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Recently it has been shown that the unique local perimeter minimizing partitioning
of the plane into three regions, where one region has finite area and the other two
have infinite measure, is given by the so-called standard lens partition. Here we prove
a sharp stability inequality for the standard lens, hence strengthening the local
minimality of the lens partition in a quantitative form. As an application of this
stability result we consider a nonlocal perturbation of an isoperimetric problem.
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1. Introduction

The goal of the classical cluster problem in Rd is to find a configuration of N regions
with fixed finite d-dimensional volumes and an exterior region of infinite volume
so that the total surface measure of the interfaces between the regions is minimal
(see, for example, [19, Part IV]). For N 6 d + 1 and for any given collection of
N finite volumes, the standard N-bubble is conjectured to be the unique minimizer
(up to isometries) of the cluster problem. If N=1, then the problem reduces to the
isoperimetric problem. For any given pair of volumes, the double bubble problem
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(i.e. when N = 2) has been studied extensively: Foisy, Alfaro, Brock, Hodges, and
Zimba proved the minimality of the standard double bubble in R2 [12]; this was
extended to R3 by Hutchings, Morgan, Ritoré, and Ros [16]; to R4 by Reichardt,
Heilmann, Lai, and Spielman [26], and to any Rd by Reichardt [27]. For N=3
Wichiramala [28] proves that triple bubbles are the isoperimetric clusters in R2.
Recently, Milman and Neeman confirmed the double bubble conjectures for d > 2,
the triple bubble conjectures for d > 3, and the quadruple bubble conjectures for
d > 4 in [20].

A variant of the classical cluster problem is to characterize locally isoperimet-
ric N-partitions with more than one region having infinite volume. Such partitions
divide the space into N regions with prescribed (finite or infinite) volume and locally
minimize the surface measure of the interfaces with respect to all compactly sup-
ported variations that also preserve the volume of each region. When two (or more)
regions have infinite volume the measure of their interface is also infinite. Therefore,
for such partitions, one needs to consider locally minimizing configurations in the
following sense: For every ball BR of radius R the perimeter of the partition in the
interior of BR is minimal among all partitions with regions of the same prescribed
volumes as the original partition, but whose difference, in the set-theoretic sense,
with the corresponding regions of the original partition, is compactly contained in
BR.

The study of locally isoperimetric partitions with more than one infinite region
has only recently been initiated by Alama, Bronsard, and Vriend [5]. They charac-
terize the unique locally isoperimetric partition of the plane into three regions with
one region of given fixed area and the other two having infinite area, as the standard
lens partition. Novaga, Paolini, and Tortorelli [21] further this study by obtaining
a general closure theorem for limits of sequences of locally isoperimetric partitions,
showing that they are themselves local minimizers, provided that they have flat
interfaces outside some compact set. This enables them to identify several locally
isoperimetric partitions in Rd. In two dimensions they prove that any planar locally
isoperimetric partition has at most 3 chambers with infinite area. They also give a
complete characterization of planar local minimizers in the case the total number of
finite and infinite regions does not exceed 4 as the lens partition (1 finite, 2 infinite
regions), the peanut (2 finite, 2 infinite regions), or the Reuleaux triangle (1 finite,
3 infinite regions), where the last two were conjectured to be local minimizers in [5]
(see Figure 1). Finally, in [6], Bronsard and Novack study a partitioning of Rd into
1 finite and 2 infinite regions where the surface measure between different pairs of
regions is computed with respect to some given weights. After establishing that the
standard weighted lens cluster is locally minimizing under the standard positivity
and triangularity conditions on the weights, they also prove its uniqueness under
some additional symmetry and growth assumptions on the weights.

In this paper we are interested in the stability of locally isoperimetric partitions
in the spirit of the quantitative isoperimetric inequality, where a suitable distance
of a set from a ball of the same volume is controlled in terms of the difference
in the perimeter of the set and the perimeter of the ball (see [13, 18] for two
excellent reviews). For clusters, the only stability result that we are aware of is by
Cicalese, Leonardi, and Maggi [11] where they obtain the stability of the planar
standard double bubble. Closely related is the proof by Caroccia and Maggi in [7]
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Figure 1. Some planar locally isoperimetric partitions: the standard double bubble, the
standard lens, the peanut, and the Reuleaux triangle. All the highlighted angles are 120
degree angles.

of a quantitative version of the minimality of the honeycomb tiling of the plane.
The approach adopted in both results is based on the selection principle devised by
Cicalese and Leonardi [9] and utilizes, as an essential tool, an improved convergence
theorem for bubble clusters by Cicalese, Leonardi and Maggi [10, 23]. Similar ideas
were also developed independently by Fusco and Morini in [15].

We follow a similar strategy and prove in our main result (Theorem 2.5) the
stability of the planar standard lens cluster when the interfaces between regions
are weighted equally. The core idea behind the proof strategy is a contradiction
argument, where one assumes the existence of a sequence of partitions which violate
the stability inequality and converge locally in L1 to the lens partition. Then one
proceeds in two steps. First, the selection principle allows one to replace the previous
sequence by a sequence of quasi-minimizing partitions (see Definition 3.3), which
still violate the stability inequality and also have better regularity properties. Then
the improved convergence theorem yields that these new partitions converge in a
stronger sense and in particular that they are small C1-perturbations of the lens
partition. Therefore this reduces the proof of the stability inequality to a class of
smooth perturbations of the lens. This is precisely the content of the second step
of the proof, which is obtained by a ‘Fuglede-type argument’.

We highlight that only in the second step of this strategy we make essential use
of the specific structure of the lens partition, whereas the first step is carried out
for any planar locally isoperimetric partition (in the case of a single region with
infinite volume, this was already established in [11]). This paves the way for the
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proof of the stability of other locally isoperimetric partitions such as the peanut
and the Reuleaux triangle, which will be the object of future investigation.

Finally, we would like to mention that the standard lens cluster is directly related
to the classical problem of finding the equilibrium shapes of liquid drops confined
in a half-space in the absence of gravity (see [19, Chapter 19] as well as [4]). The
stability of minimizing shapes for liquid drops has only recently been established by
Pascale and Pozzetta [25]. Furthermore, in [24], Pascale studies classical capillarity
problems with the inclusion of nonlocal repulsion and gravity terms and obtains
the existence and nonexistence of minimizers. In the final section of this paper, we
also study a nonlocal perturbation of an isoperimetric problem where the perimeter
term is related to both capillarity problems and to the partitioning problem studied
here. Exploiting the stability result for the standard lens cluster, we show that the
minimizers of this nonlocal problem are close (in the L1-sense) to the standard lens
cluster in certain parameter regimes.

The paper is organized as follows. §2 contains the general formulation of the
problem of locally isoperimetric partitions and the statement of our main result on
the stability of the lens partition, Theorem 2.5. The proof is carried out in two steps
as described in §3 and §4, respectively. Eventually, in §5 we discuss an application
of the stability to a partitioning problem perturbed by a nonlocal interaction.

2. Definitions and main result

2.1. Locally isoperimetric partitions: definitions

We start by fixing the notation and by formulating in any dimension the notion
of locally isoperimetric partitions introduced in [5]; we follow in particular the
presentation in [21].

Given a measurable set E ⊂ Rd, d > 2, we denote by |E| its d-dimensional
Lebesgue measure. The open ball of Rd of radius r> 0 centred at x0 ∈ Rd is
denoted by Br(x0), and we simply write Br when the centre is at the origin. If E is
a set of locally finite perimeter (in the sense of Caccioppoli–De Giorgi), we denote
by ∂∗E its reduced boundary, by νE the measure-theoretic outer unit normal, and
by P(E; Ω) = Hd−1(∂∗E ∩ Ω) its relative perimeter in a Borel set Ω ⊂ Rd, with
P(E) := P(E;Rd). For a set of finite perimeter E ⊂ Rd we adopt the convention

∂E =
{
x ∈ Rd : 0 < |E ∩Br(x)| < |Br| for all r > 0

}
, (2.1)

which can be always assumed up to modifying E in a Lebesgue-negligible set, see
for instance [19, Proposition 12.19]. The symmetric difference of two sets E,F ⊂ Rd

is denoted by E4F := (E\F ) ∪ (F\E). Given an open set Ω ⊂ Rd, we say that a
sequence of measurable sets (En)n∈N converge to a set E in Ω if |(En4E)∩Ω| → 0,
that is, if the characteristic functions χEn converge to χE in L1(Ω). We say that
En → E locally in Rd if En → E in BR, for every R> 0.

Definition 2.1. (Partition). An N-partition of Rd, N ≥ 2, is an N-tuple E =
(E(1), . . . , E(N)) of sets of locally finite perimeter in Rd such that 0 < |E(i)| 6 ∞,

|E(i) ∩ E(j)| = 0 for all i, j ∈ {1, . . . , N}, i 6= j, and |Rd\
⋃N

i=1 E(i)| = 0.
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We denote the interfaces between the different regions of a partition by

E(i, j) := ∂∗E(i) ∩ ∂∗E(j), i, j ∈ {1, . . . , N}, (2.2)

and the boundary, the reduced boundary, and the singular set of the partition,
respectively, by

∂E :=
N⋃
i=1

∂E(i), ∂∗E :=
N⋃
i=1

∂∗E(i), Σ(E) := ∂E\∂∗E . (2.3)

The perimeter of a partition E relative to a Borel set Ω ⊂ Rd is defined as

P(E ; Ω) := 1

2

N∑
i=1

P(E(i); Ω) =
∑

16i<j6N

Hd−1(E(i, j) ∩ Ω). (2.4)

We say that a sequence of partitions (En)n∈N locally converge to a partition E , and
we write En

loc→ E , if En(i) → E(i) locally in Rd for all i ∈ {1, . . . , N}, that is, if
|(En(i)4E(i)) ∩BR| → 0 for all R> 0 and for all i ∈ {1, . . . , N}.

Definition 2.2. (Locally isoperimetric partition) A partition E0 =
(E0(1), . . . , E0(N)) of Rd is a locally isoperimetric partition if for every R> 0

P(E0;BR) 6 P(E ;BR) (2.5)

whenever E = (E(1), . . . , E(N)) is a partition satisfying

|E(i)| = |E0(i)| and E(i)4E0(i) ⊂⊂ BR for all i ∈ {1, . . . , N}. (2.6)

A locally isoperimetric partition E0 is said to be uniquely minimizing if the follow-
ing property holds: whenever E is an N-partition satisfying ( 2.6) for some R> 0,
equality in ( 2.5) implies the existence of an isometry T : Rd → Rd such that
E(i) = T (E0(i)) for all i ∈ {1, . . . , N}.

