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Abstract

The Bray–Liebhafsky reaction is one of many intricate chemical systems that is
known to exhibit periodic behaviour. Although the underlying chemistry is somewhat
complicated and involves at least ten chemical species, in a recent work we suggested
a reduced two-component model of the reaction involving the concentrations of iodine
and iodous acid. Although it is drastically simplified, this reduced system retains enough
structure so as to exhibit many of the oscillatory characteristics seen in experimental
analyses. Here, we consider the possibility of spatial patterning in a nonuniformly mixed
solution. Since many practical demonstrations of chemical oscillations are undertaken
using circular containers such as beakers or Petri dishes, we develop both linearized
and nonlinear pattern solutions in terms of cylindrical coordinates. These results
are complemented by an analysis of the patterning that might be possible within a
rectangular domain. The simulations give compelling evidence that spatial patterning
may well be feasible in the Bray–Liebhafsky process.

2020 Mathematics subject classification: primary 35B36; secondary 92E20.

Keywords and phrases: Bray–Liebhafsky chemical oscillator, spatial patterns, spectral
method, bifurcation diagram.

1. Introduction

It is over a century since William Bray [5] became the first researcher to suggest that
oscillating chemical reactions might be possible within a homogeneous solution; he
reported on what is now known as the Bray–Liebhafsky reaction. In the following
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few years Bray’s results were treated with some scepticism [24] as many thought
that his findings must be unphysical. Conventional wisdom at the time was that
chemical reactions should tend towards an equilibrium state [35, 36]. Indeed, it was
only after considerable further work on this class of reactions that it was eventually
conceded that chemical oscillations not only are theoretically feasible but also can
occur in practice [32]. It is likely that one obstacle along the path to a general
acceptance of the ideas forwarded in [5] is due to an inherent difficulty in seeing
the oscillations in the laboratory. Bray suggested that the concentrations of iodine
and iodate play pivotal roles in the mechanisms that are operative but, unfortunately,
the changes caused by these oscillations in concentration are difficult to observe
visually. By way of contrast, more contemporary oscillating chemical reactions, such
as the Belousov–Zhabotinsky [35] and Briggs–Rauscher reactions [6], are much easier
to observe as they are characterized by vivid colour changes. Oscillations in the
Bray–Liebhafsky reaction can only be verified by invoking quantitative methods such
as UV-visible spectrophotometry [22] or electrochemistry [27].

Following the pioneering study [5] there have been numerous investigations
into other chemical oscillators. Perhaps the most famous among these is the
Belousov–Zhabotinsky process [30]; extensive studies, such as those in [2, 14]
have examined the temporal oscillations and spatial patterns that may form during
this reaction. Subsequent experiments have confirmed many of these theoretical
predictions [3]. On the other hand, there has been a relative dearth of analysis of
the Bray–Liebhafsky reaction and, in particular, we are not aware of any studies that
inquire as to the feasibility of spatial patterning. It is this issue that we intend to
address in the work described below.

The mechanism that underpins the Bray–Liebhafsky reaction is notably compli-
cated. While the full details of the process are still not fully understood, the basic
idea is that the oscillations arise from the autocatalysis of iodate and iodine in the
presence of hydrogen peroxide [28]. The reduction–oxidation equations that model
these autocatalytic reactions are

5H2O2 + I2 −→ 2IO−3 + 2H+ + 4H2O,
5H2O2 + 2IO−3 + 2H+ −→ I2 + 5O2 + 6H2O,

which, when combined, give the net reaction

2H2O2 −→ 2H2O + O2.

The various chemicals involved here are identified in Table 1. Owing to the
autocatalytic nature of this reaction, oscillations in the concentrations of iodine (I2)
will occur until all of the hydrogen peroxide (H2O2) has been consumed. Therefore
if hydrogen peroxide is added in a great excess this reaction can continue almost
indefinitely. Practical experiments of the reaction can easily extend to several days
or even weeks, although the exact duration is also a function of the temperature [5].
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[3] Patterns in the Bray–Liebhafsky reaction 3

TABLE 1. Identification of the chemicals involved in the current study. Each variable listed in the first
column designates the concentration of the corresponding chemical.

Variable Chemical formula Common name

A IO−3 Iodate
C H2O Water
H H+ Proton/hydrogen ion
P HOI Hypoiodous acid
U HIO2 Iodous acid
V I− Iodide
W O2 Oxygen
Z I2 Iodine

Subsequent to the initial theoretical suggestion that diffusion-driven instability may
be feasible [29], it was some time before its presence was observed in practice.
This changed in the early 1990s with the development of chlorite-iodide-malonic
acid and chlorine dioxide–iodine–malonic acid reactions, which provided the first
experimentally observed Turing patterns [18, 20]. These patterns emerged due to
the use of polyacrylamide gels, which reduced the diffusion ratio between the two
oscillating species, thereby allowing sustained spatial structures to form. Prior to this,
other temporally oscillating chemical reactions, such as the Belousov–Zhabotinsky [9]
and Briggs–Rauscher [21] reactions, were already known to exhibit spatial patterns,
but these were transient and could not be maintained over an extended timeframe.
More recently, however, it has been shown that these reactions can generate Turing-like
spatial patterns [16]. Unlike these reactions, where patterns are easily observed due to
visible colour changes, the transparent nature of the Bray–Liebhafsky reaction makes
direct observation more challenging.

Our aim with the current work is to ask whether spatial patterns can be generated
by the Bray–Liebhafsky reaction. To this end we organize the remainder of the paper
as follows. To begin, in Section 2 we provide a brief background of our model that was
first proposed in [11]. Following this, in Section 3 we write down the spatially extended
version of the coupled equations to incorporate diffusion. Then, in Section 4, we
consider the properties of perturbations to the spatially uniform steady solutions of the
two-variable model. This analysis is conducted using radially symmetric cylindrical
coordinates as this would seem to be a natural choice for many practical realizations
of the reaction in the laboratory. In particular, we deduce some specialized exact
linearized solutions and follow this in Section 5 with a study of the nonlinear extension.
Next, in Section 6 we consider how our spectral solutions are modified should we use
a two-dimensional rectangular geometry. We discuss a range of results in Section 7,
before closing in Section 8 with a review of our main findings and suggestions for
possible avenues for further research.
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2. Background

Our study builds on recent previous work presented by Dimsey et al. [11]. That
paper developed a novel reduced model for the Bray–Liebhafsky reaction which was
deduced via a sequence of steps starting from a suitably revised set of seven reactions
proposed by [26]. It was argued that the original set of equations discussed in [26]
could not legitimately be used as a starting point for our simplification due to the fact
that three of the reaction steps listed in [26] do not obey basic conservation laws. To
rectify this problem, in [11] we proposed a revised set of seven reaction steps with
chemicals defined in Table 1. This system is given by

A(aq) + V(aq) + 2H(aq)
k1−−−−→ U(aq) + P(aq),

U(aq) + V(aq) + H(aq)
k2−−−−→ 2P(aq),

3P(aq) + U(aq)
k3−−−−→ 2U(aq) + Z(aq) + C(l),

2U(aq)
k4−−−−→ P(aq) + A(aq) + H(aq),

Z(aq) + C(l)
k5−−−−→ V(aq) + P(aq) + H(aq),

W(aq)
k6−−−−→ W(g),

Z(aq)
k7−−−−→ Z(g),

where k1–k7 denote various rate constants with values as prescribed in [11], and the
subscripts (l), (aq) and (g) indicate whether chemicals are in a liquid, aqueous or
gaseous state as appropriate.

It was demonstrated in [11] that the key dynamics can be reduced to a set of four
coupled equations for U, V , W and Z. This was justified by appeal to the so-called
pool approximation which was applied to the first four chemicals listed in Table 1.
In essence, a pool approximation is appropriate when a chemical is present in
sufficient quantity such that its concentration changes negligibly over the timescale
of the reaction. Throughout the remainder of the paper we indicate when the pool
approximation has been applied to a chemical species by designating its concentration
as a parameter with the appropriate lower-case letter. Thus, for example, we shall
apply the pool approximation to the concentration of water (variable C) and write
its concentration as c.

