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Abstract
Investigating rare and new objects have always been an important direction in astronomy. Cataclysmic variables (CVs) are ideal and natural
celestial bodies for studying the accretion process of semi-detached binaries with accretion processes. However, the sample size of CVs must
increase because a lager gap exists between the observational and the theoretical expanding CVs. Astronomy has entered the big data era and
can provide massive images containing CV candidates. CVs as a type of faint celestial objects, are highly challenging to be identified directly
from images using automatic manners. Deep learning has rapidly developed in intelligent image processing and has been widely applied
in some astronomical fields with excellent detection results. YOLOX, as the latest YOLO framework, is advantageous in detecting small
and dark targets. This work proposes an improved YOLOX-based framework according to the characteristics of CVs and Sloan Digital Sky
Survey (SDSS) photometric images to train and verify the model to realise CV detection. We use the Convolutional Block Attention Module
to increase the number of output features with the feature extraction network and adjust the feature fusion network to obtain fused features.
Accordingly, the loss function is modified. Experimental results demonstrate that the improved model produces satisfactory results, with
average accuracy (mean average Precision at 0.5) of 92.0%, Precision of 92.9%, Recall of 94.3%, and F1− score of 93.6% on the test set. The
proposed method can efficiently achieve the identification of CVs in test samples and search for CV candidates in unlabeled images. The
image data vastly outnumber the spectra in the SDSS-released data. With supplementary follow-up observations or spectra, the proposed
model can help astronomers in seeking and detecting CVs in a new manner to ensure that a more extensive CV catalog can be built. The
proposed model may also be applied to the detection of other kinds of celestial objects.
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1. Introduction

With the development of deep learning (DL), target detection
algorithms have been applied in many fields and achieved state
of the art results (LeCun et al., 2015). Meanwhile, the develop-
ment of large survey telescopes, such as the Sloan Digital Sky
Survey (SDSS; York et al. 2000) allows easier access to astronom-
ical image data. Accordingly, target detection algorithms can be
applied to massive astronomical images to provide celestial body
detection by using the morphological structure and colour infor-
mation contained in the images. Moreover, faint object detection
in astronomical images can be technically solved. Cataclysmic
variables (CVs) are a class of short-period binaries consisting of an
accreting white dwarf (WD) primary star and a low-mass main-
sequence secondary star as the mass donor (Warner, 2003). CVs
can be classified into minor sub-types according to their ampli-
tudes, timescale variability, and magnetism. CVs are also a class
of periodic variables with complex spectral and orbital light curve
variation (Hellier, 2001). CVs are a hot spot for astrophysical
research due to their complex physical composition and vari-
ability, and are also a natural laboratory for studying accretion
processes. Furthermore, CVs are the ideal objects for accretion
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observations than other objects with accretion processes because
of their close distances.

According to theoretical calculations, the Milky Way should
have about 10 million CVs, but only 1829 CVs have been docu-
mented to datea, of which only 1600 have been confirmed (Downes
& Shara, 1993). This notion indicates the difficulty of discovering
CVs and reflects the significance of searching for CVs.

Spectra can confirm CVs because they have strong emission
lines, particularly during quiescence. Most optical spectra of CVs
(Figure 1) show hydrogen Balmer emission lines, namely, 6563Å,
4862Å, 4341Å, 4102Å, andHeI 5876Å andHeII 4686Å during qui-
escence. Even conventional classificationmethods with prominent
features can easily identify CVs from spectra. However, the num-
ber of spectra is limited due to the relatively high observation cost.

Photometric selection and brightness change is the most com-
monly used method in the search for CVs. CV candidates can be
roughly selected out by photometric information and identified
with spectra or follow-up observations. Wils et al. (2010) used the
photometric selection criteria of ((u− g)+ 0.85 ∗ (g − r)< 0.18)
to search for dwarf novas. Szkody et al. (2002, 2003, 2004, 2005,
2006, 2007, 2009) established a photometric selection criterion, i.e.
(u− g < 0.45, g − r < 0.7, r − i> 0.3, i− z > 0.4) to select WD-
main sequence binaries with a few CVs and confirmed 285 CVs.
These criteria overlap with quasars, faint blue galaxies, and WDs.
In essence, there is no authorised criterion for CVs which is

ahttp://nesssi.cacr.caltech.edu/catalina/AllCV.arch.html
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Figure 1. A CV spectrum from SDSS.

available at present. Drake et al. (2014) obtained 855 candidates
from the Catalina Real-Time Transient Survey (Drake et al. 2011)
by using the transient detection procedure. Mroz et al. (2016)
received 1091 dwarf nova samples from the Optical Gravitational
Lensing Experiment (Paczynski et al. 1995) by using the Early
Warning System (Udalski, 2004) and photometric curve analysis.
Han et al. (2018) found three new candidates by cross-matching
the catalogs of CVs with the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST; Cui et al. 2012) DR3.

Traditional methods require a substantial amount of artifi-
cial time, sometimes years, to make follow-up observations. The
manual techniques are not always accurate and frequently require
many subjective judgements. With the simultaneous develop-
ment of hardware and software in computer science, applying
automated methods instead of manual methods can significantly
increase efficiency and identification accuracy. Jiang & Luo (2011)
obtained 58 CV candidates in SDSS by using the algorithm of
PCA+SVM with massive spectra produced by LAMOST and
SDSS. Hou et al. (2020) identified 58 new candidates by using
bagging top push and random forest. Hu et al. (2021) found 225
candidates by using the LightGBM algorithm and verified four
new CV candidates. Considering the quantitative limitation of
spectra, applying a detector that can automatically identify CVs
in images is demanding.

You Only Look Once (YOLO) is an object detection method.
Its latest framework, YOLOX (Ge et al., 2021) can achieve fast
detection and excellent image processing performance. However,
the pixels occupied by CVs are extremely limited in astronomi-
cal images, resulting in low-resolution problems, blurred and less
information, shallow features (brightness and edge), and weak
expressiveness. Accordingly, we improve YOLOX to achieve low-
cost, fast, and accurate localisation and identification of CVs. We
train and validate the model using SDSS images for detecting CVs.

This paper is organised as follows. Section 2 introduces the
data. Section 3 briefly illustrates YOLOX and our improvements
to the current framework. Section 4 describes the data prepro-
cessing and image enhancement, the experimental procedure, the
experimental environment, and the evaluation of the experimental
results. Section 5 discusses the experimental results. A compari-
son with previous research methods is also presented. Section 6
provides the conclusions and a summary of the study.

Figure 2. Some images from SDSS and CVs are at centre.

2. Data

The SDSS (York et al. 2000) provides a spectroscopic survey as well
as a photometrically and astrometrically calibrated digital imaging
survey. The photometric imaging includes five bands, namely, u, g,
r, i, and z at the average wavelengths of 3551, 4686, 6165, 7481, and
8931Å, respectively. CVs are usually quite blue and faint objects.
Our CV sample comes from Szkody et al. (2002, 2003, 2004,
2005, 2006, 2007, 2009), and duplicate CVs are deleted. We have
uploaded the images of CVs to GitHubb for viewing. Appendix A
displays the existing CV photometric data with spectra. We con-
struct the CV sample with SDSS images already synthesised with i,
r, and g-bands corresponding to the R, G, and B channels to more
wildly apply our method. The images of CV samples have a size of
0.39612"/pix, some of which are shown in Figure 2.

2.1. Image preprocessing and data augmentation

First, the images are cleaned, the noise in the images are filtered,
and a small amount of noisy images are removed, and 208 images
are obtained, while can remove the interference of background
noise to a certain extent. Given the small number of samples,
the data set needs to be expanded using data enhancement meth-
ods, which not only guarantee the diversity of the data set but
also improve the detection performance and enhances the robust-
ness and generalisation ability of the model. Our method of using
data augmentation is to generate a rotation angle within every 30
degrees randomly, rotate the image counterclockwise, and then
randomly shift and crop respectively, and the ranges of shifting
and cropping are shown in Table 1. We use the Lanczos interpola-
tion (Thevenaz & Blu, 2000) to avoid voids on the image. Lanczos

bhttps://github.com/Hickey-Curry/CVs-from-SDSS
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Table 1. Randomly shifting and cropping range.

Operation Scope name Range

Shift Horizontal range [-tLeft/3, (iWidth-tRight)/3]

Shift Vertical range [-tTop/3, (iHeight-tBottom)/3]

Crop Left border range [0, tLeft]

Crop Right border range [tRight, iWidth]

Crop Top border range [0, tTop]

Crop Bottom border range [tBottom, iHeight]
tLeft, tRight, tTop, tBottom: the left, right, top, and bottom coordinates of the target in the
image

iWidth, iHeight: the width and height of the image

Figure 3. Data enhancement example by mosaic. Due to different size of each image,
the blank is filled with grey colour when performing mosaic.

interpolation has the advantages of fast speed, good effect, and the
most cost-effective. The methods of translation and clipping can
enhance the position of the target, and the method of rotation can
significantly change the orientation of the object without adding
topological information.

