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Abstract

In this paper we investigate sufficient conditions that ensure the optimality of threshold
strategies for optimal stopping problems with finite or perpetual maturities. Our result is
based on a local-time argument that enables us to give an alternative proof of the smooth-
fit principle. Moreover, we present a class of optimal stopping problems for which the
propagation of convexity fails.
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1. Introduction

One of the simplest formulations of stochastic optimal control is that of the optimal stopping
of a one-dimensional diffusion process, where the only decision to be made is when to stop the
process. In this paper we will consider continuous-time optimal stopping, as follows. Consider
a state process modeled by the one-dimensional diffusion process X;. We assume that the
payoff from stopping at time ¢ is g(X;) and that the decision-maker wants to maximize the
expected present value by choosing a stopping time. This may be modeled using two optimal
stopping problems with respective value functions

V(x) = sup E(e™""g(X7))
7€70,00
and
Vr(x) = sup E(e™""g(X7)),
'L'GTO.T
where 7. and 7y r are the sets of all admissible stopping times with values in [0, o0]
and, respectively, [0, T']. The value function V corresponds to a perpetual-maturity optimal
stopping problem while the value function V7 corresponds to an optimal stopping problem with
finite maturity. In this paper we will focus our study on the perpetual-maturity case, but the
corresponding findings in the finite-maturity case will be highlighted as the paper proceeds.

One major problem in the perpetual-maturity case is to prove the existence of an optimal

stopping time t* satisfying
V(x) =E@™ g(X%)).
According to optimal stopping theory (see [8]), we introduce the following sets, usually called
the stopping region and the continuation region, respectively:

E={x>0:Vx) =gk} C={x>0:V(x)>gk}
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Under integrability conditions that will be made precise later, we have
V(x) =E( "™ g(Xz,)),

where
tg = inf{r > 0: X; € E}.

Frequently, in the case where g is convex and nondecreasing, it is optimal to stop when the
process X; exceeds some fixed threshold x*, called the optimal exercise boundary; then E =
[x*, 00). In this case we say that a threshold strategy is optimal. Once the optimality of a
threshold strategy has been proved, two methods are commonly used to compute the value
function. The first is the free boundary problem approach, where the value function can be
computed explicitly using a free boundary formulation and the principle of smooth fit, i.e. the
value function is differentiable across the optimal exercise boundary x* (see [20, Chapter 10,
Section 4] and the references therein). The second approach is based on fluctuation theory
(see [16]) and relies on the computation of the Laplace transform of the hitting time at level x*.
Furthermore, Dupuis and Wang [6] identified the rate of convergence from discrete-time to
continuous-time optimal stopping problems under the assumption that the stopping region is
the interval [x*, 0c0). Hence, threshold strategies are among the most important and common
strategies for solving one-dimensional optimal stopping problems.

However, in recent papers, Dayanik and Karatzas [3, Section 6.4] and Décamps et al. [4]
gave very simple examples of convex, nondecreasing payoffs for which the optimal stopping
strategy is not of threshold type. This leads to the question of main interest: can we find a set of
easily testable conditions ensuring the existence of an optimal threshold strategy for a general
state process?

A first step has been made by Jonsson er al. [12], who gave results for optimal stopping
problems in discrete time. In this paper we will give results for continuous-time optimal
stopping problems that are linked to the characteristic operator £ such that

Lu = %xza(x)2u” +x(r —8(x)u'.

The outline of the paper is as follows. In Section 2 we introduce our notation and define the
basic assumptions of the continuous-time optimal stopping problem. We will give conditions
necessary and sufficient to ensure the nonemptiness of the stopping region in Section 3. Section4
is devoted to our main results. We state a condition sufficient to ensure the optimality of a
threshold strategy and give an alternative proof that the smooth-fit principle applies as soon
as the payoff function is differentiable. A key feature of our proof is that it relies on a local-
time argument that remains valid in the case of optimal stopping problems with finite maturity.
Moreover, the criterion enables us to present a class of optimal stopping problems associated
with a convex payoff function whose value function is not convex. Finally, in Section 5 we
give illustrative examples arising from real option models.

2. The model, notation, and assumptions

Consider a probability space (2, F, (¥7):>0, P), where (¥7);>0 satisfies the usual condi-
tions. We will assume that the state process (X;);>0 is a solution to the following stochastic
differential equation, where (W;);>¢ is a standard F;-Brownian motion:

dx,

t

= (r —58(X;))dt + o (X;)dW;. 2.1

Throughout this paper, we will assume the following hypothesis to hold.
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Assumption 2.1. The function §: Ry — Ry is bounded and continuous and the function
o: Ry — Ry is bounded and continuous with inf >0 o (x) > 0. We also assume that xo (x)
is Lipschitz continuous.