Some numerical simulations described in [11] demonstrate how chemical oscilla-
tions can be set up which are reminiscent of those in the Bray–Liebhafsky model.
Further analysis described in [11] shows how the (already reduced) four-variable model
can be simplified further to leave just a two-species system. This proved possible as
the concentration of oxygen (W) within the four-variable system is independent of
the values of the other three components and plays no active part in the fundamental
dynamics. Moreover, the concentration of iodide (V) changes negligibly (compared
to the other two variables on the relevant timescale) which allows a quasi-steady
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[5] Patterns in the Bray–Liebhafsky reaction 5

TABLE 2. Definitions of the dimensionless parameters within system (2.1). The values a, c, h and p denote
the (constant) pool concentrations of iodate, water, hydrogen ions and hypoiodous acid, respectively.

Constant R1 R3 R4 R7

Definition k1ah2 k3p3/(k5c) k4/(k2h) k7/(k5c)

approximation to be implemented. This then leaves just a two-variable system
given by

dU
dt
=

(R1 − U)Z
(R1 + U)

+ R3U − R4U2, (2.1a)

dZ
dt
= R3U − (1 + R7)Z, (2.1b)

for the concentrations of iodous acid (U) and iodine (Z). The evolution of these
chemicals depends on the four dimensionless parameters R1, R3, R4 and R7 that are
defined in Table 2. We note that the slightly peculiar numbering of these parameters is
adopted since this preserves the notation used in [11].

Within system (2.1) the time and concentrations have been rendered dimensionless
based on Ts = 1/(k5c) and Ms = 1/(k2h), respectively; the reader is reminded that c and
h denote the pool concentrations of water and hydrogen ions. This choice was made as
it allowed other parameters to be set to unity in [11]. It should be noted that throughout
this paper R1 and R4 are held constant in all calculations with R1 = 4.58 × 10−2 and
R4 = 1.68 × 10−3. These values are based upon typical rate constants ki derived from
the literature [10, 19, 25] and initial conditions for our pool chemicals which were
a = 0.02 M, c = 55.5 M, h = 0.04 M and p = 0.01 M, where M is the concentration of
each chemical in moles per litre. We were unable to find values for k3 (due to being a
“lumped” reaction step made of many elementary reactions) and k7. In consequence,
we proceeded to adopt R3 and R7 as suitable bifurcation parameters as they proved the
easiest to vary. Experimentally, these would be varied by changing the initial condition
concentrations or varying the temperature, thus changing the rate constants.

Model (2.1) is a canonically simple autonomous system that can be analysed
mathematically in the two-dimensional (U, Z) phase plane. In [11] we were able
to identify regions in R3–R7 parameter space in which limit cycle behaviour is
possible; physically this corresponds to the existence of sustained oscillations, which
is qualitatively consistent with the experimental behaviour reported in [31].

3. Formulation

A key outcome of the study [11] was the demonstration that the two-variable
model given by system (2.1) is capable of generating temporal oscillations in the
chemical system. Furthermore, these oscillations were shown to be consistent with
those obtained from the full four-variable system of equations derived in [11]. In order
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to introduce a spatial component we supplement the two-variable model with diffusion
terms to give the system of partial differential equations (PDEs)

∂U
∂t
= Du∇2U +

(R1 − U)Z
(R1 + U)

+ R3U − R4U2, (3.1a)

∂Z
∂t
= Dz∇2Z + R3U − αZ, (3.1b)

in which Du and Dz are diffusion constants and α ≡ 1 + R7.
Throughout this paper, unless otherwise stated, we have chosen the dimension-

less values Du = 5 × 10−3 and Dz = 10−2 for the diffusion constants. These values
correspond to dimensional values of around 10−6 m2s−1. This choice was made for
computational convenience despite the fact that the diffusion of iodide in water is
accepted to lie in the range O(10−9) m2s−1 [7] at standard laboratory conditions (SLC)
which correspond to a temperature of 25◦C and a pressure of 1 atmosphere.

We discuss the effect of reducing the diffusion coefficient towards more physical
values later in the text. However, we suggest that this value may not be unduly
unrealistic as it is very close to the kinematic viscosity coefficient of water at SLC
which is reported to be 0.897 × 10−6 m2s−1 [1]. In practice, we initiate our reaction by
mixing a steady state with a solution of iodine. Consequently, it is not unreasonable
to suppose that the early-time solutions are controlled by spreading via viscous
processes. When we nondimensionalize using the chosen timescale and the lengthscale
Ls = 5 × 10−2 m, this gives our estimate for Dz. Therefore, while a more appropriate
term for our diffusion coefficient might be a mixing coefficient (as it accounts for
multiple spreading processes beyond pure molecular diffusion) we shall continue
to refer to it as a diffusion coefficient throughout this work for consistency, since
diffusion remains the dominant mechanism in the long term.

Furthermore, we assume Du = 0.5Dz as it is widely accepted that Turing pattern
formation requires that the diffusion coefficients are not equal (see Murray [23, Section
14.2]). Moreover, there does not appear to be any readily available published data
relating to the size of the diffusion coefficient for iodous acid in water. Therefore, it
seemed reasonable to assume Dz > Du; the motivation for this can be ascribed to the
particular chemical properties of I2 molecules. These are small, have a linear geometry
(as opposed to the bent shape of iodous acid which hinders diffusion) and do not
undergo hydrogen bonding. As a result, I2 molecules should diffuse through solution
at a faster rate than the bulkier HIO2 ones. This becomes a significantly more difficult
argument to make if we are truly considering kinematic viscosity as there does not
appear to be any experimental data related to these measurements. However, the lack
of experimental data for kinematic viscosity is not a significant issue in this context,
as the process under consideration is not primarily governed by viscous effects.

Typical practical equipment (such as beakers, Petri dishes and round-bottom flasks)
is generally circular. It is therefore natural to write our problem in standard polar
coordinates (r, θ); we scale r by the radius of the container so its edge is at r = 1. We
note here that when this type of reaction is conducted in the laboratory with the aim of
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observing spatial patterns, a very thin film of solution (less than 1 cm thick) is normally
used. This is done in order to avoid the effects of gas evolution and justifies the fact that
we approximate our problem as two-dimensional. We begin with the simplest form of
the problem in which we suppose the solution is radially symmetric so that U = U(r, t)
and Z = Z(r, t). Our system of nondimensionalized equations (3.1) then becomes

∂U
∂t
=

Du

r

(
∂U
∂r
+ r
∂2U
∂r2

)
+

(R1 − U)Z
(R1 + U)

+ R3U − R4U2, (3.2a)

∂Z
∂t
=

Dz

r

(
∂Z
∂r
+ r
∂2Z
∂r2

)
+ R3U − αZ, (3.2b)

which we shall refer to as the spatially extended model. We need to impose suitable
conditions at r = 1, and these follow from the fact that there can be no chemical flux
across the edge of the domain. Hence we claim that

∂U
∂r
=
∂Z
∂r
= 0 at r = 1. (3.3)

Finally, regularity conditions at the centre of coordinates imply that

∂U
∂r
=
∂Z
∂r
= 0 at r = 0.

4. Linearized theory for circular patterns

We commence our analysis by finding the spatially homogeneous steady-state
solutions of the system. It was shown in [11] that the equilibrium solution to the
corresponding ordinary differential equation system (2.1) is given by U = U∗ and
Z = Z∗, where

U∗ =
1

2F
[−G +

√
G2 + 4FH ] and Z∗ =

R3U∗

α
,

in which

F ≡ R4α, G ≡ R1R4α − R3R7 and H ≡ R1R3(α + 1).

As this solution is spatially independent, it holds everywhere and is also a solution to
the system of PDEs (3.2).