Notice that at least one region of a partition E must have infinite Lebesgue
measure. As a particular case, (N + 1)-partitions such that all regions have finite
measure except one (the exterior region) are usually referred to as N-clusters; we
refer to [19, Part IV] for a presentation of the key ideas about existence and regu-
larity of minimizing clusters. In this paper we are mostly concerned with partitions
with at least two regions with infinite measure (in short, infinite regions). In this
case the perimeter in the full space is necessarily infinite, so that the minimality
condition (2.5) has to be formulated locally. It is convenient to introduce a notation
for the indices of the regions with finite measure: for a N-partition E we set

IE :=
{
i ∈ {1, . . . , N} : |E(i)| < ∞

}
. (2.7)

The basic regularity properties of locally isoperimetric partitions are given in [21,
Theorem 2.4]. Planar locally isoperimetric partitions have a rigid structure that we
recall from [21, Theorem 4.1 and Theorem 4.2].
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Theorem 2.3. (Structure of planar locally isoperimetric partitions). Let d=2, and
let E0 be a locally isoperimetric partition in R2. Then ∂E0 is connected, and there
exist a finite family of points {pi}i∈I (vertices) and a finite family {γj}j∈J of closed
curves with boundary such that

∂E0 =
⋃
j∈J

γj , ∂∗E0 =
⋃
j∈J

int(γj), Σ(E0) =
⋃
j∈J

bd(γj) =
⋃
i∈I

{pi},

where int(γ) and bd(γ) denote the interior and the boundary points of the curve γ,
respectively. Moreover,

(i) each vertex pi is a boundary point of exactly three of the curves {γj}j∈J ,
forming 120 degree angles at pi,

(ii) each curve γj is a circular arc, a segment, or a half-line,
(iii) the three signed curvatures of the arcs meeting in a vertex have zero sum,
(iv) all the regions with finite area are bounded,
(v) there are at most three regions with infinite area. If there are two infinite

regions, the interface between them coincides with a straight line outside
a sufficiently large ball; if there are three infinite regions, the interfaces
between them coincide, outside a sufficiently large ball, with three half-lines
whose prolongations define angles of 120 degrees with each other (but not
necessarily passing through a single point).

Given a uniquely minimizing locally isoperimetric partition E0 =
(E0(1), . . . , E0(N)), we define for R> 0 the class of volume-constrained competitors
obtained by perturbing E0 in a ball of radius R (up to isometries):

MR(E0) :=
{
E = (E(1), . . . , E(N)) : |E(i)| = |E0(i)| and

T (E(i))4E0(i) ⊂⊂ BR(x0) for all i ∈ {1, . . . , N},
for some T : Rd → Rd isometry and x0 ∈ Rd

}
.

(2.8)

We set M(E0) :=
⋃

R>0 MR(E0). We measure the distance of a partition E ∈ M(E0)
from E0 by the quantity

∆(E , E0) := inf
{
d(E , T (E0)) : T : Rd → Rd isometry

}
, (2.9)

where T (E0) is the partition defined by T (E0)(i) := T (E0(i)), and for every two
partitions E = (E(1), . . . , E(N)) and F = (F(1), . . . ,F(N)) we have set

d(E ,F) :=
1

2

N∑
i=1

|E(i)4F(i)|. (2.10)

For a partition E ∈ M(E0) we introduce its perimeter deficit (with respect to E0)
as

δ(E , E0) := P(T (E);BR(x0))− P(E0;BR(x0)), (2.11)

where R> 0 is any radius such that E ∈ MR(E0), and T and x0 are as in (2.8).
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R

1

Figure 2. Two-dimensional construction showing that the constant κ in (2.12) should
depend on the diameter R of the perturbation.

A natural question is, then, whether it is possible to strengthen the minimality
inequality (2.5), which can be rephrased as δ(E , E0) ≥ 0 for every E ∈ M(E0), in
a quantitative form, namely, whether it is possible to find a constant κ> 0 such
that

δ(E , E0) ≥ κ∆(E , E0)2 (2.12)

for all partitions E ∈ M(E0). In the case N=2 (i.e., one region with finite volume
and one infinite region, with E0 = (Br,Rd\Br)), the stability inequality (2.12)
reduces to the celebrated quantitative isoperimetric inequality [14]. For minimizing
clusters, to the best of our knowledge the only stability inequality available is for
the planar standard double bubble (two regions with finite area and one infinite
region in R2), proved by Cicalese, Leonardi, and Maggi in [11].

For partitions with at least two infinite regions, however, one quickly realizes
that an estimate of the form (2.12) cannot hold in the full class M(E0): indeed,
one can construct perturbations ER of E0 in large balls BR, R � 1, such that
supR δ(ER, E0) < ∞ and ∆(ER, E0) → ∞ as R → +∞. In dimension d=2 it is
enough to construct ER by replacing a portion of length R of one of the infinite
boundaries of E0 (which are half-lines by Theorem 2.3) by another segment of the
same length R, parallel to and at distance 1 from the first and connect its end
points to the rest of the boundary by two segments of length 1 each (see Figure 2).
Then δ(ER, E0) = 2, but ∆(ER, E0) = R.

For this reason we restrict to the class MR(E0), that is, we impose an upper
bound on the diameter of the symmetric difference of E and E0 (up to isometries),
and we wish to prove the stability inequality (2.12) in MR(E0), with a constant κ
also depending on R.

2.2. Main result: stability of the planar standard lens

We now leave the general setting considered in the previous subsection and we
consider planar partitions (d=2) into N=3 regions, one of which has finite area
and the remaining two have infinite measure; that is, we consider partitions E =
(E(1), E(2), E(3)) of R2 such that |E(1)| = m, where m > 0 is a fixed parameter,
and |E(2)| = |E(3)| = +∞. In this case the perimeter of a partition E in a ball BR

is simply given by

P(E ;BR) = P(E(1);BR) +H1(E(2, 3) ∩BR). (2.13)

It has been proved in [5] (see also [21]) that in this case the only locally minimiz-
ing partition is given by the standard lens partition defined below, see Figure 3.
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p1 p2O

Lm(1)
Lm(2)

Lm(3)
rm

π
3

2
3π

Figure 3. The standard lens partition Lm as in Definition 2.4.

This result has been extended to general dimension d ≥ 2 and to possibly weighted
perimeter in [6].

Definition 2.4. (Standard lens partition). Let m> 0. The standard lens with area
m is the set

Lm :=
{
(x, y) ∈ R2 : |x| <

√
3
2 rm, |y| <

√
r2m − x2 − 1

2rm

}
, (2.14)

where the radius rm > 0 is such that |Lm| = m, that is,

rm =
√
m

(
2

3
π −

√
3

2

)−1/2

. (2.15)

The standard lens partition with area m is the 3-partition of R2 given by

Lm := (Lm,H+\Lm,H−\Lm), (2.16)

where H+ := {(x, y) ∈ R2 : y > 0}, H− := {(x, y) ∈ R2 : y < 0}.

The boundary of Lm is made of two symmetric circular arcs meeting at the two

points p1 = (−
√
3
2 rm, 0), p2 = (

√
3
2 rm, 0) on the x -axis and forming an angle 2

3π
with the x -axis. The two circular arcs have radius rm and subtend an angle 2

3π at
the centre. The interface between the regions Lm(2) and Lm(3) of the lens partition
is flat and is given by

Lm(2, 3) =
{
(x, 0) ∈ R2 : |x| >

√
3
2 rm

}
.

By [5, Theorem 1.9] and [6, Theorem 2.9], the lens partition Lm is a uniquely
minimizing locally isoperimetric partition, in the sense of Definition 2.2: δ(E ,Lm) ≥
0 for any other partition E ∈ M(Lm). Our main result is the following sharp stability
inequality for the standard lens, which strengthens the local minimality of the lens
partition in a quantitative form. The proof of the theorem is given at the end of §4.

Theorem 2.5. (Stability of the standard lens). Let m> 0. For every R> 0 there
exists a constant κm,R > 0, depending on m and R, such that

δ(E ,Lm) ≥ κm,R∆(E ,Lm)2 for all E ∈ MR(Lm). (2.17)
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3. Selection principle and improved convergence

In this section we set up the general strategy for the proof of the stability of planar
locally isoperimetric partitions, following the approach via improved convergence
due to Cicalese, Leonardi, and Maggi [10] and, in turn, based on the selection
principle devised by Cicalese and Leonardi [9].

We point out that in this section we do not make use of the specific geometry of
the lens partition. The main results of this part (Theorem 3.2, Theorem 3.5, and
Theorem 3.8) are indeed valid for any uniquely minimizing locally isoperimetric
partition in R2 and might be instrumental in proving the stability of different planar
locally isoperimetric partitions, other than the standard lens. Notice, however, the
restriction to two dimensions, which we require in order to exploit the structure of
the boundaries among infinite regions in R2 (see Theorem 2.3): indeed we have to
formulate the selection principle including a Dirichlet boundary condition outside
of a large ball. For clusters (i.e. partitions with a single infinite region) these results
have been proved in [11, Appendix A] in any dimension; however, we focus here on
the case of at least two infinite regions.

For the rest of this section we work in the general setting introduced in § 2.1 and
in dimension d=2.

3.1. Selection principle

We let E0 = (E0(1), . . . , E0(N)) be a uniquely minimizing locally isoperimetric
partition in R2, according to Definition 2.2. For R> 0 we define the quantity

κR(E0) := inf

{
lim inf
k→∞

δ(Ek,E0)
∆(Ek,E0)2

: (Ek)k∈N ⊂ MR(E0),

∆(Ek, E0) > 0 for all k ∈ N, lim
k→∞

d(Ek, E0) = 0

}
,

(3.1)

where the deficit δ(·, E0), the distance ∆(·, E0), and the class of competitors MR(E0)
are defined in (2.11), (2.9), and (2.8), respectively.

Remark 3.1. If E0 has at least two infinite regions, it is easy to see that κR(E0) is
finite: indeed, since there is no need to preserve the volume of the infinite regions,
it is enough to slightly perturb one of the flat boundaries between two infinite
regions (for instance, removing a segment and replacing it by two segments forming
a sawtooth of small height t > 0) and construct partitions Et such that the ratio
δ(Et, E0)/∆(Et, E0)2 remains bounded as t → 0.

