dR Dst(ρ).

Remark 4.3. In fact, if we write Gri
dR Dst(ρ) ∶= Filk i

dR Dst(ρ)/Filk i+1
dR Dst(ρ), then a

similar argument as in Lemma 4.1 shows that

Grn−i
dR Dst(ρ) ↪ D(i−1)

(φ ,N) ⊕ D(i)
(φ ,N).

By using this inclusion, one can similarly define the i-th Fontaine–Mazur L-operator
attached to ρ to be L(i)

FM(ρ) ∈ K0 ⊗Qp E such that v i−1 −L
(i)
FMv i ∈ Grn−i

dR Dst(ρ), where
v j = N jv. Such a strategy was taken in [1]. However, it is believed that L(0)FM(ρ) =
LFM(ρ) should determine all the other L(i)

FM(ρ)’s (see, for example, [op. cit., §4.3.2]).
Hence, we focus onLFM(ρ). Moreover, one shall see, in what follows, that it isLFM(ρ)
we can relate to Greenberg–Benois L-invariants.

5 Comparing the two L-invariants

The aim of this section is to prove the comparison theorem (Theorem 5.4). However,
as aforementioned, to defineL-invariants, there are some constraints one needs to put
on the Galois representations. For reader’s convenience, we collect all the assumptions
in §5.1 and briefly discuss a folklore about these assumptions.

5.1 Assumptions on the Galois representation

Let F be a number field and let E be a finite extension of Qp such that, for every
prime ideal p in OF sitting above p, Fp ⊂ E. Write Fp,0 for the maximal unramified
extension of Qp in Fp; we further assume that Fp,0 = Qp for every p. Suppose we are
given a Galois representation

ρ ∶ GalF → GLn(E)

that is unramified outside a finite set of places. Let S be the set of places in F such that
ρ ramifies. We make the following assumptions:
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(I) Basic assumptions:
(B1) For any prime ideal p ⊂ OF sitting above p, ρp ∶= ρ∣GalFp

is semistable
with Hodge–Tate weights 0 ≤ kp,σ ,1 ≤ kp,σ ,2 ≤ ⋯ ≤ kp,σ ,n−1 ≤ kp,n ,
where σ ∶ Fp ↪ Qp .

(B2) For any prime ideal p ⊂ OF sitting above p, the Frobenius eigenvalues
on Dst(ρp) are pm , . . ., pm−n+1 such that kp,σ ,n > m > kp,σ ,n−1, where
the first inequality is always guaranteed by Lemma 4.2.8

(II) Fontaine–Mazur assumptions:
(FM1) For any p∣p, let D(i)

p,(φ ,N) be the eigenspace in Dst(ρp) on which the
Frobenius acts via pm−i . We assume that the induced monodromy
operator N on D(i)

p,(φ ,N) gives an isomorphism

N ∶ D(i)
p,(φ ,N) → D(i+1)

p,(φ ,N) .

(FM2) Define Filφ
j Dst(ρp) ∶= ∑i>n−1− j D(i)

p,(φ ,N), and we call the ascending
filtration Filφ

● Dst(ρp) the Frobenius filtration on Dst(ρp). We assume
the orthogonality

Dst(ρp) = Filkp,●, i
dR Dst(ρp) ⊕ Filφ

i Dst(ρp).

(III) Greenberg–Benois assumptions:
(GB1) Vanishing of the Bloch–Kato Selmer groups

H1
f (Q, IndQ

F ρ(m)) = H1
f (Q, IndQ

F ρ∨(1 − m)) = 0.

(GB2) Vanishing of the zero-degree Galois cohomology

H0(GalQS , IndQ
F ρ(m)) = H0(GalQS , IndQ

F ρ∨(1 − m)) = 0.

(GB3) The associated (φ, �)-module D†
rig((IndQ

F ρ(m))p) = ⊕p∣p D†
rig(ρp

(m)) does not admit a subquotient of the form Uk ,r with k ≥ 1 and
r ≥ 0 ([2, §2.1.2]).

(GB4) For any p∣p, the space Wp,0 for ρp(m) vanishes (see [2, Proposition
2.1.7] or [17, pp. 1238]).

Remark 5.1. For every p∣p, the Frobenius filtration Filφ
● Dst(ρp) defines a filtration

Fil●D†
rig(ρ) (similar as in the proof of Lemma 4.2). One observes that the graded

pieces Gri D†
rig(ρ) of this filtration are all of rank 1 over RFp ,E (by [2, Proposition

1.2.7 (ii)]). In particular, Fil●D†
rig(ρ) is a triangulation of D†

rig(ρ). In fact, we have the
following description for the graded pieces:

Gri D†
rig(ρ) = RFp ,E(δn−i),

8Here, m does not depend on p and σ .
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where

δn−i(z) =
⎛
⎜
⎝

∏
σ ∶Fp↪Qp

σ(z)−kp,σ , i
⎞
⎟
⎠
∣NmFp

Qp
z∣−(m−n+i) .