We develop a linearized approximation to the full system (3.2) by considering a
small perturbation to the steady state of the form

(U, Z) = (U∗, Z∗) + δ(U1(r, t), Z1(r, t)) + O(δ2), |δ| � 1.

Here, the small parameter δ gives a measure of the amplitude of the spatial patterns.
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The spatially extended model (3.2) yields the approximate linearized system

∂U1

∂t
=

Du

r

(
∂U1

∂r
+ r
∂2U1

∂r2

)
+ S1U1 + S2Z1, (4.1a)

∂Z1

∂t
=

Dz

r

(
∂Z1

∂r
+ r
∂2Z1

∂r2

)
+ R3U1 − αZ1, (4.1b)

in which we have defined the constants

S1 = −
2R1Z∗

(R1 + U∗)2 + R3 − 2R4U∗ and S2 =

(R1 − U∗

R1 + U∗

)
. (4.2)

The aim is to find the perturbation functions U1 and Z1.
We can solve system (4.1) using Laplace transforms with initial conditions

U1(r, 0) = 0 and Z1(r, 0) = F(r), where the function F(r) will be chosen conveniently
in due course. Then with the definitions

Ũ(r; s) =
∫ ∞

0
U1(r, t)e−st dt, Z̃(r; s) =

∫ ∞
0

Z1(r, t)e−st dt,

the Laplace transform of system (4.1) yields

sŨ = Du

(d2Ũ
dr2 +

1
r

dŨ
dr

)
+ S1Ũ + S2Z̃, (4.3a)

sZ̃ − F(r) = Dz

(d2Z̃
dr2 +

1
r

dZ̃
dr

)
+ R3Ũ − αZ̃. (4.3b)

The structure of the differential operators in equations (4.3) suggests that we seek a
solution

Ũ(r; s) = AJ0(pmr),

where pm is the mth zero of the Bessel function J1(z) = −J′0(z); this value is fixed by
the requirement (3.3) that Ur = 0 at r = 1. With this, equation (4.3a) can be used to
deduce that

Z̃(r; s) =
A
S2

(pmDu + s − S1)J0(pmr)

with the constants S1 and S2 already given in (4.2). Then equation (4.3b) suggests that
an appropriate, convenient form for the initial profile is F(r) ≡ kJ0(pmr) where k is an
arbitrary scaling constant. Assembling these results yields the solution

Ũ(r; s) =
kS2J0(pmr)

s2 + s(ξ1 + ξ2) + (ξ1ξ2 − S2R3)
,

Z̃(r; s) =
k(Dup2

m + s − S1)J0(pmr)

s2 + s(ξ1 + ξ2) + (ξ1ξ2 − S2R3)
,
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[9] Patterns in the Bray–Liebhafsky reaction 9

R

R
m = 5

m = 4

m = 3

m = 2

m = 1

FIGURE 1. Bifurcation diagram in the R7–R3 parameter space for the first five modes m = 1, . . . , 5. In
the region between the lines m = j and m = j + 1 the modes with m ≤ j are linearly unstable and may be
expected to exhibit nonlinear oscillatory behaviour. Here, we have R1 = 4.58 × 10−2 and R4 = 1.68 × 10−3.

in which ξ1 ≡ p2
mDu − S1 and ξ2 ≡ p2

mDz + α. If we denote the roots of the denominator
of these expressions by μ1 and μ2 it follows that

μ1,2 =
1
2

(
− (ξ1 + ξ2) ±

√
(ξ1 + ξ2)2 − 4(ξ1ξ2 − S2R3)

)
, (4.4)

and we can invert the Laplace transforms to deduce

U1(r, t) = kS2J0(pmr)
[ 1
μ1 − μ2

]
(eμ1t − eμ2t), (4.5a)

Z1(r, t) = kJ0(pmr)
[(
ξ1 + μ1

μ1 − μ2

)
eμ1t −

(
ξ1 + μ2

μ1 − μ2

)
eμ2t
]
. (4.5b)

An analysis of the linearized system (4.5) shows that the system is neutrally stable
if both eigenvalues are purely imaginary: Re{μ1} = Re{μ2} = 0. From (4.4) this can be
reduced to the relatively simple requirement that

ξ1 + ξ2 ≡ p2
m(Du + Dz) + (α − S1) = 0. (4.6)

If both the product R1R4 is small and also R3 > 1, then condition (4.6) guarantees
that μ1,2 in (4.4) are purely imaginary, so that the solution (4.5) is neutrally stable.
These results were also confirmed using numerical methods. The solution of (4.6) for
various values of m is illustrated in Figure 1. Here, a two-parameter continuation of
the Hopf bifurcation curves (where limit cycle oscillations are born in the nonlinear
case; see [15]) has been performed in R7–R3 parameter space. Each line in this figure
denotes where an individual mode undergoes a Hopf bifurcation and switches from
being stable to unstable. They therefore mark the boundary between the stable and
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unstable regions in two-parameter space; below the m = 1 line all modes of our series
are stable. Therefore, in this region no mode will provide a growing contribution and
any perturbation will be expected to return to the steady state. The unstable modes
play a crucial role in enabling the pattern to emerge from the homogeneous steady
state. In the linear case, these modes grow indefinitely, whereas in the nonlinear case,
we expect that their growth will be constrained by nonlinear terms, thereby enabling a
stable pattern to form.

5. Nonlinear circular patterns

Given our exact linearized solution, we next proceed to consider solutions of the
full nonlinear system (3.2). We begin by supposing that

{U(r, t), Z(r, t)} = {U∗, Z∗} +
N∑

n=1

{Un(t), Zn(t)}J0(pnr), (5.1)

which automatically satisfies the regularity conditions at the origin r = 0 and the
zero-flux condition (3.3) at the edge of the domain r = 1. Expression (5.1) was
substituted into the linear components of system (3.2), and then the standard Bessel
orthogonality condition was applied to yield a set of differential equations for the
Fourier coefficients. It follows that

dUn(t)
dt

= − (Dup2
n − R3)Un(t) +

2
J2

0(pn)

∫ 1

0
rJ0(pnr)

[(R1 − U
R1 + U

)
Z − R4U2

]
dr, (5.2a)

dZn(t)
dt
= − (Dzp2

n + α)Zn(t) + R3Un(t). (5.2b)

Clearly, this system requires numerical solution, and some suitable initial conditions
need to be specified to enable this. We assume that U(r, 0) is the steady-state solution
U∗, while the component Z is perturbed so that Z(r, 0) = Z∗ + h(r). When these are
substituted into expression (5.1), we deduce that Un(0) = 0 and

Zn(0) =
2

J2
0(pn)

∫ 1

0
rh(r)J0(pnr) dr for n = 1, 2, . . . , N.

The next issue concerns the form of the initial function h(r). While there are several
options available, we are motivated by thinking as to how the reaction might plausibly
be initiated within a laboratory setting. We suppose that the steady state is perturbed
by dropping some iodine to form a circle of finite radius (rc < 1) near the centre of
the container. This then suggests that a reasonable choice for the initial function h(r)
could be a simple unit step of the form

h(r) =

⎧⎪⎪⎨⎪⎪⎩1 if 0 < r < rc,
0 if rc < r < 1,

(5.3)
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[11] Patterns in the Bray–Liebhafsky reaction 11

where the value of rc is a measure of the size of the drop. While this profile can
be explained from a practical viewpoint, it does present some computational issues
associated with the discontinuity in h(r). The implementation of a Fourier–Bessel
series to represent this form of initial condition inevitably gives rise to the emergence
of a Gibbs-type phenomenon (see [17]), leading to spurious oscillations in the
reconstructed concentration profiles, associated with the discontinuity in (5.3) at
r = rc. In order to mitigate this effect it proved useful to conduct our calculations
in combination with a suitable smoothing technique. We chose to apply Lanczos
smoothing (filtering) to the initial condition in which each coefficient within the
Fourier series is multiplied by a suitable smoothing constant as described in [12]. In
particular, the nth Fourier coefficient was multiplied by the sinc function defined by

sinc(nσ) =
sin(nσ)

nσ
, n = 1, 2, . . . , N,

where σ is a prescribed smoothing constant, referred to as the Lanczos parameter. In
general, larger values of σ tend to give smoother functions, with the trade-off that as
σ grows so the smoothed function increasingly deviates from the original. With some
trial and error we found that modifying the initial condition with σ somewhere in the
interval (0.06, 0.15) appeared to give the best compromise between smoothness and
trueness to the original function. Ultimately, the value of σ did not change the final
state reached.

