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DEFINING FAMILIES FOR INTEGRAL DOMAINS OF 
REAL FINITE CHARACTER 

WILLIAM H E I N Z E R AND JACK OHM 

Throughout this paper R and D will denote integral domains with the same 
quotient field K. A set of integral domains {Dt} iei with quotient field K will 
be said to have FC ("finite character" or "finiteness condition") if 0 9e £ G K 
implies £ is a unit of Dt for all but finitely many i. If C\%^iDi also has quotient 
field K, then {Di} has FC if and only if every non-zero element in C]ieiDi is 
a non-unit in at most finitely many Dt. A non-empty set { Vt) iÇ:I of rank one 
valuation rings with quotient field K will be called a defining family of real 
R-representativesfor D if { Vt} ^ 7 h a s F C , R (£ H ^ / F * , andD = RC\ (OiçiVi). 
D will be called an R-domain of real finite character if there exists a defining 
family of real ^-representatives for D. 

The concept of an i^-domain of real finite character is a continuation of the 
line of thought begun in [7, § 5] and continued in [4]. When R = K, the 
reference to R will be omitted; and in this case the domains of real finite char­
acter are the rings originally studied by Ribenboim in [9] and Griffin in [3]. 

A domain V will be called an irredundant real ^-representative for D if 
there exists a denning family of real ^-representatives { Vt) iei for D such that 
V g { Vt) iei and such that D ^ R C\ { V%\i G / and Vt ^ V]. We prove in § 1 
that any defining family of real ^-representatives for D contains every irre-
dundant real i^-representative and that the set of all irredundant real R-
representatives itself constitutes a defining family of real ^-representatives 
for D. The corresponding theorem for domains of real finite character (i.e. in 
the case that i^ = K) was proved by Brewer and Mott in [2, p. 38, Theorem 14]. 

In § 2 we give an example to show that there exists a domain D of real 
finite character such that no irredundant real representative is a quotient 
ring of D, thus answering a question raised in [2, p. 40]. 

In addition to the above notation, we use Pt to denote the centre of V\ on D, 
i.e. Pt is the intersection of the maximal ideal of Vt with D. We also say that 
Vi is explicit on D if Vt is a quotient ring of D, i.e. if Vt = DPi. If V is a valua­
tion ring, V{£) will denote the value of g under the valuation canonically 
associated with V; if F is of rank 1, we also tacitly assume that this value 
group is imbedded in the real numbers. Finally, we use C for containment 
and < for proper containment. 
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1. I r r e d u n d a n t representa t ives . T h e following theorem is the key to the 
results of this section. 

1.1. T H E O R E M . Let R be a domain with quotient field K, let V be a rank one 
valuation ring of K such that R (£ V, and assume D = R C\ V also has quotient 
field K. Then either V is discrete or D contains elements of arbitrarily small 
positive V-value. 

Proof. Let P denote the centre of V on D. If F is a rational valuat ion ring 
(i.e. the value group of V is order-isomorphic to a subgroup of the rat ionals) , 
then [4, Lemma 1.3] implies t ha t V = DP and hence t ha t either V is discrete 
or D contains elements of arbitrari ly small positive F-value. Therefore we 
assume t h a t V is not rational. 

R Çf V implies there exists a £ R such t ha t V(a) < 0. Moreover, every 
element in V can be writ ten in the form p/q with p, q G P , so t ha t the V-values 
of elements in P generate the value group of V. Hence there exists b G P C R 
such t h a t V(a) and V(b) are rationally independent (i.e., V(a) and V(b) have 
the proper ty t h a t if m and n are integers such t h a t mV(a) + nV(b) = 0, 
then m = 0 = n). Note t ha t if m and n are positive integers, then ambn G R', 
so ambn G P if and only if mV(a) + nV(b) > 0. T h e following lemma shows 
t h a t the set {mV(a) + nV(b)\m, n ^ 1} contains arbitrari ly small elements 
> 0 , which then proves the theorem. 

Let R denote the real numbers, Z the integers, and Z + the non-negative 
integers. If a, /3 are rationally independent real numbers, then for any real 
number of the form y = ma + nfi, m, n £ Z, the m, n are uniquely determined 
by y; and we write m (7), n(y) for these integers. 

