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Abstract. We investigate quantitative aspects of the locally embeddable into finite groups
(LEF) property for subgroups of the topological full group �σ� of a two-sided minimal
subshift over a finite alphabet, measured via the LEF growth function. We show that the
LEF growth of �σ�′ may be bounded from above and below in terms of the recurrence
function and the complexity function of the subshift, respectively. As an application, we
construct groups of previously unseen LEF growth types, and exhibit a continuum of
finitely generated LEF groups which may be distinguished from one another by their LEF
growth.
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1. Introduction
Often in geometric group theory, one considers a growth function F� , which describes
some part of the asymptotic structure of a finitely generated group �. Examples include
subgroup growth, word growth, conjugacy growth, the Dehn function, the Følner function
and residual finiteness growth. Having introduced F� , it is always natural to attempt to
estimate F� for some group � of interest, to relate the behaviour of F� to structural features
of � or its actions, and to explore the types of functions which can arise as F� for some
�. In this paper we make contributions to all three of these themes for the LEF growth
function, by examining some groups arising in Cantor dynamics.

1.1. Statement of results. A group � is locally embeddable into finite groups (LEF) if
every finite subset of � admits an injective partial homomorphism (a local embedding) into

https://doi.org/10.1017/etds.2022.12 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2022.12
https://orcid.org/0000-0003-2949-8095
https://orcid.org/0000-0001-7966-3357
mailto:hb470@cam.ac.uk
mailto:daniele.dona@mail.huji.ac.il
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2022.12&domain=pdf
https://doi.org/10.1017/etds.2022.12


TFGs and LEF growth 1493

a finite group. In other words, every finite subset of the multiplication table of � occurs in
the multiplication table of some finite group. If � is finitely generated by S, the prototypical
finite subsets are the balls BS(n) in the associated word metric. The LEF growth function
LS� sends n ∈ N to the minimal order of a finite group into which BS(n) locally embeds.
The dependence of the function on S is slight, so we suppress S from our notation for the
rest of this introduction.

That the topological full group �ϕ� of a Cantor minimal system (X, ϕ) is an LEF group
was proved by Grigorchuk and Medynets [8]. We prove an effective version of their result,
in the case of a two-sided minimal subshift (X, σ) over a finite alphabet. Let RX : N → N
be the recurrence function of (X, σ) (see Definition 2.12 below).

THEOREM 1.1. Let � be a finitely generated subgroup of �σ�. Then

L�(n) � (2RX(n))! . (1.1)

In particular, this inequality holds for � = �σ�′.

For non-decreasing unbounded functions F1 and F2 we write F1 � F2 if, up to constant
rescaling of the argument, F2 bounds F1 from above (see Definition 2.4 below). Note that
the Cantor minimal system (X, ϕ) being isomorphic to a minimal subshift is a necessary
and sufficient condition for �ϕ�′ to be finitely generated [13]. In the other direction, we
have the following lower bound on the LEF growth of �σ�′. Let pX : N → N be the
complexity function of the minimal subshift (X, σ) (see Definition 2.10 below).

THEOREM 1.2. There exists c > 0 such that exp(cpX(n1/2)) � L�σ�′(n).

Our proof yields c = log(60)/9 ≈ 0.455, but small modifications to the argument
would enable us to make c arbitrarily large. The group �σ�′ always has exponential
word growth, which immediately implies that L�σ�′ grows at least exponentially. One
consequence of Theorem 1.1 is that when the subshift X is extremely ‘orderly’, this
exponential lower bound is close to best possible.

Example 1.3. Let X be a linearly recurrent subshift. Then

exp(n) � L�σ�′(n) ≤ n!. (1.2)

On the other hand, if X is highly non-deterministic, then Theorem 1.2 gives a novel
lower bound for the LEF growth of �σ�′.

Example 1.4. Let X be a subshift of positive entropy. Then

exp(exp(n1/2)) � L�σ�′(n). (1.3)

See §2.2 for definitions of linear recurrence and entropy. Although the upper and lower
bounds proved in Theorems 1.1 and 1.2 are some distance apart, they are powerful enough
to allow us to observe new phenomena in the kinds of functions which can arise as the
LEF growth functions of groups. To achieve this, we adapt a construction of Jung, Lee and
Park [10] to obtain a sufficient diversity of subshifts.
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THEOREM 1.5. For every r ∈ [2, ∞), there are a minimal subshift (Xr , σ), constants
Cr , cr > 0, and an increasing sequence (n(r)i ) of integers such that:
(i) for all n ≥ 2, RXr (n) ≤ exp(Cr(log n)r);

(ii) for all i ∈ N, pXr (n
(r)
i ) ≥ exp(cr (log n(r)i )

r ).

Applying Theorems 1.1 and 1.2 to the groups �σ�′ arising from the subshifts (Xr , σ)
of Theorem 1.5 yields that uncountably many inequivalent LEF growth functions occur
among finitely generated LEF groups, answering a question posed in [5].

THEOREM 1.6. For any r ∈ [2, ∞), there exists a finitely generated LEF group �(r) such
that:
(i) there exists Cr > 0 such that L�(r) (n) � exp(exp(Cr(log n)r));

(ii) for any 2 ≤ r ′ < r , and for all C > 0, L�(r) (n) � exp(exp(C(log n)r
′
)).

Consequently, there is an uncountable family F of pairwise non-isomorphic finitely
generated LEF groups such that, for �1, �2 ∈ F, if �1 
= �2 then L�1�L�2 .

We write F1 ≈ F2 if F1 � F2 and F2 � F1 (see Definition 2.4 below). Conclusions
(i) and (ii) of Theorem 1.6 for the group �(r) = �σ�′ follow from Theorem 1.5(i) and
(ii), by Theorems 1.1 and 1.2, respectively. Further examples of subshifts of ‘intermediate’
complexity could be a rich source of examples of new exotic behaviours in the LEF growth
of groups, and this should be investigated further.

1.2. Background. The concept of an LEF group first appears in the work of Mal’cev, but
was developed and popularized by Vershik and Gordon [16]. All residually finite groups are
LEF, including all finitely generated nilpotent or linear groups, but local embeddability into
finite groups enjoys some closure properties that residual finiteness does not: for instance,
the (regular restricted) wreath product of LEF groups is LEF. Among finitely presented
groups, the classes of LEF and residually finite groups coincide, and this observation
provides a useful tool for proving that certain groups are not finitely presentable (see [8]
for a proof along these lines for derived subgroups of topological full groups). LEF groups
have also been studied in connection with weaker approximation properties of groups, such
as soficity and hyperlinearity, since they provide a source of examples beyond those arising
from residual finiteness or amenability. For instance, Elek and Szabó [7] used the LEF
property to construct the first examples of sofic groups which are not residually amenable.

The LEF growth function was introduced independently in [1, 4] (in the latter under
the name geometric full residual finiteness growth), and fits into the extensive literature
on quantifying finite approximations of infinite groups which has developed over the last
decade. This program started with the work of Bou-Rabee and collaborators on quantitative
residual finiteness (see [3] and the references therein). Using results on quantitative
residual finiteness, word growth, and finite presentability, the LEF growth function has
been estimated for several natural classes of groups (see [5, §2.4]).