The evolution equations (5.2) were numerically integrated forward in time using the
standard ode45 package within the MATLAB suite of routines, which is an adaptive
timestep Runge–Kutta method that uses fourth- and fifth-order accurate solutions to
control the error by varying each timestep. Other integrators specifically designed for
integrating stiff functions were also trialled but these did not perform discernibly any
better. We divided the entire integration run into a number of sub-intervals (typically
each of duration 1–100 dimensionless time units) as this allowed us to monitor the
evolution of the pattern.

With the smoothed shape function (5.3) used as the initial condition, we were able
to compute some basic spatial patterns. Various tests were conducted, including using
a selection of initial conditions, choosing different durations for the time sub-intervals
(which modified the computational time used to reach a solution) and the number of
terms N retained in the Fourier expansion (5.1). It was notable that (for a prescribed set
of parameter values) the precise choice of initial profiles for U and Z seemed to have
minimal effect on the final profile or the rate at which these structures were attained.
Some sample results are illustrated in Figure 2, for the nonlinear solution (5.1) using
N = 51 Fourier coefficients and the parameters σ = 0.11, R7 = 0.015, R3 = 1.0920,
rc = 0.1, Du = 5 × 10−3 and Dz = 1 × 10−2. These solutions show the emergence of
a steady pattern at relatively early times; we see that the final shape of the iodine
concentration (Z) appears as early as about t = 60 and attains its long-term value by
t = 100.
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U
Z

H
IO

I

FIGURE 2. The evolution of the U-concentration (top) and Z-concentration (bottom) in a one-dimensional
radially symmetric model using N = 51 coefficients in the linearized equation (5.1). The parameter values
were chosen to be R7 = 0.015, R3 = 1.0920, smoothing parameter σ = 0.11 with an initial shape function
of magnitude 1 with rc = 0.1. The diffusion coefficients used are Du = 5 × 10−3 and Dz = 1 × 10−2.

We can take the final solutions from Figure 2 and then calculate the concentration
of iodide (V) using the quasi-steady approximation

V ≈ Z
R1 + U

noted in [11]. Following this, a comparison of the magnitudes of the concentrations
of iodine and iodide enables us to infer some properties of the respective spatial
patterns. We depict this in Figure 3(a) where we have shown those regions, where
the concentration of iodide is greater than iodine (V > Z) in blue and the alternative
case (V < Z) in red.
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FIGURE 3. The patterns formed after long times for a range of radially symmetric initial conditions. Areas
shaded red indicate where the concentration of Z exceeds that of V; where the reverse applies the area is
blue. The pattern formed with the initial conditions of either (5.3), (5.4) with m = 1 or (5.5) with either
m = 1 or m = 2 is shown in (a) and the initial condition (5.4) with m = 2 is shown in (b). Numerical
scheme used N = 51 coefficients with parameter values R7 = 0.015, R3 = 1.0920, smoothing parameter
σ = 0.11 and diffusion coefficients Du = 5 × 10−3 and Dz = 1 × 10−2.

Next, we took the initial condition h(r) to be a simple cosine function of the form

h(r) = cos(2mπr) where m = 1, 2, . . . . (5.4)

With m = 1 the final pattern was precisely the same as that formed when the
step-function initial condition (5.3) was used (see Figure 3(a)). It was noted that for
any initial condition of this form with m > 1 a different pattern emerged, leading us
to believe that there are two possible steady patterns for this parameter combination.
These steady patterns are illustrated in Figure 3 where we have shown the two patterns
that arise. We tested a range of other parameter values within the unstable region of
the parameter space and found exactly the same patterns regardless of the value of R7.

Following on, we next tried adjusting the initial conditions to explore whether
this extended the range of final configurations. Consequently, we perturbed the initial
condition so that it took the general form

h(r) = cos(2mπr) + 0.1[cos(2πr) + cos(4πr)] where m = 1, 2, . . . . (5.5)

We found that when m = 1 in expression (5.5) nothing changed from the situation
in which the perturbation is absent. By way of contrast, when m = 2 in (5.5) the
final pattern is identical to that which arises when m = 1 in (5.4); this is shown in
Figure 3(a). We comment that our experiments with various initial profiles seem to
suggest that the pattern associated with the simple form (5.4) when m = 1 occurs
most frequently. We can tentatively suggest that this m = 1 steady pattern possesses
a significantly larger basin of attraction. The upshot is that if we evolve a radially
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symmetric initial profile it is most likely that a pattern akin to that in Figure 3(a)
appears.

It is worth mentioning that the fact that the pattern formed from the step function
tends directly to the same steady pattern as is associated with the mode 1 initial
condition is no coincidence. This should be expected as the Fourier representation of
the step function will have some contribution from the first mode. Therefore, it should
tend directly to the m = 1 steady pattern.

It should be noted that all calculations discussed in this section lie within the
parameter region in which only the first mode is unstable as shown in Figure 1. This
helps explain why the observed patterns seem to have a dominant mode 1 component.
However, for other parameter selections, in particular ones for which the second and
third modes are also linearly unstable, we found that the mode 1 component continued
to be the most prominent. This leads us to speculate that the first mode may be the
most unstable for this parameter combination. We observe that the nonlinearity of
the governing PDE system means that even though the first mode might be linearly
unstable, the nonlinear patterns will nevertheless not grow without bound. In this
way, large-amplitude stable spatial patterns can form for parameter values at which
small-amplitude patterns are unstable.

6. Two-dimensional patterns

Having gained some understanding as to the possibilities for radially symmetric
distributions, we now generalize our considerations to allow for some genuinely
two-dimensional patterns that may emerge from our model. We remark that here we
switch to a rectangular domain. This was done because our calculations of radially
symmetric solutions in a circular domain began to run into computational problems,
a phenomenon that could be ascribed to the increasing stiffness of the problem.
Using Cartesian coordinates is particularly helpful in this regard as the adoption
of this geometry enables straightforward vectorization, in our numerical evaluation
of Fourier series and quadrature techniques, which markedly improves the overall
efficiency of the code. Our equations were integrated over the domain |x| ≤ L, |y| ≤ B
which defines a rectangular region of length 2L and width 2B. While rectangles are
not particularly common shapes for glassware, they are occasionally used in both
chemistry and biology experiments [33]. The relevant Neumann boundary conditions
can be written as

∂U
∂x
=
∂Z
∂x
= 0 on x = ±L, (6.1a)

∂U
∂y
=
∂Z
∂y
= 0 on y = ±B. (6.1a)

Written in terms of Cartesian coordinates, the governing equations (3.1) can be
cast as
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∂U
∂t
= Du

(
∂2U
∂x2 +

∂2U
∂y2

)
+ R3U + f (U, Z), (6.2a)

∂Z
∂t
= Dz

(
∂2Z
∂x2 +

∂2Z
∂y2

)
+ R3U − αZ, (6.2b)

in which all the nonlinear components are subsumed in the term

f (U, Z) =
R1 − U
R1 + U

Z − R4U2.