Under Assumption 2.1, the coefficients satisfy the following local integrability condition:

x+€ 1 -5
there exists an € such that / M dy < oo forall x > 0. 2.2)

x—e y2o (y)?
This guarantees that the stochastic differential equation (2.1) has a weak solution which is
unique in the sense of probability law (see [13, pp. 339-344]). Moreover, the solution X is
regular; that is, P, (7T, < c0) > 0 for x, y > 0, where

Ty, =inf{t > 0: X; = y}.

Note that, under Assumption 2.1, the boundaries 0 and oo are natural. However, the stochastic
differential equation

dXx, .

— =rdr+o(X;)dW;

X;
admits a strong solution that satisfies E(supy, <7 |X;|?) < ooforall positive numbers p and T'.
Therefore, a comparison result (see [13, Pro_p(;sition 2.18]) gives E(supy<; <7 | X:|?) < oo for
all positive numbers p and 7. o

Consider an investment project with payoff function g mapping R into R and define the
associated value function
V(x) = sup E(e”""g(X7)),
7€70,00

where 70 oo is the set of all (¥7);>0-adapted stopping times with values in [0, co]. Let us
recall the basics of optimal stopping theory (we refer the reader to [8] and [14, Theorems D9
and D12]; see also [20, Theorems 10.1.9 and 10.1.12]). Introduce the set

E={x>0:V(x)=gkx)}

and assume that g is continuous. Then the stopping time tg is optimal under the integrability
condition sup,.oe ™" g(X,) € L' (Q, F, P). Moreover, the process (e """V (X, r7,))1>0 i
a martingale. Therefore, if E is empty then there is no optimal stopping time and the process
eV (X;));>0 is a martingale. Note that, under the integrability condition, the value function
is finite for every x > 0.

If the integrability condition fails, it may happen that the stopping set is nonempty but the
stopping time tg fails to be optimal (see [3, Example 6.5]). Dayanik and Karatzas [3] gave
conditions sufficient to ensure both that the value function is finite and that the stopping time
7g is optimal. To this end, they introduced the second-order differential operator £ such that

Lu = %xza(x)2u” +x(r —8(x)u'.

Suppose that Assumption 2.1 holds. Then the differential equation Lu = ru has two linearly
independent positive solutions, say ¢ and ¥, which are uniquely determined (up to multiplica-
tion by a constant) if we require one of them, say v, to be strictly increasing and the other to be
strictly decreasing (see [2, Chapter 2]). Finally, under Assumption 2.1, Dayanik and Karatzas
proved the following three results (see [3, Propositions 5.10, 5.13, and 5.14]).
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Proposition 2.1. The value function V is finite for every x > 0 if and only if

o g(x) g(x)
lp := lim sup and Iy :=limsup
x—0 @) x—oo Y(x)

are both finite.
Proposition 2.2. [f g is continuous and lg = loc = 0, then tg is an optimal stopping time.

Proposition 2.3. Suppose that ly and l~ are finite, that one of them is strictly positive, and that
g is continuous. Then tg is an optimal stopping time if and only if

there exists nor > 0 such that (0,r) C C forly > 0
and

there exists no | > 0 such that (I, 00) C C forly > 0.

Note that, according to Proposition 2.3, optimality of the threshold strategy implies opti-
mality of the stopping time tg for any nondecreasing convex payoff function. In this paper we
do not assume the integrability condition to hold and we instead work on sufficient conditions
relying on the signed measure

Ag=Lg—rg.

To be meaningful, we will restrict the class of payoff functions by making the following
assumption.

Assumption 2.2. (i) There exists an xq such that g(xg) > 0.

(ii) Let D = {ay,...,a,}, where n € N and the a; are positive real numbers such that
ay < ay < -+ < a,. Suppose that g is a continuous function on R™ such that g’ and g" exist
and are continuous on R™ \ D and the limits

g’(al-i): lim_ gx) and g (a )= lim_ g (x)

x—>a x—)a

exist and are finite.

(iii) There exist C > 0 and p > O such that, for every x > ay,
I8 + 18" ()] + 1" ()] = C(1 + |x|P).

Remark 2.1. Let T > 0. Then a standard application of the Burkholder—Davis—Gundy
inequality shows that the process ( fo e (X5)o (Xs)Xs dWy)o<<T is a square-integrable
martingale for any function g satisfying Assumptlon 2.2.

Remark 2.2. Under Assumption 2.2, the signed measure +g must be decomposed as

l

Ag(dx) = Ag(x)dx + Z
i=l1

o) af (&'(a") — g'(a; )84,

where §,, stands for the Dirac measure at the level a; and Ag(x) = (Lg(x) —rg(x)) 1ix¢p).
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3. Nonemptiness of the exercise region

In this section we study conditions sufficient to ensure the nonemptiness of the exer-
cise region. We recall that, for optimal stopping problems with finite maturities, Villeneuve
[22, Theorem 2.1] gave the following characterization: the exercise region is empty if and only
if Ag is a nonzero, positive measure.

Unfortunately, this characterization fails in the case of perpetual-maturity optimal stopping
problems, as illustrated in the following example.