LEMMA. If a < 0, fi > 0 are rationally independent real numbers, then 
G = {ma + n$\m, n G Z+} is dense in R. 

Proof. Let Gr = {ma + nf$\m, n G Z} and H = {ma + n/3\m G Z, n G Z + } . 
I t follows from the Archimedian property of R tha t , for fixed real numbers 
71 > 72 and for a given n0 G Z, {7 G G'\yi > y > 72 and n(y) = n0} is 
finite. Therefore if n0 < 0, one also concludes t ha t F = {y G G ' I T I > y > 72 
and 0 > n{y) > n0} is finite. 

Firs t we shall establish t h a t H is dense in R. Since G' is dense in R [8, p. 150, 
Example 51], it suffices to show t h a t for any 71 > 72 G G', there exists 7 G H 
such t h a t 71 ^ 7 ^ 72. If n(y\) ^ 0 or ^(72) ^ 0, we are done; so assume 
^(71) < 0, ^(72) < 0. Le t n0 = n(yi) + ^(72) . By the finiteness of the set 
F, we conclude there exists 7 G G' such t ha t 71 > 7 > 72 and either (i) 
n(y) ^ 0, or (ii) n(y) ^ nQ. If (i) holds, then 7 has the required properties; 
while if (ii) holds, then 72 + (71 — 7) does. Thus , H is dense in R. 

Now let r\ > r2 be real numbers. Since a < 0 and /3 > 0, there exist only 
finitely many 7 G H such t h a t m (7) < 0 and r 1 > 7. Since there exist infinitely 
many 7 G H such t h a t Y\ > y > r2, it follows t h a t there exists one such 7 
with m (7) ^ 0. This element is then in G, so G is dense in R. 
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It follows immediately from 1.1 that (in the notation of 1.1) if the centre 
of V on D is finitely generated, then V is discrete and hence noetherian. This 
is a special case of [4, Theorem 1.17], which was originally proved using 1.1 
and then later was done more directly. 

The following simple localization lemma will be useful. 

1.2. LEMMA [4, Lemma 1.1]. Let {Da} be a set of over rings contained in the 
quotient field K of the integral domain D, and let She a multiplicative system of D. 
If {Da\ has FC and D = C]aDaj then Ds = na(Da)s. 

1.3. THEOREM. Let D < R be domains with quotient field K and suppose that 
D = R (^ V for some rank one valuation ring V of K. If Vi, . . . , Vn are rank 
one valuation rings of K such that D = R C\ V\ C\ . . . C\ Vn, then V G { V{}. 

Proof. For some t < n we have D < R C\ Fi H . . . H Vt but D = 
R r\ Vi r\ . . . r\ Vt+1. Thus, if R! = R C\ Vi n . . . n Vt and W = Vt+U 

it will suffice to show that D = K r\V = R' C\W implies V = W. If V is a 
rational valuation ring and has centre P on Dy then [4, Lemma 1.3] implies 
that V = DP. By 1.2 we would then have RP' = K and V = WP = W. Thus, 
we may assume that V is not rational and hence in particular is not discrete. 
Suppose V 7e- W. Then we can choose an element x Ç W \ F and write x in the 
form a/b with a, b G D. Thus W(a) ^ ^ ( 6 ) è 0, while 0 ^ V(a) < V(b). 
Note that for y £ R', we have y a G D if and only if yb G D; for, y a G D ==> 
ya G V =$yb G F =» &̂ G D, and yb £ D ^ yb £ W => ^a G I f ^ ^ Ç D . 
Choose y G i^'\I>. Then F (y) < 0, so - F (y1) > F (a) for some positive 
integer n. Theorem 1.1 implies that there exists d G D such that 
V(b) > —V(dyn) > Via). Hence z = dyn is an element of R' such that 
bz G F and az d F. It follows that bz G D and az d D, and this contradiction 
completes the proof. 

1.4. COROLLARY. Let D be an R-domain of real finite character. Then any 
irredundant real R-representative for D occurs in every defining family of real 
R-representatives; and the set of all irredundant real R-representatives is itself a 
defining family of real R-representatives for D. 

