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Introduction

Let p be a prime number. For any perfect field F, we shall write F for the algebraic closure

(determined up to isomorphisms) of F. We shall write Qp for the field of p-adic numbers;

Cp for the p-adic completion of Qp. One of the central subjects/results in anabelian
geometry is the Grothendieck Conjecture (cf. [7], Theorem A; [12], Theorem 0.4). The

Grothendieck Conjecture-type results assert that ‘anabelian’ varieties over ‘sufficiently

arithmetic’ fields (for instance, hyperbolic curves over number fields, p-adic local fields
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2834 S. Tsujimura

or finite fields) may be reconstructed from their étale fundamental groups. On the other

hand, we note that the group structure of the étale fundamental groups of hyperbolic

curves over algebraically closed fields of characteristic 0 (i.e. fields far from ‘sufficiently
arithmetic’) may be completely determined by the genus and the number of cusps of the

hyperbolic curves. In particular, the moduli of hyperbolic curves over algebraically closed

fields of characteristic 0 may not be determined by their étale fundamental groups.
Next, let us recall the tempered fundamental groups of smooth algebraic varieties

(i.e. smooth, separated, of finite type and geometrically integral schemes) over non-

Archimedean complete valuation fields introduced by André, which may be regarded as
a p-adic analogue of the usual topological fundamental groups of complex manifolds (cf.

[1], [2]). Let Z be a smooth algebraic variety over a non-Archimedean complete valuation

field; Z̃ → Z a pro-universal étale covering (determined up to isomorphisms). Then the

tempered fundamental group Πtp
Z of Z (relative to a suitable choice of basepoint) may be

defined as

Πtp
Z

def
= lim←−

Z′→Z

Aut((Z ′an)top/Zan),

where Z ′→ Z ranges over the finite étale Galois subcoverings of the fixed pro-universal

étale covering Z̃ → Z; (−)an denotes the Berkovich analytification of (−); (−)top
denotes the topological universal covering of (−). Here, each group Aut((Z ′an)top/Zan)
may be regarded as a topological group endowed with the discrete topology and Πtp

Z

may be regarded as a topological group endowed with the subspace topology of the

product topology on
∏
Z′→Z Aut((Z ′an)top/Zan). Note that the calculation of topological

fundamental groups of the Berkovich spaces associated to smooth algebraic varieties is
already difficult in general. Thus, the determination of the topological group structure of

the tempered fundamental group Πtp
Z may be a highly nontrivial problem. Moreover, one

may expect that, in general, the topological group structure of the tempered fundamental
group Πtp

Z tends to become so complicated and depends heavily on the geometric structure

of Z, even if the base fields are algebraically closed fields of characteristic 0. So, it is natural

to pose the following anabelian geometric question:

Question 1. What geometric information does the tempered fundamental group carry?

In the remainder, for a smooth algebraic variety S over Qp, we shall write Πtp
S for

the tempered fundamental group of S×Qp
Cp, relative to a suitable choice of basepoint.

With regard to Question 1, the following theorems have been obtained by Mochizuki and

Lepage so far:

Theorem 0.1 ([9], Corollary 3.11). Let X, Y be hyperbolic curves over Qp;

α : Πtp
X

∼→Πtp
Y ,

an isomorphism of topological groups. Write GX , GY for the semi-graphs of anabelioids
associated to the special fibres of the stable models of X, Y, respectively. Then α induces

an isomorphism of semi-graphs of anabelioids

GX ∼→GY

https://doi.org/10.1017/S147474802200024X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200024X


Fundamental Groups of Hyperbolic Curves of Genus 0 over Qp 2835

in a fashion that is functorial with respect to α. In particular, the following hold:

• The isomorphism α maps the cuspidal inertia subgroups of Πtp
X to the cuspidal

inertia subgroups of Πtp
Y (cf. Notations and conventions, Fundamental groups).

• Write ΓX , ΓY for the underlying semi-graphs of GX , GY (i.e. dual semi-graphs
associated to the special fibres of the stable models of X, Y), respectively. Then α
induces an isomorphism of semi-graphs

αΓ : ΓX
∼→ ΓY

in a fashion that is functorial with respect to α.

Theorem 0.2 ([4], Theorem 4.13; [5], Theorem 0.2). In the notation of Theorem 0.1,
suppose that X and Y are hyperbolic Mumford curves over Qp. Then the following hold:

(i) The isomorphism αΓ (cf. Theorem 0.1) is an isomorphism of metric semi-graphs.

(ii) There exists a canonical homeomorphism between the underlying topological spaces

of the Berkovich spaces (X×Qp
Cp)

an and (Y ×Qp
Cp)

an.

Theorem 0.3 ([5], Theorem 0.3). Let E1, E2 be once-punctured Tate elliptic curves over

Qp. Write q1, q2 for the q-parameters of E1, E2, respectively. Suppose that there exists
an isomorphism of topological groups

Πtp
E1

∼→Πtp
E2
.

Then there exists an element σ ∈Gal(Qp/Qp) such that q2 = σ(q1).

In particular, the above theorems imply that the tempered fundamental groups of

hyperbolic curves carry sufficiently rich scheme-theoretic (or, geometric) information even

if the base fields are algebraically closed fields of characteristic 0.
In the present paper, inspired by the above theorems, we consider Question 1 for

hyperbolic curves of genus 0 over Qp and prove that their tempered fundamental groups

completely determine their moduli:

Theorem A. Let n be an integer such that n ≥ 3. Suppose that there exists an

isomorphism of topological groups

α : Πtp
P1
Qp

\{x1,x2,...,xn}
∼→Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}.

Note that α induces a bijection

αcusp : {x1,x2, . . . ,xn} ∼→{x′1,x′2, . . . ,x′n}
(cf. Theorem 0.1; Notations and conventions, Fundamental groups). Then there exists an

isomorphism of schemes

P1
Qp
\{x1,x2, . . . ,xn} ∼→ P1

Qp
\{x′1,x′2, . . . ,x′n},

such that the bijection {x1,x2, . . . ,xn} ∼→ {x′1,x′2, . . . ,x′n} induced by the isomorphism

P1
Qp
\{x1,x2, . . . ,xn} ∼→ P1

Qp
\{x′1,x′2, . . . ,x′n} coincides with the bijection αcusp.
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We will apply Theorems 0.1 and 0.3, together with some complicated calculations
concerning certain Belyi maps (cf. Lemma 1.1, (i), (ii)), to prove Theorem A. Note

that Theorem A is related with the partial reconstruction result of hyperbolic curves

obtained in an author’s previous work (cf. [17], Theorem C), whose proof is a direct
application of Theorem 0.1 (cf. [9], Corollary 3.11), together with the theory of resolution

of nonsingularities (cf. [5], [15]). On the other hand, in light of Theorems 0.3; A, it is

natural to pose the following question:

Question 2. Let E1, E2 be hyperbolic curves of genus 1 over Qp. Suppose that there

exists an isomorphism of topological groups

Πtp
E1

∼→Πtp
E2
.

Then does there exist an isomorphism of schemes E1
∼→ E2?