Example 3.1. Let us consider the payoff function

gx)y=min(x — 1, (1 —e)x — (1 —2¢)) with0 <e < %

and the associated value function

V(x) = sup E(e""g(X7)),

T€70,00

where
X7 = xe(r702/2)1+0 Wi

The process (e "' X;)o<r<oco i$ a positive martingale. Therefore, [13, Problem 1.3.16] and the
optional sampling theorem give E(e™"* X;) < x forevery t € 70 o0, Whence V(x) < (1 —é&)x.
On the other hand, for all # > 0 we have

V(x) = E(e™""g(X}))
=E@™((1 —o)X; — (1 —2¢))) + B (X] —2) 1{x:<2))
> (1 —e)x—(1—2e)e"" —2eE(e™"" 1xx ).

Letting ¢ tend to oo, we obtain V (x) > (1 — ¢)x.
Thus, we have V(x) = (1 — €)x, and the exercise region is consequently empty. However,

Ag =r Lo +r(l —26) 11320y —26028;

(where, recall, §, stands for the Dirac measure at the level a) is not a positive measure.

Remark 3.1. The statement of sufficiency in the characterization result of Villeneuve [22,
Theorem 2.1] remains true for perpetual-maturity optimal stopping problems; that is, if Ag is
a positive measure then the exercise region is empty.

The next proposition will allow us to work with positive payoff functions in what follows.
Let us define g7 = max(g,0) and g~ = (—g)™".

Proposition 3.1. Suppose that Assumption 2.1 holds. Let g be a function satisfying Assump-
tion 2.2 and such that

Jlim Ex(e™"g™ (X)) =0. 3.1)
Then
V(x)= sup E.(e™""gt(Xy)).

1€70,00
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Proof. Let us consider the following optimal stopping problems with finite maturity:

V(t,x) = sup Ex(e™""g(Xr)), Vi(t,x) = sup Ex(e™""g"(Xy)).

€70, €70,
Moreover, let us introduce the optimal stopping time
Tt* = inf{s € [0,7]: Vi (s, X5) = g+(Xs)}-

According to optimal stopping theory, t;* is an optimal stopping time and, by condition (i) of
Assumption 2.2, we have

V+(Tt*, Xr,*) = g+(XT[*) >0 on {Tt* < t},
Therefore,

V(6 x) = Ex(e ™ g (Xp) Ligr <)) + Ex €7 (X)) 1ipzsy)
=E (e g(X0) +Ex(e 787 (X)) Lizr=)
<V, x) +Ec(e™ g7 (Xo) Lgr—y).

From (3.1) we obtain
sup Ex(e7Tg"(X1) < V(x)

7€70,00
by letting ¢ tend to co. Since the reverse inequality is obvious, we have the desired result.

Remark 3.2. Proposition 3.1 is valid if g is bounded below, that is, there exists an M > 0 such
that g(x) > —M for every x > 0.

The next theorem gives a characterization of the nonemptiness of the exercise region for
perpetual-maturity optimal stopping problems.

Theorem 3.1. Assume that g is a positive function satisfying Assumption 2.2 and such that

g(0+) < oo and xli)rréo i(();))

=l € (0, 00).

Then the exercise region E is empty if and only if, for every x > 0, we have
liminf Ex(e "' g(X,)) > g(x).
t—0o0

Moreover; if E is empty then V (x) = lim;_, o BEx (67" g(X})).

Proof. To begin, let us note the following points. According to [3, Propositions 5.10 and
5.13], the value function V is a continuous function satisfying V (x) < oo for every x > 0, and
since the boundaries 0 and oo are natural we have (see [10, pp. 128—135])

YO0 = lim ¢(x) =0 and ¢0") = lim ¥(x) = oco. (3.2)
X—> 00 X—> 00
We shall first prove the sufficient condition for the emptiness of the exercise region E. Introduce

the notation 7;g(x) := E, (e "'g(X,)). If liminf,_, o, T;g(x) > g(x) for any x > 0, then there
exists some #o(x) such that 73 g(x) > g(x) for t > ty, which proves the sufficient condition.
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On the other hand, if E is empty then the assumptions on g combined with the results of
[3, Proposition 5.4] imply that V (x) = Iy (x). By definition, V (x) > T;g(x) forevery t > 0
and, thus,

limsupEy (e ™" g(X1)) < V(x).

—>00

Now fix an ¢ > 0. There exists some N such that, for every x > N, g(x) > (Ioo — &)Y (x).
Hence,

E (e™"g(X;)) = Ex(e™""(g(X) 11x,<ny +8(X1) Lx,=N}))
> B (e 7" (g(X0) Lix, <n) +oo — )V (X1) 1(x,>N}))
= (loo — &)Y (x) + Ex(e7"0(X)) Lix, <N},
where 0(x) = g(x) — (Ioo — )% (x) is continuous on [0, N] since g(0™) < oco. Therefore,
E (e™"0(X)| 1ix,<n)) < Mye™"",
where

My = sup [0(x)].
x€[0,N]

Letting ¢ tend to oo, and recalling that V (x) = loo¥ (x), we obtain
litminfEx(e_”g(Xz)) > V(x),
—00

which implies the result.