6.1. The linear model We begin with the linearized problem defined by

∂U1

∂t
= Du

(
∂2U1

∂x2 +
∂2U1

∂y2

)
+ S1U1 + S2Z1, (6.3a)

∂Z1

∂t
= Dz

(
∂2Z1

∂x2 +
∂2Z1

∂y2

)
+ R3U1 − αZ1, (6.3b)

where the constants S1 and S2 are precisely as defined in (4.2). Guided by the boundary
conditions (6.1) on x = ±L, y = ±B, we seek a linearized solution of the form

U1(x, y, t) =
∞∑

m=0

∞∑
n=0

AL
m,n(t) cos

(mπ(x + L)
2L

)
cos
(nπ(y + B)

2B

)
, (6.4a)

Z1(x, y, t) =
∞∑

m=0

∞∑
n=0

BL
m,n(t) cos

(mπ(x + L)
2L

)
cos
(nπ(y + B)

2B

)
. (6.4b)

If we substitute the ansatz (6.4) into (6.3), and appeal to the orthogonality of
cosines, we derive a system of differential equations for the coefficients given by

d
dt

AL
m,n(t) =

(
− 1

4
Duπ

2Γ2
m,n + S1

)
AL

m,n(t) + S2BL
m,n(t), (6.5a)

d
dt

BL
m,n(t) =

(
− 1

4
Dzπ

2Γ2
m,n − α

)
BL

m,n(t) + R3AL
m,n(t), (6.5b)

in which we have defined

Γ2
m,n ≡

(m2

L2 +
n2

B2

)
.

It is then a routine exercise to conclude that

BL
m,n(t) = B1 exp(λ+m,nt) + B2 exp(λ−m,nt), B1, B2 ∈ R,

where the eigenvalues λ±m,n are the solutions of the quadratic

λ2 + (ζm,n + R3ηm,n)λ + R3(ηm,nζm,n − S2) = 0
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with

ηm,n ≡
Duπ

2

4
Γ2

m,n − S1 and ζm,n ≡
Dzπ

2

4
Γ2

m,n + α.

Upon determining the solution coefficients BL
m,n, we can immediately deduce the form

of AL
m,n from equation (6.5b).

We have now derived the modal solution of the linearized problem. For general
initial conditions U(x, y, 0) = F(x, y) and Z(x, y, 0) = G(x, y), we can express the
solutions as linear combinations of the modes, and determine the various coefficients
by Fourier analysis in the usual way. In the interest of brevity, we do not write out all
the details here.

6.2. The nonlinear model To develop the nonlinear solution we again begin with
a series solution in which

U(x, y, t) =
M∑

m=0

N∑
n=0

Am,n(t) cos
(mπ(x + L)

2L

)
cos
(nπ(y + B)

2B

)
,

Z(x, y, t) =
M∑

m=0

N∑
n=0

Bm,n(t) cos
(mπ(x + L)

2L

)
cos
(nπ(y + B)

2B

)
,

for some coefficients Am,n(t) and Bm,n(t). These series become more accurate as the
numbers M and N of Fourier modes are increased. If we substitute these expressions
into the linear components of system (6.2) and apply the cosine orthogonality
conditions we deduce that

dAk,p(t)
dt

= (R3 − DuΓ
2
k,p)Ak,p(t)

+
1

δ̄k,pBL

∫ B

−B

∫ L

−L
cos
(kπ(x + L)

2L

)
cos
(pπ(y + B)

2B

)
f (U, Z) dx dy,

dBk,p(t)
dt

= −(DzΓ
2
k,p + α)Bk,p(t) + R3Ak,p(t);

here δ̄0,0 = 4, δ̄k,p = 2 if either k = 0 or p = 0 and δ̄k,p = 1 otherwise.
Once again, we need to specify initial values Am,n(0) and Bm,n(0) in order to

evolve the equations in time. Fortunately, this choice does not critically affect the
ultimate state of the system and, for simplicity, we supposed that U(x, y, 0) = U∗ and
Z(x, y, 0) = Z∗ + G(x, y). This corresponds to U and Z being at their equilibrium values
before adding some excess iodine (Z). There are few constraints on G(x, y) except that
it should satisfy (or nearly satisfy) the prescribed Neumann boundary conditions (6.1).
Throughout our analysis we have worked with a range of initial conditions, including
choosing G(x, y) to be a quartic function, Bessel function, Gaussian, a product of
cosines and a step function among others.
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These initial conditions imply that the only nonzero Am,n(0) is A0,0(0) = U∗, while
the Bm,n(0) are given by

Bm,n(0) =
1

δ̄m,nBL

∫ B

−B

∫ L

−L
G(x, y) cos

(mπ(x + L)
2L

)
× cos

(nπ(y + B)
2B

)
dx dy.

Using a similar process to that outlined in Section 5 we are then able to integrate the
system forward in time given a particular initial condition.

Most of the results we describe below were obtained using spectral methods.
However, we also benchmarked our work by conducting a number of the calculations
using techniques based on the method of lines. This is a finite-difference method which
is commonly applied to integrate reaction–diffusion systems. Further details of our
precise implementation of the method of lines have been relegated to Appendix A.

7. Results

A first step in our analysis of the two-dimensional system necessitates that we
locate those parts of parameter space where interesting spatial patterning might arise.
To enable this we created a bifurcation diagram based upon the Fourier transform
of the system. In our previous results described in Section 5 we used R7 and R3
as our bifurcation parameters. Here we take an alternative view; we fix R3 = 1.0920
and adopt R7 and the ratio of the diffusion constants as the bifurcation quantities.
To this end we define the diffusion ratio d ≡ Du/Dz which can vary between 0 and
1. We then constructed the requisite bifurcation diagram using a somewhat inelegant
“brute force” approach that is based on the eigenvalues of the linearized system in
Section 6.1. This required us to calculate the eigenvalues, the fastest-growing mode and
the associated behaviour for each parameter combination within our region of interest
and then classify the nature of each eigenvalue combination in a similar manner to that
outlined in [4]. If all modes had a negative real eigenvalue the system was designated
stable as any perturbation would decay to the homogeneous equilibrium over time. On
the other hand, if the eigenvalue of the zeroth mode is positive (and with a nonzero
imaginary part) while all other modes have negative real parts, the solution sits in
what we refer to as the homogeneous oscillatory region, where the concentration
becomes spatially homogeneous but oscillates in magnitude over time. Finally, if the
fastest-growing mode and the eigenvalues were both greater than zero then a spatial
structure would be expected to form. The outcome of this is summarized in Figure 4.
Three distinct regions appear in the d–R7 parameter space; it is the green shaded part of
Figure 4 that is of most interest since this is where we predict the formation of spatial
patterning.

Given this preliminary linear stability analysis of the system, we next investigate
the extension to nonlinear cases. We would expect to see close agreement between the
linear and nonlinear simulations, at least for relatively small amplitude perturbations
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FIGURE 4. Spatial pattern bifurcation diagram in d–R7 parameter space based on linearized analysis.
Three distinct areas arise. For parameter choices in the red region the pattern returns to the homogeneous
steady state; the green region indicates values at which Turing patterns form. Finally, when in the purple
region the pattern settles to a spatially homogeneous value which oscillates in magnitude over time.

from the steady state and for early times. In all our comparisons we prescribe initial
conditions defined by U(x, y, 0) = Uss and

Z(x, y, 0) = Zss +M cos
(2π(x + L)

2L

)
cos
(4π(y + B)

2B

)
, (7.1)

where M is the magnitude of the perturbation function. In order to measure the
difference in the linear and nonlinear results, we choose to look at the concentration
profile of Z along the centre line y = 0 of the dish. This type of initial condition, while
not necessarily wholly physically realizable, was chosen as it closely resembles the
assumed Fourier series solution in the spectral method.

Our first results are shown in Figure 5. Here we have M = 0.1 and the pair of
parameters d = 0.5, R7 = 0.18 which lies within the stable portion of parameter space
in Figure 4. (In all comparisons the nonlinear equations were solved both spectrally
and with the method of lines and the outcomes are identical at all times shown.) As
would be expected the initial perturbation evolves nonlinearly over small times before
decaying away to leave just the uniform steady state.