However, at the time of writing of the present paper, the author does not know
whether Question 2 is affirmative or not (even if we assume that E1 and E2 are once-

punctured). Furthermore, interestingly, one may regard Theorem A as an analogous result

in characteristic 0 of the corresponding result for hyperbolic curves of genus 0 over Fp
proved by Tamagawa (cf. [13], Theorem 0.2). So, it would also be interesting to investigate
the extent to which the analogous results in characteristic 0 of the various results for

hyperbolic/stable curves over Fp (cf. for instance, [11], [14], [16], [18]) hold.

The present paper is organised as follows. In §1, we observe that the open subgroups
of Πtp

P1
Qp

\{0,1,∞} associated to certain Belyi maps are preserved (up to composition with

an inner automorphism) via any automorphism of Πtp
P1
Qp

\{0,1,∞}. In §2, we execute some

elementary computations concerning the Belyi maps that appear in §1. In §3, we apply
the results obtained in the previous sections, together with Lepage’s reconstruction result

for the once-punctured Tate elliptic curves over Qp, to prove Theorem A.

Notations and conventions

Numbers: The notation Q will be used to denote the field of rational numbers. If p is a
prime number, then the notation Qp will be used to denote the p-adic completion of Q.

The notationQp will be used to denote an algebraic closure ofQp. For each positive integer

r, we fix a primitive pr-th root of unity ζpr ∈Qp. The notation Cp will be used to denote
the p-adic completion of Qp. It is well-known that Cp is an algebraically closed field.

Valuations:We shall write vp for the additive valuation on Qp normalised by vp(p) = 1.

Topological groups: Let G be a topological group. Then we shall write Aut(G) for

the group of continuous automorphisms of G.

Curves: Let k be an algebraically closed field; X a 1-dimensional, connected, smooth,
separated, of finite type scheme over k. Then we shall write X(k) for the set of k -valued

points of X ; X for the smooth compactification of X over k. We shall refer to an element

∈X \X as a cusp of X. Let (g,n) be a pair of nonnegative integers. Then we shall say
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that X is of type (g,n) if X has genus g and the cardinality of the set of cusps of X

is n. Suppose that X is of type (g,n). Then we shall say that X is a hyperbolic curve

if 2g− 2+ n > 0 (so if g = 0, then n ≥ 3). We shall write P1
Qp

for the projective line

over Qp. We shall use t for the standard coordinate of P1
Qp

. We shall identify Qp with

P1
Qp

(Qp)\{∞}.

Fundamental groups: Let X be a hyperbolic curve over Qp. Then we shall write Πtp
X

for the tempered fundamental group of X×Qp
Cp, relative to a suitable choice of basepoint

(cf. [1], [2]). Note that the projection morphismX×Qp
Cp→X induces a bijection between

the respective sets of cusps. Let x be a cusp of X (so x determines a cusp xCp
ofX×Qp

Cp).

Then we shall refer to the stabiliser subgroup of Πtp
X associated to some pro-cusp of the

pro-universal tempered covering of X×Qp
Cp that lies over xCp

as a cuspidal inertia sub-

group of Πtp
X associated to x. Note that it follows immediately from the various definitions

involved that the cuspidal inertia subgroups of Πtp
X associated to x are conjugate. Note

also that, if we write IX for the set of the conjugacy classes of cuspidal inertia subgroups

of Πtp
X , then the natural map X \X → IX is bijective. (Indeed, the surjectivity follows

immediately from the various definitions involved, and the injectivity follows immediately

from the well-known structure of (the abelianisations of) the étale fundamental groups

of hyperbolic curves over algebraically closed fields of characteristic 0, together with [2],

Proposition 4.4.1.). We shall identify X \X with IX via this natural bijection.

1. Numerical characterisations of certain Belyi maps

In the present section, we observe that the open subgroups associated to certain Belyi

maps (which will be of use in the proof of our main theorem in §3) are preserved (up
to composition with an inner automorphism) via any automorphism of the geometric

tempered fundamental group of projective line minus three points (cf. Lemma 1.3).

Let p be a prime number.

Lemma 1.1. The following hold:

(i) Let r be a positive integer. Write

φpr : P
1
Qp
\{0,ζipr (0≤ i≤ pr−1),∞}−→ P1

Qp
\{0,1,∞}

for the Belyi map determined by the assignment

t �→ tp
r

.

Then the connected finite étale covering φpr may be uniquely characterised (up to

isomorphisms of connected finite étale coverings) as the connected finite étale covering

g :X −→ P1
Qp
\{0,1,∞},
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satisfying the following conditions:
• deg(g) = pr;
• g is unramified over 1;
• g is totally ramified over 0 and ∞.

(ii) Let (m,n) be a pair of positive integers. Write

ψm,n : P1
Qp
\
{
0,1,

m

m+n
, . . . ,∞

}
−→ P1

Qp
\{0,1,∞}

for the Belyi map determined by the assignment

t �→ (m+n)m+n

mmnn
tm(1− t)n.

Then the connected finite étale covering ψm,n may be uniquely characterised (up to

isomorphisms of connected finite étale coverings) as the connected finite étale covering

g :X −→ P1
Qp
\{0,1,∞},

satisfying the following conditions:
• deg(g) =m+n.
• The genus of X is 0.
• Write g : X → P1

Qp
for the finite morphism induced by g (cf. Notations and

conventions, Curves). Then g−1(0) consists of two closed points of X, and
g−1(1) consists of m+n−1 closed points of X.

• The ramification index of g at a closed point over 0 coincides with m, and the
ramification index of g at another closed point over 0 coincides with n.

• g is totally ramified over ∞.

Proof. Assertion (i) follows immediately from the well-known calculation of the étale

fundamental group of the multiplicative group Gm. Next, we verify assertion (ii). Write

g−1(0)
def
= {a,b}. Then it follows immediately from the various definitions involved that

we may assume without loss of generality that the ramification index of g at a coincides

with m, and the ramification index of g at b coincides with n. Note that since the genus
of X is 0, there exists a(n) (unique) isomorphism

X
∼→ P1

Qp

over Qp that map a, b, the unique point ∈ g−1(∞) to 0, 1, ∞, respectively. In particular,
we may also assume without loss of generality that

• X is an open subscheme of P1
Qp
\{0,1,∞};

• X = P1
Qp

;

• a= 0, b= 1, and g(∞) =∞.

Next, since g is totally ramified over ∞, it holds that g is defined by a polynomial

h(t) ∈Qp[t]. Observe that 0, 1 are roots of h(t) with multiplicity m, n, respectively. Thus,
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since deg(h(t)) = deg(g) =m+n, there exists an element c ∈Qp such that

h(t) = c · tm(1− t)n.
Then it holds that

h′(t) = c · tm−1(1− t)n−1(m− (m+n)t).

On the other hand, since g−1(1) consists of m+n−1 closed points, and 0< m
m+n < 1, it

holds that g ramifies over 1. Thus, we conclude that h( m
m+n )= 1, hence that c= (m+n)m+n

mmnn .
This completes the proof of Lemma 1.1.