From this construction it also follows that the quadratic decay on the right-hand
side of (2.12) is sharp, in the following sense (see also [10, Remark 1.2]): if δ(E , E0) ≥
φ(∆(E , E0)) for some function φ : [0,∞) → [0,∞) and for all E ∈ MR(E0), then
there exist C > 0 and t0 > 0 such that φ(t) 6 Ct2 for all t ∈ (0, t0).

In the following theorem we show that the proof of the stability inequality for
E0 can be reduced to the case of partitions E with small distance ∆(E , E0) from E0.

Theorem 3.2. Let E0 = (E0(1), . . . , E0(N)) be a uniquely minimizing locally
isoperimetric partition in R2, and let R> 0. Then for every ε> 0 there exists δ > 0
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such that for every E ∈ MR(E0), if δ(E , E0) < δ then ∆(E , E0) < ε. Furthermore,
the condition

κR(E0) > 0 (3.2)

is equivalent to the existence of a constant κR,E0 > 0, depending on R and E0, such
that

δ(E , E0) > κR,E0∆(E , E0)2 for all E ∈ MR(E0). (3.3)

Proof. We argue by contradiction, and we assume that, for some R> 0, there exist
ε∗ > 0 and a sequence of partitions (Ek)k∈N ⊂ MR(E0) such that

lim
k→∞

δ(Ek, E0) = 0, ∆(Ek, E0) > ε∗. (3.4)

By definition of MR(E0) in (2.8), and up to replacing each partition Ek by an
isometric copy, we can find points xk ∈ R2 such that Ek(i)4E0(i) ⊂⊂ BR(xk).

We consider first the case supk |xk| < ∞, so that xk → x0 ∈ R2 up to a (not
relabeled) subsequence and BR(xk) ⊂ BR+1(x0) for all k large enough. For every
i ∈ {1, . . . , N} the sets Ek(i) ∩ BR+1(x0) have uniformly bounded perimeter in
BR+1(x0), and by standard compactness results (see [19, Theorem 12.26]) we can
assume that, up to further subsequences, Ek(i) ∩ BR+1(x0) → Fi as k → ∞, for
some set of finite perimeter Fi ⊂ BR+1(x0). Since Ek(i)4E0(i) ⊂⊂ BR(xk), we also
have that Fi coincides with E0(i) in a uniform neighbourhood of ∂BR+1(x0). We
then define the partition E∞ with regions E∞(i) := Fi ∪ (E0(i)\BR+1(x0)), and by
construction it is immediate to check that E∞ ∈ MR+1(E0). Furthermore by lower
semicontinuity of the perimeter we have that

δ(E∞, E0) 6 lim inf
k→∞

δ(Ek, E0) = 0, ∆(E∞, E0) = lim
k→∞

∆(Ek, E0) > ε∗ > 0.

These two properties contradict the assumption that E0 is uniquely minimizing.
If instead supk |xk| = ∞, recalling that the regions of E0 with finite area are

bounded (Theorem 2.3), we have E0(i) ∩ BR(xk) = ∅ for all i ∈ IE0 and for all
k sufficiently large, where IE0 is the set of the indices corresponding to the finite
regions as in (2.7). Hence BR(xk) has nonempty intersection only with some of the
infinite regions of E0. By the structure of the interfaces among the infinite regions
in Theorem 2.3, we have that for all k sufficiently large the interface ∂E0∩BR(xk) is
either empty or a segment. We can then find new centres yk ∈ R2, with supk |yk| <
∞, so that ∂E0∩BR(yk) coincides with a translation of ∂E0∩BR(xk), and ‘copy and
paste’ Ek ∩ BR(xk) into BR(yk). This way we obtain a new sequence of partitions
which satisfy the same properties as Ek and are perturbations of E0 inside BR(yk).
Since the new centres yk are uniformly bounded, the same compactness argument
as in the previous case allows us to conclude by contradiction. This completes the
proof of the first part of the statement.

Concerning the equivalence between (3.2) and (3.3), it is immediate to see that
(3.3) implies (3.2). Conversely, assume that (3.2) holds and by contradiction that
(3.3) fails, that is, there exists a sequence (Ek)k∈N ⊂ MR(E0), with ∆(Ek, E0) > 0
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such that
δ(Ek, E0)
∆(Ek, E0)2

→ 0 as k → ∞. (3.5)

We first observe that ∆(Ek, E0) → 0 as k → ∞. Indeed, if not then ∆(Ek, E0) ≥ ε
for some ε> 0 and in turn, by the first part of the statement, also δ(Ek, E0) ≥ δ > 0.
Moreover, since Ek ∈ MR(E0) we also have ∆(Ek, E0) 6 |BR|. These inequalities
contradict (3.5), showing that ∆(Ek, E0) → 0.

Let now T : R2 → R2 be an isometry such that ∆(Ek, E0) = d(T (Ek), E0). The
sequence of partitions Fk := T (Ek) is such that Fk ∈ MR(E0) and d(Fk, E0) → 0
and is therefore admissible in the definition of κR(E0) in (3.1). It follows

0 < κR(E0) 6 lim inf
k→∞

δ(Fk, E0)
∆(Fk, E0)2

= lim inf
k→∞

δ(Ek, E0)
∆(Ek, E0)2

= 0,

which is a contradiction. �

Thanks to Theorem 3.2, our final goal will be to show the strict inequality
κR(Lm) > 0 for the standard lens partition. We next show in Theorem 3.5 the
existence of a recovery sequence for κR(E0) made of (Λ, r0)-minimizing partitions
(with uniform constants), according to the following definition.

Definition 3.3. Given Λ > 0 and r0 > 0, a partition E = (E(1), . . . , E(N)) is said
to be a (Λ, r0)-minimizing partition if

P(E ;Br0
(x)) 6 P(F ;Br0

(x)) + Λd(E ,F) (3.6)

whenever x ∈ R2 and F is a partition such that F(i)4E(i) ⊂⊂ Br0
(x).

In the proof of Theorem 3.5 we need the following construction of a suitable
neighbourhood OR of a ball BR, depending on the structure of the infinite regions
of E0 (see Figure 4).

Definition 3.4. Let E0 = (E0(1), . . . , E0(N)) be a uniquely minimizing locally
isoperimetric partition in R2 with k regions with infinite area, where k is either
2 or 3.

(i) Let R � 1 be such that ∂E0\BR is the union of k half-lines, according
to Theorem 2.3. By possibly taking a larger R, we can assume that each
half-line intersects ∂BR with an angle close to π

2 (say, between π
3 and 2π

3 ).
(ii) Let L be any of these k half-lines, meeting ∂BR at a point p. Let ∂BR ∩

∂B1/2(p) = {q1, q2}, and let (L ∩ ∂B1/2(p))\BR = {q0}. For i = 1, 2,

connect the point qi to q0 by a smooth curve Γi ⊂ B1/2(p)\BR, meeting
∂BR at qi and L at q0 in a C2-way and intersecting L only at q0. Let EL

be the region enclosed by the curves Γ1, Γ2, and ∂BR ∩B1/2(p).
(iii) Let OR be the open set obtained by the union of BR with each of the k sets

EL constructed at the previous point.

Notice that BR ⊂ OR ⊂⊂ BR+1, and the boundary of OR is a curve of class C 2,
except for k cusp points at the intersection ∂OR ∩ ∂E0.
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q0p

q1

q2

q0p

q1

q2

Figure 4. The set OR constructed in Definition 3.4, depending on whether E0 has two
infinite regions (left) or three infinite regions (right).

Theorem 3.5. Let E0 = (E0(1), . . . , E0(N)) be a uniquely minimizing locally
isoperimetric partition in R2 with at least two infinite regions, and let R > 0.

There exist a radius R > R, positive constants Λ > 0 and r0 > 0 (all depending
only on E0 and R) and a sequence (Ek)k∈N ⊂ MR+1(E0) of (Λ, r0)-minimizing
partitions, such that Ek(i)4E0(i) ⊂⊂ BR+1 for all i, and

∆(Ek, E0) > 0 for all k ∈ N, lim
k→∞

∆(Ek, E0) = 0,

lim
k→∞

δ(Ek, E0)
∆(Ek, E0)2

= κR(E0). (3.7)

Proof. We divide the proof into three steps.
Step 1: localization in a large ball. Let (Fk)k∈N ⊂ MR(E0) be a recovery sequence

for κR(E0) in (3.1), that is,

∆(Fk, E0) > 0 for all k ∈ N, lim
k→∞

∆(Fk, E0) = 0,

lim
k→∞

δ(Fk, E0)
∆(Fk, E0)2

= κR(E0). (3.8)

By definition of the class MR(E0), up to replacing Fk by an isometric copy, we can
find points xk ∈ R2 such that Fk(i)4E0(i) ⊂⊂ BR(xk) for all i ∈ {1, . . . , N}. By
finiteness of κR(E0), it follows from (3.8) that as k → ∞

P(Fk;BR(xk))− P(E0;BR(xk)) = δ(Fk, E0) = κR(E0)∆(Fk, E0)2 + o(∆(Fk, E0)2),
(3.9)

so that by assuming k large enough we can bound

P(Fk;BR(xk))− P(E0;BR(xk)) 6
(
κR(E0) + 1

)
∆(Fk, E0)2. (3.10)

We claim that there exists R ≥ R, depending only on R and E0, such that we
can assume
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BR(xk) ⊂ BR for all k, E0(i) ⊂⊂ BR for all i ∈ IE0 . (3.11)

Indeed, since by Theorem 2.3 the regions of E0 with finite area are bounded, there
exists a radius R0 > 0 depending only on E0 such that E0(i) ⊂⊂ BR0

for all i ∈ IE0 ,
so that the second condition in (3.11) is satisfied for all R > R0. Regarding the
first condition, we have that either BR(xk) ∩ E0(i) 6= ∅ for some i ∈ IE0 (and in

this case it is enough to take R > R0 + 2R to guarantee that BR(xk) ⊂ BR) or
BR(xk)∩E0(i) = ∅ for all i ∈ IE0 . In this second case we can use the same argument
as in the proof of Theorem 3.2 to ‘copy and paste’ Fk ∩BR(xk) into balls BR(yk)
that are contained in a uniform ball BR, so that we can assume without loss of
generality that the first condition in (3.11) also holds.