Now we move on to consider parameters taken from the pattern-forming region. In
Figure 6 we illustrate the results when d = 0.5 and R7 = 0.018 and for the perturbation
amplitude M = 0.1. We would anticipate agreement between the linear and nonlinear
solutions for short to intermediate times, and this is observed. On the other hand,
we might expect that at longer times the two solutions would deviate from each
other; perhaps somewhat surprisingly at t = 100 in Figure 6 this has not yet occurred.
However, by t = 200, significant differences emerge between the two solutions as
contributions from higher modes appear in the nonlinear solution.
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Z

FIGURE 5. A comparison of the linear (blue, dashed) and nonlinear (red) methods for parameter values
d = 0.5, R7 = 0.18 taken from the stable region of parameter space with the initial condition prescribed
in (7.1) with M = 0.1. As expected, after some initial movement away from the steady state the system
quickly returns to equilibrium.

FIGURE 6. A comparison of the linear (blue, dashed) and nonlinear (red) methods for parameter values
d = 0.5, R7 = 0.018 that lie within the pattern-forming region of parameter space. Amplitude of initial
perturbation M = 0.1.

As a last example, we conduct another set of simulations with the same parameters
used for Figure 6 but now with a substantially larger initial perturbation M = 3. With
this relatively large deviation from the steady state the linear solution loses validity,
rapidly diverging from its nonlinear counterpart. This is confirmed by the results
summarized in Figure 7. Here we see the emergence of highly nonlinear patterns from
about t = 10 onward and a clear difference between linear and nonlinear predictions.
After a sufficiently long time the linear solution grows exponentially and includes a
region of (physically unrealistic) negative concentrations. By contrast, the nonlinear
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FIGURE 7. Linear (blue, dashed) and nonlinear (red) results for parameter values d = 0.5, R7 = 0.018
that lie within the pattern-forming region of parameter space. Amplitude of initial perturbation M = 3.
The increased M is sufficient for the linear and nonlinear results to diverge, with the former becoming
unphysical by the time t = 10.

solution forms flat portions in the concentration profiles, in which the concentrations
take on small values, corresponding to the reagents being almost completely depleted
in those regions.

7.1. Solutions in other parameter regimes We noted earlier that the results
summarized in Figure 4 can be divided into three distinct zones. Here we turn
our attention to the properties of solutions for which the parameters reside in the
stable (red) or homogeneous oscillating (purple) parts of parameter space. Within this
parameter region the concentration profile becomes spatially homogeneous but the
magnitude of this profile oscillates temporally. These classes of solution present some
particular challenges inasmuch that there is no straightforward way to visualize the
changes that occur over time as they will remain one colour across the entirety of the
dish. Perhaps the best way to appreciate the evolution of the reaction is to examine
concentration profiles. Once again, we choose U(x, y, 0) = Uss, while for Z we take

Z(x, y, 0) = Zss + 10e−(x2+y2). (7.2)

First, we consider values from the stable region of parameter space (d = 0.5,
R7 = 0.18), with the results shown in Figure 8. We see that despite a large initial
perturbation the concentration of Z settles to a homogeneous steady state. In passing,
we point out that the concentration profiles of U and V are not shown; their
development is broadly similar to that of Z with no other features of particular note.

Next we consider parameter choices from within the homogeneous oscillations
region of parameter space. This terminology warrants some clarification; after some
time the concentration across the entire dish tends to a single value which is not
constant but rather oscillates in time. To exemplify matters, Figure 9 shows the
evolution of the system when d = 0.9 and R7 = 0.001 with initial condition (7.2). In
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FIGURE 8. The evolution of the concentration profile of Z (I2) using a large Gaussian perturbation as
the initial condition with parameter choices d = 0.5 and R7 = 0.18. These choices put us in the stable
region of parameter space. Consequently, the solution quickly converges to a steady pattern with the
value Z(x, y, t) = Zss.

the upper panel we see that the system transitions from the initial Gaussian shape to a
uniform value across the domain. This value oscillates in time as indicated in the lower
panel of Figure 9.

We determine the uniform value at a chosen time tc by calculating the maximum
and minimum concentration across the domain when t = tc. These values are then
compared to the average concentration defined to be

Z(t)avg =
1

4LB

∫ B

−B

∫ L

−L
Z(x, y; t) dx dy. (7.3)

After an initial transient we would expect that the profile reaches a spatially homo-
geneous state that is characterized by maximum, minimum and average concentrations
all being the same. This is precisely what is seen in Figure 9(b). It should be noted
that this is also what is found if the concentration of V is considered, though in this
case the oscillations are reminiscent of a relaxation mechanism rather than the (more
sinusoidal) oscillations for Z. It is worth considering what this behaviour would look
like in terms of colourized render plots used in Section 5. Taking this viewpoint,
the entire dish would spend extended periods appearing blue (indicating that the
concentration of V exceeds that of Z). These periods would be punctuated by relatively
short bursts during which the entire dish would appear red. Theoretically this cycle
would recur indefinitely as long as the supply of reactants is never exhausted.

7.2. Pattern-forming regions We now investigate the possibilities for the patterns
that may form. For all analyses described in this section, we work with the parameter
values d = 0.5 and R7 = 0.018; moreover, unless otherwise stated, we use a domain
with L = B = 2. We again use the methods described in Section 5 to visualize our

https://doi.org/10.1017/S1446181125100102 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125100102


22 H. W. Dimsey, L. K. Forbes, S. J. Walters and A. P. Bassom [22]

Z

FIGURE 9. (a) Evolution of the concentration profile of Z (I2) using a Gaussian initial condition and
with d = 0.9 and R7 = 0.001. The pattern reaches a near homogeneous concentration by the time t = 100.
(b) The homogeneous oscillations in Z at large times. The solid line (blue) marks the maximum of Z
across the domain; minimum values are denoted by the dotted line (red). The dashed black line shows
the average concentration across the domain as calculated using (7.3). The coincidence of the three lines
indicates that the concentration of Z tends to a completely homogeneous value in space.

patterns in terms of red and blue hues. A by-product of this work is that we can probe
some properties of Turing patterns within this system. In particular, we can confirm
that the numbers of minima and maxima in the concentration profiles are functions of
the domain size which also dictates the complexity of the pattern that can appear [23].

Many of these aspects are summarized in Figure 10. The first row demonstrates
that when the lengths of the sides of the domain are doubled we change from having
approximately four columns of spots to eight. In the bottom row of Figure 10 the width
of the box has been markedly reduced and the domain is so narrow that the wavelength
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FIGURE 10. A demonstration of how Turing patterns change with the size of the domain. In the first row,
we use a box with an aspect ratio of 1 and parameter values d = 0.5 and R7 = 0.018. Left L = B = 2, right
L = B = 4. In the bottom row we consider narrow boxes with a fixed width B = 0.2. Left L = 2, right
L = 4.

of the largest positive eigenvalue is greater than B. Turing theory then predicts that
patterns cannot form in the y-direction, and this is confirmed by the appearance of
stripes along the length of the box.

We observe, too, that stripes are not only possible in narrow boxes. Indeed, stripes
can even appear within a square box if the initial conditions are chosen to be varying
in only one direction such as those used in Figures 11(c) and 13. All the patterns
illustrated in Figure 10 were generated from the initial condition

G(x, y) = Zss + cos
(
π(x + L)

2L

)
+ 0.6

[
cos
(2π(x + L)

2L

)
+ cos

(
π(y + B)

2B

)]
,

which helps support the idea that the formation of striped patterns is a direct
consequence of reducing the width of the box. This phenomenon is confirmation of
the well-known result that the patterning becomes structurally simpler as the aspect
ratio grows [23]. A well-known example of this effect can be observed in the coats of
many animals of the feline family such as cats and cheetahs, where colour variations
are spots on the body, but stripes on the narrower tails [23].

