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Abstract

An equivalence relation can be constructed from a given (homogeneous, binary) relation in two steps:
first, construct the smallest reflexive and transitive relation containing the given relation (the “star”
of the relation) and, second, construct the largest symmetric relation that is included in the result
of the first step. The fact that the final result is also reflexive and transitive (as well as symmetric),
and thus an equivalence relation, is not immediately obvious, although straightforward to prove.
Rather than prove that the defining properties of reflexivity and transitivity are satisfied, we establish
reflexivity and transitivity constructively by exhibiting a starth root—in a way that emphasises the
creative process in its construction. The resulting construction is fundamental to algorithms that
determine the strongly connected components of a graph as well as the decomposition of a graph
into its strongly connected components together with an acyclic graph connecting such components.

1 Introduction

Given a (homogeneous, binary) relation R, the relation R∗ is the smallest reflexive and
transitive relation containing R, and R∩R∪ is the largest symmetric relation that is included
in R. By applying these two constructions in order, the resulting relation R∗ ∩(R∗)∪ is
obviously symmetric; less obvious is that it is also reflexive and transitive, that is, the
relation is an equivalence relation.

Backhouse et al. (2022, Theorem 139) prove that, for all relations R, the relation
R∗ ∩ (R∗)∪ can be reformulated using the identity:

R∗ ∩(R∗)
∪ = (R∩(R

∪
)∗)∗ . (1.1)
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In words, R∩(R∪)∗ is a starth root of the equivalence relation R∗ ∩ (R∗)∪. By proving the
property (1.1), one establishes constructively that the relation R∗ ∩(R∗)∪ is indeed reflexive
and transitive, and thus an equivalence relation.

(In general, a starth root of a reflexive–transitive relation U is a relation V such that
U =V ∗. Since U is reflexive and transitive equivales U =U∗, every reflexive–transitive
relation is a starth root of itself. The importance of a starth root becomes evident when it
has particular properties, such as some form of minimality.)

Because of its constructive nature, the identity (1.1) plays a significant role in algorithms
that exploit the decomposition of a finite graph into an acyclic graph together with a collec-
tion of strongly connected components. (In this application, the relation R corresponds to
the edge relation on nodes defined by the graph, and R∗ ∩(R∗)∪ is the relation that holds of
two nodes when they are both in the same strongly connected component. Readers unfa-
miliar with the notation and/or property are referred to Section 2 for a brief summary.)
However, as observed in Backhouse et al. (2022), the proof left a lot to be desired since
it used the definition of the star operator (reflexive–transitive closure) as a sum of powers
of R together with a quite complicated induction property. Attempts we had made to apply
fixed-point fusion had failed.

Recently, Guttmann formulated a proof using the inductive definition of R∗ in point-free
relation algebra. Winter made some improvements to Guttmann’s proof.

Originally, the Guttmann–Winter proof was presented in the traditional mathematical
style: a bottom-up proof that miraculously ends in the final step with the desired property.
In this note, the proof has been rewritten in a way that emphasises the heuristics that were
used to construct the proof. Some comments on how to present difficult proofs follow the
calculations.

2 Relation algebra

In the proof, we use a number of properties without specific mention. These properties will
be known to readers well versed in relation algebra but for others may not be so. For this
reason, we give a very brief summary of the relevant properties.

Variables R, S and T in the proof all denote homogeneous binary relations of the same
type. The set notation we use (“⊆”, “∩” and “∪”) has its standard meaning, and we do
assume familiarity with the properties of the set operators. A property that may be less
familiar is that, for all S, the function ∩S has an upper adjoint, which we denote by S→.
That is, for all R, S and T ,

R∩S ⊆ T ≡ R ⊆ S→T . (2.1)

The property is a consequence of the universal distributivity of set-intersection over set-
union. We call it the “Heyting Galois connection” because it is essentially the same as
the adjunction between ∧p and p⇒ (for all propositions p) in intuitionistic logic, the
formalisation of which is generally attributed to Heyting.

Relation composition and converse are denoted by “◦” and “∪”, respectively, and the
identity relation is denoted by I . All of intersection, union, composition and converse are
monotonic with respect to the subset ordering.
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Converse is defined by the Galois connection, for all R and S,

R
∪ ⊆ S ≡ R⊆ S

∪

together with the distributivity property, for all R and S,

(R◦S)
∪ = S

∪ ◦R
∪

and the property that

I
∪ = I .

The modularity rule (aka the Dedekind rule) is used in both its forms: for all R, S and T ,

R◦S ∩ T ⊆ R◦(S ∩ R
∪ ◦T)

and its symmetric counterpart

R ∩ S◦T ⊆ (R◦T
∪ ∩ S)◦T .