Step 2: Construction of Ek. Let OR be the set introduced in Definition 3.4,
depending on the structure of the infinite regions of E0, see in particular Figure 4
(notice that, up to taking a larger R, the assumption in Definition 3.4 is satisfied).
We define Ek as a solution to the following minimum problem:

min

{
P(E ;BR+1) +

∣∣∆(E , E0)−∆(Fk, E0)
∣∣3/2 : |E(i)| = |E0(i)| and

|(E(i)4E0(i))\OR| = 0 for all i ∈ {1, . . . , N}
}
,

(3.12)

whose existence follows by the direct method of the calculus of variations. Notice
that, since OR ⊂⊂ BR+1, we have Ek(i)4E0(i) ⊂⊂ BR+1, and Ek satisfies the
volume constraint as well; hence Ek ∈ MR+1(E0) for all k.

Furthermore, Fk is admissible as a competitor in (3.12), hence by minimality of
E0 and by (3.10) we have

P(Ek;BR+1) +
∣∣∆(Ek, E0)−∆(Fk, E0)

∣∣3/2 6 P(Fk;BR+1)

6 P(E0;BR+1) +
(
κR(E0) + 1

)
∆(Fk, E0)2. (3.13)

Since P(Ek;BR+1) − P(E0;BR+1) ≥ 0 by local minimality of E0, it follows from
(3.13) ∣∣∆(Ek, E0)−∆(Fk, E0)

∣∣3/2 6
(
κR(E0) + 1

)
∆(Fk, E0)2. (3.14)

In turn, since 0 < ∆(Fk, E0) → 0, dividing by ∆(Fk, E0)3/2 in (3.14) we find

lim
k→∞

∆(Ek, E0)
∆(Fk, E0)

= 1, ∆(Ek, E0) > 0 for all k ∈ N, lim
k→∞

∆(Ek, E0) = 0.

(3.15)
Again by (3.13) and (3.9) we have

δ(Ek, E0) = P(Ek;BR+1)− P(E0;BR+1) 6 P(Fk;BR+1)− P(E0;BR+1)

= κR(E0)∆(Fk, E0)2 + o(∆(Fk, E0)2)
= κR(E0)∆(Ek, E0)2 + o(∆(Ek, E0)2),

(3.16)
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where the last identity follows from (3.15). In view of (3.15) and (3.16), the sequence
(Ek)k∈N satisfies the conditions in (3.7).

We further notice for later use that we can find an isometry T : R2 → R2 such
that

lim
k→∞

d(Ek, T (E0)) = 0, T (E0(i)) ⊂ OR for all i ∈ IE0 , (3.17)

and

|(T (E0(i))4E0(i))\OR| = 0 for all i ∈ {1, . . . , N}. (3.18)

Indeed, let Tk : R2 → R2 be isometries such that d(Ek, Tk(E0)) = ∆(Ek, E0) → 0.
Notice that supk |Tk(0)| < ∞ in view of the condition Ek(i)4E0(i) ⊂⊂ BR+1, so
that, up to a subsequence, Tk converges to some isometry T. By triangle inequality
the first condition in (3.17) is satisfied. The second condition holds since, if by
contradiction |T (E0(i))\OR| > 0 for some i ∈ IE0 , then we would have |Ek(i)\OR| >
0 for k sufficiently large and in turn also |E0(i)\OR| > 0 since Ek coincides with E0
outside OR, contradicting (3.11). For the same reason, (3.18) also holds.

Step 3: (Λ, r0)-minimality. We are left to prove that Ek is a (Λ, r0)-minimizing
partition for all k according to Definition 3.3, for suitable uniform constants Λ > 0,
r0 > 0. We choose r0 > 0 given by Lemma A.1 corresponding to T (E0) (notice that
r0 depends ultimately only on E0 and R).

Fix k ∈ N, and let F = (F(1), . . . ,F(N)) be a partition such that
Ek(i)4F(i) ⊂⊂ Br0

(x) for some x ∈ R2. We shall prove the inequality (3.6) for a
suitable Λ > 0.

Assume first that Br0
(x)∩OR = ∅. Recalling (3.11), ∂E0∩Br0

(x) is either empty
or a segment (the boundary among two infinite regions, say E0(i1) and E0(i2)).
Then, since |(Ek(i)4E0(i))\OR| = 0 for all i, we have

P(Ek;Br0
(x)) = P(E0;Br0

(x)) = P(E0(i1);Br0
(x))

6 P(F(i1);Br0
(x)) 6 P(F ;Br0

(x)),

where the first inequality follows from the fact that ∂E0(i1)∩Br0
(x) is either empty

or a segment, and F(i1)4E0(i1) ⊂⊂ Br0
(x). The previous estimate proves (3.6) in

this case (with Λ = 0).
Consider next the case Br0

(x)∩OR 6= ∅, and let us also prove (3.6) in this case.

By taking r0 < 1
2 we can assume that Br0

(x) ⊂⊂ BR+1. We modify the partition
F in order to obtain an admissible competitor for the minimum problem (3.12).
We have two constraints to satisfy, and we proceed in two steps:

• Let F ′ = (F ′(1), . . . ,F ′(N)) be obtained from F by setting

F ′(i) :=
(
F(i) ∩OR

)
∪
(
E0(i)\OR

)
for all i ∈ {1, . . . , N}.

Notice that |(F ′(i)4E0(i))\OR| = 0 and F ′(i)4Ek(i) ⊂⊂ Br0
(x).

• Let F ′′ = (F ′′(1), . . . ,F ′′(N)) be obtained from F ′ by applying the volume-
fixing variation Lemma A.1, with E = Ek and G = F ′ (that is, we set

F ′′ = G̃ obtained by the lemma with the previous choices). The lemma
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can be applied since d(Ek, T (E0)) < ε0 for k sufficiently large by (3.17) and
F ′(i)4Ek(i) ⊂⊂ Br0

(x).

Let C 0 be the constant given by Lemma A.1, and let C1 > 0 be such that
P(Ek;BR+1) 6 C1 for all k, which exists by (3.13). By the third property in Lemma
A.1 the partition F ′′ satisfies the estimate

|P(F ′′;BR+1)− P(F ′;BR+1)| 6 C0P(Ek;BR+1)
∑
i∈IE0

∣∣|F ′(i)| − |Ek(i)|
∣∣

6 C0C1

∑
i∈IE0

∣∣F ′(i)4Ek(i)
∣∣

6 C0C1

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣, (3.19)

where the last passage follows since∣∣F(i)4Ek(i)
∣∣ ≥ ∣∣(F(i)4Ek(i)

)
∩OR

∣∣ = ∣∣(F ′(i)4Ek(i)
)
∩OR

∣∣ = ∣∣F ′(i)4Ek(i)
∣∣.

(3.20)
Similar to (3.19), by the fourth property in Lemma A.1 we also have

|d(F ′′, Ek)− d(F ′, Ek)| 6 C0C1

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣. (3.21)

Notice that |(F ′′(i)4E0(i))\OR| = 0 for all i, since F ′ satisfies this property
and F ′′ is obtained by perturbing F ′ inside OR (first property in Lemma A.1).
Moreover, |F ′′(i)| = |Ek(i)| = |E0(i)| for all i (by the second property in Lemma
A.1). Hence F ′′ obeys both constraints in the minimum problem (3.12). Defining

∆k :=
∣∣∆(F ′′, E0)−∆(Fk, E0)

∣∣3/2 − ∣∣∆(Ek, E0)−∆(Fk, E0)
∣∣3/2,

we have, by minimality of Ek in (3.12),

P(Ek;BR+1) 6 P(F ′′;BR+1) + ∆k

(3.19)

6 P(F ′;BR+1) + C0C1

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣+∆k

= P(F ;BR+1) +
(
P(F ′;BR+1)− P(F ;BR+1)

)
+ C0C1

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣+∆k. (3.22)

We now estimate ∆k. By using the elementary inequality |a3/2 − b3/2| 6
3
2

√
max{a, b}|a− b| for all a, b ≥ 0 and observing that ∆(Fk, E0) → 0, ∆(Ek, E0) →

0, and ∆(F ′′, E0) 6 |OR|, we have, for a constant C 2 depending on R,

|∆k| 6 C2

∣∣∆(F ′′, E0)−∆(Ek, E0)
∣∣ 6 C2 d(F ′′, Ek)
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(3.21)

6 C2 d(F ′, Ek) + C0C1C2

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣

6
C2

2

N∑
i=1

∣∣F(i)4Ek(i)
∣∣+ C0C1C2

∑
i∈IE0

∣∣F(i)4Ek(i)
∣∣,

where the last passage follows from (3.20). By inserting this estimate into (3.22)
we get, for a constant C 3 depending on E0 and R,

P(Ek;BR+1) 6 P(F ;BR+1)+
(
P(F ′;BR+1)−P(F ;BR+1)

)
+C3

N∑
i=1

|Ek(i)4F(i)|.

(3.23)
It remains to estimate the change in perimeter between F and F ′. In the following

computations, in view of the regularity of E0 given by Theorem 2.3, we assume that
the regions E0(i) are open sets. By definition of F ′ we have

P(F ′;BR+1)− P(F ;BR+1) = P(E0;BR+1\OR) + P(F ′; ∂OR)− P(F ;BR+1\OR).
(3.24)

To compute the perimeter of F ′ on ∂OR, we recall that by (3.11) the finite regions
of E0(i) are compactly contained in OR and that P(E0; ∂OR) = 0, and hence we can
decompose ∂OR, up to a negligible set, into the disjoint union of the sets ∂OR∩E0(i)
for i ∈ IcE0 := {1, . . . , N}\IE0 (the indices corresponding to the infinite regions).
Therefore

P(F ′; ∂OR) =
∑
i∈IcE0

P(F ′; ∂OR ∩ E0(i))

=
∑
i∈IcE0

H1
(
∂OR ∩ E0(i) ∩ F(i)(0)

)
+
∑
i∈IcE0

H1
(
{νF(i) = −νOR

} ∩ E0(i)
)
.

Here A(θ) denotes the set of points where A has Lebesgue density θ ∈ [0, 1], and
we write {νA = ±νB} := {x ∈ ∂∗A ∩ ∂∗B : νA(x) = ±νB(x)} for any two sets of
finite perimeter A and B. Similarly,

P(F ;BR+1\OR) =
∑

i∈IcE0

P(F ; E0(i) ∩BR+1\OR)

+1
2

∑
i∈IcE0

P(F ; ∂∗E0(i) ∩BR+1\OR)

≥
∑

i∈IcE0

P(F(i); E0(i) ∩BR+1\OR)

+1
2

∑
i∈IcE0

H1
(
{νF(i) = νE0(i)} ∩BR+1\OR

)
.
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By inserting the last two identities into (3.24) we obtain

P(F ′;BR+1)− P(F ;BR+1) 6 P(E0;BR+1\OR)

+
∑

i∈IcE0

H1
(
∂OR ∩ E0(i) ∩ F(i)(0)

)
+
∑

i∈IcE0

H1
(
{νF(i) = −νOR

} ∩ E0(i)
)

−
∑

i∈IcE0

P(F(i); E0(i) ∩BR+1\OR)

−1
2

∑
i∈IcE0

H1
(
{νF(i) = νE0(i)} ∩BR+1\OR

)
.