Example 1.7. Let � be a finitely generated group.
(i) If � is virtually Zd , then L�(n) ≈ nd .

(ii) L� is bounded above by a polynomial function if and only if � is virtually nilpotent.
(iii) If � ≤ GLd(Z) is finitely generated, not virtually nilpotent, then L�(n) ≈ exp(n).
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Groups of larger LEF growth can be explicitly constructed using wreath products.

THEOREM 1.8. [5, Theorem 1.8] If � is a finitely generated LEF group with word growth
function γ� , and � is a finite non-trivial centreless group, then exp(γ�(n)) � L���(n) �
exp(L�(n)).

In particular, using Example 1.7, Theorem 1.8 allows us to construct groups of LEF
growth ≈ exp(exp(n)) and ≈ exp(nd) (for any d ∈ N). The only other functions which
have been observed to arise as LEF growth functions of groups are inexplicit and very
large (see [5, §5]). Our Theorem 1.6 therefore greatly extends the spectrum of known
growth types.

The derived subgroup of the topological full group �σ� of a minimal subshift (X, σ)
is a remarkable object in group theory. It is a finitely generated infinite simple group,
which, as well as being LEF, is amenable [12] (and indeed was the first group discovered
with this combination of properties). It is also a natural invariant from the point of view
of topological dynamics. As shown in [2], for any Cantor minimal system (X, ϕ), �ϕ�′
retains perfect information about the dynamics of (X, ϕ).

THEOREM 1.9. (Bezuglyi and Medynets) Let (X, ϕ) and (Y , ψ) be Cantor minimal
systems. Then �ϕ�′ ∼= �ψ�′ if and only if (X, ϕ) and (Y , ψ) are flip-conjugate.

It is therefore reasonable to expect that group-theoretic asymptotic invariants of �ϕ�′
should reflect asymptotic features of the dynamical system (X, ϕ). Our Theorems 1.1 and
1.2 are in this spirit: knowing the LEF growth function of �σ�′ allows one to deduce some
bounds on the recurrence or complexity functions of X.

1.3. Methods and structure of the paper. Our proof of Theorem 1.1 is based on
Elek’s streamlined proof of LEF for topological full groups [6]. Given � ≤ �σ�, finitely
generated by S, and a two-sided sequence x ∈ X, the σ -orbit O of x is dense in X, so
� acts faithfully on O. Further, any short word in S moves some cylinder set C ⊆ X,
defined by a short string in x. Since only finitely many such cylinder sets C arise, each
of which intersects O, there exists M ∈ N such that no non-identity element of BS(n)
fixes {σ ix : 1 ≤ i ≤ M} pointwise; moreover, we can take M ≤ RX(Cn) for some C > 0.
Carefully choosing the exact value of M to ensure consistency, we use this to construct a
local embedding BS(n) → Sym(M).

For our lower bound, we observe that �σ�′ contains many copies of the alternating
group Alt(5), acting on disjoint subsets of X (hence generating their direct product). It
follows that any finite group admitting a local embedding of a large ball in �σ�′ also
contains a direct product of many copies of Alt(5) as a subgroup, and so has large order.
The supply of disjoint subsets on which to act, in this construction, is limited by the
complexity function pX, hence the appearance of pX in Theorem 1.2.

This paper is structured as follows. In §§2.1–2.3 we collect necessary background results
about LEF growth of groups, symbolic dynamics, and topological full groups, respectively.
In §3 we construct the local embeddings required to prove Theorem 1.1. In §4 we prove
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Theorem 1.2. In §5 we describe the construction of the minimal subshifts arising in
Theorem 1.5, and deduce Theorems 1.6.

2. Preliminaries
2.1. LEF groups and Schreier graphs.

Definition 2.1. For �, � groups and F ⊆ �, a partial homomorphism of F into � is
a function φ : F → � such that, for all g, h ∈ F , if gh ∈ F , then φ(gh) = φ(g)φ(h).
A partial homomorphism φ is called a local embedding if it is injective. � is locally
embeddable into finite groups if, for all finite F ⊆ �, there exist a finite group Q and a
local embedding of F into Q.

Henceforth suppose that � is LEF and generated by the finite set S. Let BS(n) ⊆ �

denote those elements of length at most n, with respect to the word metric induced on �
by S.

Definition 2.2. The LEF growth of � (with respect to S) is

LS�(n) = min{|Q| : there exists φ : BS(n) → Q a local embedding},
and the LEF action growth is

LAS�(n) = min{d : there exists φ : BS(n) → Sym(d) a local embedding}.
Remark 2.3. It is clear that LAS�(n) ≤ LS�(n) ≤ LAS�(n)!, though of course typically
neither inequality will be sharp. Theorem 1.1 will be obtained from combining the second
of these inequalities with an upper bound on the LEF action growth (see Theorem 3.7). We
comment below (Remark 3.8) on whether our bound in Theorem 1.1 could be improved by
avoiding the use of LEF action growth. Meanwhile the proof of Theorem 1.2 also yields
a bound on LA which is slightly stronger than that which could be obtained by using
the above inequalities and treating the conclusion of Theorem 1.2 as a black box (see
Remark 4.9). In summary, for � = �σ�′ as in Theorems 1.1 and 1.2, we have

pX(n
1/2) � LA�(n) � 2RX(n).

Definition 2.4. For F1, F2 : N → N non-decreasing functions, write F1 � F2 if there
exists C > 0 such that F1(n) ≤ F2(Cn) for all n. Write F1 ≈ F2 if F1 � F2 and F2 � F1.

LEMMA 2.5. Let F = L or LA. Let � ≤ � be finitely generated by T. Then there exists
C > 0 such that, for all n,

FT�(n) ≤ FS�(Cn)
In particular, for T a second finite generating set for �, FS� ≈ FT� .

Proof. This is proved for F = L as Corollary 2.7 in [5]; the proof for F = LA is
identical.

The next proposition is key to the proof of Theorem 1.2. It uses an idea already exploited
in [5, Theorem 3.4] to control the LEF growth of wreath products.
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PROPOSITION 2.6. Let n ∈ N andm ≥ 2. Suppose�1, . . . , �m ≤ � are finite centreless
subgroups, generating their direct product, and that�i ⊆ BS(n). Suppose that Q is a finite
group and that φ : BS(2n) → Q is a local embedding. Then the φ(�i) ≤ Q generate their
direct product, and |Q| ≥ ∏

i |�i |.

Proof. Since φ restricts to an injective homomorphism on each �i , φ(�i) is a subgroup
of Q, isomorphic to �i . Certainly, for i 
= j and gi ∈ �i , gj ∈ �j ,

φ(gi)φ(gj ) = φ(gigj ) = φ(gjgi) = φ(gj )φ(gi).

Therefore, if the φ(�i) fail to generate their direct product, there exist 1 ≤ i ≤ m and
1 
= g ∈ �i such that φ(g) ∈ P , where P = 〈φ(�j ) : i 
= j〉 ≤ Q. P centralizes φ(�i),
since the φ(�j ) do, so for h ∈ �i , φ(gh) = φ(g)φ(h) = φ(h)φ(g) = φ(hg). By injec-
tivity of φ restricted to �j , g is central in �i , a contradiction.