In the YOLOX model training stage, the algorithm will also
randomly enhance the data, the usual methods are Mosaic
(Bochkovskiy et al., 2020) and Mixup (Zhang et al., 2017), Mosaic
first randomly selects four images for conventional enhancement,
and then stitches them into a new image, so that the new image
contains the random target box information of the extracted
image, and the random method maximises the rich data set.
Mosaic enhances the diversity of data, enriches the background
of the image, and also increases the number of targets, and the
four images stitched together into the network improve the batch
size, and the mean and variance can be better calculated when per-
forming BN operations. A mosaic example is shown in Figure 3.
The core idea of Mixup is to randomly select two images from
each batch and superimpose a certain proportion to generate new
images, reducing the memory of the model on the noisy samples,
thereby reducing the impact of noisy samples on the model. A
mixup example is shown in Figure 4.

2.2. Dataset

The external rectangular boxes of CVs in the image are drawn
using the data set annotation software to achieve manual

Figure 4. Data enhancement example by mixup.

annotation of CVs, ensuring that the rectangular boxes contain as
little background as possible in the process. The annotated infor-
mation is saved as XML format files and converted into TXT text
by the program, while facilitates the data reading by the model.

After the data enhancement operation, a total number of 5200
images are achieved. From these images, 60% of images are ran-
domly selected as training set, 20% as validation set, and the rest
as test set. Finally, the dataset is made into Pascal VOC style. The
training set is used to train the model (i.e., to determine the model
weights and biases for these parameters). The validation set is only
for selecting hyperparameters, such as the number of network lay-
ers, the number of network nodes, the number of iterations, and
the learning rate. The test set is used to evaluate the final model
after the training is completed.

3. Method

The definition of small targets in Computer Vision is as follows
(Chen et al., 2016): the median ratio of the target of the same
category relative to the whole image area is between 0.08% and
0.58%. The most common definition is from the MS COCO (Lin
et al., 2014) dataset, which defines a small target as a resolu-
tion of fewer than 32 × 32 pixels. According to the International
Society for Optical Engineering definition, an imaging area of
fewer than 80 pixels in a 256 × 256 image is a small target. CV
detection can thus be considered a detection task for small tar-
gets. Small targets contain little information, making it challenging
to extract discriminative features. Existing DL methods for small
target detection include multi-scale learning, contextual learning,
adding attention mechanisms, generating super-resolution feature
representations, anchorless mechanisms, and optimising loss-type
handling disparity datasets. YOLO uses an end-to-end neural
network that makes predictions of bounding boxes and class prob-
abilities appropriate for CV detection. YOLOX is an anchor-free
version of YOLO, with a more straightforward design but bet-
ter performance. The attention mechanism allows the network to
focus on what needs more attention. Adding the attention module
to YOLO can effectively enhance the network’s ability to cap-
ture the image’s features. Convolutional Block Attention Module
(CBAM; Woo et al. 2018) is a simple and effective attention mod-
ule for feedforward convolutional neural networks because of its
lightweight and versatility and can be seamlessly integrated into
YOLOX. The following introduces YOLOX and CBAM in detail.
Inspired from these directions, we propose an improved CV object
detection model.

https://doi.org/10.1017/pasa.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2023.34


4 J. Huang et al.

Figure 5. The architecture of YOLOX.

3.1. YOLOX

YOLOX uses CSPDarkNet (Bochkovskiy et al., 2020) as the back-
bone following the filter size and overall structure of DarkNet
(Redmon & Farhadi, 2017), adding a cross-stage partial struc-
ture to each residual block (He et al., 2016). Figure 5 shows the
architecture of YOLOX.

YOLOX is a network composed of a feature pyramid network
(FPN; (FPN; Deng et al. 2022) with a pixel aggregation network
(PAN; (PAN;Wang et al. 2022), which is a fusion of high-level
features by upsampling and low-level features to obtain a new
feature map. Meanwhile, PAN fuses low-level features by down-
sampling and containing features further to pass up the robust
localisation features. The final following feature maps of multi-
scale features are obtained, which are used to detect large, medium,
and small targets. YOLOX feeds the enhanced featuremap into the
head network for classification and localisation. Unlike the previ-
ous versions of YOLOX, YOLOX uses a decoupled head structure.
The head structure is divided into two parts, namely, classifica-
tion and localisation, which are separately implemented and then

integrated into the final prediction stage. YOLOX proposes the
SimOTA technique to dynamically match positive samples for
targets of different sizes. The loss function of the YOLOX algo-
rithm typically includes target, classification, and regression losses.
Binary cross-entropy and IOU loss are used in target classification
and regression separately. Classification and regression loss calcu-
lates the loss of positive samples. Meanwhile, target loss calculates
the loss of positive and negative samples.

3.2. CBAM

CBAM is a simple and effective attention module for feed-forward
convolutional neural networks. This module processes the input
feature map, derives the attention map along two separate dimen-
sions, channel and space, and applies the result into the input
feature map. The channel attention mechanism (CAM) uses par-
allel AvgPool and MaxPool approaches to process the input. The
parallel connection approach loses less information than a single
pooling; hence, this approach hasmore symbolic power. The CAM
in CBAM differs from SEnet by adding a parallel max-pooling
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Figure 6. The basic structure and processing flow chart of CBAM.

layer, which extracts more comprehensive and richer high-level
features. The spatial attentionmechanism (SAM) also uses parallel
AvgPool and MaxPool approaches. Unlike CAM which sums two
1D attention data, SAM uses a convolutional approach to dimen-
sionally compress the attention graph, which more effectively
preserves the spatial information in the feature graph. Finally,
CBAM combines the two modules, CAM and SAM, in a serial
sequential way according to the ablation experiment.

The CBAMmodule can be inserted into YOLOX and helps the
fusion of multi-scale features, by reducing the weights, and CBAM
filters the factor that is detrimental to the model’s recognition abil-
ity, thus improving the network’s performance with only a small
additional computational cost. Figure 6 shows the processing flow
chart of CBAM.

3.3. Improvedmethod

To make the YOLOX more suitable for identifying and local-
ising CVs in images, we apply the following improvements: 1)
The attention module of CBAM is adopted to direct the net-
work’s attention on the important information of the target. 2)
The number of output feature maps of the backbone is adjusted
for small targets, adding a shallow feature map and inputting
four feature maps into the improved FPN+PAN network for
fusion. 3) Considering the overlap area, centroid distance, and
aspect ratio between the prediction result and the actual target
box, the CIOU (Zheng et al., 2021) loss for the regression loss is
adopted. Accordingly, problems, such as performance degradation
of YOLOX, are also addressed.

Specifically, we use CBAM to combine the channel and SAMs.
Each channel can be considered a feature detector for the fea-
ture map. The CAM compresses the feature map in the spatial
dimension to obtain a thought vector and then process it. The
CAM focuses on what is essential in this image, and the mean
pooling has feedback for each pixel point on the feature map.
Although maximum pooling has feedback for gradients when per-
forming gradient backpropagation, only the places in the feature
map with the most significant response have feedback for gradi-
ents. The SAM is more concerned with where the essential parts
are, and it compresses the channel dimension of the feature map
to ensure that a two-channel feature map can be obtained for sub-
sequent processing. The CBAM attention mechanism is a simple
and effective attentionmodule for feedforward convolutional neu-
ral networks because of its lightweight and versatility and can be
seamlessly integrated into any network. The CBAM module can
be inserted into YOLOX networks to more effectively mine CV
features carried in astronomical images, which helps the fusion
of multi-scale features, thus improving the performance of the
network with a small additional computational cost.

In the convolutional neural network, the fewer the convolution
operations, the lower the output feature map, the smaller the
receptive field, the higher resolution of the feature map and the
smaller the target features are retained. Using low-level feature
maps is beneficial to the detection efficiency of small objects.
We increase the number of output feature maps of the backbone
network, add the feature maps after the 10th layer convolution
operation to the output results, and enter the four feature maps
into the improved FPN+PAN network for multi-scale feature
fusion to ensure that the final fusion of three. This new feature
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Figure 7. The proposed pipeline.

map contains more small target features. Although the calculation
amount of the fusion process increases, it is beneficial to the future
identification and positioning of CVs.

IOU = intersection
union

. (1)

The loss function makes the detection more accurate and local-
isation more precise, reflecting the error between the prediction
result of the detection algorithm and the actual target. IOU loss
(Yu et al., 2016) is normally used in the regression to measure the
degree of overlap. In Formula 1, this factor can efficiently respond
to the degree of overlap and provide a scale without deforma-
tion. We use CIOU loss as the regression loss, considering the
overlap area, centroid distance, and aspect ratio to more stably
optimise the model. The model can more accurately locate CVs,
and its calculation is shown in Formulas 2, 3, and 4, where b and
bgt denote the centre coordinates of the prediction and true boxes
respectively; d denotes the Euclidean distance between the centre
coordinates of the prediction and true boxes; c denotes the diag-
onal distance of the minimum external matrix of the prediction
and true boxes; w and wgt denote the width of the prediction and
true boxes, respectively; and h and hgt denote the height of the
prediction and true boxes, respectively.

CIOU = IOU − ρ2(b, bgt)
c2

− αv, (2)

α = v
(1− IOU)+ v

, (3)

Table 2. Results of ablation experiments.