The rule is important because composition does not distribute over intersection: it gives a
handle on expressions involving both operators where the intersection is on the lower side
of a set inclusion.

R∗ denotes the reflexive, transitive closure of R. The inductive definition of R∗ used
here1 is the combination of the two properties:

I ∪ R◦R∗ ⊆ R∗

and, for all T ,

R∗ ⊆T ⇐ I ∪R◦T ⊆ T .

That is, R∗ is the least prefix point of the function mapping T to I ∪ R◦T . We do not directly
use the fact that R∗ is a fixed point of this function, but we do use the (derived) property
that, for all R,

I ⊆ R∗ ∧ (R∗)∗ = R∗ ∧ R∗ ◦R∗ = R∗ ∧ (R
∪
)∗ = (R∗)

∪
.

We also use the fact that the star operator is monotonic with respect to the subset ordering.
It is mentioned in the introduction that the identity we have proved is central to a num-

ber of algorithms that exploit graph theory. In such algorithms, the relation R is the edge
relation on nodes of a finite directed graph: specifically, two nodes u and v are related by
R iff there is an edge in the corresponding graph from u to v. Conversely, two nodes u and
v are related by R∪ iff there is an edge in the graph from v to u. The graph corresponding
to R∪ is thus the graph obtained by reversing the edges of the graph corresponding to R.
Nodes u and v are related by R∗ iff there is a path from u to v in the graph, and by (R∪)∗

iff there is a path from u to v in the graph formed of reversed edges. Equivalently, u and v

are related by (R∪)∗ iff there is a path from v to u in the graph. Formally, the equivalence
is expressed by the identity (R∪)∗ = (R∗)∪.

The relation R∗ ∩(R∪)∗ holds between nodes u and v iff there is both a path from u to
v and a path from v to u in the corresponding graph. Thus, R∗ ∩(R∪)∗ is the relation that

1 An alternative fixed-point definition—alluded to in the text—is the direct formalisation of the property that R∗
is the least reflexive, transitive relation that contains R.
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holds between nodes u and v when both are in the same strongly connected component of
the graph; moreover, since (R∪)∗ = (R∗)∪, it equals R∗ ∩(R∗)∪.

The relation R∩(R∪)∗ holds between nodes u and v iff there is an edge from u to v and
a path from v to u. The identity (1.1) thus states that nodes u and v are strongly connected
iff there is a path from u to v in the graph corresponding to this relation. This insight is
fundamental to algorithms that determine the strongly connected components of a graph as
well as the decomposition of a graph into its strongly connected components together with
an acyclic graph connecting such components.

3 The proof

As stated previously, for arbitrary relation R, the relation R∗ ∩ (R∗)∪ is an equivalence rela-
tion; it is, thus, reflexive and transitive. Our goal is to establish reflexivity and transitivity
constructively by calculating a starth root of the relation. That is, we aim to calculate a
relation T such that R∗ ∩(R∗)∪ = T∗.

The form of this goal suggests that the fixed-point fusion theorem is applicable: R∗ is a
least fixed point and, for all S, the function ∩S is a lower adjoint in a Galois connection
(the Heyting connection mentioned above). These are precisely the circumstances in which
fusion is applicable: the theorem provides sufficient conditions on R and S under which R∗

and ∩S can be “fused” into a fixed point of the form T∗. However, our efforts to achieve the
goal in this way failed: the conditions required by the fusion theorem are just too strong.

In view of this, we are obliged to substantially weaken our goal. The inclusion

(R∩S∗)∗ ⊆ R∗ ∩S∗ .

(for all R and S) is very easily proved and, since (R∪)∗ = (R∗)∪, it immediately follows that

(R∩(R
∪
)∗)∗ ⊆ R∗ ∩(R∗)

∪
.

(The full details are given at the end of this section.) This means that to prove (1.1) it
suffices to prove the converse inclusion:

R∗ ∩(R∗)
∪ ⊆ (R∩(R

∪
)∗)∗ .

This, in turn, suggests the weaker goal: we try to determine conditions on R, S and T such
that

R∗ ∩S ⊆ T∗ .

The calculation is guided by the fact that the condition on S must be satisfied by (R∪)∗ and
the condition on T by R∩(R∪)∗, but we may be lucky and find weaker conditions. (In fact,
we don’t—but it is worth a try.)