A based graph is a pair (G, v), where G is a directed graph and v ∈ V (G). A
morphism of based graphs (G1, v1) → (G2, v2) is a graph morphism φ : G1 → G2 with
φ(v1) = v2. For C a set, an edge colouring of the graph G in C is a function c : E(G) → C.
A morphism (G1, v1, c1) → (G2, v2, c2) of based graphs with edge colourings in C
is a morphism φ : (G1, v1) → (G2, v2) of based graphs such that, for all e ∈ E(G1),
c1(e) = c2(φ(e)).

Definition 2.7. Let � be a group, 	 be a �-set, and S ⊆ �. The associated Schreier graph
Schr(�, 	, S) is the graph with vertex set 	 and edge set 	× S, with the edge (ω, s)
running from ω to sω. Impose an ordering on the elements of S, to obtain an ordered
|S|-tuple S ∈ �|S| (equivalently, fix a bijection c : S → {1, . . . , |S|}). Then Schr(�, 	, S)
is naturally an edge-coloured graph with colours in {1, . . . , |S|}, via c((ω, s)) = c(s).

Definition 2.8. Let G1, G2 be directed edge-coloured graphs (with colours in C) and let
r ∈ N. We say thatG1 is locally embedded inG2 at radius r if, for every v ∈ V (G1), there
exists w ∈ V (G2) and an isomorphism of based coloured graphs (Bv(r), v) ∼= (Bw(r), w)
(here Bv(r) ⊆ G1 is the induced subgraph on the closed ball of radius r around v in the
path metric on G1, and likewise for Bw(r) ⊆ G2). We say that G1 and G2 are locally
colour isomorphic at radius r if each is locally embedded in the other at radius r, that is,
G1 and G2 have the same set of isomorphism types of balls of radius r.

The next observation is our key tool for constructing the local embeddings needed in
Theorem 1.1; it is proved as Lemma 4.2 in [5].

LEMMA 2.9. For i = 1, 2, let �i be a group acting faithfully on a set 	i , and let Si be
an ordered generating d-tuple in �i . Suppose that the Schreier graphs Schr(�i , 	i , Si ) are
locally colour-isomorphic at some radius at least �3r/2�. Then there is a local embedding
BS1(r) → �2 extending (S1)j �→ (S2)j .

2.2. Words. Throughout, the alphabet A will be a finite discrete set with |A| ≥ 2. Let
A∗ = ⊔

n A
n be the set of finite words over A. An infinite word shall be an element of
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either AZ or AN. We equip the latter sets with the product topology; note that both are
thereby homeomorphic to the Cantor space.

Definition 2.10. Let w ∈ AZ. For k ∈ Z and n ∈ N, the kth n-factor of w is
wkwk+1 · · · wk+n−1 ∈ An. v ∈ An is an n-factor of w if it is the kth n-factor for some
k. n-factors of words in AN and A∗ are defined similarly, with the requirement that k ∈ N
and, for w ∈ A∗, that k ≤ |w| − n+ 1.

In any case, the set of all n-factors of w is denoted by Fn(w). For w an infinite word, the
complexity function pw : N → N of w is given by pw(n) = |Fn(w)|.

It is immediate from the definitions that pw(n+m) ≤ pw(n)pw(m) and pw(n) ≤ |A|n
for all n, m ∈ N.

Definition 2.11. The entropy of w ∈ AZ is

h(w) = lim
n→∞

log pw(n)
n

(the limit is well defined, by the preceding remarks).

Definition 2.12. x ∈ AZ is uniformly recurrent if, for every n ∈ N, there exists Mn ∈ N
such that, for every w ∈ Fn(x) and v ∈ FMn(x), w ∈ Fn(v). The smallest such Mn is
denoted by Rx(n), and Rx : N → N is the recurrence function of x.

Henceforth assume x ∈ AZ to be uniformly recurrent non-periodic.

THEOREM 2.13. [14, Theorem 7.5] Rx(n) ≥ px(n)+ n ≥ 2n+ 1 for all n ∈ N.

In particular, Rx grows at least linearly in n.

Definition 2.14. x is linearly recurrent if there exists C > 0 such that Rx(n) ≤ Cn for all
n ∈ N.

Example 2.15. [15, Theorem 11.4] The Fibonacci word is linearly recurrent.

Definition 2.16. A cylinder set of AZ is a set of the form

� uk , . . . , u−1, u0, u1, . . . , ul � = {y ∈ AZ : yi = ui for k ≤ i ≤ l},
where k, l ∈ Z with k ≤ 0 ≤ l and ui ∈ A for k ≤ i ≤ l. For u ∈ An and 1 ≤ i ≤ n, we
write � u �i for the cylinder set � u1, . . . , ui−1, ui , ui+1, . . . , un �. Note that

� u1, . . . , ui−1, ui , ui+1, . . . , un � = � vk , . . . , v−1, v0, v1, . . . , vl �
where k = 1 − i, l = n− i and vj = uj+i for k ≤ j ≤ l.

For X ⊆ AZ clopen and m ∈ N, an m-cylinder of X is a non-empty set of the form

X∩ � u−m, . . . , u−1, u0, u1, . . . , um � .

The set of m-cylinders of X will be denoted by CylX(m).
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Remark 2.17. Let u ∈ An and 1 ≤ i ≤ n.
(i) For any k, l ∈ N,

⊔
v∈Ak

� vu �k+i = � u �i=
⊔
w∈Al

� uw �i

In particular, for any m ∈ N, the set of all m-cylinders of X forms a clopen partition
of X, and for 1 ≤ k ≤ m, any k-cylinder of X is the disjoint union of the m-cylinders
of X which intersect it.

(ii) The cylinder sets form a basis for the topology on AZ. Hence, for any clopen subset
Y of AZ, Y is the union of cylinder sets. By compactness, and by (i), there exists
C = C(Y ) > 0 such that, for all m ≥ C, Y is the disjoint union of m-cylinders of
AZ.

(iii) Since O(x) = {σ i(x) : i ∈ Z} is dense in X, for ui ∈ A, U = � u−m, . . . , u−1, u0,
u1, . . . , um � intersects X if and only if for some i ∈ Z, σ i(x) ∈ U , which occurs
if and only if uj = xi+j for −m ≤ j ≤ m. That is, U intersects X if and only if
u−m · · · um is a factor of x. Thus the map sending u−m · · · um to U ∩X is a
bijection from F2m+1(x) to CylX(m), hence |CylX(m)| = pX(2m+ 1).

2.3. Topological full groups and minimal subshifts. Let C be the Cantor space. A
Cantor dynamical system is a pair (X, ϕ), where X is a space homeomorphic to C, and
ϕ ∈ Homeo(X) (we specify the space X, rather than always taking X = C, in case the
homeomorphism ϕ is described in terms of a particular model X of Cantor space; in
particular, this will be the case when the system is a subshift). The system (X, ϕ) is called
minimal if every orbit in X under the action of 〈ϕ〉 is dense in X.