Method mAP@0.5 mAP[0.5:0.95] Precision Recall F1-Score

YOLOX 89.2% 34.6% 91.9% 94.3% 93.1%

+CBAM 88.6% 33.2% 90.8% 92.3% 91.5%

+NFPAN 90.1% 35.6% 92.3% 94.1% 93.2%

+CIOU 90.2% 35.3% 92.4% 94.2% 93.3%

+CBAM+NFPAN 90.4% 34.7% 91.7% 93.7% 92.7%

+CBAM+CIOU 91.6% 34.7% 93.1% 94.6% 93.8%

+NFPAN+CIOU 90.4% 34.0% 92.4% 94.0% 93.2%

+CBAM+NFPAN+CIOU 92.0% 35.4% 92.9% 94.3% 93.6%

Table 3. Comparison of mAP, Precision, Recall, and F1− Score of our improved
YOLOXmodel with the original YOLOXmodel and LightGBM.

Method mAP@0.5 mAP[0.5:0.95] Precision Recall F1− Score

LightGBM with
spectra

95.21% 93.53% 94.36%

YOLOX with
images

89.20% 34.60% 91.90% 94.30% 93.10%

Our improved
YOLOX with
images

92.00% 35.40% 92.90% 94.30% 93.60%

Table 4.Model speed evaluation for 10 times.

Frequency Second FPS

1 0.03239 30.876

2 0.03215 31.106

3 0.03264 30.635

4 0.03314 30.171

5 0.03221 31.048

6 0.03192 31.329

7 0.03416 29.274

8 0.03210 31.154

9 0.03129 31.957

10 0.03163 31.615

v= 4
π 2

(
arctan

wgt

hgt
− arctan

w
h

)2

. (4)

4. Experiment

The flowchart of the whole procedure is shown in Figure 7. The
preparation for annotating images and data enhancement is intro-
duced in Section 4.1, and this step is required during the training
model phase. The environment is set up before conducting the
experiments in Section 4.5. Afterwards, we use the improved
model to obtain prediction results. In the training model phase,
the model parameters need to be improved based on the resulting
deviations. In the test phase, the results are used to evaluate the
effectiveness of the model using the evaluation criteria adopted in
Section 4.2. In the prediction phase, the prediction target boxes are
drawn based on the results. Ablation experiments in Section 4.3
are performed to verify the effectiveness of each improved model
based on the training and test results.
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4.1. Evaluation index

We use Mean Average Precision (mAP; (mAP; Everingham et al.
2015), Precision, Recall, and F1− Score as experimental metrics.
Precision is the proportion of correct results among all predicted
targets. Meanwhile, Recall is the proportion of correct results rel-
ative to all true targets. The calculation methods are shown in
Formulas 5 and 6, where TP is the number of predicted bound-
ing boxes with IOUs greater than the threshold value, FP is the
number of predicted bounding boxes with IOUs less than or equal
to the threshold value, and FN is the number of predicted bound-
ing boxes that do not match the true target box. Setting different
thresholds can result in distinct (P, R) values, refracting the (P, R)
values corresponding to different thresholds on a 2D coordinate
system and connecting them into a curve. The mAP is the aver-
age of AP of each category, and AP is the area under the P-R
curve. As shown in Formula 7, F1− Score is the summed average
of Precision and Recall.

In target detection, mAP is the most convincing evalua-
tion index. We use the YOLO algorithm corresponding to the
mAP@0.5 and mAP [0.5:0.95] to evaluate our model. mAP@0.5
is the average of all categories of AP and mAP [0.5:0.95] is to set
the IOU thresholds as 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, and
0.95 when averaged. The higher mAP of a model, the better the
corresponding detection will be.

Precision= TP
TP + FP

, (5)

Recall= TP
TP + FN

, (6)

F1− Score= 2× Precision× Recall
Precision+ Recall

. (7)

In order to reflect the fast speed of the model, the common
indicator for evaluating speed in object detection is frame rate per
second (FPS), that is, the target network can process the number
of pictures per second, FPS is simply understood as the refresh
rate of the image, that is, how many frames per second, assuming
that the target detection network processes 1 frame to 0.02 s,
at this time FPS is 1/0.02= 50. We train the model in the same
hardware environment that evaluates the monitoring speed using
the time it takes to process an image. The shorter the time, the
faster the speed is.

4.2. Ablation study

We apply three modules to improve YOLOX for small tar-
get detection. The three modules can be summarised as adding
CBAM, adding feature maps to FPN+PAN, and adjusting the
regression loss to CIOU. We perform an ablation study on
the model to verify the contribution of the three modules to
the detection improvement, and all experimental data sets and
hyperparameter configurations are the same as before. Table 2
shows the experimental results. In comparison with the origi-
nal YOLOX, mAP is improved by adding NFPAN module or
CIOU module. Meanwhile, mAP is decreased by only adding
CBAM module. However, the results from adding CBAM and
CIOU modules show that CBAM is effective based on CIOU.
According to the results of the three groups with adding the two

modules, CIOU is more significant to improve the performance
than NFPAN or CBAM. Considering all the three modules, the
performance of the model is the best. Therefore the improvement
of our model is effective in identifying CVs.

4.3. Experimental results

We compare the performance of the YOLOXmodels with the clas-
sificationmodel of Hu et al. (2021) using the LightGBM algorithm.
The mAP, Precision, Recall, and F1− Score of the three models
are shown in Table 3. Hu et al. (2021) used LightGBM from the
LAMOST-DR7 spectra to automatically search for CV candidates,
which extracts the potential relationships concerning CV spectra.
LightGBM combines multiple features to prevent the interfer-
ence of individual features by noise and finally achieves 95.21%
Precision, 93.53% Recall, and 94.36% F1− Score. The model’s clas-
sification performance is excellent because spectra contain more
abundant information than images, and the data processing is fast
due to the small model. LightGBM is a classification model that
only works with spectra. The YOLOX models can achieve CV
recognition and localisation in astronomical images, especially the
improved YOLOX model with 92.9% Precision, 94.3% Recall, and
93.6% F1− Score. The target detection algorithm is to classify and
regress each pixel point on the extracted feature map. Accordingly,
the task of the target detection model will be more complicated
than the classification model, and the accuracy will be reduced
only based on images. Nonetheless, the target detection algorithm
will be more advantageous for massive astronomical images when
spectral observation is expensive. Figures 8 and 9 show the effect of
the detection of CVs in the images. The cases where the predicted
results differ from the ground truth are shown in Table 5.

To evaluate the deviation of the results detected by our model
from the actual results, we calculate the pixel distance between the
predicted results of the model and the centre of the actual target
on the test set, because we use an image of 0.39612"/pix, and the
final result of the experiment is that the centre mean arcsecond
deviation is 0.8058".

We select an image from the dataset to evaluate the speed of the
model. We test it for 10 times under the same hardware conditions
to calculate the FPS, and the results are shown in Table 4. The final
result averages them, and the FPS of our model is 30.9165.

4.4. Experimental environment

Tables 6 and 7 show the software and hardware environment of
the experiment and the hyperparameters used for model training.
Given that we use 16 samples as a batch size when training the
model and the network’s depth is deep, we use NVIDIA GeForce
RTX 3070 for acceleration. Furthermore, PyTorch calls to take
advantage of a complete graphics card for complex parallel
computing. In the training stage, the frozen training method can
speed up the efficiency of model training and prevent the weights
from being destroyed. In the freezing stage, the backbone network
of the model is frozen, the parameters of the feature extraction
network do not change, and the memory usage is negligible. In
this stage, only the network is fine-tuned. In the thawing stage,
the backbone network of the model is not frozen, and all compe-
titions in the network will change, occupying a large amount of
GPU memory.
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Figure 8. Ground truth of the image samples from SDSS.
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Figure 9. Predicted image samples from SDSS.
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Table 5. The cases where the predicted results differ from the ground truth.
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Table 6. Experimental environment.

Placements Values

Graphics Processing Unit 8× 3 070

Operating System 18.04.1

Programming Language Python 3.7.6

Machine Learning Library Pytorch 1.8.1

Operational Platform CUDA 11.1

Table 7. Hyperparameters of the
improved YOLOXmodel.

Hyperparameters Values

Batch Size 16

Freeze Epoch 50

UnFreeze Epoch 150

Init Learning Rate 0.01

Optimiser SGD

Momentum 0.937

5. Discussion

The experimental results illustrate that the improved CV detec-
tion model can effectively localise and classify CVs in images.
In the face of massive astronomical images, our model takes
shorter time with satisfactory accuracy, which is crucial for fully
using the observation data produced by large survey telescopes.

Considering the vast amount of astronomical images, we
choose the fast and accurate YOLOX target detection algorithm to
achieve the localisation and recognition of astronomical images.
To address the problem that the DL algorithm degrades in accu-
racy when facing small targets, YOLOX is improved by adding
an attention mechanism, adjusting the backbone output and
the FPN+PAN network structure, switching to a suitable loss
function, and applying data enhancement methods according to
the characteristics of astronomical images. These improvements
enhance the adaptability and effectiveness of the model for the CV
detection task.

For existing supervised learning methods, the images of the
corresponding objects must be recollected to train themodel when
identifying and locating other types of objects. Most DL algo-
rithms lose accuracy when faced with small targets. Our model
needs further improvement to cope up with this degradation to
improve accuracy.

The YOLOX target detection model can localise and identify
all CVs in the image and complete the detection of all targets.
However, our model only tests the case with one CV in the image
because each astronomical image we download contains only one
object. In the future, we will further investigate scenes with multi-
ple targets in the image. Our method will be improved by further
optimising the loss function and neural network architecture to
enhance our model’s classification and localisation performance
for small target objects. We will also enhance the model’s per-
formance by considering the background of CVs in astronomical
images and extracting rich available features. In addition, differ-
ent types of astronomical objects will be extended to increase the
amount of data available to us.