(3.25)

Define now for i ∈ IcE0 the sets

G(i) :=
(
E0(i) ∩ F(i)

)
\OR.

By [19, Theorem 16.3] we have

P(G(i);BR+1) = P(F(i); E0(i) ∩BR+1\OR) + P(E0(i);F(i)(1) ∩BR+1\OR)

+ H1
(
∂OR ∩ E0(i) ∩ F(i)(1)

)
+ H1

(
{νF(i) = νE0(i)} ∩BR+1\OR

)
+ H1

(
{νF(i) = −νOR

} ∩ E0(i)
)
.

Inserting this identity into (3.25) we find

P(F ′;BR+1)− P(F ;BR+1) 6 P(E0;BR+1\OR)

+
∑

i∈IcE0

H1
(
∂OR ∩ E0(i) ∩ F(i)(0)

)
+
∑

i∈IcE0

H1
(
{νF(i) = −νOR

} ∩ E0(i)
)

−
∑

i∈IcE0

P(F(i); E0(i) ∩ ∂OR) +
1
2

∑
i∈IcE0

H1
(
{νF(i) = νE0(i)} ∩BR+1\OR

)
+
∑

i∈IcE0

P(E0(i);F(i)(1) ∩BR+1\OR) +
∑

i∈IcE0

H1
(
∂OR ∩ E0(i) ∩ F(i)(1)

)
+
∑

i∈IcE0

H1
(
{νF(i) = −νOR

} ∩ E0(i)
)
−
∑

i∈IcE0

P(G(i);BR+1).

We can group together all the terms on ∂OR, whose combination is controlled by
H1(∂OR):

H1
(
∂OR ∩ E0(i) ∩ F(i)(0)

)
+ 2H1

(
{νF(i) = −νOR

} ∩ E0(i)
)

− P(F(i); E0(i) ∩ ∂OR) +H1
(
∂OR ∩ E0(i) ∩ F(i)(1)

)
6 H1

(
∂OR ∩ E0(i) ∩ F(i)(0)

)
+H1

(
∂OR ∩ E0(i) ∩ F(i)(1)

)
+H1

(
∂OR ∩ E0(i) ∩ ∂∗F(i)

)
= H1(∂OR ∩ E0(i)).
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Therefore

P(F ′;BR+1)− P(F ;BR+1)

6 1
2

∑
i∈IcE0

P(E0(i);BR+1\OR) +
∑

i∈IcE0

H1
(
∂OR ∩ E0(i)

)
+1

2

∑
i∈IcE0

H1
(
{νF(i) = νE0(i)} ∩BR+1\OR

)
+
∑

i∈IcE0

P(E0(i);F(i)(1) ∩BR+1\OR)−
∑

i∈IcE0

P(G(i);BR+1).

Observe now that

∑
i∈IcE0

[
1
2H

1
(
{νF(i) = νE0(i)} ∩BR+1\OR

)
+ P(E0(i);F(i)(1) ∩BR+1\OR)

]
=
∑

i∈IcE0

1
2P(E0(i);BR+1\OR),

which yields

P(F ′;BR+1)− P(F ;BR+1) 6
∑
i∈IcE0

(
P(E0(i);BR+1\OR) +H1

(
∂OR ∩ E0(i)

)
− P(G(i);BR+1)

)
=
∑
i∈IcE0

(
P(E0(i)\OR;BR+1)− P(G(i);BR+1)

)
.

For each i ∈ IcE0 the set E0(i)\OR has boundary of class C 2. By a standard result,

that we recall in Lemma 3.6, any set with boundary of class C 2 is a quasi-minimizer
of the perimeter for a suitably large constant, depending on the set itself: that is,
we can find a constant C4 > 0, depending ultimately only on E0 and R, such that

P(F ′;BR+1)− P(F ;BR+1) 6 C4

∑
i∈IcE0

∣∣(E0(i)\OR)4G(i)
∣∣

= C4

∑
i∈IcE0

∣∣|(E0(i)\F(i)) ∩ (BR+1\OR)
∣∣

6 C4

∑
i∈IcE0

∣∣Ek(i)4F(i)
∣∣, (3.26)

where we used the fact that |(Ek(i)4E0(i))\OR| = 0 in the last inequality.
By inserting (3.26) into (3.23) we finally obtain the quasi-minimality inequality

(3.6) with Λ := C3 + C4 depending only on E0 and R. �
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The following property, used in the proof of Theorem 3.5, is well-known to the
experts (see for instance [1, Lemma 4.1]). Here we state and prove it in the setting
of the relative perimeter for the convenience of the reader.

Lemma 3.6. Let E ⊂ Rd be an open set with boundary of class C2, and let ρ> 0.
Then there exists a constant C> 0, depending only on E and ρ, such that for every
set of finite perimeter F ⊂ Rd with E4F ⊂⊂ Bρ one has

P(E;Bρ) 6 P(F ;Bρ) + C|E4F |.

Proof. Let X ∈ C1(Rd;Rd) be a vector field such that X = νE on ∂E and ‖X‖∞ 6
1. Then

P(E;Bρ)− P(F ;Bρ) 6
∫
∂E∩Bρ

X · νE dHd−1 −
∫
∂∗F∩Bρ

X · νF dHd−1

=

∫
E∩Bρ

divX dx−
∫
F∩Bρ

divX dx 6 ‖ divX‖L∞(Bρ)|E4F |,

where we used the fact that, in applying the divergence theorem, all the terms on
∂Bρ cancel out due to the assumption E4F ⊂⊂ Bρ. �

3.2. Improved convergence

The next step of the strategy exploits the improved convergence theorem for clus-
ters by Cicalese, Leonardi, and Maggi [10], which allows us to conclude that the
partitions Ek of the recovery sequence for κR(E0) constructed in Theorem 3.5 are
actually smooth perturbations of E0. Combined with Theorem 3.2, this reduces the
proof of the stability inequality for E0 to a suitable class of smooth perturbations
of E0. We premise some notation for smooth planar partitions, following [10].

Definition 3.7. A partition E = (E(1), . . . , E(N)) in R2 is a Ck,α-partition (k ∈
N, α ∈ [0, 1]) if there exist a finite set of points {pi}i∈I and a finite family {γj}j∈J

of closed, connected Ck,α-curves with boundary such that

∂E =
⋃
j∈J

γj , ∂∗E =
⋃
j∈J

int(γj), Σ(E) =
⋃
j∈J

bd(γj) =
⋃
i∈I

{pi}.

For a Ck,α-partition E = (E(1), . . . , E(N)), with {pi}i∈I and {γj}j∈J as in
Definition 3.7, we say that f ∈ Ck,α(∂E ;R2) if f : ∂E → R2 is continuous,
f ∈ Ck,α(γj ;R2) for every j ∈ J , and

‖f‖
Ck,α(∂E) := sup

j∈J
‖f‖

Ck,α(γj)
< ∞.

Moreover, given two Ck,α-partitions E and F , we say that a map f : ∂E → ∂F
is a Ck,α-diffeomorphism between ∂E and ∂F if f is a homeomorphism such that
f ∈ Ck,α(∂E ;R2), f−1 ∈ Ck,α(∂F ;R2), and f(Σ(E)) = Σ(F).
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Given a partition E in R2 and a map f : R2 → R2, we also define the tangential
component of f with respect to E as the map τEf : ∂∗E → R2 given by

τEf(x) := f(x)−
(
f(x) · νE(x)

)
νE(x), x ∈ ∂∗E ,

where νE : ∂∗E → S1 is any Borel function such that either νE(x) = νE(i)(x) or
νE(x) = νE(j)(x) for x ∈ E(i, j), i 6= j.

With these positions, we can state the main result of this section, which is a
direct consequence of the improved convergence theorem in [10].

Theorem 3.8 Let E0 = (E0(1), . . . , E0(N)) be a uniquely minimizing locally
isoperimetric partition in R2 with at least two infinite regions, and fix R > 0.

Then there exist constants R> 0, µ0 > 0, C0 > 0 (depending only on E0 and R),
and a sequence of C1,1-partitions (Fk)k∈N ⊂ MR(E0) such that

κR(E0) = lim
k→∞

δ(Fk, E0)
∆(Fk, E0)2

and lim
k→∞

d(Fk, E0) = 0, (3.27)

and for every µ ∈ (0, µ0) there exist k(µ) ∈ N and a sequence of C1,1-
diffeomorphisms (fk)k≥k(µ) between ∂E0 and ∂Fk with the following properties:

(i) supp(fk − Id) ⊂⊂ BR,
(ii) ‖fk‖C1,1(∂E0)

6 C0,

(iii) ‖fk − Id ‖C1(∂E0)
→ 0 as k → ∞,

(iv) τE0(fk − Id) = 0 on ∂E0\Iµ(Σ(E0)), where
Iµ(Σ(E0)) := {x ∈ R2 : dist(x,Σ(E0)) < µ},

(v) ‖τE0(fk − Id)‖C1(∂∗E0)
6 C0

µ ‖f − Id ‖C0(Σ(E0))
.

Proof. Let R> 0 and (Ek)k∈N ⊂ MR+1(E0) be the sequence of (Λ, r0)-minimizing
partitions given by Theorem 3.5. We can find isometries Tk : R2 → R2 such that
Fk := Tk(Ek) satisfy the conditions (3.27). Notice that, since Ek(i)4E0(i) ⊂⊂ BR+1

for all i, up to taking a larger R we can assume that the same condition is satisfied
by Fk.

Since E0 is in particular a C2,1-partition by Theorem 2.3, and (Fk)k are (Λ, r0)-
minimizing partitions such that d(Fk, E0) → 0, the conclusion follows from [10,
Theorem 1.5] by noticing that all the arguments there are local and can be adapted
to our case. �

4. Stability of the lens among smooth perturbations

In this section we prove Theorem 2.5 among smooth perturbations of the standard
lens partition. In view of Theorem 3.8, we introduce the following class of smooth
perturbations of a locally isoperimetric partition E0.