Example 2.18. Let A be a finite discrete space with |A| ≥ 2. Then AZ ∼= C. The shift
over A is σ ∈ Homeo(AZ) given, for a = (ai)i∈Z, by σ(a)i = ai+1. The Cantor dynamical
system (AZ, σ) is never minimal.

Definition 2.19. The topological full group �ϕ� of the system (X, ϕ) is the set of all
homeomorphisms g of X such that there exists a continuous function fg : X → Z (called
the orbit cocycle of g) such that for all x ∈ X, g(x) = ϕfg(x)(x) (here we assume Z
equipped with the discrete topology).

Equivalently, g ∈ Homeo(X) lies in �ϕ� if there exist a finite clopen partition
C1, . . . , Cd of X and integers a1, . . . , ad such that for 1 ≤ i ≤ d , g|Ci = ϕai |Ci (taking
{a1, . . . , ad} = im(fg), Ci = f−1

g (ai)). It is straightforward to check that �ϕ� is a
subgroup of Homeo(X).

Remark 2.20. If (X, ϕ) is a minimal system, then the orbit cocycle fg is uniquely
determined by g ∈ �ϕ�, since ϕ has no periodic points.

The next result gives the key source of minimal systems for our purposes.

PROPOSITION 2.21. Suppose x ∈ AZ is uniformly recurrent non-periodic. Then
O(x) ∼= C, and the system (O(x), σ) is minimal.
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Proof. For minimality, see [11, Theorem 1.0.1]. To prove O(x) ∼= C, note that the only
property not automatically inherited by subspaces of C is being perfect. Then, if Y = O(x),
a non-periodic x must have |Y | = ∞, which implies that Y has an accumulation point in C.
But Y contains its set of accumulation points Acc(Y ) in C (by compactness), and Acc(Y )
is closed and σ -invariant, so by minimality Y = Acc(Y ).

Definition 2.22. A subspace X = O(x) ⊆ AZ constructed as in the statement of
Proposition 2.21 is called a minimal subshift.

Remark 2.23. Suppose x ∈ AZ is uniformly recurrent non-periodic. For any y ∈ O(x) and
n ∈ N, Fn(x) = Fn(y). In particular, px and Rx depend only on X, and we may henceforth
write pX or RX instead.

Let �ϕ�′ denote the derived subgroup of �ϕ�. The reason for our focus on minimal
subshifts, among all minimal systems, is made clear by the next result.

THEOREM 2.24. [13, Theorem 5.4] For (X, ϕ) a Cantor minimal system, �ϕ�′ is a finitely
generated group if and only if (X, ϕ) is isomorphic to a minimal subshift.

THEOREM 2.25. [8, Proposition 2.4] Let (X, σ) be a minimal subshift, and let S be a finite
generating set for �σ�′. Then |BS(n)| � exp(n).

COROLLARY 2.26. We have L�σ�′(n) � exp(n).

Proof. This is immediate from the preceding theorem: if φ : BS(n) → Q is a local
embedding, then φ is injective, so |Q| ≥ |BS(n)|.

Thus our Theorem 1.2 is only new in the case pX(n) � n2.

3. Construction of local embeddings
In this section we prove Theorem 1.1. Let (X, σ) be a minimal subshift over the alphabet A.

PROPOSITION 3.1. Let S ⊆ �σ� be finite. Then there exists an integer C1 = C1(S) ≥ 1
such that, for all r ∈ N and all g ∈ BS(r):
(i) max{|fg(x)| : x ∈ X} ≤ C1r;

(ii) for all m ≥ C1r , fg is constant on every m-cylinder of X.

Proof. For (i), for g ∈ �σ� write λ(g) = max{|fg(x)| : x ∈ X}. Since S is finite, we may
choose C1 ≥ max{λ(s) : s ∈ S}. For g, h ∈ �σ�, λ(gh) ≤ λ(g)+ λ(h), so by induction
λ(g) ≤ C1r for all g ∈ BS(r).

For (ii), for every s ∈ S ∪ S−1 there is a finite clopen partition Cs of X, such that fs
is constant on the parts of Cs . By Remark 2.17(ii), we may choose C1 sufficiently large
that, for all s ∈ S ∪ S−1 and m ≥ C1, fs is constant on every m-cylinder of X. Let r ≥ 2
and suppose by induction that the claim holds for smaller r. Let m ≥ C1r , let U be an
m-cylinder of X, and let g ∈ BS(r). Then there exist h ∈ BS(r − 1) and s ∈ S ∪ S−1 ∪ {e}
such that g = sh. By inductive hypothesis, fh is constant on U, say with value i. Observe
that, for any k, l ∈ N, if x, y ∈ X lie in the same (k + l)-cylinder of X, then σ±lx, σ±ly
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lie in the same k-cylinder of X. Thus, there is a unique (m− |i|)-cylinder containing h(U).
By (i), i ∈ [−C1(r − 1), C1(r − 1)], so m− |i| ≥ C1. This implies that fs is constant on
h(U), hence fg is constant on U.

Remark 3.2. By Proposition 3.1(i), for k ∈ N and m ≥ C1r , if x, y ∈ X lie in the same
(k +m)-cylinder of X, then g(x), g(y) lie in the same k-cylinder of X for any g ∈ BS(r).

LEMMA 3.3. Let C1 be as in Proposition 3.1. For all r ∈ N, there exists M = M(r) ∈ N
satisfying:

(i) {σ ix : 1 ≤ i ≤ M} intersects every C1(r + 1)-cylinder of X;
(ii) x and σMx lie in the same C1(2r + 1)-cylinder of X;

(iii) 10C1r ≤ M ≤ 2RX(10C1r).

Proof. Let u ∈ A2C1(r+1)+1. Then � u �C1(r+1)+1 ∩X is a C1(r + 1)-cylinder of X if
and only if u ∈ F2C1(r+1)+1(x). Therefore (i) holds for anyM ≥ RX(2C1(r + 1)+ 1). For
the same reason, a value of M satisfying (ii) occurs at least once in every interval of length
RX(2C1(2r + 1)+ 1). Therefore we can chooseM ≤ RX(2C1(2r + 1)+ 1)+ 10C1r sat-
isfying (i), (ii) and the first inequality of (iii). Since 10C1r ≤ RX(5C1r) by Theorem 2.13,
and since RX is non-decreasing, the second inequality of (iii) also holds.

COROLLARY 3.4. Let M be as in Lemma 3.3. For any |i| ≤ C1r , σ ix and σM+ix lie in
the same C1(r + 1)-cylinder of X.

Proof. This is immediate from Lemma 3.3(ii), by Remark 3.2.

Fix x ∈ X and let O = O(x) be the orbit of x under σ . Then �σ� acts on O. Since X has
no periodic points, this action induces a well-defined homomorphism φ : �σ� → Sym(Z)
by

g(σnx) = σφ(g)[n](x). (3.1)

In other words, φ(g)[n] = n+ fg(σ
nx). Since O is dense in X, φ is injective.