Let us begin the calculation:

R∗ ∩S ⊆ T∗

= { Heyting Galois connection }
R∗ ⊆ S→T∗

⇐ { fixed-point definition of R∗ }
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I ∪ R◦(S→T∗) ⊆ S→T∗

= { Heyting Galois connection }
(I ∪ R◦(S→T∗))∩S ⊆ T∗

= { distributivity }
(I ∩S) ∪ (R◦(S→T∗) ∩ S) ⊆ T∗

= { Galois connection defining “∪” }
I ∩S ⊆ T∗ ∧ R◦(S→T∗) ∩ S ⊆ T∗

= { I ⊆T∗ }
R◦(S→T∗) ∩ S ⊆ T∗ .

Summarising, we have proved that, for all R, S and T ,

R∗ ∩S ⊆ T∗ ⇐ R◦(S→T∗) ∩ S ⊆ T∗ . (3.1)

So far the steps taken have been relatively routine. The next steps are less so: we seek a
condition on S that enables the elimination of “S→”. To this end, we calculate

R◦(S→T∗) ∩ S

⊆ { modularity rule }
R◦(S→T∗ ∩ R∪ ◦S)

⊆ { introduce assumption as prelude to cancellation:

• R∪ ◦S ⊆ S }
R◦(S→T∗ ∩ S)

⊆ { (Heyting Galois connection) cancellation,

and monotonicity of composition }
R◦T∗ .

In this way, we have derived the property that, for all R, S and T ,

R◦(S→T∗) ∩ S ⊆ R◦T∗ ⇐ R
∪ ◦S ⊆ S . (3.2)

Note that the condition R∪ ◦S ⊆ S is indeed satisfied by S=(R∪)∗.
We now continue the calculation that led to (3.1).

R◦(S→T∗) ∩ S ⊆ T∗

= { the hardest step in the calculation: as a prelude to applying (3.2),

we exploit the idempotency of set-intersection }
R◦(S→T∗) ∩ S ∩ S ⊆ T∗

⇐ { (3.2) and monotonicity }
R∪ ◦S ⊆ S ∧ R◦T∗ ∩ S ⊆ T∗

⇐ { aiming for fixed-point definition of T∗, use modularity rule }
R∪ ◦S ⊆ S ∧ (R ∩ S ◦ (T∗)∪)◦T∗ ⊆ T∗
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⇐ { fixed-point definition of T∗ }
R∪ ◦S ⊆ S ∧ R ∩ S ◦ (T∗)∪ ⊆ T

⇐ { aiming for S = (R∪)∗, rewrite (T∗)∪ as (T∪)∗

and introduce conditions (T∪)∗ ⊆S and S◦S⊆S }
R∪ ◦S ⊆ S ∧ (T∪)∗ ⊆S ∧ S◦S ⊆ S ∧ R∩S ⊆ T

⇐ { 1st conjunct: fixed-point definition of (R∪)∗

4th conjunct: reflexivity of ⊆
3rd conjunct: transitivity of (R∪)∗

2nd conjunct: R∩S⊆R and monotonicity of converse and star }
S = (R∪)∗ ∧ T = R∩S .

Summarising the calculation, we have proved that, for all R, S and T ,

R◦(S→T∗) ∩ S ⊆ T∗ ⇐ S = (R
∪
)∗ ∧ T = R∩(R

∪
)∗ . (3.3)

Combining (3.1) and (3.3), we get

R∗ ∩(R
∪
)∗ ⊆ (R∩(R

∪
)∗)∗ . (3.4)

As mentioned earlier, the opposite inclusion is easy to prove:

(R∩(R∪)∗)∗ ⊆ R∗ ∩(R∪)∗

= { Galois connection defining intersection }
(R∩(R∪)∗)∗ ⊆ R∗ ∧ (R∩(R∪)∗)∗ ⊆ (R∪)∗

⇐ { 1st conjunct: star is monotonic

2nd conjunct: (R∗)∗ = R∗ (with R :=R∪) and star is monotonic }
R∩ (R∪)∗ ⊆ R ∧ R∩(R∪)∗ ⊆ (R∪)∗

= { Galois connection defining intersection }
R∩ (R∪)∗ ⊆ R∩ (R∪)∗

= { reflexivity of ⊆ }
true .

The identity (1.1) now follows from the antisymmetry of the subset relation and the fact
that (R∪)∗ = (R∗)∪.

4 Specific comments

Before making more general remarks, some comments on the calculation are in order.
The central problem in the initial calculations is how to deal with the occurrence of the

intersection operator (“∩”) on the lower side of an inclusion (“⊆”).
The first calculation is quite straightforward and relatively self-evident: R∗ is by defini-

tion a least fixed point, and it is very common to use fixed-point induction to establish less
obvious properties. (Formally, fixed-point induction is the rule that a least fixed point is a
least prefix point. In this case, the rule used is that, for all R and S,
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R∗ ⊆S ⇐ I ∪R◦S ⊆ S .