Accordingly, the improved models can locate, detect, and clas-
sify CVs simultaneously and are easy to encapsulate into the
software.We will further strengthen the learning ability of the net-
work by combining other observed CV data (e.g., spectroscopic
and infrared data) with image data for analysis. When process-
ing astronomical data, we will also consider cross-matching data
from different astronomical telescopes and fusing the features of
other data to improve the accuracy of our model. Another excit-
ing improvement direction is to fully use the fast target detection
function of YOLOX to achieve classification and localisation of
CVs from images generated by ordinary telescopes. We will also
consider how to better exploit our model’s localisation property in
astronomical image recognition.

6. Conclusions

We propose an improved CV detector based on the YOLOX
framework for the automatic identification and localisation of CVs
to take advantage of astronomical images conveniently. This tool
is helpful for the discovery of CVs, for the subsequent study of
their physical composition and change mechanisms, and research
on the accretion process in astrophysics. For the characteristics of
astronomical optical images, we improve YOLOX by adding an
attention mechanism and backbone output feature maps to make
the fused features more multi-scale, adjusting the appropriate
loss function, and adopting data enhancement. The experiments
prove that the improved model performs better than the original
YOLOX and demonstrate our model’s accuracy and robustness
for processing optical images observed by astronomical telescopes
to identify and localise CVs in the images. The actual use of test
sets to judge the model confirms that the performance of the
improved model is superior to that of the original algorithm, and
the improved model has higher accuracy and robustness while
ensuring detection speed. This mechanism will further facilitate
astronomers’ research and improve the accuracy of models and
the reliability of judgments. The relevant toolkit is under devel-
opment. We used Flask+Vue for rapid modern web application
development, and built a simple user interface of CV detection
toolkit, shown in Figures B1 and B2 in Appendix B. This toolkit
will make our research more accessible for astronomers, and we
hope to see more exciting and new discoveries of CVs or other
kinds of celestial objects by means of it.
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Appendix A. The CV photometric data

Ra,Dec u g r i z

157.35429, 61.47645 22.81 22.35 21.68 22.12 22.28

127.37297, 0.22334 21.97 21.91 21.79 22.03 22.8

139.1829, 61.40397 21.15 21.07 21.2 20.99 20.16

265.38723, 68.07786 20.04 20.51 20.13 19.96 19.58

240.94201, 19.59443 16.62 16.73 16.49 15.82 15.44

340.26559, 5.09127 23.93 21.9 21.15 20.7 20.57

14.54622,−1.13078 22.55 22.02 21.75 21.93 21.31

244.25382, 62.00675 16.43 16.14 16.21 16.35 16.41

201.92153, 22.13333 22.21 21.48 21.28 21.23 21.12

210.51295, 46.22611 19.86 19.5 19.64 19.89 20.1

198.63381, 44.69418 15.1 15.08 15.26 15.44 15.62

340.04916, 30.3215 22.59 22.76 22.33 22.57 21.86

172.51287, 28.11336 22.32 22.34 21.82 22.63 22.11

236.71982, 37.90417 16 16.02 16.27 16.46 16.66

245.9603,−12.292 19.85 19.69 19.25 18.74 18.21

256.52558, 25.86482 21.23 21.48 21.31 21.21 21.04

237.62627,−0.23824 21.9 22.01 21.61 21.03 20.77

248.69424, 32.31199 22.44 22.72 23.85 23.91 22.92

240.68923, 2.68499 25.32 21.9 21.57 21.39 21.11

182.52214,−2.92893 21.09 20.87 21 21.28 20.63

239.33644, 18.12231 18.28 18.64 18.67 18.32 18.19

194.04202, 62.618 21.81 21.53 21.5 21.44 20.75

78.72064, 60.52053 21.48 20.75 20.48 20.33 20.23

113.35608, 37.62914 22.13 21.88 22.08 22.47 21.71

162.30021, 51.44737 20.43 20.36 20.22 20.27 20.26

120.14108, 19.40458 19.92 20.13 20.04 19.96 19.69

114.7416, 10.64936 20.47 20.97 20.59 20.64 20.46

136.52683, 0.07643 22.09 21.92 21.77 22.32 23.11

127.77684,−5.71164 18.66 19.03 18.92 18.64 18.5

143.42164, 58.77056 23.43 22.46 22.36 22.05 21.69

75.11366, 13.57226 19.22 18.59 17.56 16.53 15.75

117.24807, 31.4202 15.85 15.75 15.89 16.01 16.11

61.12081, 20.05015 18.29 17.87 17.79 17.72 17.67

322.02557, 2.53915 22.52 22.51 22.65 22.28 22.72

317.57352, 9.05054 23.74 23.58 23 22.83 22.53

25.17008,−8.38629 20.13 19.55 19.3 19.39 18.95

82.12907, 1.53334 23.42 22.05 21.18 20.87 20.43

338.25205, 31.88274 22.14 22.37 22.52 22.15 21.16

340.04687, 10.36606 20.7 20.83 20.58 20.63 21.04

19.05219, 32.64427 20.31 20.48 20.32 20.17 19.88

325.72648,15.61174 23.02 22.56 22.69 23.09 22.67

321.2572, 6.79359 22.12 21.04 20 19.71 19.39

16.78955,−9.85855 21.69 21.52 21.28 21.35 21.69

231.28996, 36.01507 19.63 19.83 20.06 20.3 20.43

9.1492, 21.85718 22.64 21.58 21.54 22.09 22.72

350.1094, 22.30929 21.5 21.07 21.1 21.27 20.78

325.34574, 7.99811 22.15 21.88 21.48 21.21 21.19
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Ra,Dec u g r i z