Remark 3.3. The set E is nonempty for any bounded function g satisfying Assumption 2.2.
If E were empty for such a function, then V would be identically O by Theorem 3.1, which is
incompatible with condition (i) of the assumption.

The next result gives another characterization if we assume in addition that
o
E, </ e |Ag(Xy)] ds) < oo. (3.3)
0
By Lg" we denote the local time of X at the level ;.
Corollary 3.1. Under hypothesis (3.3), we have E = & if and only if

[ee) 2.2 [ee)
Ex<f e_”Ag(XS)ds) Z ol ) T (@) — g’(ai‘))Ex<f e ™ dL?") >0
O 0

forall x > 0.

Proof. The It6—Tanaka formula [13, Theorem 7.1] and Remark 2.1 imply that, for every
t > 0 and any function / satisfying Assumption 2.2,

t
E (e ""h(X,)) = h(x) + Ex < / e S Ah(X;) ds)
0

t
+Zg(a’2) L (h (gt — h/(ai_))Ex(/O e—”dLgi>.

i=1
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Applying the previous equality to £(x) = (a — x)4+, we obtain

a(a)za2
2

t
E, </ e 'S dL;‘) =Ex(e"(a— X1)4) — (a —x)4
0

¢
+E, (/ e "(ra—8(Xs)Xy) 1{x,<a) ds)
0

<a+a(l—e

< 2a.

Therefore, the monotone convergence theorem yields

o0
Ey (/ e dL;‘) < 00.
0

Now, hypothesis (3.3) gives

[Jim Ey (e™"g(X1) = g(x) +Ex </Oo e Ag(Xy) dS)
— 00 0

n 2,42 00
+> %(g’(af) —g'(a;)) Ex </0 e’ dL?">,

i=1
which yields the conclusion.

We shall prove below that a necessary condition for the emptiness of the exercise region
under the assumptions of Theorem 3.1 is that g(07) < 0. Note also that [9, Theorem 8.1]
asserts that the exercise region associated with a convex payoff function with g(0) = 0 is
empty if 6 = 0. The next two lemmas (which are probably well known) complete the study.
We give their proofs for the sake of completeness.

Lemma 3.1. Assume that g is a positive function satisfying the assumptions of Theorem 3.1
with g(0) > 0. Then the exercise region is nonempty.

Proof. We will provide a proof by contradiction, by assuming that E is empty. Thus, the pro-
cess (67" V(X))o<s<oo is amartingale and V can therefore be written as the linear combination
V(x) = AY(x) + Bo(x) > g(x) for every x > 0, where A and B are real constants. Since
g(0%) < oo, we have lim sup,_,08&(x)/¢(x) = 0. Therefore, [3, Proposition 5.10] yields
limsup,_,o V(x)/¢(x) = 0 and, thus, B = 0 using (3.2). However, limy_,o Ay (x) = O,
yielding g(0%) = 0, which is a contradiction.

Lemma 3.2. Let g be a nondecreasing, concave function satisfying Assumption 2.2 with
g(0) =0. Then V(x) = g(x).

Proof. The assumptions on g imply that xg’(x) — g(x) is nonpositive at every x where g is
differentiable. Since g satisfies Assumption 2.2, Ag(dx) is a nonpositive measure. Therefore,
the [to-Tanaka formula implies that the process (€'’ g(X,));>0 is a supermartingale, which
yields the result.
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4. Main results

4.1. Optimal threshold strategies

In this section we give an easily testable condition sufficient to ensure that threshold strategies
are optimal for the payoff functions satisfying Assumption 2.2. We start with a lemma that gives
a sufficient condition for the points of the set D to be in the continuation region.

Lemma 4.1. Let g be a positive function satisfying Assumption 2.2 and let a € D be such that
g'@a’) > g'(a). Then V(a) > g(a).

Proof. Taylor’s formula gives
g)=g@+ (x—a);g' @) —(x—a)-g'@) +(x—aelx —a),
where limy_,¢ £(y) = 0. Hence, the Ito—Tanaka formula yields

o(a)?a? Ld
2 t

t
+/0 (&' (@N) lx,>a) —&'(@7) Lix,<a)) X5 + (X; — a)e(X; — a).

g(X) = g@) + ('@ - g'(@™)

Thus,

2 2\2
(X, — a2 (X, —a) < 4<g2(x,> +¢%@) + (g - g’(a—>)2<"(“g - ) (L)?

t 2
+ </0 (g/(a+) 1{Xx>a} —g/(a_) 1{X5<a}) dXs> ),

and the Burkholder—Davis—Gundy inequality and condition (iii) of Assumption 2.2 imply that
(X; — a)e(X; — a) is a square-integrable random variable for any + > 0. Taking expectations,
we obtain

o (a)?a>
2

t
+ E, (/0 (g'(ah) Lix,~a) —8 (@) 1{x,<a)) (r — 8(X4)) X ds)

+ Eu(X; —a)e(X; —a)).