There is a choice of which fixed-point definition of R∗ to use should the calculation fail.)
The combination of fixed-point induction with the use of a Galois connection is also very
common. In this case, the “Heyting” Galois connection is, for all R, S and T ,

R∩S ⊆ T ≡ R ⊆ S→T .

The problem of the intersection operator is resolved by simply “shunting” it out of the way
and then “shunting” it back. The remaining steps are relatively self-evident.

The issue that must be resolved in the second calculation is that “S→” has been intro-
duced on the left side of an inclusion. It is vital that this is eliminated. The Heyting Galois
connection suggests a line of attack. Specifically, we have the cancellation rule: for all S
and T ,

(S→T)∩S ⊆ T .

Aiming to apply cancellation, the calculation begins by applying the modularity rule. In
this way, (3.2) is easily derived.

Undoubtedly, the hardest step of all is the first step of the third calculation: the step in
which idempotency of set-intersection is applied to replace “∩S” by “∩ S∩S”. Effectively,
instead of (3.2), the equivalent property

R◦(S→T∗) ∩ S ⊆ R◦T∗ ∩ S ⇐ R
∪ ◦S ⊆ S (4.1)

has been applied. In fact, (4.1) can be further strengthened by replacing the inclusion on
the consequent by an equality since, for all R, S and U ,

R◦U ∩ S ⊆ R◦(S→U) ∩ S

⇐ { monotonicity of composition and intersection }
U ⊆ S→U

= { Heyting Galois connection }
U ∩S ⊆ U

= { property of intersection }
true .

Thus, by antisymmetry of the subset ordering together with (4.1),

R◦(S→T∗)∩S = R◦T∗ ∩S ⇐ R
∪ ◦S ⊆ S . (4.2)

Although the stronger property (4.2) is not used directly, its derivation provides a useful
safety check: because we have derived an equality, we know that simplifying the expres-
sion “R◦(S→T∗)∩S” to “R◦T∗ ∩S” does not incur any loss of information (so long as the
condition R∪ ◦S ⊆ S is satisfied).

5 General comments

So much for the details of the calculation; now more general comments.
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Since the earliest days of the development of “correct-by-construction” program design
techniques, goal-directed reasoning has always been a central theme of “program calcu-
lation”. For example, “programming as a goal-oriented activity” was a specific topic in
Gries’s textbook “The Science of Programming” (Gries, 1981, Chapter 14) and broaden-
ing the theme to mathematical proofs in general was the topic of Van Gasteren’s thesis
(Van Gasteren, 1990). Goal-directed reasoning is also evident in many of Dijkstra’s
“EWD”s (available from the University of Texas) and many other publications of the last
50 years.

In contrast, the standard mathematical style is “bottom-up”. That is evident from the
fact that mathematicians almost always use only-if arguments (implication) as opposed to
if arguments (follows-from). In our view, it is extremely important that the more chal-
lenging calculations are presented in a goal-directed way, as we have tried to do above. It
is important because it helps to teach the creative process underlying the mathematics of
program construction. Of course, when a new theory is being developed, the work often
proceeds in a bottom-up fashion: one identifies the more straightforward properties and
builds up to properties that are not so obvious. But each step in the process is an explo-
ration. One seeks properties of a certain type (e.g., distributivity properties), but the exact
form of the properties is not known at the outset. It is vital that we develop a style of
calculation that exposes the creative process and that we communicate this process to our
students.

Many calculations are, of course, straightforward and do not merit much discussion.
Less interesting calculations are ones where each step simplifies the expression under
consideration (in some sense of the word “simplify”). In contrast, the calculation above
involves several complification steps. In particular, the step we have singled out as the
hardest of all is a complification step: idempotency is used in the derivation of (3.2) to
replace an expression of the form X∩S by X∩S∩S. Idempotency is normally presented
as a simplification rule, whereby the number of occurrences of the operator in question is
reduced. In order to foster creative calculation, it is also vital to avoid an undue bias in the
presentation of equational properties; equality is after all a symmetric operator.

In summary, what we have presented is, in our view, a good example of a non-trivial cal-
culation that deserves careful study. We hope that, in future, more effort is spent in research
publications and textbooks on elucidating the process of creative calculation. Historically,
one argument against calculations in the style above is the need to save space. But modern
technology—the much reduced reliance on “hard copy”—makes this argument much less
relevant.
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