Remark 5.2. For every p∣p, since kp,σ ,n > m > kp,σ ,n−1, we see that Filkp,●,n−1−m
dR

Dst(ρp(m)) = Fil0
dR Dst(ρp(m)). Moreover, the orthogonality condition (FM2)

implies that Filφ
n−1 Dst(ρp(m)) is a regular (φ, N)-submodule of Dst(ρp(m)). Hence,

in what follows, we naturally work with Dp ∶= Filφ
n−1 Dst(ρp(m)) ⊂ Dst(ρp(m)) and

D = ⊕p∣p Dp ⊂ ⊕p∣p Dst(ρp(m)). Moreover, in our situation, we shall see in the proof
(e.g., (5.2)) that the corresponding GrGB

1 D†
rig((IndQ

F ρ)p) has positive Hodge–Tate
weights, and so we remove such assumption in (GB4).

Remark 5.3. We have many assumptions on our Galois representation ρ. On the
one hand, one sees that they are necessary in order to attach both LGB and LFM
to it. On the other hand, we remark that it is a folklore that they shall appear as
Galois representations for automorphic forms of unitary groups whose corresponding
Shimura varieties can be p-adically uniformized by Drinfeld’s upper-half spaces. For
example, we are requiring maximal monodromy on our Galois representations. Such
a phenomenon is expected to appear for the Galois representations attached to unitary
automorphic representations that are Steinberg at p.

5.2 The main theorem

Theorem 5.4. Keep the notations and assumptions as above. We have an equality

LGB(ρ(m)) = ∏
p∣p

−LFM(ρp).

Proof The proof of the theorem is similar to the proof of [2, Proposition 2.3.7],
which relies on the following three steps:

Step 1. Fontaine–Mazur L-invariants and cohomology of (φ, �)-modules.
Consider the triangulation Fil●D†

rig(ρ) in Remark 5.1. We define

W̃p ∶= Filn D†
rig(ρ)/Filn−2 D†

rig(ρ).

Hence, W̃p sits inside the short exact sequence

0 Grn−1 D†
rig(ρ) W̃p Grn D†

rig(ρ) 0

RFp ,E(δp,1) RFp ,E(δp,0)
≅ ≅

for δp, i ∶ F×p → E× described as in Remark 5.1.
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As a result, W̃p defines a class

cl(W̃p) ∈ Ext(φ ,�)(RFp ,E(δp,0),RFp ,E(δp,1))
≅ Ext(φ ,�)(R,R(δp,1δ−1

p,0))
≅ H1(RFp ,E(δp,1δ−1

p,0)).

However, by construction, we know that W̃p is semistable (since Dst(W̃p) =
D(0)

p,(φ ,N) ⊕ D(1)
p,(φ ,N)), and so cl(W̃p) ∈ H1

st(RFp ,E(δp,1δ−1
p,0)). Recall that H1

st(RFp ,E

(δp,1δ−1
p,0)) can be computed via the complex C●st(RFp ,E(δp,1δ−1

p,0)) with

Dst(RFp ,E(δp,1δ−1
p,0))

Dst(RFp ,E(δp,1δ−1
p,0))

Fil0
dR Dst(RFp ,E(δp,1δ−1

p,0))
⊕Dst(RFp ,E(δp,1δ−1

p,0)) ⊕Dst(RFp ,E(δp,1δ−1
p,0))

Dst(RFp ,E(δp,1δ−1
p,0))

,

where the first map is given by a ↦ (a mod Fil0
dR Dst(RFp ,E(δp,1δ−1

p,0)), (φ − 1)a,
Na), while the second arrow is defined by (a, b, c) ↦ Nb − (pφ − 1)c.

Now, choose a basis vp,0 ∈ D(0)
p,(φ ,N) over Fp,0 ⊗Qp E and let vp,1 ∶= Nvp,0, which

is a Fp,0 ⊗Qp E-basis for D(1)
p,(φ ,N). We again denote by vp, i for the image of vp, i in

Dst(W̃p(δ−1
p,0)). By the proof of [2, Proposition 1.4.4 (ii)], we know that the class

cl(W̃p) in H1(C●st(RFp ,E(δp,1δ−1
p,0))) is given by

cl(a, b, c) = cl(a, (φ − 1)vp,0 , Nvp,0) = cl(a, 0, vp,1),

where a ∈ Dst(W̃p(δ−1
p,0)) such that vp,0 + a ∈ Fil0

dR Dst(W̃p(δ−1
p,0)). After untwist-

ing, a defines an element, still denoted by a ∈ Dst(W̃p) such that vp,0 + a ∈
Filkp,●,n

dR Dst(W̃p). However, by construction,

Filkp,●,n
dR Dst(W̃p) = Grn−1

dR Dst(ρ) (notation as in Lemma 4.1).