Remark 1.1.1. In the remainder of the present paper, for each positive integer m, we

shall write ψm for ψm,1.

Remark 1.1.2. Note that ψm,n is a connected finite étale covering that appears in the

proof of the well-known Belyi’s theorem (cf. [3], [8]).

Definition 1.2. We shall write

Πtp
φpr
⊆Πtp

P1
Qp

\{0,1,∞}, Πtp
ψm,n

⊆Πtp
P1
Qp

\{0,1,∞}

for the open subgroups (determined up to Πtp
P1
Qp

\{0,1,∞}-conjugate) of finite index

determined by the connected finite étale coverings φpr , ψm,n, respectively (cf. Lemma
1.1, (i), (ii)).

Lemma 1.3. Let α∈Aut(Πtp
P1
Qp

\{0,1,∞}) be an automorphism of topological groups. Recall

that α induces a bijection on the set of the conjugacy classes of cuspidal inertia subgroups

of Πtp
P1
Qp

\{0,1,∞} (cf. [9], Corollary 3.11) that determines a bijection αcusp : {0,1,∞} ∼→
{0,1,∞}. Suppose that

αcusp is the identity automorphism.

Then there exists an inner automorphism ι of Πtp
P1
Qp

\{0,1,∞}, such that the composite α ◦
ι ∈ Aut(Πtp

P1
Qp

\{0,1,∞}) induces an automorphism of Πtp
φpr

(respectively, Πtp
ψm,n

) via the

inclusion Πtp
φpr
⊆ Πtp

P1
Qp

\{0,1,∞} (respectively, Πtp
ψm,n

⊆ Πtp
P1
Qp

\{0,1,∞}) (cf. Definition 1.2)

that maps the cuspidal inertia subgroups of Πtp
φpr

(respectively, Πtp
ψm,n

) associated to ∗
to the cuspidal inertia subgroups of Πtp

φpr
(respectively, Πtp

ψm,n
) associated to ∗, where

∗ ∈ {0,1,∞}.

Proof. Note that since Πtp
φpr
⊆ Πtp

P1
Qp

\{0,1,∞} (respectively, Πtp
ψm,n

⊆ Πtp
P1
Qp

\{0,1,∞}) is

an open subgroup of finite index, it holds that α(Πtp
φpr

) ⊆ Πtp
P1
Qp

\{0,1,∞} (respectively,

α(Πtp
ψm,n

) ⊆ Πtp
P1
Qp

\{0,1,∞}) is also an open subgroup of finite index. Thus, the inclusion
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α(Πtp
φpr

) ⊆ Πtp
P1
Qp

\{0,1,∞} (respectively, α(Πtp
ψm,n

) ⊆ Πtp
P1
Qp

\{0,1,∞}) determines a connected

finite étale covering

g1 :X1 −→ P1
Qp
\{0,1,∞} (respectively, g2 :X2 −→ P1

Qp
\{0,1,∞}).

Next, observe that the numerical information that appears in the conditions in Lemma

1.1, (i) (respectively, Lemma 1.1, (ii)) may be reconstructed from the set of cuspidal

inertia subgroups of Πtp
P1
Qp

\{0,1,∞} (cf. Notations and conventions, Fundamental groups).

In particular, since αcusp is the identity automorphism, it follows immediately from

[9], Corollary 3.11, that g1 (respectively, g2) satisfies the conditions in Lemma 1.1, (i)

(respectively, Lemma 1.1, (ii)). Therefore, by replacing α by the composite of α with a
suitable inner automorphism of Πtp

P1
Qp

\{0,1,∞}, we may assume without loss of generality

that

α(Πtp
φpr

) = Πtp
φpr

(respectively, α(Πtp
ψm,n

) = Πtp
ψm,n

)

(cf. Lemma 1.1, (i) (respectively, Lemma 1.1, (ii))). Write αpr (respectively, αm,n)

for the automorphism of Πtp
φpr

(respectively, Πtp
ψm,n

) induced by α via the inclusion

Πtp
φpr
⊆Πtp

P1
Qp

\{0,1,∞} (respectively, Πtp
ψm,n

⊆Πtp
P1
Qp

\{0,1,∞}). Recall that αcusp is the identity

automorphism. Thus, by replacing α by the composite of α with a suitable inner

automorphism of Πtp
P1
Qp

\{0,1,∞}, again, if necessary, we conclude from the conditions in

Lemma 1.1, (i) (respectively, Lemma 1.1, (ii)) that αpr (respectively, αm,n) maps the
cuspidal inertia subgroups of Πtp

φpr
(respectively, Πtp

ψm,n
) associated to ∗ to the cuspidal

inertia subgroups of Πtp
φpr

(respectively, Πtp
ψm,n

) associated to ∗, where ∗ ∈ {0,1,∞}. This
completes the proof of Lemma 1.3.

2. Elementary lemmas

Let p be a prime number. In the present section, we discuss elementary calculations

concerning the Belyi maps that appear in §1 and the p-adic valuation vp on Qp, which

will be of use in the proof of our main theorem in the next section.

Lemma 2.1. In the notation of Lemma 1.1, (i), let x,y ∈ Qp be such that vp(y) = 0.

Then it holds that

max
xr∈φ−1

pr
(x), yr∈φ−1

pr
(y)
vp(xr−yr) ≤ max

{
1

p−1
, vp(x−y)− r

}
.

Proof. Fix elements xr ∈ φ−1
pr (x), yr ∈ φ−1

pr (y). Note that it follows immediately from the

definition of φpr that, for each element y′r ∈ φ−1
pr (y), there exists a nonnegative integer j

such that y′r = ζjpr ·yr. Next, observe that

x−y =
∏

0≤j≤pr−1

(xr− ζjpr ·yr).

https://doi.org/10.1017/S147474802200024X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200024X


Fundamental Groups of Hyperbolic Curves of Genus 0 over Qp 2841

Suppose that there exists an integer i such that

0≤ i≤ pr−1, vp(xr− ζipr ·yr)> vp(1− ζp) = 1

p−1

(cf. [10], Chapter I, Lemma 10.1). Then it follows immediately from our assumption that

vp(y) = 0 [so vp(yr) = 0] that, for each j = 0, . . . ,i−1,i+1, . . . ,pr−1, it holds that

vp(xr− ζjpr ·yr) = vp(xr− ζipr ·yr+ ζipr ·yr(1− ζj−ipr )) = vp(1− ζj−ipr ).

On the other hand, observe (cf., e.g. the second display in the proof of [10], Chapter I,
Lemma 10.1) that ∑

0≤j≤pr−1
j �=i

vp(1− ζj−ipr ) = vp(p
r) = r.

Thus, since

vp(x−y) =
∑

0≤j≤pr−1

vp(xr− ζjpr ·yr),

we conclude that

vp(xr− ζipr ·yr) = vp(x−y)− r.
This completes the proof of Lemma 2.1.