Let � ≤ �σ� be finitely generated, and let S = (s1, . . . , sd) be an ordered generating
d-tuple of elements of �. Then � acts faithfully on Z via φ. Let G = Schr(�, Z, S)
be the associated Schreier graph of the action of � on Z with respect to S. Let C1 =
C1({s1, . . . , sd}) ≥ 1 be as in Proposition 3.1.

LEMMA 3.5. For n ∈ Z and r ∈ N, the isomorphism type of BG(n, r) ⊆ G (as a based,
edge-coloured graph) depends only on the C1(r + 1)-cylinder of X in which σnx lies.

Proof. By Proposition 3.1(i), BG(n, r) ⊆ [n− C1r , n+ C1r] ∩ Z. For |i| ≤ C1r , n+ i ∈
BG(n, r) if and only if, for some g ∈ BS(r), fg(σnx) = i, and by Proposition 3.1(ii), this
condition depends only on the C1r-cylinder of X containing σnx.

For n+ i, n+ j ∈ BG(n, r), and 1 ≤ c ≤ d , (n+ i, n+ j) is a c-coloured edge in G
if and only if fsc (σ

n+ix) = j − i. This depends only on the C1-cylinder of X containing
σn+ix, which in turn depends only on the C1(r + 1)-cylinder of X containing σnx.
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Let r ≥ 1 and let M = M(r) be as in Lemma 3.3. For 1 ≤ c ≤ d define sc : Z/MZ →
Z/MZ by

sc(n+MZ) = φ(sc)[n] +MZ for 1 ≤ n ≤ M .

PROPOSITION 3.6. The function sc lies in Sym(Z/MZ).

Proof. We check that sc is injective, and therefore is indeed a well-defined permutation.
If 1 ≤ m < n ≤ M with φ(sc)[n] ≡ φ(sc)[m] mod M , then

n−m ≡ fsc (σ
mx)− fsc (σ

nx) mod M ,

but by Proposition 3.1(i),

|fsc (σmx)− fsc (σ
nx)| ≤ 2C1

while 1 ≤ n−m ≤ M − 1, so either 1 ≤ n−m ≤ 2C1 or M − 2C1 ≤ n−m ≤ M − 1.
In the former case,

φ(sc)[n] ≡ φ(sc)[m] mod M but |φ(sc)[n] − φ(sc)[m]| ≤ 4C1,

and sinceM ≥ 10C1 by Lemma 3.3(iii), φ(sc)[n] = φ(sc)[m], contradicting the injectivity
of φ(sc). The latter case is similar; we have

1 ≤ m ≤ 2C1 and 1 ≤ m+M − n ≤ 2C1.

By Corollary 3.4, σm+Mx and σmx lie in the same C1(r + 1)-cylinder of X, so by
Proposition 3.1, fsc (σ

m+Mx) = fsc (σ
mx). We may therefore argue as in the former case,

with m+M replacing m.

Theorem 1.1 is now immediate, by Remark 2.3, from the next result.

THEOREM 3.7. We have LAS�(�2r/3�) ≤ 2RX(10C1r).

Proof. Let M be as in Lemma 3.3. By the upper bound on M from Lemma 3.3(iii), it
suffices to show that there is a local embedding BS(�2r/3�) → Sym(Z/MZ) sending
sc to sc for 1 ≤ c ≤ d . Let S = {s1, . . . , sd}; let � = 〈S〉 ≤ Sym(Z/MZ), and let
G = Schr(�, Z/MZ, S). By Lemma 2.9, it suffices to show that G and G are locally
colour-isomorphic at radius r.

By Lemmas 3.5 and 3.3(i), for every m ∈ Z, BG(m, r) ⊆ G is isomorphic (as a
based, edge-coloured graph) to BG(n, r), for some 1 ≤ n ≤ M . Let πM : Z → Z/MZ be
reduction modulo M. It suffices to check that for every 1 ≤ n ≤ M the restriction of πM
to V (BG(n, r)) ⊆ Z induces an isomorphism of based edge-coloured graphs BG(n, r) →
BG(πM(n), r).

Consider In = [n− C1r , n+ C1r] ∩ Z. Since 2C1r < M (by Lemma 3.3), the restric-
tion of πM to In is injective. By Proposition 3.1(i), V (BG(n, r)) ⊆ In, so the restriction
of πM to V (BG(n, r)) is a bijection onto its image. Then it suffices to show that
πM(φ(sc)[k]) = sc(πM(k)) for all k ∈ In and all c.

Since −C1r ≤ k ≤ M + C1r , there exists ε ∈ {0, ±1} such that k′ = k + εM is the
representative of k +MZ in [1, M]. By Corollary 3.4 and Proposition 3.1(ii) (or by k = k′)
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we have fsc (σ
kx) = fsc (σ

k′x), which means φ(sc)[k] = φ(sc)[k′] + εM . Then

πM(φ(sc)[k]) = πM(φ(sc)[k′] + εM) = πM(φ(sc)[k′]) = sc(k
′ +MZ) = sc(πM(k))

as claimed.
By the preceding paragraph, the restriction of πM to V (BG(n, r)) preserves edges and

colours. In particular, the vertices of BG(πM(n), r), which are precisely the endpoints of
(undirected) edge-paths of length no greater than r in G starting at πM(n), are exactly the
image under πM of the endpoints of edge paths of length no greater than r in G starting at n,
namely the vertices of BG(n, r). Hence πM does indeed induce the desired isomorphism
of based edge-coloured graphs.

Remark 3.8. In the proof of Theorem 3.7, it is unclear what can be said in general about
the subgroup � of Sym(Z/MZ) generated by s1, . . . , sd . If � were to be much smaller
than Sym(Z/MZ), then we might deduce a better upper bound in Theorem 1.1 than
that obtained by combining Theorem 1.1 with Remark 2.3. That said, it is known that
a ‘generic’ subset of Sym(Z/MZ) (in various senses) generates a subgroup containing
Alt(Z/MZ), so absent a specific reason for expecting the contrary, it is reasonable to
suspect the index of � in Sym(Z/MZ) to be small.

4. Obstructions to small local embeddings
Let (X, σ) be a minimal subshift over A, and fix x ∈ AZ with X = O(x). Let S ⊆ �σ�′
be a finite generating set (such exists by Theorem 2.24), and let |·|S be the word length
function induced on �σ�′ by S. Recall that pX = px : N → N is the complexity function
of x; RX = Rx : N → N is the recurrence function of x, and CylX(m) denotes the set of
m-cylinders of X.

LEMMA 4.1. Suppose that m ≥ (Rx(4)− 1)/2, and let U ∈ CylX(m). Then the sets
σ i(U), for −2 ≤ i ≤ 2, are pairwise disjoint.

Proof. Suppose to the contrary that y ∈ σ i(U) ∩ σ j (U), for some −2 ≤ i < j ≤ 2. Writ-
ing k = j − i, we have yl = yl+k for −m ≤ l ≤ m− k. Letting w = y−my−m+1 · · · ym ∈
F2m+1(x), we have |Fk(w)| ≤ k. On the other hand, 2m+ 1 ≥ Rx(k), so by the definition
of Rx, |Fk(w)| = |Fk(x)| = px(k) ≥ k + 1 (the last inequality holding by Theorem 2.13),
a contradiction.