Hence, we conclude that

cl(W̃p) = cl(−LFM(ρp)vp,1 , 0, vp,1) ∈ H1(C●st(RFp ,E(δp,1δ−1
p,0))).(5.1)

Step 2. Computing LGB(ρ).
Next, we would also like to compute the Greenberg–Benois L-invariant LGB(ρ)

via cohomology of (φ, �)-modules. As before, because of the decomposition
D†

rig((IndQ
F ρ)p) = ⊕p∣p D†

rig(IndQp
Fp

ρp), we can study each p individually. Hence,
fix p∣p. Computing the five-step filtration (3.1) explicitly, we have

DGB
p, i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, i = −2,
Filφ

n−2 Dst(ρp(m)), i = −1,
Dp , i = 0
Dst(ρp(m)), i = 1,
Dst(ρp(m)), i = 2,

which gives rise to a five-step filtration FilGB
● D†

rig(ρp(m)).
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Let us simplify the notation and write

Wp = FilGB
1 D†

rig(ρp(m))/FilGB
−1 D†

rig(ρp(m)).

Similar as before, we see that Wp sits inside the short exact sequence

0 GrGB
0 D†

rig(ρp(m)) Wp GrGB
1 D†

rig(ρp(m)) 0

RFp ,E(δ′p,1) RFp ,E(δ′p,0)
≅ ≅ ,

(5.2)

where

δ′p,n−i = δp,n−i (NmFp

Qp
z)

m
∣NmFp

Qp
z∣m =

⎛
⎜
⎝

∏
σ ∶Fp↪Qp

σ(z)−kp,σ , i+m
⎞
⎟
⎠
∣NmFp

Qp
z∣n−i .

By taking cohomology, we have the connecting homomorphism

∂ ∶ H0(RFp ,E(δ′p,0)) → H1(RFp ,E(δ′p,1)) = H1
st(RFp ,E(δ′p,1)),

where the equation follows from Lemma 2.1. Denoted by α∗δ′
p,1

and β∗δ′
p,1

the two classes
in H1(RFp,E (δ′p,1)) in Lemma 2.2. We know from loc. cit. that ∂ gives rise to a unique
number L(Wp) ∈ E such that

β∗δ′
p,1

+L(Wp)α∗δ′
p,1

∈ image ∂.

We claim that

LGB(ρ(m)) = ∏
p∣p

L(Wp).(5.3)

Note that, in the definition of LGB(ρ(m)), one studies the cohomology of
GrGB

1 D†
rig(ρp(m)). However, we are now having cohomology classes in H1(GrGB

0 D†
rig

(ρp(m))). To resolve this, we look at the short exact sequence

0 (GrGB
1 Drig(ρp(m)))

∨

(χcyc) W∨

p (χcyc) (GrGB
0 Drig(ρp(m)))

∨

(χcyc) 0

RFp ,E(κp,0) RFp ,E(κp,1)
≅ ≅

.

By [2, Proposition 2.2.4], the Greenberg–Benois L-invariant computed by this exact
sequence (at each p) is the same as LGB(ρ(m)). Here,

κp, i(z) =
⎛
⎜
⎝

∏
σ ∶Fp↪Qp

σ(z)kp,σ ,n−i−m+1
⎞
⎟
⎠
∣NmFp

Qp
z∣1−i ,

and we want to compute LGB(ρ(m)) using the cohomology of RFp ,E(κp,1).
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By (B2), we have kp,σ ,n−1 − m + 1 ≤ 0 and we let up ∶= minσ{kp,σ ,n−1 − m + 1}. By
[17, (2.8)], there is an injection

H1(RQp ,E(zup)) ↪ H1(RFp ,E(κp,1)), xup
↦ xkp,●,n−1−m+1

yup
↦ ykp,●,n−1−m+1

,

where xup
, xkp,●,n−1−m+1, yup

, and ykp,●,n−1−m+1 are as defined in loc. cit.9,10 By the
discussion on [17, pp. 1238], we have a commutative diagram

H1 ⎛
⎝⊕p∣p

D∨p(1 − m), IndQ
F ρ∨(1 − m)

⎞
⎠

⊕
p∣p

Exkp,●,n−1−m+1 ⊕
p∣p

H1(RFp ,E(κp,1)) ⊕
p∣p

Eykp,●,n−1−m+1

ιcι f(5.4)

where ιc is an isomorphism. Moreover, [op. cit., Corollary 3.9] yields that

LGB(ρ(m)) = det(ι f ○ ι−1
c ).