Definition 4.1. Let E0 be a locally isoperimetric partition in R2. Given constants
ε0 > 0 and R> 0, a C1-partition E is said to be an ε0-perturbation of E0 in R if
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|E(i)| = |E0(i)| for all i, and there exists a C1-diffeomorphism Ψ between ∂E0 and
∂E such that

supp(Ψ− Id) ⊂⊂ BR and ‖Ψ− Id ‖C1(∂E0)
6 ε0.

Taking E0 = Lm to be lens partition, its stability among these smooth
perturbations is given by the following result.

Theorem 4.2. (Stability among ε0-perturbations) Let m> 0 and R> 0 be fixed.
There exist ε0 > 0 and κ0 > 0 (depending on m and R) such that if E is an
ε0-perturbation of Lm in BR, then

δ(E ,Lm) ≥ κ0∆(E ,Lm)2.

In order to prove this theorem we will use a geometric fact which states that the
image of a graph by a diffeomorphism close to the identity is again a graph. We
state this fact as a separate lemma since it could be of independent interest.

Lemma 4.3. Let f ∈ C1,1([a, b]), with −∞ < a < b < +∞. Then, there exist
λ0 > 0 and C> 0, depending only on the C1,1-norm of f and on |b − a|, with the
following property: if Ψ is a C 1-diffeomorphism between graph(f) and its image

with ‖Ψ − Id‖C1(graph(f)) < λ0, then there exist −∞ < c < d < +∞ and f̃ ∈
C1([c, d]) such that

Ψ(graph(f)) = graph(f̃) and ‖f̃ − f ◦ η‖C1([c,d]) 6 C‖Ψ− Id‖C1(graph(f)), (4.1)

where η : [c, d] → [a, b] is defined as

η(x) := a+
b− a

d− c
(x− c).

Proof. Using Whitney’s Extension Theorem (see [10, Theorem 2.3]), we can extend
Ψ to a diffeomorphism defined in the entire R2 with

‖Ψ− Id‖C1(R2;R2) 6 C‖Ψ− Id‖C1(graph(f)) 6 Cλ0 (4.2)

for a constant C > 0 depending only on |b− a| and on the C 0-norm of f. Consider
the function G : [a, b] → R defined as

G(x) := Π1 (Ψ(x, f(x))) ,

where Π1 : R2 → R is the projection on the first coordinate. Note that G ∈
C1([a, b]). By writing Ψ(x, y) = (Ψ1(x, y),Ψ2(x, y)), so that G(x) = Ψ1(x, f(x)),
we easily obtain the following estimates:

|G(x)− x| 6 |(Ψ− Id)(x, f(x))| 6 ‖Ψ− Id‖C0(R2;R2)

and
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|G′(x)− 1| = |∂xΨ1(x, f(x)) + ∂yΨ1(x, f(x))f
′(x)− 1|

6 |∂xΨ1(x, f(x))− 1|+ |∂yΨ1(x, f(x))||f ′(x)|
6
(
1 + ‖f‖C1([a,b])

)
‖Ψ− Id‖C1(R2;R2).

It follows in particular that

‖G− Id‖C1([a,b]) 6
(
1 + ‖f‖C1([a,b])

)
‖Ψ− Id‖C1(R2;R2), (4.3)

so that choosing

λ0 :=
1

2C
(
1 + ‖f‖C1([a,b])

)
and recalling (4.2) can guarantee that G is invertible on [a, b] with a C1-inverse
G−1 : [c, d] → [a, b], where c := G(a) and d := G(b).

Define f̃ : [c, d] → R as

f̃(x) := Ψ2

(
G−1(x), f(G−1(x))

)
,

so that f̃ is of class C1 and, by definition, Ψ(graph(f)) = graph(f̃), proving the

first condition in (4.1). It remains to estimate ‖f̃ − f ◦ η‖C1([c,d]). In order to do so,

we first observe that, by (4.3), we also have

‖G−1−Id‖C1([c,d]) 6 2‖G−Id‖C1([a,b]) 6 2
(
1+‖f‖C1([a,b])

)
‖Ψ−Id‖C1(R2;R2). (4.4)

Moreover, for x ∈ [c, d] we have

|η(x)− x| =
∣∣∣a+

b− a

G(b)−G(a)
(x−G(a))− x

∣∣∣
=
∣∣∣a−G(a) +

( b− a

G(b)−G(a)
− 1
)
(x−G(a))

∣∣∣
6 |a−G(a)|+

∣∣∣∣ b− a

G(b)−G(a)
− 1

∣∣∣∣|G(b)−G(a)|

6 ‖G− Id‖C0([a,b]) + ‖G−1 − Id‖C1([c,d])‖G‖C1([a,b])|b− a|

6 c0‖Ψ− Id‖C1(R2;R2),

where last step follows from (4.3) and (4.4), for a constant c0 depending on |b− a|
and on ‖f‖C1([a,b]). Similarly,

|η′(x)− 1| =
∣∣∣∣ b− a

G(b)−G(a)
− 1

∣∣∣∣ 6 ‖G−1 − Id‖C1([c,d]) 6 c0‖Ψ− Id‖C1(R2;R2).

Thus,

‖η − Id‖C1([a,b]) 6 c0‖Ψ− Id‖C1(R2;R2). (4.5)

We are now in a position to obtain the desired estimate. For x ∈ [c, d] we write

f̃(x)− f ◦ η(x) = f̃(x)− f(G−1(x)) + f(G−1(x))− f(η(x))

= Π2

(
(Ψ− Id)

(
G−1(x), f(G−1(x))

))
+ f(G−1(x))− f(η(x)),
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from which we get that

‖f̃ − f ◦ η‖C0([c,d]) 6 ‖Ψ− Id‖C0(R2;R2) + ‖f ′‖C0([a,b])

(
‖G−1 − Id‖C0([c,d])

+ ‖η − Id‖C0([c,d])

)
and

‖f̃ ′ − (f ◦ η)′‖C0([c,d]) 6 ‖G−1‖C1([c,d])

(
1 + ‖f ′‖C0([a,b])

)
‖Ψ− Id‖C1(R2;R2)

+ ‖(f ′ ◦G−1)((G−1)′ − 1)‖C0([c,d])

+ ‖(f ′ ◦ η)(η′ − 1)‖C0([c,d])

+ ‖f ′ ◦G−1 − f ′ ◦ η‖C0([c,d])

6 ‖G−1‖C1([c,d])

(
1 + ‖f ′‖C0([a,b])

)
‖Ψ− Id‖C1(R2;R2)

+ ‖f‖C1,1([a,b])

(
‖G−1 − Id‖C1([c,d])

+ ‖η − Id‖C1([c,d])

)
.

Thus, combining (4.4) and (4.5), and recalling (4.2), we get the second estimate in
(4.1). �

Proof of Theorem 4.2. Note that by scaling, we can assume that

rm = 1, (4.6)

which, by (2.15), corresponds to taking m = 2π
3 −

√
3
2 . The singular set Σ(Lm) is

given by the two points p1 = (−
√
3/2, 0) and p2 = (

√
3/2, 0). We can also assume

without loss of generality that R ≥ R0, where Lm ⊂⊂ BR0
, since any perturbation

in a smaller ball is also a perturbation in a larger ball. We write ∂E0 = γ0 ∪ γ1 ∪ γ2
with

γ0 =
{
(x, 0) : |x| ≥

√
3/2
}
, γi =

{
(x, ui(x)) : |x| 6

√
3/2
}
, i = 1, 2,

where u1(x) =
√
1− x2 − 1/2 and u2(x) = −u1(x).

Step 1: Graph representation. Let E be an ε0-perturbation of Lm in BR, with ε0 ∈
(0, 1) to be chosen later, and let (xi, yi) = Ψ(pi), where Ψ is a diffeomorphism as in
Definition 4.1. We apply a small horizontal translation to E by τ = (−1

2 (x1+x2), 0)
(notice that |τ | 6 ε0) and define F = E + τ so that

|F(1)| = |E(1)| = m, F(i)4Lm(i) ⊂⊂ BR+1,

∂F =
2⋃

i=0

(
Ψ(γi) + τ

)
,

Σ(F) = {q1, q2} with qi = Ψ(pi) + τ.

Note that with this translation q1 · e1 = −q2 · e1 (see Figure 5). We can then write

q1 =

(
−
√
3

2
(1 + σ), y1

)
and q2 =

(√
3

2
(1 + σ), y2

)
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for some σ ∈ [−2ε0, 2ε0]. Notice that F is a (2ε0)-perturbation of Lm in BR+1.
We write

∂F = γ̃0 ∪ γ̃1 ∪ γ̃2,

where the former is the boundary between the two unbounded regions, while the
other two are the boundaries between the finite region and the upper and the lower
unbounded regions, respectively. By Lemma 4.3 we can find ε0 sufficiently small
and C0 > 0, depending on R, such that for all F as before there exist

g0 ∈ C1
c

(
(−R− 1, R+ 1)\

(
−

√
3
2 (1 + σ),

√
3
2 (1 + σ)

))
,

g1, g2 ∈ C1
([

−
√
3
2 (1 + σ),

√
3
2 (1 + σ)

])
,

with g1 ≥ g2,

g0
(
± (1 + σ)

√
3
2

)
= g1

(
± (1 + σ)

√
3
2

)
= g2

(
± (1 + σ)

√
3
2

)
, (4.7)

∫ (1+σ)

√
3
2

−(1+σ)

√
3
2

(g1 − g2) dx = m =

∫ √
3
2

−
√
3
2

(u1 − u2) dx, (4.8)

such that

γ̃0 =
{
(x, g0(x)) : |x| ≥ (1 + σ)

√
3
2

}
,

γ̃i =
{
(x, gi(x)) : |x| 6 (1 + σ)

√
3
2

}
for i = 1, 2,

and

‖g0‖
C1
([

−
√
3
2 (1+σ),

√
3
2 (1+σ)

]c) + 2∑
i=1

‖gi − ũi‖
C1
([

−
√
3
2 (1+σ),

√
3
2 (1+σ)

]) 6 C0ε0,

(4.9)
where we define

ũi(x) := (1 + σ)ui

(
x

1 + σ

)
, i = 1, 2.

p1
p2

q1

q2

γ̃0 γ̃0
γ̃1

γ̃2

F(1)

F(2)

F(3)