Lemma 2.2. Let x ∈ Qp \ {0,1} be such that vp(x) > −p; r a positive integer. Then, in
the notation of Lemma 1.1, (ii) (cf. Remark 1.1.1), there exists a(n) [unique] element

x1 ∈ ψ−1
pr (x) such that

• vp(1−x1) = rpr+vp(x) (> 0), and

• for each y ∈ ψ−1
pr (x)\{x1}, it holds that vp(y) =

rpr+vp(x)
pr (> 0).

Proof. For each y ∈ ψ−1
pr (x), it holds that

(pr+1)p
r+1(yp

r −ypr+1)− (pr)p
r

x= 0.

Thus, by using the Newton polygon (cf. [10], Chapter II, Proposition 6.3), we obtain the
desired conclusion. This completes the proof of Lemma 2.2.

Lemma 2.3. In the notation of Lemma 2.2, suppose that

r = 2, vp(x) = 0, vp(1−x)≤ 1.

Let

s ∈ ψ−1
p2 (x) (⊆ P1

Qp
\{0,1,∞}(Qp) =Qp \{0,1})

be such that vp(s) = 2. Write Cs ⊆ Qp, Cx ⊆ Qp for the subsets of the Galois-conjugates
of s ∈Qp, x ∈Qp, respectively. Suppose, moreover, that

max
wx∈Cx\{x}

vp(x−wx)≤ 1.

https://doi.org/10.1017/S147474802200024X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200024X


2842 S. Tsujimura

Then it holds that

max
w∈Cs\{s}

vp(s−w)< 4.

Proof. First, it follows immediately from the definition of ψp2 that

(p2+1)p
2+1

(p2)p2
(sp

2 −sp2+1) = x.

Next, let w ∈ Cs \{s} be an element. Then since w is a Galois-conjugate of s, there exists
a Galois-conjugate wx of x such that

(p2+1)p
2+1

(p2)p2
(wp

2 −wp2+1) = wx.

Thus, by taking the difference of the above equalities, we obtain an equality

(p2+1)p
2+1

(p2)p2
(s−w)

(( ∑
0≤l≤p2−1

slwp
2−1−l

)
−
( ∑

0≤l≤p2
slwp

2−l
))

= x−wx.

On the other hand, since vp(s) = vp(w) = 2, it holds that

vp

(( ∑
0≤l≤p2−1

slwp
2−1−l

)
−
( ∑

0≤l≤p2
slwp

2−l
))
≥ 2p2−2.

Thus, in the case where x �= wx, it follows immediately from our assumption that vp(x−
wx) ≤ 1 that vp(s−w) ≤ 3 < 4. In particular, we may assume without loss of generality

that

x= wx.

Then since s−w �= 0, it holds that( ∑
0≤l≤p2−1

sl(s+(w−s))p2−1−l =
) ∑

0≤l≤p2−1

slwp
2−1−l

=
∑

0≤l≤p2
slwp

2−l
(
=

∑
0≤l≤p2

sl(s+(w−s))p2−l
)
.

Observe that ∑
0≤l≤p2−1

sl(s+(w−s))p2−1−l =
∑

0≤h≤p2−1

ch ·sp2−1−h(w−s)h;

∑
0≤l≤p2

sl(s+(w−s))p2−l =
∑

0≤h≤p2
dh ·sp2−h(w−s)h,
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where

ch
def
=

∑
0≤l≤p2−1−h

(
p2−1− l

h

)
, dh

def
=

∑
0≤l≤p2−h

(
p2− l
h

)
.

Here, we note that

c0 = p2, c1 =
p2(p2−1)

2
, vp(c1)≥ 1, d0 = p2+1.

Next, suppose that vp(s−w)≥ 4. Then since vp(s) = 2, it holds that, for each h≥ 1,

vp(ch ·sp2−1−h(w−s)h)≥ 2p2+1, vp(dh ·sp2−h(w−s)h)≥ 2p2+1.

Thus, in summary, we conclude from the above discussion that

vp(p
2 ·sp2−1− (p2+1) ·sp2)≥ 2p2+1,

hence that

vp

(
p2

p2+1
−s

)
≥ 3.

Write

s′ def= s− p2

p2+1
, a0

def
= (p2)p

2

(1−x), ap2+1
def
= −(p2+1)p

2+1.

For each l = 1, . . . ,p2, write

al = (p2)p
2−l · (p2+1)l ·

((
p2

l

)
−p2 ·

(
p2

l−1

))
.

Then it follows immediately from the equality in the first display of the present proof

that

∑
0≤l≤p2+1

al · (s′)l = (p2+1)p
2+1

(
s′+

p2

p2+1

)p2(
1

p2+1
−s′

)
− (p2)p

2

x= 0.

On the other hand, since 0 ≤ vp(1−x) ≤ 1, and a1 = 0, it follows immediately from the
various definitions involved that

2p2 ≤ vp(a0)≤ 2p2+1, vp(ap2+1) = 0, vp(a1) =∞,

vp(al) = 2p2−2l+vp

((
p2

l

))
(l = 2, . . . ,p2).

Moreover, for each l = 2, . . . ,p2, it holds that

1− l

p2
≤ vp

((
p2

l

))
,

hence that

−vp(a0)
p2

l+vp(a0)≤−2p2+1

p2
l+2p2+1≤ 2p2−2l+vp

((
p2

l

))
= vp(al).
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Then, by using the Newton polygon, we observe that(
vp

(
s− p2

p2+1

)
=

)
vp(s

′) =
vp(a0)

p2

(
≤ 2p2+1

p2
< 3

)
.

This contradicts the inequality vp(
p2

p2+1 − s) ≥ 3. Thus, we conclude that vp(s−w) < 4.

This completes the proof of Lemma 2.3.

3. Reconstruction of moduli of hyperbolic curves of genus 0 from their

geometric tempered fundamental groups

Let p be a prime number. In the present section, we apply the results obtained in the

previous sections, together with Lepage’s reconstruction result for the Tate elliptic curves,

to prove that the tempered fundamental groups of hyperbolic curves of genus 0 over Qp
completely determine their moduli.
First, we begin by recalling Lepage’s result:

Theorem 3.1 ([5], Theorem 4.1). Let q1,q2 ∈Qp be such that vp(q1)> 0, and vp(q2)> 0.
Write

Eq1
def
= Gan

m /q
Z
1 , Eq2

def
= Gan

m /q
Z
2

(i.e. Tate elliptic curves). Suppose that there exists an isomorphism of topological groups

Πtp
Eq1

\{1}
∼→Πtp

Eq2
\{1}.

Then there exists an element σ ∈Gal(Qp/Qp) such that q2 = σ(q1).

Remark 3.1.1. In the notation of Theorem 3.1, write j1, j2 for the j-invariants of the

Tate elliptic curves Eq1 , Eq2 , respectively. Then it follows immediately from [6], Theorem

2.1.1, that

j2 = σ(j1).

Next, we apply Lemmas 1.3, 2.2; Theorem 3.1, to prove that the moduli of hyperbolic

curves of type (0,4) overQp may be completely determined by their tempered fundamental

groups.