Proof. If F is an irredundant real .^-representative for D, then for some 
y G R\D, we have D = D[y] P\ F. If { Va} is a defining family of real R-
representatives for D, then D = R P\ (C[aVa)', and all but a finite number of 
the Va contain y and hence contain D[y\. If Fi, . . . , Vn are the Va which do 
not contain y, then D = D[y] H F = D[y] C\ Fi C\ . . . H Vn. Hence by 1.3, 
F G {Vt} C{Va}. 

Let now </ denote the set of all irredundant real ^-representatives for D. 
To prove D = i ^ P \ { F | F G * / } , it suffices to show for every z G R\D, there 
exists V £ J such that 2 $ F ; for this implies R H { V\ V G */} C A and 
the reverse inclusion is immediate. But if &~ is a family of real ^-representatives 
for D, then by the FC there exist only finitely many elements ( ^ 1 ) of Ĵ ~ 
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which do not contain z; and by deleting from #", if necessary, finitely many 
of these, we again obtain a defining family in which one of the representatives 
not containing z is irredundant. 

Note that the second assertion of 1.4 is very superficial and requires nothing 
more than the finiteness condition for a defining family. 

A word on terminology. The irredundant real representatives of a domain 
of real finite character are essential in the sense that they are a subset of 
every defining family of real representatives and thus provide a suitable 
generalization of the notion of essential representative of a Krull domain. 
The essential representatives of a Krull domain, however, may also be charac­
terized as those representatives which are explicit, while the irredundant 
representatives of a domain of real finite character need not all be explicit 
(see [7, p. 330, Example 5.3] or [3, p. 84, Example 1]). Thus, contrary to the 
way these terms are frequently used, we feel that if the word "essential" is 
to be used at all for domains of real finite character, then it should refer to the 
irredundant real representatives; or one can avoid the issue completely by 
using the terms "irredundant" and "explicit". Incidentally, the "explicit" 
terminology stems from Krull [5, p. 559]. 

2. The example. We give now an example of a domain of real finite 
character for which no irredundant real representative is explicit. It is easily 
seen (see 2.3) that any localization at a minimal prime ideal of a domain D 
of real finite character is an irredundant real representative for D, and it 
follows that our example must have no minimal prime ideals. 

We first need some preliminaries. 

2.1. Remarks, (i) Let y be a valuation of a field k having value group a 
subgroup of the reals, let {X t] i €7 be a set of indeterminates, and let {y*} iei be 
any set of real numbers. Then v can be extended to a valuation v' of k({Xi) iei) 
by defining v' (Xi) = yt and if / = Mi + . . . + Mt is any polynomial with 
monomial terms Mly . . . , Mt, thenv'(f ) = inî{v'(Mi)} [1, p. 160, Lemma 1]. 
We shall refer to an extension v' obtained in this way as an extension defined by 
taking infs. 

(ii) If S is a subset of the real numbers and {y*} i€I are real numbers, we shall 
say that the yt, i £ / , are rationally independent with respect to S if for any 
s £ S and any yi, . . . , yt G {y^m, r0s + r m + . . . + rtyt = 0, rt rational 
numbers, implies r0s = r± = . . . = rt = 0. In particular, if 5 is countable, 
then we can always find an infinite set of yt which are rationally independent 
with respect to 5. If S = {0}, we merely call the yt rationally independent. 

(iii) Let X b e a field and F be a valuation ring of K. V is said to be well-
centred on a subring R of K if V(R)+ = V(K)+, where V(A)+ denotes 
{a G A\V(a) ^ 0}. It is immediate that if V is explicit on a subring R of V, 
then V is well-centred on R. 
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Consider then a rank 1 valuat ion V of k(X), k a field, X an indeterminate , 
such t h a t V{X) is rat ionally independent with respect to V(k) and V is 
non-trivial on k. T h e n V is no t well-centred on k[X]\ for there exists a Ç k 
such t h a t V(a) > V(X), and then V{a) - V(X) £ V(k(X))+ b u t V(a) -
V(X) (? V(k[X])+. In part icular , this shows t h a t V is not explicit on any 
subring of k[X]. 