E.(g(X) = gla) + (g'(a™) — g'(a™))

Eq (L))

We shall treat each term on the right-hand side of this equation separately. For the first term,
the Itd—Tanaka formula and the Burkholder—-Davis—Gundy inequality give
o(a)’a*
2

t
Ea(Lza) =E,(|X; —a]) —E, </(; (1{X5>a} - l{XX<a})(r —8(X)) X dS)

= Ea( ) - Ea(‘/t(" —8(X5)) Xy ds ) +0(\/;)
0

'

> cEa( / o2(X,)X? ds) +o(D)
0

= ccr(a)zaz«/; + 0(\/;).

t
/ o (X)X dW;
0
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On the other hand, writing b(x) = (r — 8(x))x, we have

1 /t
—E, b(Xs)1 Xs>a ds)
‘«/f ( 0 vz

t
< %Ib(a)lfO P(Xy > a)ds

1 t
+ 7 E. (/0 |b(Xs) — b(a)| ds>
< |b@) |Vt + o(V1),

which allows us to conclude that the second term is 0(+/7).
To study the third term, we fix an n > 0 such that [e(y)| < n for |y| < h. Hence,
Eo((X; —a)e(X; —a)) = Eo((X; — a)e(X; — a) Ljx,—a|<h})
+Eo((Xy — a)e(X; — a) 1 x,—a|=n})
< nE(IX; — al) + [Ea(X; — a)’e*(X; — ) P(X; —a| = )]'/?

< Cnvi +o(V),
where we have used the fact that P(| X; —a| > h) = o(t) (see, for instance, [6, Proposition 2.1]).
Therefore,
i B.((X: —a)e(Xy —a))
im =0.
t—0 \/;
Finally,

E,(e " g(X,)) = Ea(g(X))) + 0(z)
> g(a) + (g'ah) — g'(@))c10(@)*a* Vi + o(V1).

Consequently, for small enough ¢ we obtain

E,(e™"g(X)) > g(a),
which implies the result.

Remark 4.1. It should be pointed out that the previous result remains valid for optimal stopping
problems with finite maturities. That is, for every T > 0, Vr(a) > g(a) for a € D such that
g'a®) > g'(a).

Lemma 4.2. Assume that xo € E and that g is a payoff function satisfying Assumption 2.2. If
Ag is a nonpositive measure on the open interval (xg, 00), then E contains the interval [xq, 00).

Proof. As a first step, we shall prove the equality

V(x)= sup E( " g(X}, ).

TATE
7€70,00

Let us consider a stopping time 7. The strong Markov property (see [13, Theorem 5.4.20])
implies that

Ex(e_”g(Xr) 1{r>rE} l{rE<oo}) = Ex(E(e_”g(Xr) | ?'TE) 1{r>rE} 1{f5<<>o})
<E,(e"F V(XTE) 1{r>rE} l{rE<oo})
= Ex(e_”Eg(XrE) 1{r>rE} l{TE<OO})7
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where the last equality follows from the definition of the stopping region. Hence,

E, (e_”g(Xr)) =E, (e—rrg(Xt) 1{‘(5‘[5}) + Ex (e_”g(Xt) 1{r>rE} l{rE<oo})
<E; (e_”g(Xr) l{rfrE}) +E; (e_”Eg(XrE) 1{‘[>‘[E} l{rE <oo})
=E (""" g(Xeary))-

Therefore,
V(x) < sup E@"""g(XF, ).

'L’EJ() 00

Since the reverse inequality is obvious, we have proved the first step.
The It6—Tanaka formula yields

TATE
E (e ") g (X nrp)) = g(x) + E(/O e " Ag(Xy) ds)

n 2( ) TATE ' ‘
+ 3 T g - /(a;))&(/o e—“szl>,

i=1

with Ag(x) = xza()c)2 "(x)+x(r—38(x))g’(x) —rg(x). The assumption on the measure g
gives g (a*) —g (al ) < 0 for every a; > x9. Moreover, let us note that, for x > xo, X7 > xo
on the random interval [0, T A Tg]. Thus,

TNATE
E (e " ""E g(Xiprp)) = g(x) + E(/O e S Ag(Xy) ds)

Z(al) 2 N . TATE _, )
+Z — @) — ¢ ))Ex</0 e SdL?‘)

a;=xq
< gx).
From the first step, we thus conclude that x € E.

We are now in a position to give a criterion for optimality of threshold strategies for perpetual-
maturity optimal stopping problems.

Theorem 4.1. Let g be a positive payoff function satisfying Assumption 2.2. Assume that there
exists an x1 such that Ag is a nonzero, positive measure on (0, x1) and a nonpositive measure
on (x1, 00) with

o0
lim Ag(x) =—1 <0 and E, (/ e 1Ag(Xy)] ds) < 00.
X—> 00 O

Then E = [x*, 00) with x* > x1, and the hitting time Ty is optimal.