In particular, if Lp ∈ E such that

Lpxkp,●,n−1−m+1 + ykp,●,n−1−m+1 ∈ image
⎛
⎝

H1 ⎛
⎝⊕p∣p

D∨p(1 − m), IndQp
F ρ∨(1 − m)

⎞
⎠
→ H1(RFp ,E(κp,1))

⎞
⎠

,

then

LGB(ρ(m)) = ∏
p∣p

Lp .

By definition, H1 (⊕p∣p D∨p(1 − m), IndQ
F ρ∨(1 − m)) ≅ ⊕p∣p

H1(W∨

p (χcyc))

H1
f (W

∨
p (χcyc))

. The
vertical morphism in (5.4) is compatible with the natural morphism

H1(W∨
p (χcyc)) → H1(RFp ,E(κp,1)),

9For the convenience of the readers, we briefly recall the definitions of xup
and yup

. The definitions
for xkp,●,n−1−m+1 and ykp,●,n−1−m+1 are similar; we refer the readers to [17, pp. 1233, 1234] for the precise
definitions. Given α = (a, b) ∈ RQp ,E(zup)⊕2 , one can define an extension Dα as in (2.1), which defines a
class cl(a, b) ∈ H1(RQp ,E(zup)). We simplify the notation and write e for the basis for RQp ,E(zup). Then
xup
∶= cl(t−up e , 0) and yup

= log χcyc(γ)cl(0, t−up e), where recall γ is a (fixed) topological generator
for � = Gal(Qp(ζp∞)/Qp) and t = log[ε] ∈ B+dR . Here, ε ∈ O♭Cp

= lim
←
a↦a p

OCp is defined by the fixed
compatible system of primitive p-power roots of unity (see the beginning of §2.1), and we implicitly use
the fact that certain subring of RQp can be embedded into B+dR (see [2, §1.2.2]).

10This injection comes from a natural injection RQp ,E(zup) ↪ Ind
�Qp

�Fp
RFp ,E(κp,1). By duality,

we have a natural projection Ind
�Qp

�Fp
RFp ,E(δ′p,1) ↠ RQp ,R(z−up+1 ∣z∣) as well as H1(RFp ,E(δ′p,1)) ↠

H1(RQp ,E(z−up+1 ∣z∣)). According to [2, Theorem 1.5.7], xup
(resp., yup

) is dual to β∗
−up+1 (resp.,−α∗

−up+1).
Thus, we may choose vδ′

p,1
∈ Dst(RFp ,E(δ′p,1)) such that the corresponding α∗δ′

p,1
= cl(vδ′

p,1
, 0, 0) ↦

α∗
−up+1 and β∗δ′

p,1
= − cl(0, 0, vδ′

p,1
) ↦ β∗

−up+1 .
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induced from the short exact sequence (5.2). Note that the exact sequence

H1(W∨
p (χcyc)) → H1(RFp ,E(κp,1))

∂�→ H2(RFp ,E(κp,0))

is dual to the exact sequence

H0(RFp ,E(δ′p,0))
∂�→ H1(RFp ,E(δ′p,1)) → H1(Wp).

We have ∂(Lpxkp,●,n−1−m+1 + ykp,●,n−1−m+1) = 0 ∈ H2(RFp ,E(κp,0)) and β∗δ′
p,1

+
L(Wp)α∗δ′

p,1
= 0 ∈ H1(Wp). Moreover, using the relation between xkp,●,n−1−m+1 (resp.,

ykp,●,n−1−m+1) and β∗δ′
p,1

(resp., −α∗δ′
p,1

), one sees that

Lp = L(Wp),

which concludes our claim.

Step 3. Conclusion.
By construction, Wp defines a class (see (5.2))

cl(Wp) ∈ Ext1
(φ ,�)(RFp ,E(δ′p,0),RFp ,E(δ′p,1))

≅ Ext1
(φ ,�)(RFp ,E ,RFp ,E(δ′p,1δ′−1

p,0))
≅ H1(RFp ,E(δp,1δ−1

p,0)).

Note that, as classes in H1(RFp ,E(δp,1δ−1
p,0)), we have

cl(Wp) = cl(W̃p).

Unwinding everything, we have

c cl(L(Wp)vp,1 , 0,−vp,1) = cl(Wp) = cl(W̃p)
(5.1)= cl(−LFM(ρp)vp,1 , 0, vp,1)

for some c ∈ E. In particular, we conclude that

LFM(ρp) = −L(Wp)

and so,

LGB(ρ(m)) = ∏
p∣p

−LFM(ρp)

by (5.3). ∎
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