339.79314, 5.09785 22.71 21.1 19.67 18.74 18.12

220.87615, 8.20583 21.04 21.32 21.23 21.18 21.81

252.52887, 39.4654 24.1 22.57 23.73 22.39 22.35

319.90391, 3.5367 21.3 20.16 19.34 18.91 18.6

331.21605,−2.13321 22.62 22.45 22.27 21.98 21.48

314.15716, 2.97845 24.39 22.87 21.58 19.97 19.22

129.58152, 16.8442 21.01 21.01 20.91 20.81 19.94

180.67016, 29.84176 22.48 22.98 22.3 22.81 21.64

262.856, 27.90787 21.61 21.86 21.58 21.9 21.76

123.83378, 17.72896 20.8 21.23 20.93 20.76 20.37

131.57006, 31.26549 22.41 21.81 21.6 21.39 21.27

36.09366, 21.22439 20.11 20.27 19.89 19.89 19.46

146.52889,−0.93382 20.37 20.43 20.26 20.09 19.59

123.6057, 20.35713 21.78 22.06 21.78 21.74 21.82

190.8679,−5.90876 23.19 22.7 22.56 22.29 21.79

31.40666, 26.71786 19.51 19.38 19.6 19.36 18.7

117.78123, 30.1079 19.55 19.78 19.82 19.84 19.77

118.70897, 9.17199 21.06 21.19 21.13 21.19 21.01

114.49397, 20.92902 17.2 17.4 17.22 17.28 17.27

344.83734, 27.92977 25.12 22.43 20.84 19.77 19.08

23.01164,−10.73257 20.28 20.82 20.35 20.56 20.42

47.37417, 26.63455 19.14 18.88 18.91 19.01 18.97

116.19143, 40.23026 25.16 23.08 21.74 20.63 20.22

25.76954, 26.6425 17.6 17.91 17.91 17.71 17.59

24.19086,−19.66363 18.01 19.81 18.23 18.32 18.63

52.52611, 18.20918 21.73 21.32 20.46 20.2 19.89

38.61586,−4.90858 16.42 16.26 16.37 16.55 16.63

259.57704, 29.59554 17.88 17.66 17.9 18.09 18.22

4.81591, 15.75567 23.07 22.95 22.1 22.38 22.28

319.1491,−7.81958 22.5 22.2 21.87 22.07 23.16

231.9502, 35.62038 20.53 20.85 20.26 20.08 19.8

356.78344, 30.84358 22.34 22.8 22.34 21.95 21.75

253.38296,−5.16564 23.33 22.7 21.91 21.7 22.01

330.86755, 30.94361 19.46 19.6 19.34 19.15 19.03

255.02147,−11.07134 21.73 21.21 20.11 19.45 18.89

254.43932,−4.73468 25.39 22.63 20.99 20.2 19.62

217.40107, 32.44168 20.96 21.33 20.67 20.34 20.28

252.01148, 12.35569 24.44 22.93 22.41 21.91 21.87

149.64973, 28.18177 21.5 21.47 21.43 21.31 20.51

251.77799, 62.41419 18.29 18.14 18.34 18.45 18.6

266.67854, 50.18645 22.78 22.02 20.59 19.51 18.94

262.69834, 55.75493 19.81 19.73 19.68 19.48 19.19

213.03345, 10.23522 21.29 21.17 21.35 21.42 21.4

259.83859, 64.05279 21.41 21.29 21.25 21.3 21.93

112.10353, 38.6991 22.12 21.24 20.47 20.14 20.17

121.75439, 55.79416 20.62 20.6 20.37 20.4 20.43

123.53511, 9.13311 20.58 20.69 20.47 19.96 19.42

169.21867, 1.24346 21.96 21.81 21.81 21.55 21.31

Ra,Dec u g r i z

137.50687, 16.80539 18.47 18.83 18.54 18.54 18.33

170.01407, 66.60894 15.81 15.61 15.9 16.12 16.33

118.22898, 53.09197 21.25 21.55 21.4 21.71 21.7

118.24271,−0.11922 23.01 23.39 22.43 21.84 21.17

150.67982,−2.7762 21.16 21.37 21.51 21.19 20.48

24.42141, 22.05338 23.4 20.82 19.07 18.25 17.82

188.10744, 14.34507 15.49 15.3 15.49 15.61 15.73

75.48273, 13.83266 24.33 24.04 23.07 22.39 22.12

353.94146, 12.58011 19.93 19.66 19.25 18.59 18.08

321.55312, 3.89605 21.43 21.59 21.58 21.79 21.15

11.54089, 35.26099 22.04 22.39 22.42 22.2 22

133.25246, 2.0737 14.97 14.98 15.23 15.47 15.71

127.48942,−1.03373 21.97 22.23 21.98 22.58 22.43

16.76624, 42.72006 19.4 19.62 19.31 18.88 18.36

14.42091, 44.51699 21.12 20.94 21.06 21.18 21.07

9.26659, 14.20279 20.29 20.03 20.14 20.09 20.05

50.36905, 18.14086 23.16 23.16 21.54 18.59 17.03

81.05061, 0.69669 18.51 18.32 17.81 17.37 17

129.88051, 28.47339 20.01 20.23 20.17 20.05 19.52

52.91474, 4.53392 22.45 19.19 17.75 17.17 16.74

10.77337, 37.05902 19.36 19.56 19.24 19.23 19.18

13.44725, 40.93014 18.59 18.14 17.78 17.61 17.5

350.47904, 32.06875 23.07 20.82 20.02 20.66 19.3

267.11625, 50.84446 19.84 19.86 19.83 19.52 19.17

37.41801,−3.10567 20.31 20.76 20.49 20.63 20.3

354.59385,−20.83113 21.69 21.59 21.39 21.72 20.69

314.53332,−0.83232 22.82 22.72 22.66 22.37 22.48

347.05658, 25.72818 19.63 19.81 19.55 19.39 19.07

253.0055, 24.77525 21.05 19.31 18.67 18.4 18.27

29.30083, 22.73397 22.16 21.91 21.76 21.58 21.35

319.08914, 8.78705 21.64 21.75 21.09 20.69 20.2

315.06675,−2.7161 20.92 19.85 19.64 19.5 19.34

7.73256, 23.2961 22.37 22.24 22.33 22.2 22.28

313.21983,−2.66467 18.15 18.34 18.25 18.36 18.36

334.05755, 1.68507 21.82 22.9 23.14 23.17 23.36

320.80641,−2.24644 22.15 22.12 21.93 22.49 22.13

312.03783, 0.97767 22.72 22.69 22.44 22.18 22.61

265.25688, 26.90029 20.76 20.65 20.32 20.21 20.35

266.44717, 26.72972 18.16 18.41 18.3 18.37 18.17

318.94732, 16.19886 25.44 22.55 22.33 22.84 21.58

327.33823, 21.06279 20.5 20.8 20.53 20.51 20.63

216.47854,−22.63482 26.29 21.83 21.66 21.45 22.91

349.04841, 27.58069 20.39 20.38 20.46 20.71 20.46

328.61328, 15.95384 18.75 18.64 18.62 18.5 18.42

209.17679, 61.50702 21.65 21.26 21.35 20.97 20.44

168.1493, 0.47051 22.11 22.46 22.13 22.42 21.5

152.97884, 14.19224 21.3 21.56 21.31 21.13 21.2

146.99926, 6.17894 20.04 20.42 20.19 20.27 20.26
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Ra,Dec u g r i z