In Figure 11 we show a selection of patterns that evolve starting from various initial
conditions and using 71 × 71 Fourier modes. Figure 11(a) illustrates the results if we
begin with the Gaussian profile

G(x, y, 0) = e−(x2+y2), (7.4)
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FIGURE 11. Continued
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FIGURE 11. Six examples of the evolution of patterns in a box with dimensions (x, y) ∈ (−2, 2). In
each instance we show the initial concentration profile of Z with U beginning at its steady-state value.
Following this, we show how the patterns evolve with time. (a) The Gaussian initial profile (7.4). (b) The
cosine initial condition (7.5). In the next three cases we have used perturbed conditions of the type (7.6).
In (c) γ = 1, β1 = 1 and β2 = 9; in (d) γ = 2, β1 = 6 and β2 = 1; and in (e) γ = 4, β1 = 3 and β2 = 1.
Finally, in (f) the initial condition consists of four random spikes each of Gaussian form.
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while for Figure 11(b) we have adopted the primary mode

G(x, y, 0) = cos
(
π(x + L)

2L

)
. (7.5)

The next three examples illustrate various perturbed mode distributions

G(x, y, 0) = cos
(
γ
π(x + L)

2L

)
+ 0.6

[
cos
(
β1
π(x + L)

2L

)
+ cos

(
β2
π(y + B)

2B

)]
(7.6)

with the adventurers α, β1 and β2 specified in the caption of Figure 11. Finally, we
present a case where we have four “random” spikes each of which is Gaussian in
shape. We imagine this example as what may happen if four drops of iodine are added
to an otherwise homogeneous distribution.

We make particular note of the results from Figures 11(b) and (c). In these images
we observe that the pattern seems to have attained a steady-state configuration at
relatively early times (t = 100). However, it becomes apparent that these patterns are
still evolving and eventually they develop a very different structure. This sequence of
events is most evident in (b) and (c) where the pattern changes significantly between
t = 500 and t = 5000.

We propose that the delayed switching in patterns is due to different reasons. When
we begin with a unidirectional initial condition (one with perturbations in only one
direction) such as in (b) the change in pattern from stripes to spots can be attributed
to a compounding of numerical inaccuracies that is built up over time and which
cause slight perturbations to the steady pattern. Evidence that these are numerical
errors is obtained from noting that the transition to the new steady state can be
postponed (but not prevented) by increasing the accuracy of the numerical integration.
This is in accord with the behaviour we saw with circular patterns in Section 5,
where a small perturbation could lead to a transition to a new steady pattern. We
provide an example of this in Figure 12. In this figure, we present two sets of results,
one with 51 × 51 modes and high error tolerances (relative error tolerance = 10−3,
absolute error tolerance = 10−5) and another which uses 71 × 71 modes with very low
error tolerances (relative error tolerance = 10−10, absolute error tolerance = 10−12).
In Figure 12(a) the first indications of numerical error can be seen by t = 3000 and
the pattern no longer resembles stripes by t = 3600, whereas in the higher-accuracy
Figure 12(b) the accumulation of numerical inaccuracies is only beginning at t = 3600.
Both Figures 12(a) and 12(b) ultimately settled to the same spotted pattern (although
interestingly it is vertically shifted). It appears that this is a genuine final state of the
system as it did not change even when we computed to very long times t ≈ 30 000. This
reinforces our belief that there is a plethora of possible steady patterns, some of which
are intrinsically more stable than others. For instance, it seems that a striped pattern,
while persisting for some duration, will eventually evolve to a more stable spotted
structure. We point out that this phenomenon of transition between patterns may not be
unrealistic. In a laboratory setting it is quite conceivable that an experiment could reach
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FIGURE 12. Evolution of spatial patterns in a box of dimensions x, y ∈ (−2, 2) using the initial condition
(7.5). In (a) we use a spectral method using 51 × 51 modes with relative error tolerance = 10−3, absolute
error tolerance = 10−5 and in (b) we use a spectral method using 71 × 71 modes with very low error
tolerances (relative error tolerance = 10−10 and absolute error tolerance = 10−12). By comparing the
two methods we see that the numerical error begins to become present earlier in the lower-precision
computation, leading to the presence of spots.

one steady pattern and then, if the dish is nudged or otherwise perturbed, this could be
sufficient to cause the pattern to transition to another, more stable, configuration.

It is of some interest to ask whether within many various patterns there are some that
are distinctly preferred over others. To address this question we undertook an extensive
investigation consisting of 729 individual cases. In these we considered various initial
conditions from (7.6) where the positive integers γ, β1 and β2 satisfy 1 ≤ γ, β1,
β2 ≤ 9. Each simulation was extended to t = 10 000 to ensure that the correct final
steady pattern had been reached. The results confirmed our suspicion that a range of
stable patterns are possible. The majority of these possess a spot-like character, most
of which are arranged in an approximately 4 × 4 configuration. Other configurations
appeared as straight lines; these always had four stripes, reminiscent of the form shown
in the final plot of the penultimate column of Figure 11(b). Finally, there was a small
subset of patterns that were different again. The conclusion is that the spot-like patterns
seem to be the most stable ones and thus are perhaps the most likely to be seen in
practice. This conclusion is supported by the work of Ermentrout [13] who showed
that the presence of quadratic nonlinear terms tends to lead to the formation of spots
as the dominant pattern. Therefore, for our model for all pattern-forming parameter
values where a genuinely two-dimensional initial condition is given, a spotted pattern
is anticipated.

7.3. The effect of diffusion on pattern formation We have already noted that
the results to date have been obtained with a dimensional diffusion coefficient of
2.75 × 10−6 m2s−1. This choice, combined with a suitable lengthscale, enabled us
to consider dimensionless diffusion coefficients around 10−2. Typical dimensional
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FIGURE 13. The patterns that form at t = 1000 for a range of values Dz; all the other parameters and
initial condition remain unaltered. The initial condition was constant in y with one cosine wave in the
x-direction.

diffusion coefficients for fluids in water are of the order of 10−9 m2s−1 which would
translate to dimensionless values of around 10−5, found to be too computationally
demanding even on a high-performance computer with a fast GPU. As our initial
condition relies on the mixing of two fluids we posited that it may have been, in
part, a viscous mixing process. This is plausible since the kinematic viscosity of water
is roughly 10−6 m2s−1. We now discuss how our patterns change as we decrease our
diffusion coefficient to a more sensible value, thereby modelling how results might
change should the underlying driving physics change from that of a viscous process
towards a true diffusion action.

In Figure 13 we show the effect of reducing the dimensionless diffusion Dz from
10−2 to 10−4; this range corresponds to dimensional values between 2.75 × 10−6 and
2.75 × 10−8 m2s−1. While this might not quite capture the range of a true diffusion
coefficient, it does show a clear trend. As the diffusion coefficient falls, so the number
of stripes increases. When Dz was reduced to around 10−4 the tendency to form dots
rather than stripes is strong enough that even though the initial condition had no
component in the y-direction, machine precision variations are enough to seed the
y-variability seen in the rightmost panel. This is the case even if as many as 2562

Fourier modes were used. We point out that the patterns in Figure 13 were obtained
from an initial condition which only varies in x while y is held constant. By doing
this we force the system to start with a one-dimensional structure which restricts the
possible final outcomes.

It is clear from Figure 13 that the number of stripes is related to the diffusion
coefficient. This dependence can be explained by reference to the linearized system
described in Section 6.1. If k denotes the wavenumber of the solution, the eigenvalues
of the linearized system are
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λ± = 1
2

[
(fu + gz) − k2(Du + Dz) ±

√
(k2(Dz − Du) + fu − gz)2 + 4fzgu

]
,

where fu = S1, fz = S2 as defined in (4.2) and evaluated at (Uss, Zss), gu = R3 and
gz = −α.