Proposition 3.2. Let x,x′ ∈ Qp \ {0,1} be elements. Suppose that there exists an

isomorphism of topological groups

α : Πtp
P1
Qp

\{0,1,∞,x}
∼→Πtp

P1
Qp

\{0,1,∞,x′}.

Note that α induces a bijection

αcusp : {0,1,∞,x} ∼→{0,1,∞,x′}
(cf. [9], Corollary 3.11). Suppose that

αcusp(0) = 0, αcusp(1) = 1, αcusp(∞) =∞.

https://doi.org/10.1017/S147474802200024X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200024X


Fundamental Groups of Hyperbolic Curves of Genus 0 over Qp 2845

Then there exists an element σ ∈ Gal(Qp/Qp) such that x′ = σ(x). In particular, there

exists an isomorphism of schemes

P1
Qp
\{0,1,∞,x} ∼→ P1

Qp
\{0,1,∞,x′},

such that the bijection {0,1,∞,x} ∼→ {0,1,∞,x′} induced by the isomorphism
P1
Qp
\{0,1,∞,x} ∼→ P1

Qp
\{0,1,∞,x′} coincides with the bijection αcusp.

Proof. First, we verify the following assertion:

Claim 3.2.A: We may assume without loss of generality that vp(1−x)> 0.

Indeed, suppose that Proposition 3.2 in the case where vp(1−x) > 0 holds. First, by
using suitable geometric automorphisms of P1

Qp
\{0,1,∞} over Qp, we may assume without

loss of generality that vp(x) = 0. Next, write

ψp,x : P
1
Qp
\
{
0,1,

p

p+1
, . . . ,∞

}
∪ψ−1

p (x)−→ P1
Qp
\{0,1,∞,x},

ψp,x′ : P1
Qp
\
{
0,1,

p

p+1
, . . . ,∞

}
∪ψ−1

p (x′)−→ P1
Qp
\{0,1,∞,x′}

for the connected finite étale coverings induced by ψp (cf. Lemma 1.1, (ii); Remark 1.1.1);

Πtp
ψp,x
⊆Πtp

P1
Qp

\{0,1,∞,x}, Πtp
ψp,x′ ⊆Πtp

P1
Qp

\{0,1,∞,x′}

for the open subgroups (determined up to Πtp
P1
Qp

\{0,1,∞,x}-conjugate, Πtp
P1
Qp

\{0,1,∞,x′}-

conjugate, respectively) determined by ψp,x, ψp,x′ , respectively. Then since αcusp(0) = 0,
αcusp(1) = 1, and αcusp(∞) =∞, it follows immediately from Lemma 1.3 that there exists

an inner automorphism ι of Πtp
P1
Qp

\{0,1,∞,x′} satisfying the following conditions:

• The composite ι◦α induces an isomorphism of topological groups

β : Πtp
ψp,x

∼→Πtp
ψp,x′

via the inclusions Πtp
ψp,x
⊆Πtp

P1
Qp

\{0,1,∞,x} and Πtp
ψp,x′ ⊆Πtp

P1
Qp

\{0,1,∞,x′}.

• Write

βcusp :

{
0,1,

p

p+1
, . . . ,∞

}
∪ψ−1

p (x)
∼→

{
0,1,

p

p+1
, . . . ,∞

}
∪ψ−1

p (x′)

for the bijection induced by β (cf. [9], Corollary 3.11). Then it holds that

βcusp(0) = 0, βcusp(1) = 1, βcusp(∞) =∞.

Let x1 ∈ ψ−1
p (x) be such that vp(1−x1)> 0 (cf. Lemma 2.2). Write x′1

def
= βcusp(x1). Note

that the kernels of the natural surjections

Πtp
ψp,x

�Πtp
P1
Qp

\{0,1,∞,x1}, Πtp
ψp,x′ �Πtp

P1
Qp

\{0,1,∞,x′
1}
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(induced by the natural open immersions of hyperbolic curves over Qp) are topologically

generated by cuspidal inertia subgroups of Πtp
ψp,x

, Πtp
ψp,x′ associated to the cusps �∈

{0,1,∞,x1}, the cusps �∈ {0,1,∞,x′1}, respectively. Then β : Πtp
ψp,x

∼→ Πtp
ψp,x′ induces an

isomorphism of topological groups

α1 : Π
tp
P1
Qp

\{0,1,∞,x1}
∼→Πtp

P1
Qp

\{0,1,∞,x′
1}

via the above surjections. Moreover, for each ∗ ∈ {0,1,∞}, it holds that α1 maps the

cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x1} associated to ∗ to the cuspidal inertia

subgroups of Πtp
P1
Qp

\{0,1,∞,x′
1} associated to ∗. Then since vp(1−x1) > 0, it follows from

our assumption (that Proposition 3.2 in the case where vp(1−x) > 0 holds) that there
exists an element σ ∈ Gal(Qp/Qp) such that x′1 = σ(x1). Thus, since ψp is defined over

Qp, it holds that x
′ = σ(x). This completes the proof of Claim 3.2.A.

Next, we verify the following assertion:

Claim 3.2.B: Suppose that vp(1−x)> 0. Then it holds that

x′ = σ(x), or (x′)−1 = σ(x).

Indeed, it follows immediately from [9], Corollary 3.11, that vp(1−x′)> 0. Write

E −→ P1
Qp
\{0,1,∞,x}, E′ −→ P1

Qp
\{0,1,∞,x′}

for the finite étale Galois coverings of degree 2 that ramify over every cusp of

P1
Qp
\{0,1,∞,x}, P1

Qp
\{0,1,∞,x′}, respectively;

Πtp
E ⊆Πtp

P1
Qp

\{0,1,∞,x}, Πtp
E′ ⊆Πtp

P1
Qp

\{0,1,∞,x′}

for the normal open subgroups of index 2 determined by the above finite étale Galois

coverings of degree 2. Observe that the normal open subgroup Πtp
E ⊆ Πtp

P1
Qp

\{0,1,∞,x}
coincides with the kernel of the unique surjection

q : Πtp
P1
Qp

\{0,1,∞,x} � Z/2Z

such that the image of every cuspidal inertia subgroup of Πtp
P1
Qp

\{0,1,∞,x} is nontrivial. The

normal open subgroup Πtp
E′ ⊆Πtp

P1
Qp

\{0,1,∞,x′} admits a similar characterisation. Thus, since

α maps the cuspidal inertia subgroups of Πtp
P1
Qp

\{0,1,∞,x} to the cuspidal inertia subgroups

of Πtp
P1
Qp

\{0,1,∞,x′}, the isomorphism α induces an isomorphism of topological groups

Πtp
E

∼→Πtp
E′

via the inclusions Πtp
E ⊆ Πtp

P1
Qp

\{0,1,∞,x} and Πtp
E′ ⊆ Πtp

P1
Qp

\{0,1,∞,x′}. On the other hand,

since vp(1−x) > 0, and vp(1−x′) > 0, the hyperbolic curves E, E′ (of type (1,4)) may

be regarded as open subschemes of once-punctured Tate elliptic curves E1, E
′
1 over Qp,
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where the cusps of E1, E
′
1 are the origins and correspond to the cusps of E, E′ that lie

over ∞ via the finite étale Galois coverings E→ P1
Qp
\{0,1,∞,x}, E′→ P1

Qp
\{0,1,∞,x′},

respectively. In particular, since αcusp(∞) =∞, the isomorphism Πtp
E

∼→ Πtp
E′ induces an

isomorphism

Πtp
E1

∼→Πtp
E′

1
.