223.97281, 11.47115 20.41 20.78 20.24 19.73 19.29

117.83652, 31.782 22.32 22.15 22.28 22.87 22.17

131.14727, 53.07531 22.41 22.01 21.92 21.57 21.13

192.94498, 41.05027 23.47 24.26 22.56 21.71 21.25

166.80663, 13.56004 21.63 21.84 21.74 21.9 21.13

253.15116, 46.08749 21.97 22.1 21.87 21.29 20.85

227.26558, 46.84929 21.36 20.98 20.71 20.54 20.16

117.82081, 10.00458 17.88 18.49 18.37 18.39 18.33

113.57772, 27.21929 19.82 20.29 19.96 19.81 19.78

123.63153, 42.26656 22.18 21.89 21.94 22.36 22.04

136.5474, 24.28318 25.19 24.77 23.87 21.94 21.59

118.57799, 38.20694 22.69 22.75 23.01 22.98 21.75

235.79344, 4.92529 22.88 22.39 21.93 21.72 21.2

188.862, 16.50874 21.99 22 21.79 22.24 21.87

171.58099, 8.78083 22.2 21.83 21.84 22.28 21.31

162.60809, 33.47032 22.74 22.53 22.29 22.56 22.63

141.66121, 36.40073 18.73 18.96 19.2 19.39 19.42

65.57448, 33.70419 19.94 19.79 18.82 18.15 17.73

69.87491,−4.60007 15.12 14.6 14.29 14.16 14.11

31.6394, 20.95205 15.66 15.55 15.49 15.6 15.68

144.94176, 6.86942 17.49 17.25 17.59 17.7 17.88

21.41404, 32.38569 13.34 12.99 13.07 13.34 13.64

349.74074,−6.04633 21.13 21.32 21.21 21.45 21.53

270.20418, 52.54313 20.33 20.54 20.18 19.95 19.55

47.71529,−7.91665 15.76 15.48 15.74 15.89 16.1

341.69899, 6.94296 16.69 16.27 16.32 16.41 16.45

266.94696, 55.48833 19.24 19.18 18.99 18.99 18.69

20.50225,−8.56376 21.89 21.7 21.64 21.57 21.73

356.00764, 0.3548 21.44 21.59 21.41 21.41 20.91

321.60467, 20.33012 16.98 16.73 16.85 16.98 17.06

324.25769, 7.24606 19 19.02 18.72 18.21 17.63

310.89961,−5.88787 23.08 22.43 22.82 22.46 22.72

335.43653, 18.66889 17.56 17.52 17.52 17.49 17.25

323.97834, 23.61225 20.11 20.31 19.89 19.86 19.82

327.2107,−2.1064 23.1 22.41 22.29 22.23 21.33

239.23742, 35.39421 19.18 18.92 18.86 18.83 18.75

335.43655, 18.66882 17.56 17.52 17.52 17.49 17.25

320.16528,−16.79779 21.32 21.4 21.1 21.05 20.92

155.11069, 53.07588 17.29 17.42 17.18 17.14 16.94

254.51559, 14.60941 21.66 21.66 21.41 21.05 20.67

230.96351, 8.60175 20.15 20.2 19.67 19.4 19.28

341.90166, 25.07674 22.12 21.75 21.55 21.47 21.07

321.72727,−1.34832 18.1 18.18 18.09 17.68 17.56

208.57848, 27.60082 22.84 22.59 21.66 21.45 21.3

260.26038, 27.55036 20.01 20.06 20.23 20.35 20.24

251.20596, 19.99455 20.31 20.58 20.53 20.39 19.85

323.60005,−7.98628 20.97 21.12 21.21 21.5 21.45

234.63679,−15.28853 20.67 20.16 19.54 19.22 18.94

Ra,Dec u g r i z

254.42072,−5.94016 20.61 20.07 19.45 19.11 18.78

129.07911, 21.35139 17.19 16.77 16.57 16.48 16.43

258.20786, 31.11877 21.44 20.95 20.02 19.14 18.61

194.77408, 24.44289 20.67 21.11 21.16 20.92 20.83

167.86195, 57.21081 18.93 19.22 19.26 19.28 19.38

191.82944, 1.64531 20.62 20.77 20.92 21.09 20.71

247.74523, 11.72422 21.85 22.27 21.97 21.8 21.65

225.20544,−8.74638 19.04 19.19 19.13 18.93 18.67

233.71298, 7.49183 21.24 23.07 21.2 21.18 21.76

241.04402, 14.93839 21.86 21.7 21.72 22.02 21.89

167.40662, 50.6581 20.38 20.88 20.84 20.68 20.32

198.80988, 42.79636 17.24 17.03 17.22 17.37 17.51

147.22483, 1.81968 20.7 20.71 20.6 20.75 20.56

135.06896, 43.02174 18.69 18.88 18.19 17.51 17.02

113.03389, 41.50258 16.38 16.19 16.5 16.67 16.8

194.15471, 26.61202 17.92 17.94 17.89 17.87 17.68

145.85783, 52.02466 17.75 18.32 18.37 18.15 17.92

237.07312, 15.53926 21.59 21.83 21.74 21.89 21.76

140.34494, 20.64948 20.7 19.85 19.17 19.17 19.43

191.50847,−20.38399 18.36 18.53 18.41 18.35 18.27

123.15231, 16.32931 21.95 22.17 22.26 22.08 21.89

181.58267,−3.4773 19.73 19.93 19.98 20 19.64

235.09359, 1.37532 24.17 22.08 21.52 21.2 20.77

12.58574, 33.32159 16.77 16.57 16.76 16.94 17.08

122.42237, 17.25784 20.75 20.95 20.53 20.14 19.82

124.01025, 58.80669 21.7 21.44 21.32 21.19 20.99

62.09121, 14.25436 22.33 22.25 21.51 21.33 20.62

196.3116, 58.48208 19.09 19.28 19.27 19.12 19.04

231.87791, 18.2909 19.69 19.96 19.68 19.53 19.47

164.24258, 39.71087 20.09 19.59 20.92 20.71 19.38

24.25438,−9.20979 19.28 18.98 18.58 18.18 17.88

332.54138, 18.90505 19.66 19.81 19.45 19.11 18.77

65.46418, 30.6942 19.55 18.92 18.48 18.3 18.04

122.6726,−1.18979 19.95 20.11 19.98 19.94 19.6

110.43529, 66.64391 16.66 16.44 16.56 16.69 16.81

52.22918, 5.38163 19.06 18.96 18.7 18.58 18.48

79.84544, 15.90972 18 18.12 17.62 17.38 17.15

73.26087, 11.9668 19.07 18.25 18.04 18.01 17.91

116.00201, 41.91769 20.74 20.51 20.69 20.78 20.48

355.67641, 34.22522 23.27 23.7 22.05 23.54 22.94

352.51261, 30.55014 19.3 19.48 18.9 18.46 17.93

122.82138, 15.33414 22.18 22.19 22.45 22.38 22.7

119.99694, 21.32674 23.46 22.67 23.05 22.96 23.71

327.63934, 5.92634 18.75 19.33 19.22 18.96 18.83

312.93942, 7.88469 25.1 22.57 23.47 24.27 23.38

269.13878, 57.49082 20.52 21.05 20.8 20.56 20.43

349.78824, 33.26105 17.45 17.79 17.68 17.36 17.02

330.86617, 14.18294 21.64 21.77 21.8 21.6 21.54
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Ra,Dec u g r i z

71.42965, 11.14992 22.86 21.75 21.18 21.16 21.47

245.54005, 36.07183 20.48 20.15 20.17 20.18 20.04

27.71469, 33.43934 17.87 18.19 18.1 18.01 17.77

330.0772, 25.76412 20.79 20.87 20.65 20.61 20.7

326.91002, 24.76496 18.72 18.67 18.54 18.2 17.65

86.49273, 2.35178 19.63 19.43 18.74 18.05 17.43

85.39584, 1.61888 20.12 20.19 19.74 19.55 19.36

311.34494,−1.16791 21.78 21.44 21.42 21.69 21.4

26.40939, 28.36127 20.32 20.56 20.32 20.48 20.09

54.29562,−6.84977 19.62 19.56 19.72 19.97 20.1

331.67107, 30.24328 23.57 23.15 22.92 22.93 22.87

1.83643, 20.12269 22.01 21.31 21.08 22.04 21.75

242.10015, 16.87789 20.04 20.15 20.08 19.97 19.71

232.59852, 22.11284 19.12 19.06 19.16 19.17 18.94

310.74499,−0.56484 22.08 21.93 21.78 21.89 21.7

338.3566, 4.65418 20.22 20.61 20.25 19.93 20.18

313.21775,−6.24468 21.45 21.97 21.87 22 22.03

332.23951, 20.0777 23.37 22.45 20.4 19.78 19.64

216.45022, 15.25049 22.17 21.8 21.62 21.32 21.09

307.2381,−6.30077 20.77 20.61 20.56 20.6 20.15

224.84101, 35.80164 21.26 21.54 21.07 20.76 20.4

326.66642, 9.35535 22.17 21.83 21.71 21.89 22.33

225.6706, 33.57317 17.8 17.5 17.55 17.62 17.51

247.0257, 6.88764 20.8 20.65 20.58 20.49 20.14

205.77343, 52.1454 22.95 21.68 20.71 20.5 20.01

146.65238, 44.7793 19.33 19.37 19.15 18.81 18.25

325.30462,−3.51307 17.83 17.7 18 18.19 18.38

331.47492, 11.93162 20.12 20.03 20.06 20.19 20.22

228.72342, 2.15946 15.57 15.45 15.75 15.98 16.18

317.19351,−3.842 18.71 18.61 17.98 17.55 17.17

135.06943, 34.65765 21.28 20.62 20.32 20.07 19.73

248.16364, 35.18554 23.16 22.7 23.07 24.11 22.25

139.29103, 31.71904 21.62 20.48 19.38 19.13 19.05

236.43705, 44.47502 20.85 20.94 20.85 20.72 20.33

204.92152, 48.79117 17.86 17.68 17.77 17.96 18.1

255.46497, 13.35851 19.4 19.19 19.3 19.32 19.23

118.56039, 31.53773 19.91 19.65 19.64 19.74 19.62

230.49484, 26.20644 21.05 21.07 20.82 20.96 21.39

120.76667, 25.27449 19.45 19.59 19.39 19.25 18.89

116.66919, 17.57022 19.49 19.77 19.64 19.52 19.43

120.7791, 28.81559 16.49 16.28 16.42 16.58 16.7

137.94586, 31.85057 15.34 15.18 15.51 15.75 15.96

186.92036, 51.65704 19.11 19.07 19.06 19.06 18.71

153.14108, 7.7807 15.64 15.41 15.78 15.95 16.13

114.49393, 20.92909 17.2 17.4 17.22 17.28 17.27

230.15777, 4.16326 16.18 16 16.31 16.51 16.67

171.29032, 23.17672 20.57 20.99 21.06 21.3 20.46

171.95302,−5.70941 20 20.12 20.09 20.28 20.15

Ra,Dec u g r i z

142.16386, 0.99579 21.7 21.8 21.69 21.18 21.05

131.00039, 2.6552 18.21 18.33 17.94 17.57 17.3

137.21738, 7.27777 20.55 20.13 20.28 20.26 20.2

52.39128, 18.42499 20.43 20.5 20.4 20.14 19.83

126.51549, 11.63922 20.49 20.63 20.54 20.44 19.99

15.87079, 33.30612 18.48 17.98 18.12 18.27 18.34

8.26665, 38.01821 20.85 20.73 20.73 20.58 19.84

357.06133, 18.20544 18.27 17.99 18.1 18.19 18.25

164.48463, 9.38752 16.54 15.88 15.21 14.91 14.76

346.10793, 6.42945 21.34 21.09 20.99 21.36 21.11

33.28321, 18.73771 21.18 20.8 20 19.53 19.16

24.15423, 32.01113 14.47 14.3 14.38 14.44 14.51

20.24844, 32.92911 20.36 20.09 20.24 20.52 21.22

133.55818, 39.09367 19.65 19.15 19.22 19.23 19.13

129.46223, 38.50361 19.11 19.18 19.2 18.63 17.96

52.25848, 6.01296 22.9 22.04 21.58 21.11 20.53

3.29428, 21.35224 18.61 18.58 18.71 18.89 19

156.56682, 19.34577 20.11 20.13 20.08 19.85 19.51

111.96763, 40.78124 21.55 21.45 21.58 21.32 21.05

25.46001, 9.13933 19.92 20.06 19.98 19.97 19.93

310.00584,−14.81902 20.4 20.56 20.49 20.44 20.3

52.16604,−1.04452 20.96 21.13 20.93 21.06 20.68

117.08311, 24.96631 22.61 22.51 22.9 22.36 22.26

3.41491, 33.35653 23.1 22.02 21.83 21.92 20.8

151.74333, 23.62341 18.45 18.31 17.93 17.52 17.14

38.04864, 30.61 21.07 20.82 20.37 19.83 19.4

337.57824, 29.48019 23.6 22.48 22.26 22.89 22.26

14.60248, 28.55118 19.07 19.22 18.98 19.15 18.92

315.14313, 5.91002 22.4 22.25 22.16 21.85 20.96

18.81888, 24.92506 21.45 21.24 21.24 21.15 20.64

24.4051, 30.04685 17.77 17.49 16.77 16.45 16.27

328.10701,−1.48061 24.88 21.38 19.82 18.42 17.71

356.16903,−0.20135 21.23 21.09 21.06 20.74 20.02

0.1028, 33.42861 20.7 20.76 20.53 20.4 20.04

252.45992, 3.97634 18.86 18.55 18.59 18.53 18.34

261.31463, 7.54693 20.48 20.66 20.61 20.73 22.38

246.33463, 12.05252 18.12 18.53 18.41 18.21 17.72

330.13013, 3.57514 18.55 18.66 18.4 18.13 17.94

341.27236, 1.26317 21.44 21.55 21.54 21.66 21.22

251.60326, 18.13568 21.66 21.09 20.86 21.17 20.7

337.10045, 13.82892 22.7 22.34 22.44 22.6 22.43

329.56373, 9.7859 17.59 17.48 17.61 17.55 17.15

348.968, 27.17689 20.9 20.65 20.04 19.17 18.55

246.82662, 12.07644 18.98 19.23 19.06 18.85 18.48

170.7222,−11.17699 20.71 20.44 20.46 20.57 20.46

1.7483, 19.4716 21.18 21.36 21.01 21.02 20.63

248.29727,−1.19212 21.17 21.36 21.09 21.15 20.76

239.18439,−0.16401 18.18 18.25 18 17.9 17.51
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Ra,Dec u g r i z