LEMMA 4.2. Let m ≥ max{(Rx(4)− 1)/2, 5}. There exists a set DCylX(m) ⊆ CylX(m)
such that the sets σ i(U), for U ∈ DCylX(m) and −2 ≤ i ≤ 2, are pairwise disjoint, and

|DCylX(m)| ≥ px(2m− 7)/9. (4.1)

Proof. We construct DCylX(m) via an iterative process as follows. At step 0, let U0 be
any m-cylinder. Then the σ i(U0), for −2 ≤ i ≤ 2, are pairwise disjoint, by Lemma 4.1.
Let A0 be the set of (m− 4)-cylinders containing one of the σ j (U0), for −4 ≤ j ≤ 4, so
that |A0| ≤ 9, and let B0 = {U0}.

At each subsequent step k + 1, we start with Bk a family of m-cylinders and Ak a family
of (m− 4)-cylinders such that, for any U ∈ Bk and −4 ≤ j ≤ 4, there exists V ∈ Ak such

https://doi.org/10.1017/etds.2022.12 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.12


1504 H. Bradford and D. Dona

that σ j (U) ⊆ V . If Ak is a cover of X, then set DCylX(m) = Bk and stop. Otherwise,
choose yk ∈ X \ (⋃V∈Ak V ) and let Uk+1 be the m-cylinder of X containing yk . Then
σ i(Uk+1) (−2 ≤ i ≤ 2) are pairwise disjoint (by Lemma 4.1). If there exist 0 ≤ l ≤ k

and −2 ≤ i, j ≤ 2 such that σ i(Uk+1) ∩ σ j (Ul) 
= ∅, then, letting V ∈ Ak be such that
σ j−i (Ul) ⊆ V , Uk+1 ⊆ V (by Remark 2.17), contradicting the choice of yk .

We may therefore let Bk+1 = Bk ∪ {Uk+1} and produce Ak+1 by adding to Ak all
(m− 4)-cylinders containing one of the σ j (Uk+1), −4 ≤ j ≤ 4. At every stage |Ak+1| ≤
|Ak| + 9, |Bk+1| ≥ |Bk| + 1, and by Remark 2.17(iii), the process terminates only when
|Ak| = px(2m− 7).

Notation 4.3. Let U ⊆ X be a non-empty clopen set, such that σ−1(U), U and σ(U) are
pairwise disjoint. We denote by fU the element of �σ� given by

fU(y) =

⎧⎪⎪⎨
⎪⎪⎩

σ(y), y ∈ U ∪ σ−1(U),

σ−2(y), y ∈ σ(U),
y otherwise.

LEMMA 4.4. All fU lie in �σ�′.

Proof. Define hU ∈ �σ� by

hU(y) =

⎧⎪⎪⎨
⎪⎪⎩

σ(y), y ∈ σ−1(U),

σ−1(y), y ∈ U ,

y otherwise.

Then fU = f−1
U h−1

U fUhU .

The following identities appear as [13, Lemma 5.3]; they are proved by direct
calculation, some of which is explained in [11, Lemma 3.0.11].

LEMMA 4.5. Let U , V ⊆ X be non-empty clopen subsets.
(i) If σ i(V ) are pairwise disjoint for −2 ≤ i ≤ 2, and U ⊆ V , then

τV fUτ
−1
V = fσ(U),

τ−1
V fUτV = fσ−1(U),

where τV = fσ−1(V )fσ(V ).
(ii) If σ−1(U), U, σ(U) ∪ σ−1(V ), V, σ(V ) are pairwise disjoint, then

fσ(U)∩σ−1(V ) = fV f
−1
U f−1

V fU .

PROPOSITION 4.6. There exists C2 = C2(X, S) > 0 such that, for all m ≥
(Rx(4)− 1)/2, if W ⊆ X is an m-cylinder of X, then fσ−1(W), fW , fσ(W) ∈ BS(C2m

2).

Proof. Write C0 = �(Rx(4)− 1)/2� + 1, and define mn = C0(2n + 1), so that mn+1 =
2mn − C0. We inductively construct a non-decreasing sequence (ln) of positive integers,
such that, ifW ⊆ X is an m-cylinder of X, with C0 ≤ m ≤ mn, then fσ−1(W), fW , fσ(W) ∈
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BS(ln). We then analyse the growth of ln. Since there are finitely many m-cylinders W of X
with C0 ≤ m ≤ m0 = 2C0, and, for each, fW ∈ �σ�′ by Lemma 4.4, there is a constant l0
such that fσ−1(W), fW , fσ(W) ∈ BS(l0) for all such W. For n ≥ 1, suppose mn−1 < m ≤
mn and let

W =� w−m, . . . , w−1, w0, w1, . . . , wm � ∩X
be an m-cylinder of X. Set C = C0 or C0 − 1, such that m+ C is even, and let

U =� w−m, . . . , w−2, w−1, w0, . . . , wC �,

V =� w−C , . . . , w0, w1, w2, . . . , wm �
so that σ(U) ∩ σ−1(V ) = W , and

σ(U) ∪ σ−1(V ) ⊆� w−C , . . . , w−1, w0, w1, . . . , wC �,

so by Lemma 4.1, U and V satisfy the conditions of Lemma 4.5(ii), and

|fW |S ≤ 2(|fU |S + |fV |S). (4.2)

Now, σ−(m−C−2)/2(U) and σ (m−C−2)/2(V ) are (m+ C)/2-cylinders of X, and
(m+ C)/2 ≤ mn−1, so by induction,

|fσ−(m−C−2)/2(U)|S , |fσ(m−C−2)/2(V )|S ≤ ln−1. (4.3)

Let U ′
i be the C0-cylinder of X containing σ−i (U), for 1 ≤ i ≤ (m− C − 2)/2.

Then by Lemma 4.5(i), fU can be obtained from fσ−(m−C−2)/2(U) by conjugating by
τU ′

(m−C−2)/2
, . . . , τU ′

1
in sequence. By our base case, |τU ′

i
|S ≤ 2l0 for all i, so

|fU |S ≤ |fσ−(m−C−2)/2(U)|S + 2l0(m− C − 2),

and arguing similarly for V,

|fV |S ≤ |fσ(m−C−2)/2(V )|S + 2l0(m− C − 2).

Combining with (4.2), (4.3), and our bound on mn, we have

|fW |S ≤ 4ln−1 + C′2n + C′′ (4.4)

for some constants C′, C′′ > 0. Finally, applying Lemma 4.5(i) a final time, we conjugate
fW by τW ′ or τ−1

W ′ whereW ′ is theC0-cylinder of X containing W, and |fσ(W)|S , |fσ−1(W)|S
also satisfy a bound as in (4.4) (for some larger C′′). We may therefore take ln = 4ln−1 +
C′2n + C′′, so that fσ−1(W), fW , fσ(W) ∈ BS(ln). Solving the recurrence for ln, we obtain
ln ≤ C′

24n ≤ (4C′
2/C

2
0)m

2
n−1 ≤ (4C′

2/C
2
0)m

2 for some C′
2 > 0.