Write j(E1), j(E
′
1) for the j -invariants of E1, E

′
1, respectively. Then it follows immediately

from Theorem 3.1, together with Remark 3.1.1, that there exists an element σ ∈
Gal(Qp/Qp) such that

j(E′
1) = σ(j(E1)).

Therefore, it holds that

σ(x) ∈
{
x′,

1

1−x′ ,
x′−1

x′
,
1

x′
,
x′

x′−1
,1−x′

}
.

Moreover, since vp(1−x)> 0, and vp(1−x′)> 0, we conclude that

x′ = σ(x), or (x′)−1 = σ(x).

This completes the proof of Claim 3.2.B.

To complete the proof of Proposition 3.2, by applying Claims 3.2.A and 3.2.B, we may

assume without loss of generality that

vp(1−x)> 0, (x′)−1 = σ(x).

Write

Xx
def
= P1

Qp
\
{
0,1,

1

2
,∞, 1+

√
1−x
2

,
1−√1−x

2

}
;

Xx′
def
= P1

Qp
\
{
0,1,

1

2
,∞, 1+

√
1−x′
2

,
1−√1−x′

2

}
;

ψ1,x :Xx −→ P1
Qp
\{0,1,∞,x}, ψ1,x′ :Xx′ −→ P1

Qp
\{0,1,∞,x′}

for the finite étale Galois coverings of degree 2 defined by the assignment t �→ 4t(1− t).
Then α induces an isomorphism of topological groups

γ : Πtp
Xx

∼→Πtp
Xx′

(cf. Lemma 1.3). By replacing α by a suitable composite of α with an inner automorphism

of Πtp
P1
Qp

\{0,1,∞,x′}, we may assume without loss of generality that γ maps the cuspidal

inertia subgroups of Πtp
Xx

associated to 1 to the cuspidal inertia subgroups of Πtp
Xx′

associated to 1. Write

Yx
def
= P1

Qp
\{0,1,∞,1+√1−x,1−√1−x};

Yx′
def
= P1

Qp
\{0,1,∞,1+√1−x′,1−√1−x′}.
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Then γ induces, via the respective quotients of Πtp
Xx

, Πtp
Xx′ by the normal closed subgroups

topologically generated by the cuspidal inertia subgroups associated to 1, an isomorphism

of topological groups

δ : Πtp
Yx

∼→Πtp
Yx′ .

Write

δcusp :
{
0,1,∞,1+√1−x,1−√1−x} ∼→ {

0,1,∞,1+√1−x′,1−√1−x′}
for the bijection induced by δ (cf. [9], Corollary 3.11);

x1
def
= 1+

√
1−x; x′1

def
= δcusp(x1).

Observe that

δcusp(0) = 0, δcusp(1) = 1, δcusp(∞) =∞, x′1 ∈
{
1+
√
1−x′,1−√1−x′}.

Then since vp(1−x1) = vp(
√
1−x) = vp(1−x)

2 > 0, it follows from Claim 3.2.B that there

exists an element σ1 ∈Gal(Qp/Qp) such that

x′1 = σ1(x1), or (x′1)
−1 = σ1(x1).

Note that ψ1,x and ψ1,x′ are defined over Qp. Therefore, if x
′
1 = σ1(x1), then x

′ = σ1(x).

In particular, it suffices to consider the case where

(x′)−1 = σ(x), (x′1)
−1 = σ1(x1).

In this case, it holds that

P ((x′1)
−1) = σ1(P (x1)) = σ1(x) = σ1σ

−1((x′)−1),

where P (t)
def
= t(2− t) ∈Qp[t]. Moreover, it holds that

(2−x′1)(2− (x′1)
−1) = P (x′1)P ((x

′
1)

−1) = x′σ1σ−1((x′)−1).

This implies that one of the following assertions holds:

(a) x′1 and (x′1)
−1 are Galois-conjugate.

(b) x′1 is contained in the Galois closure of Qp(x
′) over Qp.

Note that since x′1 ∈
{
1+
√
1−x′,1−√1−x′}, it holds that

vp(1−x′1) =
vp(1−x′)

2
.

Note also that the p-adic valuation on the Galois closure of Qp(x
′) over Qp is discrete.

Then, by applying the above discussion repeatedly, we may assume without loss of
generality that assertion (b) does not hold. In particular, assertion (a) holds. Thus, since

(x′1)
−1 = σ1(x1), we conclude that x1 and x′1 are Galois-conjugate, hence that x and x′

are Galois-conjugate. This completes the proof of Proposition 3.2.
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Remark 3.2.1. At the time of writing of the present paper, the author does not know

whether the given isomorphism α arises from some isomorphism of
schemes P1

Qp
\{0,1,∞,x} ∼→ P1

Qp
\{0,1,∞,x′} or not.

Finally, we apply Lemmas 2.1, 2.3, and Proposition 3.2, to prove our main theorem

(i.e. the tempered fundamental groups of hyperbolic curves of genus 0 over Qp completely

determine their moduli):

Theorem 3.3. Let n be an integer such that n ≥ 3. Suppose that there exists an

isomorphism of topological groups

α : Πtp
P1
Qp

\{x1,x2,...,xn}
∼→Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}.

Note that α induces a bijection

αcusp : {x1,x2, . . . ,xn} ∼→{x′1,x′2, . . . ,x′n}
(cf. [9], Corollary 3.11). Then there exists an isomorphism of schemes

P1
Qp
\{x1,x2, . . . ,xn} ∼→ P1

Qp
\{x′1,x′2, . . . ,x′n},

such that the bijection {x1,x2, . . . ,xn} ∼→ {x′1,x′2, . . . ,x′n} induced by the isomorphism

P1
Qp
\{x1,x2, . . . ,xn} ∼→ P1

Qp
\{x′1,x′2, . . . ,x′n} coincides with the bijection αcusp.

Proof. First, if n = 3, then the desired assertion follows immediately from the well-

known structure of the automorphism group of P1
Qp

. Thus, we may assume without loss

of generality that

n≥ 4.

Moreover, by replacing α by the composite of α with the outer isomorphisms arising from
suitable geometric automorphisms of P1

Qp
, together with the various definitions involved,

we may also assume without loss of generality that

• x1 = x′1 = 0; x2 = x′2 = 1; x3 = x′3 =∞;
• αcusp(xi) = x′i, for each i= 1, . . . ,n.

Then our goal is to prove that

(*n) there exists an element σ ∈Gal(Qp/Qp) such that x′i = σ(xi), for each i= 4, . . . ,n.