2.2. L E M M A . Let D be a domain of real finite character, and let { Vt) i € / be a 
defining family of real representatives for D. Assume moreover that D and I are 
countable. Then there exists a domain Dr D D of real finite character having a 
defining family of real representatives {V/}j^j such that 

(i) J contains I and is countable, and Df is countable; 

(ii) for each i £ I, V/ extends Vu and V/ is the only element of \ V/} jeJ 

with this property ; 
(iii) no VI, i Ç I, is explicit on D''; 
(iv) for a, /3 G 7, if Pa, Pp are the centres of Va, Vp on D and PJ, P$ the 

centres of VJ, V$ on D', then Pa < Pp implies Pa' < Pp . 

Proof. Le t {Xt} iei be a set of indeterminates, and let K denote the quot ient 
field of D. Since D and 7 are countable, the union of the value groups of the Vt 

is a countable set; and hence we can choose yu i G 7, to be a collection of 
positive real numbers rat ionally independent with respect to this set. By 
taking infs, we extend any V G { V\} to a valuat ion V of K({Xi\) as follows: 
Le t P , Pi be the respective centres of V, Vt on D, and define V(Xt) = yt if 
PtCP, V'ÇXi) = 0 if P ^ P . Now let D' = K[{Xt\] H {V/}iei. K[{Xt}] 
is a countable Krul l domain and hence has a countable family of discrete 
rank 1 representat ives. Moreover, { V/} t^i has F C . For by the F C of the { Vt}, 
every element of K and every Xt has non-zero value for a t most finitely 
m a n y V/; so it follows t h a t any polynomial in i£[{X^}] has non-zero value for 
a t most finitely m a n y V/. Note also t h a t the quot ient field of Df is K({Xt}) 
since D[{Xt}] C D'. 

Thus , D' is a countable domain of real finite character and has a countable 
defining family of real representat ives consisting of the essential representat ives 
of i£[{Xt-}] together with the {V/}iei, and this defining family satisfies (i) . 
Moreover, since each essential representat ive of i£[{X^}] is trivial on K, no 
one of these is the extension of a Vi. Thus , (ii) is also satisfied. By 2.1 (iii), 
Vi , i G 7, is no t explicit on any subring of K({Xa\a Ç 7 and a 7e i) )[Xi\ and 
hence is in part icular not explicit on D''. 

Now let PJ, Pp' be as in (iv). Since Vp'(Xfi) > 0 and Va
f(Xp) = 0, it 

suffices to show TV C P$ > Suppose then there exists / G D' such t h a t 
Vft'U ) = 0 and VJ'(/ ) > 0. / is a polynomial in K[{Xt}]; and since the V/ 
are defined by taking infs of the te rms of/, we m a y a s s u m e / is a monomial , 
i.e. / = £F, where f G K and Y = Xh

m' . . . Xit
mt. Since F / ( ^ F ) = 0 and 

since the non-zero real numbers from the set {Vp(X%l), . . . , Vp(Xit)\ were 
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chosen rationally independent with respect to F/(£) , we conclude that 
7 / ( 7 ) = 0. It then follows from the definition of the V( that V/(Y) > 0 
implies Pt (jLPp. But since £F G D', F/(£) ^ 0 except possibly for those 
finitely many i such that V/(Y) > 0, and for these i we can then choose 
ri G Pi\Pfi. Taking r to be a sufficiently high power of the product of these 
rit we get r£ G D and r G Pp. Since PJ C\D = Pp, it follows that (r£) Y G Ppf 

and G P a ' , i.e. we have reduced to the case that £ G Z>. 
Thus, assume £ G D. As observed above, F / (£F) = 0 implies Vp (Y) = 0; 

and from the definition of Vp and the assumption that Pa C P/s, it follows 
that Va'(Y) = 0 also. But then Va'(£Y) > 0 implies F«(£) > 0; and since 
£ (z D, this implies J G P a . Therefore 

? 6 Pa C P* => 7/(5) > 0 => F / (£F) > 0, 

a contradiction. 