Proof. First we shall prove that E is nonempty. Let us define

R(x) = E; </oo e " Ag(Xy) dS)
0

Z”(“’ Lt - g/(a;))Ex<[0°°e—”de:f>.
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For x > a, and a € D, the It6—Tanaka formula yields

o’(a)za2

t
—E ( fo e de:) —E.(e"(a— X))+

t
+E, (/ e_”(ra —§(X5)Xs) l{Xx<a} dS)
0

t
<ae™ " —}—ra/ e P Py(Xy < a)ds.
0

Therefore,

2.2 00 o0
o(a)°a Ex</ e "S dL?) < ra/ e s P.(X; < a)ds,
0 0

2
o0
lim E, ( / e’ dLg> -0,
X—>00 0

from which we deduce that
by dominated convergence. According to [17, p. 32], we have

X—> 00

*° 1 l
lim E, <f e_”Ag(XS)ds) = - lim Ag(x) = —— < 0;
0 r XxX—>00 r

thus, R is nonpositive for large enough x. Therefore, E is nonempty according to Corollary 3.1.
Now, that 4Ag is a nonzero, positive measure on (0, x1) means either

Ag(x) > 0 on every open set U C U c (0, x)) \ D

or
there exists ana € D U (0, x1) such that g’ (a™) > g’(a™).

In either case, for x € (0, x1) we have

Ty
E, (/ ] e”}Ag(Xs)ds) 0.
0

Therefore, Dynkin’s theorem implies that

E (e Mg(Xz,)) > g(x)

forx € (0, x1). Now, letx € E. The previous remark implies that x > x1, so E contains [x, c0)
according to Lemma 4.2. To complete the proof, it suffices to choose x* = inf{x > x1: x € E}.
The optimality of 7+ follows from Proposition 2.3.

Remark 4.2. Consider an optimal stopping problem with finite maturity 7 > 0, and define

Vi(x) = sup E(e™""g(Xr))

€0,

for ¢t < T. Under the assumptions of Theorem 4.1, we have optimality of a threshold strategy,
that is,
E; = {x > 0: Vi(x) = g(x)} = [x*(1), 00).
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Remark 4.3. Kotlow [15, Condition 1.1 and Theorem 4] implicitly gave the same sufficient
condition for the optimality of a threshold strategy when g is twice continuously differentiable,
using partial differential equation techniques.

Example 4.1. Dupuis and Wang [6] gave a sufficient condition based on the stochastic flows
method for optimal threshold strategies in the case in which g(x) = (x — K)4. Their condition
is

8(x) +x8'(x) >0 forevery x > 0.
It should be noted that this condition is not sufficient to ensure the nonemptiness of the exercise
region (see the Example 3.1). We prove their result using Theorem 4.1. We have

2
Ag = %KZSK + (K — x8(x)) Lpak) -
Under Dupuis and Wang’s condition, the function r K — x4(x) is decreasing and the measure
A g thus satisfies the condition of Theorem 4.1 if, in addition, there exists a real number xo > K
such that x¢6(xp) > r K. For instance, let §(x) = § min(1, 1/x) for some positive constant J,
andlet K = 1. For x > 1, Ag(x) = r — §; therefore, E is empty if » > § and is nonempty and
right connected if r < §.

4.2. The smooth-fit principle

In this section we present a new proof of the smooth-fit principle for optimal stopping
problems in one space dimension that relies on a local-time argument which does not depend
on the maturity. For the perpetual-maturity case, the smooth-fit principle was recently proved
by Dayanik and Karatzas [3, Section 7] using their F-transformation method.

We start by proving a result in the perpetual-maturity case. This result, which can be
viewed as the converse of [1, Theorem 6], shows that, for optimal stopping problems with
optimal threshold strategies (E = [x*, 00)), the smooth-fit principle applies and x* satisfies
the equation g’ (x)¥ (x) — g(x)¥'(x) = 0.

Proposition 4.1. Assume that Assumption 2.1 holds and that g satisfies Assumption 2.2 with
g(0) =0. If E = [x*, 00) and x* ¢ D, then V'(x*) = g’ (x™).

Proof. We will show that the function g/ attains a global maximum at x*. For x < x*, we
have (see [3, Proposition 5.5]) V(x) = [g(x*)/¥ (x*)]¥ (x). Since V dominates g, we have

g(x) - g(x™)
Yx) — px*)

On the other hand, the process (e ™"V (X,));>0 is a supermartingale and, thus, for x > x*,

V(x*) = Ex (e " V(X1,) = V(x) 1{/}(&*))'

As the exercise region is the interval [x*, c0), we have V(x) = g(x) for x > x*, that is,
gX) /¥ (x) < g(x™) /¥ (x*). Now, if g is differentiable at x* ¢ D, we have

(oo

which is equivalent to V' (x*) = g’ (x*).

for x < x™.
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In the next proposition we establish a stronger result, which contains the previous one. Let
us recall the following definition from [21].