Next, we verify the following assertion:

Claim 3.3.A: We may assume without loss of generality that

vp(xi) = 0

for each i= 4, . . . ,n.
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Indeed, let r be a positive integer such that, for each i= 4, . . . ,m, it holds that vp(yi)>

−p, where yi denotes a pr-th root of xi. Write

Y
def
= P1

Qp
\{0,ζjpryi (i= 2,4, . . . ,n, j = 0, . . . ,pr−1),∞}

;

Y ′ def= P1
Qp
\{0,ζjpry′i (i= 2,4, . . . ,n, j = 0, . . . ,pr−1),∞}

;

φpr,x : Y −→ P1
Qp
\{0,1,∞,x}, φpr,x′ : Y ′ −→ P1

Qp
\{0,1,∞,x′}

for the finite étale Galois coverings of degree pr determined by the assignment t �→ tp
r

(cf. Lemma 1.1, (i)), where y2
def
= 1; y′2

def
= 1; y′i denotes a p

r-th root of x′i. Then α induces

an isomorphism of topological groups

ε : Πtp
Y

∼→Πtp
Y ′

(cf. Lemma 1.3). By replacing α by the composite of α with a suitable inner automorphism

of Πtp
P1
Qp

\{0,1,∞,x′}, we may assume without loss of generality that ε maps the cuspidal

inertia subgroups of Πtp
Y associated to y2 = 1 to the cuspidal inertia subgroups of Πtp

Y ′

associated to y′2 = 1. Moreover, by replacing y′i by a suitable pr-th root of x′i, if necessary,
we may assume without loss of generality that ε maps the cuspidal inertia subgroups

associated to yi to the cuspidal inertia subgroups associated to y′i for each i = 4, . . . ,n.
Then ε induces, via the quotients of Πtp

Y , Πtp
Y ′ by the normal closed subgroups topologically

generated by cuspidal inertia subgroups associated to the cusps �∈ {0,1,∞,yi (i=4, . . . ,n)},
the cusps �∈ {0,1,∞,y′i (i= 4, . . . ,n)}, respectively, an isomorphism of topological groups

Πtp
P1
Qp

\{0,1,∞,y4,...,yn}
∼→Πtp

P1
Qp

\{0,1,∞,y′4,...,y′n}.

Since φpr,x and φpr,x′ are defined over Qp, by replacing yi, y
′
i by xi, x

′
i, respectively, we

may assume without loss of generality that vp(xi)>−p.
Next, we consider the connected finite étale covering

ψp : P
1
Qp
\
{
0,1,

p

p+1
, . . . ,∞

}
−→ P1

Qp
\{0,1,∞}

(cf. Lemma 1.1, (ii)). For each i= 4, . . . ,n, let zi ∈ ψ−1
p (xi) be such that vp(1−zi)> 0 (cf.

Lemma 2.2). Recall that ψp is also defined over Qp. Thus, in light of Lemmas 1.3 and

2.2, it follows from a similar argument to the above argument that, by replacing zi by
xi, we may assume without loss of generality that vp(xi) = 0 for each i = 4, . . . ,n. This

completes the proof of Claim 3.3.A.

Write

Ci ⊆Qp

for the set of the Galois-conjugates of xi. Next, we verify the following assertion:

Claim 3.3.B: We may assume without loss of generality that

vp(xi) = 0, vp(1−xi)≤ 1, max
w∈Ci\{xi}

vp(xi−w)≤ 1,

for each i= 4, . . . ,n.
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Indeed, by applying Claim 3.3.A, we may assume without loss of generality that vp(xi)=

0 for each i= 4, . . . ,m. Then, in light of Lemma 2.1, one may apply a similar argument to

the argument applied in the proof of Claim 3.3.A, together with the use of the connected
finite étale covering

φpr : P
1
Qp
\{0,ζipr (0≤ i≤ pr−1),∞}−→ P1

Qp
\{0,1,∞}

(cf. Lemma 1.1, (i)) for sufficiently large r, to obtain the desired conclusion. This completes

the proof of Claim 3.3.B.

In the remainder, we prove (∗n) by induction on n. We already observed that (∗4) holds
(cf. Proposition 3.2). Let m be a positive integer such that m≥ 4. Suppose that (∗n) in
the case where n≤m holds. Then our goal is to prove that (∗m+1) holds.
Next, we verify the following assertion:

Claim 3.3.C: Suppose that

• vp(x4)≥ vp(xm+1);
• maxw∈Ci\{xi} vp(xi−w)< 2, for each i= 4, . . . ,m;
• vp(1−xm+1)≥ 2.

Then (∗m+1) holds.

First, we note that since αcusp(xm+1) = x′m+1, the isomorphism α induces an isomor-

phism of topological groups

Πtp
P1
Qp

\{0,1,∞,x4,...,xm}
∼→Πtp

P1
Qp

\{0,1,∞,x4,...,x′
m}.

Then, by applying the induction hypothesis, we may assume without loss of generality
that

xi = x′i,

for each i= 4, . . . ,m. Next, write

f : Πtp
P1
Qp

\{0,1,∞,x4,...,xm+1}
∼→Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}

f ′ : Πtp
P1
Qp

\{0,1,∞,x4,...,x′
m+1}

∼→Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}

for the isomorphisms of topological groups (determined up to Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}-

conjugate, Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}-conjugate, respectively) induced by the isomorphism of

schemes defined by the assignment t �→ x4

t . Then we obtain an isomorphism of topological

groups

η
def
= f ′ ◦α◦f−1 : Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

xm+1
}

∼→Πtp

P1
Qp

\{0,1,∞,x4,...,
x4

x′
m+1

}.

Next, write

ηcusp :

{
0,1,∞,x4, . . . , x4

xm+1

}
∼→

{
0,1,∞,x4, . . . , x4

x′m+1

}
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for the bijection induced by η. Recall that αcusp(xi) = x′i, for each i = 1, . . . ,n. Then it

follows immediately from the definition of ηcusp that

ηcusp(0) = 0, ηcusp(1) = 1, ηcusp(∞) =∞, ηcusp(x4) = x4,

ηcusp

(
x4
xj

)
=
x4
x′j
,

for each j = 5, . . . ,m+1. In particular, η induces an isomorphism of topological groups

Πtp

P1
Qp

\{0,1,∞,
x4
x5
,...,

x4
xm+1

}
∼→Πtp

P1
Qp

\{0,1,∞,
x4
x′
5
,...,

x4
x′
m+1

}.

Thus, by applying the induction hypothesis, we obtain an element τ ∈Gal(Qp/Qp) such
that

x4
x′j

= τ

(
x4
xj

)
,

for each j = 5, . . . ,m+1. Next, observe that

• vp(xm+1) = vp(x
′
m+1) (cf. [4], Theorem 4.6);

• vp(1−xm+1) = vp(1−x′m+1) (cf. [4], Theorem 4.6);
• vp(x4− x4

x′
m+1

) = vp(x4− τ(x4)+ τ(x4)− τ( x4

xm+1
));

• vp(x4− x4

xm+1
) = vp(τ(x4)− τ( x4

xm+1
)).