Figure 5. A translated smooth perturbation of the standard lens partition Lm.
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Step 2: Perimeter deficit. We now estimate the perimeter deficit between E and
E0, by exploiting the graph representation obtained in the previous step. For sim-

plicity of notation we call ` =
√
3
2 and denote by Iσ the interval [−(1+σ)`, (1+σ)`]

so that I0 = [−`, `]. Then we have

δ(E ,Lm) = δ(F ,Lm) = P(F ;BR+1)− P(Lm;BR+1)

=

∫
Icσ

(√
1 + (g′0)

2 − 1

)
dx+

2∑
i=1

∫
Iσ

√
1 + (g′i)

2 dx

−
2∑

i=1

∫
I0

√
1 + (u′

i)
2 dx− 2σ`

=

∫
Icσ

(√
1 + (g′0)

2 − 1

)
dx

+
2∑

i=1

∫
Iσ

(√
1 + (g′i)

2 −
√
1 + (ũ′

i)
2

)
dx

+
2∑

i=1

∫
Iσ

√
1 +

(
u′
i

(
y

1 + σ

))2

dy

−
2∑

i=1

∫
I0

√
1 + (u′

i)
2 dx− 2σ`

=

∫
Icσ

(√
1 + (g′0)

2 − 1

)
dx

+
2∑

i=1

∫
Iσ

(√
1 + (g′i)

2 −
√
1 + (ũ′

i)
2

)
dx

+ σ
2∑

i=1

∫
I0

√
1 + (u′

i)
2 dx− 2σ`

≥ 1

25/2

∫
Icσ

(g′0)
2 dx+

2∑
i=1

∫
Iσ

ũ′
i√

1 + (ũ′
i)

2
(g′i − ũ′

i) dx

+ c1

2∑
i=1

∫
Iσ

(g′i − ũ′
i)

2 dx+ σ
2∑

i=1

∫
I0

√
1 + (u′

i)
2 dx− 2σ`,

where c1 > 0 is a numeric constant and, in the last inequality, we used the basic
estimates

√
1 + t2 − 1 >

1

25/2
t2 for all |t| 6 1,√

1 + t2 −
√
1 + s2 >

s√
1 + s2

(t− s) +
1

2 · 53/2
(t− s)2 for all |s|, |t| 6 2,
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combined with the fact that ‖g′0‖C0(Icσ) 6 1, ‖ũ′
i‖C0(Iσ) 6

√
3 and ‖g′i‖C0(Iσ) 6 2

for i = 1, 2 by (4.9) (up to taking a smaller ε0, if needed).
Observe now that from the explicit form of the lens partition and recalling that

m = 2π
3 −

√
3
2 in view of the normalization assumption (4.6), we easily find

σ
2∑

i=1

∫
I0

√
1 + (u′

i)
2 dx− 2σ` = 2mσ.

Therefore, using this identity, the explicit form of ũ′
i, integrating by parts, and

using the boundary conditions (4.7) for g1 and g2, we obtain

δ(E ,Lm) ≥ 1

25/2

∫
Icσ

(g′0)
2 dx+ c1

2∑
i=1

∫
Iσ

(g′i − ũ′
i)

2 dx

−
∫
Iσ

x

1 + σ
(g′1 − ũ′

1) dx+

∫
Iσ

x

1 + σ
(g′2 − ũ′

2) dx+ 2mσ

≥ 1

25/2

∫
Icσ

(g′0)
2 dx+ c1

2∑
i=1

∫
Iσ

(g′i − ũ′
i)

2 dx

+
1

1 + σ

[∫
Iσ

(g1 − g2) dx− (1 + σ)2
∫
I0

(u1 − u2) dx

]
+ 2mσ

(4.8)
=

1

25/2

∫
Icσ

(g′0)
2 dx+ c1

2∑
i=1

∫
Iσ

(g′i − ũ′
i)

2 dx−mσ
2 + σ

1 + σ
+ 2mσ

=
1

25/2

∫
Icσ

(g′0)
2 dx+ c1

2∑
i=1

∫
Iσ

(g′i − ũ′
i)

2 dx+
mσ2

(1 + σ)
.

Now we extend ũi to zero outside of the interval Iσ, and define

g̃i(x) =

gi(x) if x ∈ Iσ,

g0(x) if x ∈ Icσ

for i = 1, 2. Then, by Poincaré inequality, we have for c2 := min{ 1

27/2
, c1}

δ(E ,Lm) ≥ c2

2∑
i=1

∫ R+1

−R−1

[
(g̃i − ũi)

′]2 dx+
mσ2

1 + σ

≥ CR

2∑
i=1

∫ R+1

−R−1

(
g̃i − ũi

)2
dx+

mσ2

1 + σ
(4.10)

for some constant CR > 0 depending on R.
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Step 3: Asymmetry estimate. Let

L̃m :=
{
(x, y) ∈ R2 : |x| 6 (1 + σ)`, |y| 6 (1 + σ)u1

( x

1 + σ

)}
so that |L̃m| = (1 + σ)2|Lm|. Define the rescaled lens partition L̃m =
(L̃m,H+\L̃m,H−\L̃m). Then

∆(E ,Lm) = ∆(F ,Lm) 6
1

2

3∑
i=1

|F(i)4L̃m(i)|+ 1

2

3∑
i=1

|L̃m(i)4Lm(i)|

6
∫
Icσ

|g0|dx+
2∑

i=1

∫
Iσ

|gi − ũi|dx+
∣∣|L̃m| − |Lm|

∣∣
6

2∑
i=1

∫ R+1

−R−1

|g̃i − ũi|dx+ |σ|(σ + 2)m.

Therefore

∆(E ,Lm)2 6 C ′
R

(
2∑

i=1

∫ R+1

−R−1

(
g̃i − ũi

)2
dx+ |σ|2m2

)
(4.11)

for a constant C ′
R > 0 depending only on R.

Step 4: Conclusion. Since |σ| 6 2ε0, combining the estimates (4.10) and (4.11)
we obtain the result of the theorem. �

Proof of Theorem 2.5. In view of Theorem 3.2, it is enough to show that the
constant κR(Lm) defined in (3.1) is strictly positive, for all m and R. Consider
the sequence of C1,1-partitions (Fk)k constructed in Theorem 3.8, satisfying in
particular

κR(Lm) = lim
k→∞

δ(Fk, E0)
∆(Fk, E0)

. (4.12)

For every ε> 0, each partition Fk is an ε-perturbation of Lm in BR0
for all k

sufficiently large (depending on ε), according to Definition 4.1, for a suitable radius
R0 > 0 depending only on m and R.

In particular we can apply Theorem 4.2 to Fk to deduce that the right-hand side
of (4.12) is uniformly bounded from below by a positive constant κ0, as desired. �

5. An application: small-mass minimizers for an isoperimetric problem
with nonlocal perturbation

Let α ∈ (0, 2) and γ ≥ 0 be fixed parameters. We consider for m > 0 the following
area-constrained nonlocal isoperimetric problem in R2:

min
{
Fγ(E) : E ⊂ R2, |E| = m

}
, (5.1)
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where for every set of finite perimeter E ⊂ R2 we define the functional

Fγ(E) := P(E)−H1
(
(∂∗E ∪ E(1)) ∩H

)
+ γ

∫
E

∫
E

1

|x− y|α
dx dy. (5.2)

Here H := {(x, y) ∈ R2 : y = 0}, and we recall that E(θ) denotes the set of points
of Lebesgue density θ of E. For simplicity of notation we set E∗ := ∂∗E ∪ E(1) for
any set of finite perimeter E.

Although this problem can be formulated in any dimension, we restrict here to
the case of dimension d=2 since our main goal is to show an application of the
stability theorem for the lens partition. Nonlocal isoperimetric problems where the
perimeter functional is perturbed by a nonlocal repulsive interaction have received
great attention in the last decade, particularly in connection with Gamow’s liquid
drop model for the atomic nucleus (see [8] for a review) and with the Ohta–Kawasaki
model for diblock copolymers. In particular the functional (5.2) is expected to
emerge in the scaling limit of a three-phase system for triblock copolymers, in
a regime where two majority phases equally occupy nearly all the space forming
lamellar structures and the third minority phase organizes in small droplets on the
lamellar flat interfaces, see for instance [2, 3].

The connection with the partitioning problem studied in this paper is made clear
in the following remark. As a consequence, we obtain that the standard lens Lm

(see (2.14)) minimizes the local functional F0, see Remark 5.2.

Remark 5.1. For γ=0, the local functional F0 computed on any bounded set
F ⊂⊂ BR, R> 0, coincides up to a constant (depending on R) with the perimeter
of the partition F := (F,H+\F,H−\F ) associated with F (H+ and H− denote
the upper and lower half-planes, respectively):

F0(F ) = P(F ;BR)−H1(BR ∩H) for all F ⊂⊂ BR. (5.3)

Indeed,

F0(F ) +H1(BR ∩H) = P(F ) +H1(F (0) ∩H ∩BR)

= P(F ) +H1(∂∗(H+\F ) ∩ ∂∗(H−\F ) ∩H ∩BR)

= P(F ;BR).

We also notice that in view of the identity (5.3), the local functional F0 is lower
semicontinuous along any sequence of sets converging in L1 and all contained in a
ball of fixed radius, see [5, Lemma 2.4].

Remark 5.2. For all m > 0, the standard lens Lm with area m (see (2.14))
minimizes the local functional F0:

µ0 := min
{
F0(E) : |E| = 1

}
= F0(L1) (5.4)

and, by scaling,

min
{
F0(E) : |E| = m

}
= F0(Lm) = µ0

√
m. (5.5)
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Indeed, for every bounded set F with |F | = m, we immediately obtain that F0(F ) ≥
F0(Lm) in view of the relation (5.3) and of the minimality of the lens partition Lm.
Since we can take a minimizing sequence (Fk)k for the minimum problem (5.5)
made of bounded sets, we have that F0(Lm) 6 F0(Fk) for every k, so that the
minimality of Lm follows.

In the following theorem we prove the existence of minimizers of (5.1) for small
values of m, and that (rescaled) minimizers converge in measure to the standard
lens as m→ 0, as a consequence of the stability property of the lens partition proved
in Theorem 2.5. Notice that by a standard scaling argument, using the homogeneity
of the nonlocal kernel, the ‘small mass regime’ m → 0+ corresponds to small values
of the coefficient γ multiplying the nonlocal term; this observation, combined with
Remark 5.2, provides a heuristic explanation of the following result.