Recall that for g ∈ Homeo(X), the support of g is

supp(g) = {x ∈ X : g(x) 
= x}.
PROPOSITION 4.7. Let m and DCylX(m) be as in Lemma 4.2. There exists C3 =
C3(X, S) > 0 such that, for all U ∈ DCylX(m), there is a subgroup �U ≤ �σ�′
satisfying:
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(i) �U ∼= Alt(5);
(ii) �U ⊆ BS(C3m

2);
(iii) for all g ∈ �U ,

supp(g) ⊆
2⋃

i=−2

σ i(U). (4.5)

Proof. For U ∈ DCylX(m), let �U = 〈fσ−1(U), fU , fσ(U)〉. Then (iii) holds, since it
holds for g ∈ {fσ−1(U), fU , fσ(U)}. Now �U acts, faithfully, on {σ i(U) : |i| ≤ 2}. Iden-
tifying this set in the obvious way with {−2, −1, 0, 1, 2}, fσ−1(U), fU and fσ(U) act,
respectively, as the 3-cycles (−2 − 1 0), (−1 0 1) and (0 1 2). As such, �U acts as the
alternating group on {−2, −1, 0, 1, 2}, and we have (i).

By Proposition 4.6, fσ−1(U), fU , fσ(U) ∈ BS(C2m
2), and since |�U | = 60, �U ⊆

BS(60C2m
2), whence (ii).

Proof of Theorem 1.2. Let Q be a finite group and π : BS(r) → Q be a local embedding.
For any m ≤ (r/2C3)

1/2, we have �U ≤ BS(r/2), where C3 > 0 and �U are as
in Proposition 4.7. We apply Proposition 2.6 to the family {�U : U ∈ DCyl(m)}
for m ≥ c′r1/2 (c′ > 0 sufficiently small), and r larger than a constant such that
m ≥ (Rx(4)− 1)/2. Since the �U are disjointly supported (by Lemma 4.2 and (4.5)),
they do indeed generate their direct product. From Proposition 2.6 we conclude that

|Q| ≥
∏

U∈DCylX(m)

|�U |

≥ exp(cpx(2m− 7)) (by (4.1))

≥ exp(cpx(2c′r1/2 − 7))

for c = log(60)/9.

Remark 4.8. We can improve the constant c by modifying the construction so as to
take �U ∼= Alt(2d + 1) for large d, instead of Alt(5). To do this we would need to
take DCylX(m) to be a family of m-cylinders U such that all sets σ i(U) are pairwise
disjoint for −d ≤ i ≤ d , so that our construction in Lemma 4.2 would lead to a bound
|DCylX(m)| ≥ pX(2m− C)/(2d − 1). We could nevertheless take c = log(d! /2)/
(2d − 1), which grows in d.

Remark 4.9. The same argument also gives a lower bound on the LEF action growth
of �σ�′, which is a little stronger than that obtained by applying Remark 2.3 to the
conclusion of Theorem 1.2. Suppose π : BS(r) → Sym(d) is a local embedding. Then by
Propositions 2.6 and 4.7, im(π) contains a subgroup isomorphic to the direct product of
P = px(2cr1/2 − 7) copies of Alt(5), which in turn contains the direct product of P copies
of C5. By [9, Theorem 2], the minimal degree of a faithful permutation representation of
the latter is 5P . Hence LA�σ�′(n) � px(n

1/2).
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5. Systems of intermediate growth
In this section we prove Theorem 1.5, and deduce Theorem 1.6. The following example
is modelled on the construction in [10, §3]. In this section, ‘large’ means larger than a
certain absolute constant (which we do not compute), so as to make true some needed
inequalities. We start with a general observation, the utility of which is that it allows us to
obtain an infinite word whose asymptotic features (such as the behaviour of the complexity
or recurrence functions) can be controlled in terms of the sets of factors of a sequence of
finite words u(n).

LEMMA 5.1. Let (Lj ) be an increasing sequence of positive integers; let x(j) ∈ ALj . For
each j ∈ N, let Kj ∈ N with 2 ≤ Kj ≤ Lj+1 − Lj and suppose that x(j) is the Kj th
Lj -factor of x(j+1). Choose M0 ∈ N with 1 ≤ M0 ≤ L0, and define (Mj ) recursively via
Mj+1 = Mj +Kj − 1. Then there is a unique point x ∈ AZ lying in the intersection of the
cylinder sets � x(j) �Mj

. Moreover, for all n, Fn(x) = ⋃
j Fn(x

(j)).

Proof. By construction the � x(j) �Mn form a nested descending sequence of non-empty
closed sets in the compact space AZ, hence their intersection is non-empty. Let x lie in this
intersection.

In x(j), there are Mj − 1 = Mj−1 +Kj−1 − 2 letters strictly to the left of the Mj th
letter, and Lj −Mj ≥ (Lj−1 −Mj−1)+ 1 strictly to the right. Since both these quantities
tend to ∞, for every i ∈ Z, the ith letter of x is uniquely determined by x ∈� x(j) �Mj

,
provided j is sufficiently large. Similarly, for any i and n, the ith n-factor of x lies in x(j)

for j sufficiently large, so Fn(x) ⊆ ⋃
j Fn(x

(j)). Conversely, x ∈� x(j) �Mj
implies x(j)

(and hence every n-factor of x(j)) is a factor of x.

Choose a real number r ≥ 2. First, fix a large x divisible by 3. We work over the alphabet
A = {a, b}. Fix two wordsw(0), w′(0) ∈ A∗ of length x/3. Among all wordsw(0)vw′(0) for
|v| = x/3, take a subset C0 with |C0| = x and such that no factor of any element of C0 is
equal to w(0), w′(0) except for the prefixes and suffixes themselves. This is easily achieved:
for instance, taking w(0) = ax/3, w′(0) = bx/3, we can form C0 by choosing v from among
those words starting in b and ending in a (of which there are 2(x/3)−2 ≥ x for x large).

Assuming that we have already defined Cj , we will define Cj+1; for all i, we set
Ni = |Ci | and li the length of any element of Ci , so that N0 = l0 = x. We prove the
following statements for all j ≥ 0.

(i) Nj , lj are large and increasing in j; 3|Nj , 3|lj ; all words in Cj have the same prefix
of length lj /3, and the same suffix of length lj /3.

(ii) Nj+2 ≤ exp(2r (log Nj)r), Nj+1 ≥ N2
j , and, for j even, Nj+1 ≥ exp( 1

2 (log Nj)r).
(iii) Nj < lj+1 ≤ N2

j .
We prove (i) and (iii) by induction with base case j = 0, for which all claims are true (for
l1 see below), and (ii) directly.