Definition 4.1. A real number b is a left boundary of the stopping region E if, for small enough
&, [b, b+ €] belongs to E and (b — &, b) belongs to the continuation region. A real number b is
a right boundary of the stopping region E if, for small enough ¢, [b — &, b] belongs to E and
(b, b + ¢) belongs to the continuation region.

Proposition 4.2. Assume that g satisfies Assumption 2.2. Let b be a boundary of E such that
b ¢ D. Then'V is differentiable at b with V' (b) = g’ (b).

Proof. Without loss of generality, we give the proof only for the case of a right boundary.
For x > b, we have
V) —Vd) gt —gbd)
x—=>b - x—-b
Therefore, D,V (b) := limy,_,o+(V(b + h) — V(b))/h > g'(b). By definition, [b — &, b]
belongs to E for small enough ¢. Therefore, for b — ¢ < x < b we have

V(b)) —V(x) g(b)—g(x)
b—x T b—x

which implies that D_V (b) = g'(b).
Assume that D4V (b) > D_V (b). Then the It6—Tanaka formula and the similar local-time
argument used in Lemma 4.1 yield

Ex(e ™' V(X)) = V(b) + (D4 V(b) — D_V () Ep(L?) + o(/1)
> V(b),

for small enough 7. Therefore, the assumption that DV (b) > D_V (b) contradicts the
supermartingale property of (e ~"'V(X,));>0. Thus, the smooth-fit principle applies at b.

4.3. A remark on the propagation of convexity

We close this section with an example which proves that the value function associated with
a convex payoff function is not necessarily convex when the underlying process follows the
stochastic differential equation (2.1). We recall that the convexity of the value function and
its connection with volatility misspecification has recently been studied in depth; see [9], [18],
[11], [7], and [1]. A general result comes from these papers: the value function is convex if
either

e § is constant, that is, (e_(’_‘s)’Xt)tZo is a local martingale [9], [18], [11], [7], or
e x&(x) is nondecreasing and e """ X, converges to 0 in L' (see [1, Corollary 1]).

Consider a one-dimensional diffusion of type (2.1) with §(x) = 6 1{x<4), 0(x) = o, and the
optimal stopping problem

V(x)= sup E(e ' (X; — 1)).

T€70,00

Note that § is not continuous but satisfies the local integrability condition (2.2). Moreover, we
have V(0) = 0 and V(x) < x for every x > 0. We will prove that a threshold strategy is not
optimal.
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The measure #Ag is absolutely continuous with respect to the Lebesgue measure Ag(dx) =
Ag(x) dx with
Agx) = (r — 8x) Ljx<a) +7 1xsay -

Therefore, for x > a we have

T,
V(x) = Ex(e " Tg(X1,)) = g(x) + E, (/0 e "r dS> > g(x).

We now have to prove that the stopping region is nonempty for some ‘good’ choice of the
parameter a. Let us define « and S to be the negative and, respectively, positive roots of the

equation
02x2+ r—8—02 x—r=0
2 2 o

Note that 8 > 1 and o + 2r/o? > 0. Fix ana > (2r + Bo?)/(B — 1)o%. The fundamental
solutions, ¢ and ¥, can be constructed explicitly by matching a linear combination of the
fundamental solutions to Aux = 0 on each of the subintervals (0, a) and (a, 00). We obtain

2r +ac? B—a 2 —2r/o?
p(x) = (xa - ma“ ﬁxﬂ) lix<a) +maa+2r/g xle | ol

and

{x>a} -

2r + Bo? 4 B—1 2 o2
_.B “SsrvFre -1, F "  _B+2r/c 2r/o
Yx)=x l{xfa}+|: ol a’” x 1+2r/02a X 1
Note that ¢ is differentiable, strictly decreasing, and convex on (a, 00) and v is differentiable,
strictly increasing, and concave on (a, 00).
Let us assume that E is empty. Therefore, V(x) = By (x) since V(0) = 0. Moreover,
[3, Proposition 5.4] gives

. V() . glx)  2r+o?
lim —— = lim = a
x—oo Y(x) x—ooYr(x) 2r+ Bo?
Thus, V(x) = Iy (x). However, V(a) = [(2r + 02)/(2r + Bo?)]a and, therefore, V (a) <

a—1fora > 2r + ,802)/(ﬂ — 1)o2, which is a contradiction. Finally, E = [B/(B — 1), x]
is nonempty, with x, < a. Moreover, V is not globally convex on (a, 00).

=8 — .