205.21693, 15.22806 20.26 18.73 17.99 17.72 17.57

235.97547,−14.6291 21.22 21.4 21.09 21 20.53

258.0122, 27.90305 17.51 17.3 17.53 17.67 17.85

135.96135, 33.01002 18.85 18.83 18.79 18.88 18.62

130.28376, 10.42683 19.82 20.25 20.13 20.02 20.05

341.97463, 23.92265 21.66 21.5 21.28 21.4 21.1

339.79081, 25.05861 19.16 19.16 19.05 18.89 18.8

326.11012, 22.3401 18.91 17.64 17.13 16.98 16.91

338.14024, 18.84335 20.07 20.6 20.37 20.48 20.4

332.86967,−3.08772 19.65 19.55 19.46 19.46 19.13

251.9499, 43.64583 21.4 21.54 21.82 22.27 21.77

247.12867, 24.0498 20.14 20 19.83 19.66 19.46

174.28592, 51.58081 21.1 20.67 20.08 19.95 19.74

321.6389, 8.91643 20.49 20.76 20.74 20.55 20.25

134.01571, 32.35255 19.5 19.64 19.74 19.77 19.62

239.45012, 7.09529 22.62 22.81 22.94 23.48 21.86

232.56262, 9.82956 18.39 18.87 18.47 18.47 18.52

231.25732,−1.50586 23.1 22.68 22.61 23.82 22.41

224.43649, 40.72794 19.34 19.32 19.31 19.15 18.77

172.84335, 43.37722 15.81 16.14 15.93 15.89 15.96

124.65348, 1.36865 24.21 24.63 23.18 22.64 22.76

238.91769, 36.77878 20.47 20.81 20.96 20.77 20.49

118.38325, 37.96682 21.27 21.33 21.3 21.2 20.59

223.75931, 14.63762 20.24 20.49 19.94 19.48 19.12

317.47553, 16.51445 19.13 19.52 19.32 19.19 19.09

239.23735, 35.39392 19.18 18.92 18.86 18.83 18.75

156.65432, 47.9073 20.24 20.13 20.18 20.32 20.03

64.15361, 29.46837 22.28 22.25 21.36 20.79 20.32

66.12747, 29.44519 24.22 23.1 22.87 24.05 22.3

139.14434, 13.06606 21.38 21.89 21.55 21.92 21.63

134.02847, 12.6435 22.39 22.42 22.16 22.28 22.2

138.96532, 9.01377 15.42 14.74 15.54 14.86 14.69

61.74923, 0.87886 18.08 18.39 17.75 17.52 17.3

51.7154, 1.25368 24.39 22.67 21.26 20.58 20.08

69.62126, 0.67108 19.43 19.49 19.4 19.28 19.04

161.04761, 21.21863 19.2 19.35 19.26 19.48 19.27

55.04233, 39.21259 25.65 23.44 25.15 24.17 21.88

124.90027, 19.26115 20.88 20.36 19.94 19.75 19.91

163.77913, 36.99602 20.38 20.27 20.34 20.62 20.64

220.81889,−1.03946 21.71 22.18 21.93 21.91 21.82

22.15971, 18.75991 22.91 21.68 21.55 22.02 21.96

89.67826, 0.10721 20.62 20.33 18.98 18.43 17.93

57.51434, 37.01441 19.39 18.94 18.82 18.87 18.84

122.62756, 0.40795 19.28 18.91 18.7 18.84 18.77

80.96569, 1.0085 16.61 16.69 16.54 16.3 16.08

11.6072, 38.34009 25.58 22.53 22.19 21.49 21.23

124.30103, 5.86888 21.84 21.39 20.86 20.61 20.2

125.08071, 47.7921 21.27 21.36 21.31 21.3 20.89

Ra,Dec u g r i z

26.79053, 17.25556 15.04 14.88 15.13 15.28 15.43

68.94525, 9.14356 21.94 21.83 21.42 21.21 20.73

28.93092, 0.46871 19.52 19.31 19.02 18.79 18.67

324.90657,−2.65352 20.2 20.01 19.87 19.64 19.21

121.11848, 36.51784 22.23 22.11 21.88 21.45 21.24

351.4644,−1.67327 18.48 18.85 18.21 17.94 17.72

117.74988, 14.19728 19.2 19.09 18.98 18.79 18.59

113.41366, 21.36699 20.83 20.45 19.62 19.11 18.78

319.69162, 12.09676 18.77 18.24 18.38 18.49 18.58

342.06031, 33.20674 21.05 20.94 20.87 20.79 20.58

337.22383, 29.85402 23.31 23.49 23.61 22.67 22.31

78.5828, 1.18913 20.25 20.51 20.26 20.13 19.85

347.92822, 20.67667 20.63 20.54 20.25 20.03 19.7

9.69252, 19.11324 26.46 22.67 21.25 20.03 19.2

116.082, 32.91337 20.73 20.76 20.7 20.83 21.02

336.45026, 25.4198 20.14 20.2 19.96 19.25 18.75

53.70755,−7.1799 14.9 14.59 14.83 15.02 15.19

12.97035, 20.67151 18.96 19.06 18.37 17.94 17.55

65.62201, 16.24169 22.85 21.96 21.44 20.92 20.35

119.30758, 22.38142 21.01 21.3 21.2 21.1 21.42

136.31687, 12.08089 19.5 19.75 19.72 19.59 19.68

331.20731, 5.81453 21.2 20.94 20.72 20.14 19.65

315.52371, 2.97622 21.74 21.48 21.4 20.86 20.39

339.99297, 34.38475 25.45 22.4 22.51 22.79 22.28

16.45873, 19.05477 19.42 19.64 19.82 19.96 19.98

340.95194, 8.15752 19.3 19.55 19.33 19.25 18.7

16.04836,−3.22818 19.02 19.52 19.14 18.83 18.9

252.51159, 43.9377 22.33 22.76 22.34 21.87 21.3

123.03182, 13.30685 19.22 19.27 19.16 19.03 18.67

344.68116, 11.15324 14.07 13.86 15.08 14.15 14.18

333.8324,−0.54908 17.54 17.38 17.49 17.59 17.67

346.79727, 29.66957 22.2 21.5 20.68 19.93 19.41

12.03004, 26.77259 21.33 21.57 21.31 21.45 22.29

316.71066, 11.04723 19.78 20.24 20.16 20.14 19.8

241.07934, 16.26361 18.68 19.08 18.82 18.75 18.73

139.21135, 28.8287 18.94 19.16 18.52 18.19 17.89

36.6347, 21.11495 21.4 21.97 20.68 20.25 20.86

333.43348, 17.54776 19.1 19.26 19.21 19.16 18.87

355.85354, 42.14485 20.25 20.18 19.89 19.6 19.19

112.73136, 42.9432 22.39 22.76 23.02 23.3 21.78

337.89994, 18.12964 21.23 21.66 21.41 21.5 21.77

333.13329, 16.02786 19.05 19.11 18.86 18.59 18.29

338.57698,−3.92503 20.42 20.5 20.19 19.91 19.59

27.96621, 14.01333 19.98 20.28 19.98 19.57 19.13

318.96194,−0.12105 24.02 23.31 23.2 22.76 21.53

339.99268, 23.31037 22.73 22.14 21.92 21.86 22.94

263.28287, 30.10959 22.71 22.53 22.35 21.94 21.01

265.53823, 23.8082 19.75 19.7 19.47 19.26 18.86
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Ra,Dec u g r i z