Fix an ordering of Cj , arbitrarily: the elements of Cj are words u(j)i , where the index i
follows the ordering. Define the word

u(j+1) = u
(j)

1 u
(j)

2 u
(j)

3 · · · u(j)Nj−1u
(j)
Nj

= w(j+1)u
(j)

1/3Nj+1u
(j)

1/3Nj+2 · · · u(j)2/3Njw
′(j+1),
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where w(j+1) and w′(j+1) collect the first and last third of the u(j)i , respectively: this is
possible since 3|Nj by induction, and it implies 3|lj+1 where lj+1 = |u(j+1)| =
ljNj is large. Take a collection Pj ⊂ Sym(Nj/3): if j is even, choose |Pj | =
3�exp((log Nj)r)/3�, otherwise choose |Pj | = N2

j (note that this is possible for x large).

Then define Cj+1 to be the set of all words {w(j+1)v
(j+1)
π w′(j+1) : π ∈ Pj } where, for

π ∈ Pj , v(j+1)
π is obtained by permuting the factors u(j)i of u(j+1) with i ∈ (Nj/3, 2Nj/3]

according to π ; that is,

v(j+1)
π = u

(j)

1/3Nj+π(1)u
(j)

1/3Nj+π(2) · · · u(j)1/3Nj+π(1/3Nj ).

By definition we have 3|Nj+1 and Nj+1 large; lj+1 > lj , Nj+1 > Nj , and for all j ≥ 0,

Nj+2 ≤
⎧⎨
⎩

exp(2(log Nj)r) (2 | j)
exp((log N2

j )
r ) (2 � j)

≤ exp(2r (log Nj)r);

Nj+1 ≥ min{N2
j , exp((log Nj)r)− 3} = N2

j ;

2|j ⇒ Nj+1 ≥ exp((log Nj)r)− 3 ≥ exp((log Nj)r/2);

l1 = x2 = N2
0 > N0;

j ≥ 1 ⇒ Nj < lj+1 = ljNj ≤ N2
j−1Nj ≤ N2

j ,

so (i)–(iii) do indeed hold. Two key features of this construction are that, for all j:
(a) all words in Cj have the same prefix w(j) and suffix w′(j) of length 1

3 lj ;
(b) every word in Cj+1 is the product of all the words from Cj (in some order).

We now construct a uniformly recurrent non-periodic word x = x(r), such that the
subshift Xr = O(x) satisfies the conditions of Theorem 1.5. Consider the words x(j) =
u
(j)

Nj /3. Then x(j) is the Kj = (lj (Nj/3 − 1)+ 1)th lj -factor of x(j+1), for all j, and

2 ≤ Kj ≤ lj+1 − lj . For any 1 ≤ M0 ≤ l0, apply Lemma 5.1 to the sequence x(j) (with
Lj = lj ) to obtain x.

PROPOSITION 5.2. The complexity function px of x satisfies px(lj ) ≥ exp((log lj )r/2r+1),
for all j ∈ N odd.

Proof. Since u(j+1)
Nj /3 ∈ Cj+1 is a factor of x, we have by (b) above that all elements of Cj

are distinct factors of x of length lj , so px(lj ) ≥ Nj for all j ∈ N. For j odd, it follows that

px(lj ) ≥ Nj ≥ exp((log Nj−1)
r/2) ≥ exp((log

√
lj )

r/2) = exp((log lj )r/2r+1)

by (ii) and (iii) above.

PROPOSITION 5.3. The recurrence function Rx of x satisfies

Rx(n) ≤ C exp(4r+1(log n)r)

for some C > 0 and all n ∈ N.
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Proof. Fix any factor w of x of length n, and suppose that j is such that n < 2lj /3. w
is a factor of some x(k) = u

(k)
Nk/3, for k > j , and applying (b) above repeatedly, x(k) is

expressible as a product of words u(j)i . Therefore, there are indices i1 and i2 such that w is
a factor of some u(j)i1 u

(j)
i2

; moreover, it intersects the middle third of at most one of u(j)i1 or

u
(j)
i2

, so by (a) above, it sits entirely inside either u(j)i1 w
(j) or w′(j)u(j)i2 .

Now let v be any factor x of length 3lj+1. As before, v is a factor of some x(k
′) = u

(k′)
Nk′/3,

for k′ > j + 1, and applying (b) above repeatedly, x(k
′) is expressible as a product of words

u
(j+1)
i . Therefore, there are indices i′1 and i′2 such that u(j+1)

i′1
u
(j+1)
i′2

is a factor of v. By (b)

above, and the fact that every u(j)i has w(j) as a prefix and w′(j) as a suffix, it follows
that u(j)i1 w

(j) and w′(j)u(j)i2 are factors of u(j+1)
i′1

u
(j+1)
i′2

, hence w is a factor of v. That is,
Rx(n) ≤ 3lj+1.

Partitioning the integers, we have Rx(n) ≤ 3lj+1 for any n ∈ [2lj−1/3, 2lj /3). For
j ≥ 2, we have

log Rx(n)− log 3 ≤ log lj+1 ≤ 2 log Nj ≤ 2r+1(log Nj−2)
r

< 2r+1(log lj−1)
r ≤ 2r+1(log(3n/2))r ≤ 4r+1(log n)r

by (ii) and (iii), and our bounds on n, as required.

Proof of Theorem 1.5. Let x = x(r) be as above. Set Xr = O(x). By Remark 2.23, items
(i) and (ii) follow from Propositions 5.3 and 5.2, respectively, with n(r)i = l2i+1.

Proof of Theorem 1.6. Recall that N! ≤ exp(N log N) for all N. Applying Theorem 1.1 to
�(r) = �σ�′, where (Xr , σ) is as in Theorem 1.5, we have

LS
�(r)
(n) ≤ exp(2RX(Cn) log(2RX(Cn))), (5.1)

for all n and for some C > 0, where X = Xr , so that RX(n) ≤ exp(Cr(log n)r). Hence,
for n ≥ 2,

log(2RX(Cn)) ≤ Cr(log n+ log C)r + log 2 ≤ C′
r (log n)r

for a possibly larger constant C′
r , so that

log(2RX(Cn))+ log log(2RX(Cn)) ≤ C′
r (log n)r + r log log n+ log C′

r

≤ C′′
r (log n)r

again, for C′′
r a possibly larger constant. Thus, by (5.1), LS

�(r)
(n) ≤ exp(exp(C′′

r (log n)r)),
and we have (i).

For (ii), suppose for a contradiction that 2 ≤ r ′ < r and that C, C′ > 0 are such that,
for all n sufficiently large,

LS
�(r)
(n) ≤ exp(exp(C(log C′n)r ′)). (5.2)

By Theorems 1.2 and 1.5(ii), we have

LS
�(r)
(�n(r)i /c�2) ≥ exp(cpX(n

(r)
i )) ≥ exp(c exp(cr (log n(r)i )

r ))
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for some c > 0 and all i ∈ N. Hence by (5.2),

C(2 log n(r)i + log C′ − 2 log c + 1)r
′ ≥ cr(log n(r)i )

r + log c

for all i sufficiently large, a contradiction.
For the final statement, let F = {�(r) : r ≥ 2}. Let 2 ≤ r ′ < r , and suppose for a

contradiction that L�(r) � L
�(r

′) . By (i),

L�(r) (n) � exp(exp(Cr ′(log n)r
′
)),

contradicting (ii).
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