Note that the first, second and forth equalities imply that

vp

(
x4− x4

x′m+1

)
= vp

(
τ(x4)− τ

(
x4

xm+1

))
.

Thus, it follows immediately from the third equality that

vp(x4− τ(x4))≥ vp
(
x4− x4

x′m+1

)
.

On the other hand, since

vp(x4)≥ vp(xm+1) = vp(x
′
m+1), vp(1−x′m+1) = vp(1−xm+1)≥ 2,

it holds that

vp

(
x4− x4

x′m+1

)
≥ 2.

Then we obtain an inequality

vp(x4− τ(x4))≥ 2.

Thus, by applying our assumption that maxw∈C4\{x4} vp(x4−w)< 2, we conclude that

x4 = τ(x4).

Therefore, by combining with the equality x4

x′
j
= τ(x4

xj
), we also conclude that

x′j = τ(xj),
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for each j = 5, . . . ,m+1. This completes the proof of Claim 3.3.C.
Next, we verify the following assertion:

Claim 3.3.D: Suppose that, for each i= 4, . . . ,m+1, it holds that

• vp(xi) = 0,
• vp(1−xi)≤ 1, and
• maxw∈Ci\{xi} vp(xi−w)≤ 1.

For each i = 4, . . . ,m, let si ∈ ψ−1
p2 (xi) be, such that vp(si) = 2 (cf.

Lemma 2.2). Let sm+1 ∈ ψ−1
p2 (xm+1) be such that vp(1− sm+1) > 0 (cf.

Lemma 2.2). For each i= 4, . . . ,m+1, write ui
def
= 1− p2

(p2+1)si
; Cui

for the

set of the Galois-conjugates of ui. Then it holds that

vp(u4)≥ 0 = vp(um+1), vp(1−um+1) = 2,

max
ci∈Cui

\{ui}
vp(ui− ci)< 2,

for each i= 4, . . . ,m.

The assertions in the first display follow immediately from the facts that vp(s4) = 2, and

vp(sm+1) = 0. Next, we verify the assertion in the second display. For each i = 4, . . . ,m,

write Csi for the set of the Galois-conjugates of si. Let wi ∈ Csi \{si} be an element. Then
since vp(si) = vp(wi) = 2, it suffices to prove that

vp(si−wi)< 4.

However, this inequality follows from Lemma 2.3. This completes the proof of Claim

3.3.D.

Finally, we complete the proof of the assertion (∗m+1). By applying Claim 3.3.B, we
may assume without loss of generality that

vp(xi) = 0, vp(1−xi)≤ 1, max
w∈Ci\{xi}

vp(xi−w)≤ 1,

for each i= 4, . . . ,m+1. Write

T
def
= {x4, . . . ,xm+1}; T ′ def= {x′4, . . . ,x′m+1};

ψp2,x : P
1
Qp
\
{
0,1,

p2

p2+1
, . . . ,∞

}
∪ψ−1

p2 (T )−→ P1
Qp
\{x1,x2, . . . ,xn},

ψp2,x′ : P1
Qp
\
{
0,1,

p2

p2+1
, . . . ,∞

}
∪ψ−1

p2 (T ′)−→ P1
Qp
\{x′1,x′2, . . . ,x′n}

for the connected finite étale coverings induced by ψp2 (cf. Lemma 1.1, (ii); Remark 1.1.1);

Πtp
ψp2,x

⊆Πtp
P1
Qp

\{x1,x2,...,xn}, Πtp
ψp2,x′ ⊆Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}

for the open subgroups of finite index (determined up to Πtp
P1
Qp

\{x1,x2,...,xn}-conjugate,

Πtp
P1
Qp

\{x′
1,x

′
2,...,x

′
n}-conjugate, respectively) determined by ψp2,x, ψp2,x′ , respectively. Here,
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we note that p2

p2+1 is a unique cusp ∗ such that ψp2 ramifies at ∗, and ∗ lies over 1
via ψp2 (cf. Lemma 1.1, (ii)). Then since αcusp(0) = 0, αcusp(1) = 1, αcusp(∞) =∞, and

αcusp(xi) = x′i, for each i = 4, . . . ,n, it follows immediately from Lemma 1.3 that there

exists an inner automorphism ι of Πtp
P1
Qp

\{x′
1,x

′
2,...,x

′
n} satisfying the following conditions:

• The composite morphism ι◦α induces an isomorphism of topological groups

θ : Πtp
ψp2,x

∼→Πtp
ψp2,x′

via the inclusions Πtp
ψp2,x

⊆Πtp
P1
Qp

\{x1,x2,...,xn} and Πtp
ψp2,x′ ⊆Πtp

P1
Qp

\{x′
1,x

′
2,...,x

′
n}.

• Write

θcusp :

{
0,1,

p2

p2+1
, . . . ,∞

}
∪ψ−1

p2 (T )
∼→

{
0,1,

p2

p2+1
, . . . ,∞

}
∪ψ−1

p2 (T ′)

for the bijection induced by θ (cf. [9], Corollary 3.11). Then it holds that

θcusp(0) = 0, θcusp(1) = 1, θcusp(∞) =∞, θcusp

(
p2

p2+1

)
=

p2

p2+1
.

For each i= 4, . . . ,m+1, write s′i
def
= θcusp(si) (cf. Claim 3.3.D). Then the isomorphism θ

induces an isomorphism of topological groups

ξ : Πtp

P1
Qp

\{0,1,∞, p2

p2+1
,s4,...,sm+1}

∼→Πtp

P1
Qp

\{0,1,∞, p2

p2+1
,s′4,...,s

′
m+1}

.

Write

ω : P1
Qp
\
{
∞, 1

p2+1
,0, . . . ,1

}
∼→ P1

Qp
\
{
0,1,

p2

p2+1
, . . . ,∞

}

for the inverse of the isomorphism determined by the assignment t �→ 1− p2

(p2+1)t . For each

i = 4, . . . ,m+1, write u′i
def
= 1− p2

(p2+1)s′i
. Then ξ and ω induce, in a similar way to the

construction of η, an isomorphism of topological groups

Πtp
P1
Qp

\{0,1,∞,u4,...,um+1}
∼→Πtp

P1
Qp

\{0,1,∞,u′
4,...,u

′
m+1}

.

Note that, if we write

h : {0,1,∞,u4, . . . ,um+1} ∼→{0,1,∞,u′4, . . . ,u′m+1}
for the bijection induced by the above isomorphism, then it holds that

h(0) = 0, h(1) = 1, h(∞) =∞, h(ui) = u′i,

for each i= 4, . . . ,m+1. On the other hand, observe that the composite morphism ψp2 ◦ω
is defined over Qp. Then, by replacing ui by xi, together with Claim 3.3.D, we may assume
without loss of generality that

vp(x4)≥ vp(xm+1), max
w∈Ci\{xi}

vp(xi−w)< 2 (4≤ i≤m), vp(1−xm+1)≥ 2.
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Thus, we conclude from Claim 3.3.C that (∗m+1) holds. This completes the proof of

Theorem 3.3.
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