256.76024, 16.89408 21.2 21.59 21.23 21.03 20.52

320.10466, 19.69909 21.82 21.82 21.81 21.64 22.73

244.82378,−2.4915 17.39 17.3 16.82 16.6 16.52

329.1269,−3.33236 21.71 22.14 21.8 22.11 22.02

242.61513, 9.12737 20.17 20.1 20.05 20.25 20

327.49974, 12.75792 22.24 21.93 22.04 21.89 22.14

264.7126, 29.38722 20.62 21 20.46 20.32 20.15

208.07909, 28.15477 20.7 20.67 19.93 19.58 19.22

354.70279, 28.33195 18.34 18.54 18.05 17.9 17.85

340.72257, 17.42727 17.6 17.54 17.56 17.68 17.83

329.15135, 19.54498 18.92 18.78 18.49 18.35 18.07

189.6402, 3.31512 22.26 21.56 21.33 21.14 21.36

315.1831,−0.86992 21.26 21.61 21.51 21.06 21.01

253.49575, 20.16956 18.46 18.66 18.42 18.26 18.17

255.31589,−2.69957 24.05 22.98 22.25 22.29 22.84

170.88349, 43.28819 19.43 19.91 19.75 19.64 19.47

231.55824, 8.30052 17.8 17.8 17.82 17.72 17.41

245.64892, 3.87959 22.36 22.24 21.73 21 20.29

336.85203, 28.73439 18.23 18.56 17.99 18 17.79

220.04601, 49.79271 21.25 21.16 21.01 21.5 22.61

130.36405, 21.01488 20.59 20.61 20.4 20.08 19.64

258.09622, 36.42107 20.78 20.88 19.9 19.44 19.26

159.41103, 12.71394 22.11 21.9 21.77 21.63 20.93

192.08069, 7.34719 21.66 21.33 21.4 21.39 21.28

157.94998, 8.87347 18.8 18.8 18.76 18.56 18.29

153.94117, 3.55329 19.81 20.17 20.14 20.13 19.86

316.76889, 1.73774 23.38 23.89 23.09 23.67 23.54

232.24115, 3.81994 19.08 19.51 19.35 19.17 19.09

246.58264,−12.93237 21.83 21.6 21.13 20.9 20.56

165.06137, 13.26448 18.32 18.65 18.78 18.55 18.37

244.78793, 13.86267 18.9 18.49 17.8 17.43 17.17

251.05522, 5.69954 16.98 16.81 16.98 17.14 17.28

65.42558, 34.05791 22.55 22.43 21.9 21.44 20.84

151.31405, 19.18552 18.09 18.17 18.25 18.12 17.82

154.94695, 33.96506 17.85 18.39 18.2 18.07 17.9

117.36669, 19.08112 20.55 21.12 20.89 20.83 20.32

130.17273, 0.08894 20.54 20.79 20.8 21.01 20.64

131.05687,−1.46866 20.31 20.11 20.13 20.17 20.18

231.08042, 22.15563 19.03 19.05 18.9 18.81 18.5

236.11716, 33.95692 22.36 22.11 21.85 22.28 21.61

121.87372, 15.57832 22.19 22.48 22.06 22.05 22.2

160.21344, 15.19271 18.23 17.97 17.53 17.19 17

129.6883, 49.18208 19.2 19.58 19.37 19.35 19.08

125.34891, 45.69314 19.23 19.47 19 18.82 18.65

155.83452, 44.0861 18.53 18.85 18.7 18.59 18.51

68.82405, 0.49468 21.89 21.96 22.14 22.71 22.09

256.54032, 14.58111 17.73 18.23 17.9 17.71 17.71

12.25832, 7.79058 21.74 21.52 21.49 21.79 22.14

Ra,Dec u g r i z

44.06248, 19.26978 25.41 23.9 22.85 22.74 23.37

132.78084, 3.14291 18.7 18.77 18.85 18.83 18.6

30.23343, 19.95745 20.01 19.28 19.37 19.45 19.77

201.40007, 21.01027 22.13 23.07 20.38 20.64 20.57

345.92405, 17.29861 19.79 19.84 19.62 19.42 19.25

231.90315, 16.73499 24.29 23.38 24.4 24.79 22.64

335.00946, 11.64038 21.12 21.37 20.64 20.31 20.09

19.05736, 9.37115 19.04 19.13 19.03 18.82 18.62

18.93017, 33.62338 20.39 20.56 20.29 20.11 19.54

69.42534, 0.51329 20.69 20.35 21.52 20.76 20.01

64.39407,−6.23257 22.26 22.73 22.99 21.61 24.65

324.94631, 17.11613 18.12 17.71 17.81 17.91 18

6.25075, 7.5638 19.25 19.68 19.21 18.93 18.73

323.6346,−1.34447 23.61 23.25 23.31 23.51 23.25

174.9608, 45.97172 19.57 19.62 19.49 19.35 18.85

338.14767, 30.68472 22.43 22.47 22.41 22.05 21.75

52.76843, 17.4278 19.98 19.86 19.32 18.88 18.47

138.72327, 11.56717 21.23 20.97 21.05 21.19 21.31

11.25127, 22.45222 20.2 20.45 20.21 20.13 19.66

342.0986,−9.34962 21.14 21.13 21.17 21.08 20.82

322.60263,−2.98824 17.43 17.61 16.99 16.49 16.12

164.64614, 5.7851 20.14 20.4 20.24 20.15 19.94

17.89353, 27.98938 21.62 19.97 19.83 20.03 20.58

11.32644, 18.89707 21.77 21.05 20.6 20.46 20.26

238.62739, 36.84519 21.78 21.7 21.52 21.56 22.09

351.58093, 28.4472 20.88 20.89 20.54 20.58 20.19

67.58311, 9.88828 20.75 20.38 19.64 19.09 18.65

17.99, 35.29008 18.72 18.72 18.47 18.14 17.66

345.31418, 22.68647 23.71 22.11 22.04 21.74 22.1

18.27812, 21.88067 20.5 20.41 20.19 19.9 19.51

16.34257, 11.04802 20.64 20.71 20.56 20.28 20.08

310.29216,−4.63406 25.03 22.79 22.71 22.08 21.86

195.12633, 11.85039 19.89 19.78 19.8 19.84 19.42

164.23779, 49.68854 17.48 17.77 17.52 17.34 17.18

211.22493,−10.45056 20.02 19.73 19.86 19.87 19.58

339.02617, 5.08794 22.41 22.3 22.38 22.57 22.29

345.96517, 1.11426 17.83 18.27 18.01 17.75 17.56

250.44488, 12.17383 21.22 21.36 21.13 20.59 20.72

245.84263, 12.22613 17.09 16.98 17.12 17.22 17.32

246.52379, 22.84566 22.29 22.68 22.25 22.09 21.54

227.58642, 18.38403 21.46 21.42 20.69 20.49 20.24

321.47946,−3.40165 22.4 22 22.13 23.48 21.14

133.53919, 20.22756 20.31 20.91 20.48 20.32 20.11

247.83706, 10.52608 18.17 19.03 18.56 18.43 18.46

327.01833, 8.16404 20.54 20.96 20.88 20.69 20.43

212.50921,−12.80243 17.85 17.65 17.85 18.02 18.11

337.74302, 21.02971 20.69 20.79 20.68 20.79 20.25

246.25717, 39.1573 17.08 17.19 17.09 16.99 16.83
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Ra,Dec u g r i z

249.52245, 8.63291 20.41 19.74 19.04 18.6 18.42

241.35058, 6.13773 22.54 22.82 22.56 22.07 22.58

234.14338, 33.48113 18.98 19.21 18.94 18.76 18.59

191.07451, 30.06699 18.56 18.6 18.51 18.39 18.11

246.73667,−0.43016 22.22 22.61 22.35 21.78 21.69

214.29992,−18.0577 20.44 20.62 20.27 20.06 19.52

240.63397, 16.29236 22.54 21.91 21.78 21.84 21.33

238.35696, 11.74355 23.17 23.24 23.89 22.93 23.02

122.22386, 35.84814 19.55 19.66 19.61 19.52 19.3

245.05002, 11.88252 19.71 19.36 19.64 19.73 19.97

266.80973, 15.01325 17.52 17.31 17.44 17.52 17.59

123.57877,−0.83948 18.93 19.12 18.97 18.79 18.51

119.20008, 30.96818 21 20.86 20.93 20.87 20.88

323.2893, 15.83453 22.38 22.07 21.93 21.41 21.2

240.01546, 33.18719 19.88 19.88 19.86 19.66 19.23

132.80597, 34.74687 20.55 20.45 20.5 20.03 19.34

232.96166, 15.41301 20.34 20.13 20.19 20.3 20.5

240.52, 3.27549 23.41 23.22 22.84 22.49 22.19

218.75094,−0.76842 18.43 18.56 18.42 18.4 18.35

130.99192, 42.84368 19.6 19.91 19.88 19.69 19.3

89.37526, 0.25384 25.01 22.92 22.07 21.87 22.03

126.72785,−0.12581 19.85 19.52 19.5 19.64 19.61

157.40711, 41.67956 22.21 22.27 22.32 23.09 22.01

122.19245, 31.51837 19.12 19.43 18.75 18.17 17.74

135.66542, 5.41683 23.77 23.16 23.06 23 22.13

114.83817, 22.415 22.78 22.7 22.38 22.13 22.53

242.18662, 22.10279 21.17 21.64 20.97 21 20.9

123.04267, 4.0644 22.43 22.61 22.43 21.78 20.99

200.26325, 1.89144 19.47 19.18 19.21 19.34 19.37

171.64158,−10.03616 18.81 18.81 18.62 18.37 18.13

136.61769, 5.44915 18.82 18.76 18.45 18.1 17.83

131.47937, 3.65813 20.57 20.59 20.6 20.86 21.03

158.32188, 7.3552 19.94 19.89 19.81 19.75 19.48

80.14105,−0.09169 20.76 20.52 19.74 19.27 18.87

123.56217, 8.08062 21.97 22.23 22.05 21.59 21.09

178.37594, 31.97667 20.69 20.11 19.94 19.9 19.97

249.92791, 12.404 19.37 19.48 19.21 19.07 18.96

137.46048, 18.82975 15.91 16.03 15.7 15.33 15

32.79259, 17.27342 19.44 19.4 19.18 19.02 18.71

163.95866, 9.93904 19.03 19.15 18.51 17.88 17.4

351.32998,−8.30523 19.04 19.1 18.93 18.66 18.14

127.09064, 10.89569 22.11 22.29 22.08 22.22 22.13

190.11424,−15.09947 21.33 21.02 20.77 20.6 20.33

137.26825, 9.28709 22.32 22.47 22.1 21.57 21.22

327.17719,−0.12319 23.41 22.68 22.97 23.32 22.39

70.56681,−0.39275 22.23 21.93 21.73 21.85 21.99

134.59523,−0.62471 22.53 22.34 22.04 21.98 21.6

Appendix B. The CV detection toolkit

Figure B1. The user interface of CV detection toolkit.

Figure B2. The detected result display of an upload image by the trained improved
YOLOXmodel.
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