Theorem 5.3. There exists a threshold m0 > 0, depending only on α and γ,
such that for every m ∈ (0,m0) the minimum problem (5.1) admits a solution Em.
Moreover ∣∣( 1√

m
Em

)
4L1

∣∣→ 0 as m → 0+, (5.6)

where L1 denotes the unit-area lens defined in (2.14).

Proof. This type of result is by now quite standard for nonlocal isoperimetric prob-
lems. We adapt in particular the 2-dimensional existence argument by Knüpfer and
Muratov for Gamow’s liquid drop model, see [17, Theorem 2.2]. We assume in the
following m 6 1, and we denote along the proof by C a generic, positive constant,
depending only on α and γ, which might change from line to line.

Step 1: Existence for small m. Let (Ek)k be a minimizing sequence for the mini-
mum problem (5.1), and assume without loss of generality that each Ek is the union

of finitely many disjoint, open, and smooth connected components Ek =
⋃Nk

i=1 Ek,i,
Nk ∈ N, ordered so that |Ek,1| > |Ek,2| > · · · > |Ek,Nk

| > 0. We can assume that,
for k large,

Fγ(Ek) 6 Fγ(Lm) = µ0

√
m+ γm

4−α
2

∫
L1

∫
L1

1

|x− y|α
dxdy

= µ0

√
m
(
1 + Cm

3−α
2

)
(5.7)

(or else Lm would already be a minimizer), where we used (5.5).
Suppose now Nk > 1, so that |Ek,i| 6 m

2 for all i = 2, . . . , Nk. By minimality of
Lm for the local functional F0 and positivity of the nonlocal term we have for all
i ∈ {1, . . . , NK}

Fγ(Ek) ≥ F0(Ek,i) + F0(Ek\Ek,i)
(5.5)

≥ µ0

(
|Ek,i|1/2 + (m− |Ek,i|)1/2

)
. (5.8)

By combining (5.7) and (5.8), squaring both sides, we find for i = 2, . . . , Nk

2|Ek,i|1/2(m− |Ek,i|)1/2 6 Cm4−α + Cm
5−α
2 6 Cm

5−α
2 ,
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from which it follows, using also |Ek,i| 6 m
2 ,

|Ek,i| 6 Cm4−αfor all i = 2, . . . , Nk. (5.9)

Define the set

Fk := λ(Ek\Ek,Nk
), with λ :=

(
m

m− |Ek,Nk
|

)1
2

∈ (1,
√
2],

so that |Fk| = m. We have

Fγ(Fk)−Fγ(Ek) = λ
[
P(Ek)−H1((Ek)∗ ∩H)

]
− λ
[
P(Ek,Nk

)−H1((Ek,Nk
)∗ ∩H)

]
+ γλ4−α

∫
Fk

∫
Fk

1

|x− y|α
dx dy −Fγ(Ek)

6 (λ4−α − 1)Fγ(Ek)− λF0(Ek,Nk
)

6 (λ4 − 1)Fγ(Ek)−F0(Ek,Nk
)

6
6

m
|Ek,Nk

|Fγ(Ek)− µ0|Ek,Nk
|1/2

6 µ0|Ek,Nk
|1/2
(
CFγ(Ek)m

2−α
2 − 1

)
,

where we used in particular (5.5) in the third inequality and (5.9) in the last one.
Since Fγ(Ek) is uniformly bounded by a constant depending only on α and γ
(recall that m 6 1), we can find m0 ∈ (0, 1), also depending only on α and γ, such
that the previous quantity is negative for all m ∈ (0,m0) and for all k. Therefore
Fγ(Fk) < Fγ(Ek), that is, by removing the last connected component of Ek and
rescaling we reduce the energy. By iterating this argument Nk − 1 times, removing
a connected component at each step, we replace Ek by a connected set Gk such
that |Gk| = m and Fγ(Gk) 6 Fγ(Ek).

In particular, (Gk)k is a minimizing sequence for (5.1) made of connected sets.
Moreover, the sets Gk have equibounded perimeter: this follows from the estimate

F0(E) ≥ 1

2
P(E) (5.10)

for every set of finite perimeter E, which can be proved as follows. By [19,
Proposition 19.22] one has P(F ;H±) > P(F ;H) for all F ⊂ H± with finite
perimeter and finite measure. Hence, using also [19, Theorem 16.3],

P(E) = P(E;H+) + P(E;H−) +H1(∂∗E ∩H)

≥ P(E ∩H+;H) + P(E ∩H−;H) +H1(∂∗E ∩H)

= 2H1(E(1) ∩H) + 2H1(∂∗E ∩H) = 2H1(E∗ ∩H),

from which the estimate (5.10) follows.
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Since we are in dimension d=2 and (Gk)k are connected sets with uniformly
bounded perimeter, we have that supk diam(Gk) < ∞ [19, Remark 12.28]. By
applying horizontal translations (notice that the functional Fγ is invariant with
respect to horizontal translations) we can then assume that the sets Gk are con-
tained in a fixed ball of large radius. A standard compactness argument, combined
with the lower semicontinuity of Fγ with respect to L1-convergence (see Remark
5.1), yields the existence of a minimizer in (5.1) for all m ∈ (0,m0).

Step 2: Convergence to the lens. Let Em be a minimizer in (5.1) for m ∈ (0,m0),

and define Ẽm := 1√
m
Em, so that |Ẽm| = 1.

Notice that every minimizer Em is necessarily connected, in the sense that it
cannot be written as disjoint union Em = A ∪ B of two sets of positive Lebesgue
measure in such a way that P(Em) = P(A) + P(B). Indeed, if not then one could
horizontally translate one of the two components far apart from the other, without
changing the local energy F0 but strictly decreasing the nonlocal energy.

The sets Ẽm have an equibounded perimeter, since by scaling and comparing
with Lm

P(Ẽm) =
1√
m
P(Em)

(5.10)

6
2√
m
F0(Em) 6

2√
m
Fγ(Em)

6
2√
m
Fγ(Lm) 6 2Fγ(L1).

Therefore, by connectedness, there exists R0 > 0 such that supm<m0
diam(Ẽm) 6

R0. Associate with Ẽm the partition Em := (Ẽm,H+\Ẽm,H−\Ẽm), and notice
that Em ∈ MR0

(L1). By applying a horizontal translation, we can assume that

∆(Em,L1) = d(Em,L1) = |Ẽm4L1|.

Then by the stability of L1 proved in Theorem 2.5 we have

κ1,R0
|Ẽm4L1|2 6 P(Em;BR0

)− P(L1;BR0
)
(5.3)
= F0(Ẽm)−F0(L1)

=
1√
m

(
F0(Em)−F0(Lm)

)
6

γ√
m

(∫
Lm

∫
Lm

1

|x− y|α
dxdy −

∫
Em

∫
Em

1

|x− y|α
dx dy

)
6

Cγ√
m
|Em4Lm| = Cγ

√
m|Ẽm4L1|,

where the second inequality follows by minimality of Em, and the third inequality
is a standard Lipschitz continuity estimate of the nonlocal energy, see for instance
[17, Equation (3.2)]. Hence (5.6) follows. �

Remark 5.4. For values of m above a suitable threshold, it is expected that mini-
mizers of (5.1) fail to exist, since the nonlocal part of the energy becomes dominant
and can be decreased by splitting a set into two parts and moving them far apart
from each other (by horizontal translations). However, it is possible to prove the
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existence of generalized minimizers for all m, following for instance the approach in
[22] for a general Gamow’s model. By the generalized minimizer of (5.1) we mean
a collection of sets of finite perimeter (E1, . . . , EM ), M ∈ N, such that

M∑
i=1

|Ei| = m and inf
{

Fγ(E) : E ⊂ R2, |E| = m
}
=

M∑
i=1

Fγ(Ei).

We also remark that one can prove analogous results for more general kernels in
the nonlocal energy (as those considered in [22]). We will not further investigate
these problems here.
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Appendix A. A ‘volume-fixing variation’ lemma

We here state a variant of a key result in the theory of minimizing clusters (see
for instance [19, Section 29.5]), which allows us to exchange volumes between the
different chambers of a given partition through local deformations, with a control
on the corresponding perimeter variation. For our purposes (see in particular the
proof of Theorem 3.5), we need to make sure that the perturbation is compactly
supported in a fixed open set.

Lemma A.1. Volume-fixing variation Let E0 = (E0(1), . . . , E0(N)) be a locally
isoperimetric partition in R2, and let OR be the set constructed in Definition 3.4.
Let also T : R2 → R2 be an isometry such that T (E0(i)) ⊂ OR for all i ∈ IE0 .
Then there exist constants C0 > 0, ε0 > 0, and r0 > 0 (depending on T (E0) and

R) with the following property.
If E and G are N-partitions such that d(E , T (E0)) < ε0 and G(i)4E(i) ⊂⊂

Br0
(x) ⊂⊂ BR+1 for some x ∈ R2, then there exists a N-partition G̃ such that

(i) G̃(i)4G(i) ⊂⊂ OR\Br0
(x) for all i ∈ {1, . . . , N},

(ii) |G̃(i)| = |E(i)| for all i ∈ {1, . . . , N},
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(iii) |P(G̃;BR+1)− P(G;BR+1)| 6 C0P(E ;BR+1)
∑

i∈IE0

∣∣|G(i)| − |E(i)|
∣∣,

(iv) |d(G̃, E)− d(G, E)| 6 C0P(E ;BR+1)
∑

i∈IE0

∣∣|G(i)| − |E(i)|
∣∣.

Proof. This result is proved in [19, Corollary 29.17] for clusters in Rd. The presence
of multiple regions with an infinite measure in our case does not affect the proof, as
their volumes do not need to be preserved and, furthermore, everything is localized
in a large ball BR+1. We need only to enforce the condition G̃(i)4G(i) ⊂⊂ OR.
The proof is based on [19, Theorem 29.14], where one selects two finite fami-

lies {yα}Mα=1 and {zα}Mα=1 of interface points of T (E0) and constructs the required

perturbation by modifying G either in
⋃M

α=1 Bε1
(yα) or in

⋃M
α=1 Bε1

(zα), for some
ε1 > 0, by means of suitable diffeomorphisms.
Therefore, to ensure that the part outside OR is unchanged, we only need to

make sure that it is possible to choose the points yα and zα inside OR. This is
guaranteed by [19, Remark 29.15], which only requires that |T (E0(i))∩OR| > 0 for
all i ∈ {1, . . . , N}.
With these considerations, the proof can be adapted to deal with our situation.

The only condition not addressed in [19] is the estimate (iv). Its proof is discussed
in [10, Appendix B]. �
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