5. Examples arising in real option theory

One of the modern applications of optimal stopping theory is to the real option theory
of investment under uncertainty. In this framework the optimal investment policy can be
mathematically determined as the solution to an optimal stopping problem. The prototype of
this approach is the model of [19], in which the underlying value of the investment project
evolves as a geometric Brownian motion. In this formulation, the optimal investment strategy
is a threshold strategy. Specifically, the investment option should be exercised at the first time
the value of the investment project exceeds a critical threshold, the optimal exercise boundary,
which can be explicitly computed using a standard verification theorem based on the smooth-fit
principle (see also [5, Part III]). Applications of continuous-time real option theory to optimal
stopping problems where the optimality of threshold strategies is assumed a priori abound in
the current literature. We will discuss some of them below.
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5.1. Sequential irreversible investment

Consider a project that can be decomposed into two stages. Once the two stages have been
completed, the instantaneous payoff is o X, where X satisfies the stochastic differential equation
(2.1). We assume that the function x4 (x) is increasing in such a way that every optimal stopping
problem of the type

sup B¢ (a@X; —I)) =a sup E(e7""(X; — K)) withK = !
T€70,00 7€70,00 4

admits an optimal threshold strategy according to Theorem 4.1 and Example 4.1, that is, with

E = [x*(K), 00). Moreover, Proposition 4.1 implies that x* is a nondecreasing function of K.

Let @ = a1 + a and let /7 and I, be positive constants. The optimal stopping problem arising

from a sequential investment then has a payoff function given by

gx) =ax — I + Fa(x),

where
F(x) = sup E(e™""(aX; — I)).
7€70,00
Theorem 4.1 yields
(a2x5 — Iz)M, x < x5,
F(x) = Y (x*)
arx — Ip, X > Xx5.

We assume that

L L+ 1D I

— < < =,

ap  optoax o
which ensures that the two stages are not accomplished simultaneously. Under this assumption,
the measure Ag = r1; — a1 x8(x) satisfies the assumption of Theorem 4.1 with x; defined by
x18(x1) = rli/a1. Therefore, the associated stopping region is [xi‘, 00), where xi‘ is implicitly
given by the equation

gV (x) — g ()Y (x) =0.

Since, F3¢ = F>y' on (0, x3), we deduce that x| is characterized by
(a1x] — 1Y () = a1 (x7).

Therefore, the sequential investment threshold is equal to the investment threshold of the optimal
stopping problem associated with the payoff o x — I;. The option to invest in the second stage
has no effect on the investment threshold for the first stage.

5.2. Investment in a leveraged firm

Consider an investor who has the opportunity to invest, at a cost I, in a firm whose
instantaneous cash flow follows a geometric Brownian motion such that

dX, = X,((r — 8)dt + o dW,).

The firm has issued a perpetual debt with a coupon flow ¢ per unit time. It is assumed that
bankruptcy occurs when the cash flow is not sufficient to cover the interest payment c¢. That is,
the investor has to solve

sup E(e™"g(Xr))

7€70,00
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glx) = Ex(/fc e " (Xy —0) ds) -1,
0

where 7, = inf{r > 0: X; < ¢}. An easy computation gives

X c r—=§ x\¢
0= (55 (5 )e(2) ) resar

where « is the negative root of the equation

—x°+ r—8—7 X =r.

with

2

Therefore, the open set {x > 0: g(x) > 0} is right connected and Ag = rI + ¢ — x holds
within it. Hence, a threshold strategy is optimal.

5.3. Irreversible investment in alternative projects

We revisit the model of [4] for a state process that satisfies (2.1). Consider an optimal
stopping problem with

g(x) = max(ax — I, ax — D), I < I, a1 < os.

If we separately consider the respective optimal stopping problems with g; (x) = ajx — [;, i =
1, 2, then standard arguments give the existence of two optimal thresholds x} and x. Assuming

that

I Db

- <=,

o1 (6%)
we have x] < x3 by Proposition 4.1. Moreover, Lemma 4.1 shows that (I — I1)/(a2 — o)
does not belong to the stopping region. Two cases have to be considered.

o Ifx{ > (I — I)/(a2 — o) then E = [x5, 00) (a threshold strategy is optimal).
o If x{ < (I — I1)/(az — o) then either

) g/ (x}) < g(x3)/¥(x3), in which case E =[x}, 00) (a threshold strategy
is optimal), or

() g/ (x]) > g(x3)/¥(x3), in which case E = [x], x;]U [x,, 00) (a threshold
strategy is not optimal).

In the case in which X follows a geometric Brownian motion as in [4], the computation of the
optimal threshold is explicit.

5.4. Irreversible investment and time to build

Consider an investor who has the opportunity to invest in a project at a cost 4 J at any
date t. He chooses to invest an amount J to undertake the project by issued debt. We assume
that the revenue of the project will be returned at time t + 7', where T is the time to build the
project. Moreover, the investor has to pay the nominal, D > 0, of a debt contractattime t + 7.
The problem is

sup E(e™"g(Xr))

7€70,00
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gx)=E@e "Xy —D)y)—1=:C(T,x)— I

If we assume that X follows a geometric Brownian motion, we obtain the Black—Scholes
formula,

g(x) = xe TN (d)) — De" T N (dp) — 1,

where N is the distribution function of the standard Gaussian law. Now,

Ag(x) = AC(T,x)+rl =rl +3rC(T, x).

Straightforward but tedious calculus shows that 4g satisfies the assumptions of Theorem 4.1.
Therefore, a threshold strategy is optimal.
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