2.3. LEMMA. Le£ { F*} ieibe a defining family of real representatives for a domain 
D, and let Pt denote the centre of Vt on D. If P is a non-zero prime ideal of D, 
then P D Pi for some i; and if P is a minimal prime, then DP = V\ for some 
i G L 

Proof. If K denotes the quotient field of D, then DP = K Pi { F*|P* C P\ 
by 1.2. Since DP ^ K, this proves the first assertion. If P is now assumed 
minimal, then furthermore DP = H { Vt\Pi = P} . Thus, by the FC, DP is a 
finite intersection of valuation rings, each of which dominates DP. It follows 
from [6, Theorem (11.11)] that each of these is explicit on DP and hence 
equals DP. 

2.4. Example of a domain D* of real finite character having a defining 
family ^ " * of real representatives such that no element of J^~* is explicit onD*. 

Let Do be, say, a £-adic valuation ring of the rationals, and construct a 
chain of domains Do < Di < . . . such that Di+± is obtained from Dt by means 
of 2.2. Let D* = U Di (the construction may be carried out in a field con­
taining the rationals and having uncountable transcendence degree over the 
rationals). Let J ^ denote the defining family of real representatives for Dt 

given by 2.2, let Kt = the quotient field of Dh let K* = the quotient field of 
D*, and let J^"* = {subrings F* of K*\ there exists n such that F* Pi Kt G J r

î-
for all i ^ n}. It follows immediately from the definitions and 2.2(ii) that 
&~ * is a defining family of real representatives for D*. 

We claim that F* G &~ * implies F* is not explicit on D*. Since F* is a 
rank 1 valuation ring, it suffices to show the centre P* of F* on D* is not 
minimal. There exists an i such that F* P K{ G J ^ . Then F* P i£ ï + i 6 ^i+i; 
and since F* P Ki+i is not explicit on Di+i by 2.2 (iii), it follows from 2.3 
that the centre of V* C\ Ki+\ on J9l+i properly contains the centre of some 
Wi+\ G <^i+\. If IF* denotes the uniquely determined element of Ĵ ~ * which 
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intersects Ki+i in Wt+i, then by 2.2 (iv) the centre of W* on D* is properly 
contained in the centre of V* on D*. 

Even though nothing can be said about the explicitness of the irredundant 
representatives of a domain of real finite character, one might hope that 
distinct irredundant representatives at least have distinct centres. However, 
this also is false as the following example shows. (It can be easily seen that 
2.4 does not provide such an example.) 

2.5. Example. Let B be a rank one discrete valuation ring with quotient 
field L, and let X and Y be indeterminates. Let e and -K be positive real num­
bers, e < 3, 7T > 3, such that 1, e, and ir are rationally independent. We 
extend the valuation ring B to valuation rings V and W of L (X, Y) by setting 
V(X) = 7T = W(Y) and V(Y) = e = W(X). Let R = L[X, F], and con­
sider D = R C\ V Pi W. Then D is a domain of real finite character; and since 
B[X, Y] C D, the quotient field of D is L(X, Y). Moreover, if t is a generator 
for the maximal ideal of B, then X/t* Ç (R H F) \ Wand F/ / 3 Ç (£ H W0\F. 
Hence F and TF are irredundant representatives for D. But if / G L[X, F] is 
such that F ( / ) ^ 0 and TF(/ ) ^ 0 a n d / is a nonunit in one of F or IF, then 
the constant term of / must be a nonunit in B a n d / must have strictly positive 
value in both F and IF. Hence F and IF have the same centre on D. 

We conclude with a simple example which shows that the uniqueness 
theorem for the irredundant rank one valuation rings defining a domain of 
real finite character does not generalize to the case of a domain which is an 
intersection of a family of 1-dim quasi-local integrally closed domains with FC. 

2.6. Example. Let X, Y, and Z be indeterminates over a field k, and let 
IF = k[X, F, Z](Z). Then IF is a rank one discrete valuation ring and 
W = k(X,Y) + M, where M is the maximal ideal of IF. Let Fi = k(X) + 
M, F2 = k(Y) + M and D = VxC\ F2. Then Vi and F2 are 1-dim quasi-
local integrally closed domains, Vi P\ F2 is irredundant, but D = Fi P\ F2 = 
& + M" is again a 1-dim quasi-local integrally closed domain. Hence there is 
no uniqueness property for the " irredundant representatives" of D as an 
intersection of 1-dim quasi-local integrally closed domains. 
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