Ultimately, we wish to understand how the dominant mode of the pattern varies
with the size of Dz. If we regard the eigenvalue λ ≡ λ(T) where T ≡ k2, then

λ(T) = 1
2

[
(fu + gz) − T(Du + Dz) +

√
(T(Dz − Du) + fu − gz)2 + 4fzgu

]
.

Of importance is the greatest value of λ as k varies, since this sets the lengthscale of
the fastest-growing mode. If we put

dλ
dT
=

1
2

[
Du + Dz −

(Dz − Du)((Dz − Du)T − gz + fu)√
((Dz − Du)T − gz + fu)2 + 4fzgu

]
= 0,

we obtain the quadratic

{A2(A2 − B2)}T2 + {2AC(A2 − B2)}T + C2(A2 − B2) − 4B2fzgu = 0;

here we have defined the constants

A ≡ Dz − Du = Dz(1 − d), B ≡ Dz + Du = Dz(1 + d) and C ≡ fu − gz.

The solution corresponding to the largest eigenvalue is

T = k2 =
1

Dz(1 − d)

[
gz − fu +

√
fzgu

d

]
,

which shows that the most influential mode of the linearized system has a wavenumber
proportional to 1/

√
Dz. Since Dz is defined as

Dz ≡
σxTs

L2
s

,

reducing the dimensionless diffusion coefficient by a given factor can be achieved
in two ways: either by decreasing the dimensional diffusion coefficient by the same
factor, or by increasing the characteristic lengthscale by the square root of that factor.
It follows that the predicted pattern wavelength is λwl = 2π/

√
T and that the number

of stripes across the domain would be

Px =
2L
λwl

. (7.7)

In Figure 14 we summarize this relationship between fastest-growing mode and
diffusion. Five points on this curve have been highlighted and the numbers of
patterns that can fit within the domain x ∈ [−2, 2] are indicated. The numbers
of patterns are respectively 111 (at which the dimensional diffusion coefficient
is σz = 2.75 × 10−9 m2s−1), 35 (σz = 2.75 × 10−8 m2s−1), 15 (σz = 5 × 10−4 m2s−1),
11 (σz = 2.75 × 10−7 m2s−1) and 3.5 (σz = 2.75 × 10−6 m2s−1). When we compare the
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log

k

FIGURE 14. The wavenumber of the fastest-growing mode as a function of the diffusion coefficient. We
also indicate the corresponding number of stripes observed based upon equation (7.7) on the orange,
right-hand-side y-axis. We highlight some particular points and explicitly state how many patterns would
be expected in the x-direction.

results of this prediction to the numerical results shown in Figure 13, we find that the
linearized method does a commendable job in predicting how many stripes will be
seen for a given diffusion coefficient such that in each case the linear prediction is
within one stripe of what is shown in Figure 13. It is important to clarify that this is, of
course, only valid in the pattern-forming region of parameter space where the maximal
eigenvalue is greater than zero.

Therefore, if these patterns could be visualized experimentally, in a dish of this
shape (20 × 20 cm) and assuming σz = 2.75 × 10−9 m2s−1, we would expect to see
stripes or spots forming with a wavelength of approximately 2 mm. Convergence to a
steady pattern would be expected within a number of hours, with the exact amount of
time dependent on the initial condition. This assumes that the presence of oxygen does
not disrupt the formation of bubbles.

8. Concluding remarks

In this work, we have developed a spatially extended model of the Bray–Liebhafsky
chemical reaction. On one level the model is quite simple, but it retains sufficient struc-
ture to enable spatial pattern formation. We have calculated both one-dimensional,
axisymmetric target patterns in a circular beaker as well as two-dimensional configu-
rations that may occur in a rectangular reaction vessel. We have uncovered a wide range
of possible patterns; which is actually seen in any practical setting is a function of the
particular initial conditions at hand. Most structures appear as either spots or stripes.
As our formulation was derived based on realistic practical values, we speculate that
the Bray–Liebhafsky system exhibits kinetic behaviour consistent with the formation
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of spatial patterns. A further direction for the mathematical model of this reaction is
to look at a slowly growing domain to see if the patterns that are formed eventually
evolve into spots. As the characteristic wavelength of the patterns would be expected
to stay the same, we may see phenomena such as spot-splitting as discussed in Crampin
et al. [8].

While we have been able to uncover some characteristic linear and nonlinear
solutions using both one- and two-dimensional geometries, what is presently lacking is
any complementary experimental work. We have previously alluded to the fact that it
appears that little practical work has been conducted in relation to the Bray–Liebhafsky
reaction; this can be ascribed to the absence of visually observable patterns. It is
possible that an experimental investigation in the UV frequency range may allow
laboratory visualization for the spatial patterns, in which case target patterns similar
to Figure 3 might be anticipated. In addition, more complicated nonaxisymmetric
configurations, such as scroll waves, may prove feasible in circular domains. Such
structures could be found by generalizing the Fourier–Bessel formulation (5.1) adopted
in Section 5; such an extension would require substantial additional computational
power and is left for future investigation.
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Appendix A. Implementation of the method of lines

Here we outline the process used to apply the method of lines to our
two-dimensional system. This method of lines is a finite-difference method whereby
every dimension except one is discretized, which turns the system of equations
into a system of semi-discretized ordinary differential equations. This technique is
particularly useful for integrating systems involving simple geometries such as the
rectangles used here. For more complex geometries it may be appropriate to employ a
more sophisticated procedure such as the finite-element method.

Here, we will apply a standard second-order accurate finite-difference method for a
second-order equation. To begin, we discretized our spatial domains and suppose that
time is a continuous variable. We start by forming a regularly spaced (m + 1) × (n + 1)
grid in which meshpoints in the x-direction are located at −L = x0, x1, . . . , xm−1 and
xm = L, while in the y-direction we have −B = y0, y1, . . . , yn−1 and yn = B.
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Next we discretize the governing equations (6.2), and we cast the Laplacian as

∇2φi,j =
φi+1,j(t) − 2φi,j(t) + φi−1,j(t)

Δx2 +
φi,j+1(t) − 2φi,j(t) + φi,j−1(t)

Δy2 ,

where φ represents our concentration variables, either U or Z. Furthermore,
i = 0, 1, . . . , m, j = 0, 1, . . . , n, Δx = xi − xi−1 and Δy = yj − yj−1.

Our finite-difference method representation of the Laplacian cannot be used at the
boundaries as it requires knowledge of x−1, xm+1, y−1 and yn+1 which lie outside the
computational region. We circumvent this difficulty by appealing to our reflective
(Neumann) boundary conditions that allow us to create “false boundaries”. In this
way we conclude that U−1,j = U1,j, Um+1,j = Um−1,j, Ui,−1 = Ui,1 and Ui,j+1 = Ui,j−1 with
equivalent results for Z.

Our system of semi-discretized equations becomes

dUi,j

dt
= Du

(Ui+1,j(t) − 2Ui,j(t) + Ui−1,j(t)
Δx2 +

Ui,j+1(t) − 2Ui,j(t) + Ui,j−1(t)
Δy2

)
+ J(Ui,j, Zi,j),

dZi,j

dt
= Dz

(Zi+1,j(t) − 2Zi,j(t) + Zi−1,j(t)
Δx2 +

Zi,j+1(t) − 2Zi,j(t) + Zi,j−1(t)
Δy2

)
+ K(Ui,j, Zi,j),

in which we have defined

J(Ui,j, Zi,j) ≡ R3Ui,j +
R1 − Ui,j

R1 + Ui,j
Zi,j − R4U2

i,j,

K(Ui,j, Zi,j) ≡ R3Ui,j − αZi,j.

Now that we have our equations for each point in the grid we can solve them
numerically. To do this, we used the ode45 package within MATLAB to integrate
the system forwards in time. When the script was written using exclusively matrix
multiplication, we were able to produce results in similar times to those using the
spectral method. However, when trying to yield highly accurate results (requiring
> 250 meshpoints) the spectral method was much more efficient than this second-order
method.
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