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Small heavy particles cannot be attracted into a region of closed streamlines in a
non-accelerating frame (Sapsis & Haller, Chaos, vol. 20, issue 1, 2010, 017515). In a
rotating system of vortices, however, particles can get trapped (Angilella, Physica D,
vol. 239, issue 18, 2010, pp. 1789–1797) in the vicinity of vortices. We perform numerical
simulations to examine trapping of inertial particles in a prototypical rotating flow
described by a rotating pair of Lamb–Oseen vortices of identical strength, in the absence
of gravity. Our parameter space includes the particle Stokes number St, which is a measure
of the particle’s inertia, and a density parameter R, which measures the particle’s density
relative to the fluid. In particular, we study the regime 0 < R < 1 and 0 < St < 1, which
corresponds to an inertial particle that is finitely denser than the fluid. We show that in this
regime, a significant fraction of particles can be trapped indefinitely close to the vortices,
and display extreme clustering into objects of smaller dimension: attracting fixed points
and limit cycles of different periods including chaotic attractors. As St increases for a
given R, we may have an incomplete or complete period-doubling route to chaos, as well
as an unusual period-halving route back to a fixed point attractor. The fraction of trapped
particles can be a non-monotonic function of St, and we may even have windows in St for
which no particle trapping occurs. At St larger than a critical value, beyond which trapping
ceases to exist, significant fractions of particles can spend long but finite times in the vortex
vicinity. The inclusion of the Basset–Boussinesq history (BBH) force is imperative in our
study due to the finite density of the particle. We observe that the BBH force significantly
increases the basin of attraction over which trapping occurs, and also widens the range
of St for which trapping can be realised. Extreme clustering can be of significance in
a host of physical applications, including planetesimal formation by aggregation of dust
in protoplanetary discs, and aggregation of phytoplankton in the ocean. Our findings in
the prototypical model provide impetus to conduct experiments and further numerical
investigations to understand clustering of inertial particles.
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1. Introduction

Turbulent flows with suspended inertial (finitely small) particles of varying relative
densities are ubiquitous in both natural and industrial systems. Examples of such
particulate suspensions include water droplets in clouds, near-neutrally buoyant
microplastics and phytoplankton in the ocean, dust in protoplanetary discs and air-drying
systems of powdered food, fertilisers and pesticides. These particles, typically denser than
the suspending fluid, can exhibit clustering. Clustering results in enhanced possibility
for inter-particle collisions, which are critical for various natural phenomena including
raindrop formation (Falkovich, Fouxon & Stepanov 2002; Wilkinson, Mehlig & Bezuglyy
2006), reproduction among small organisms (Guasto, Rusconi & Stocker 2012) and planet
formation (Tanga et al. 1996; Bracco et al. 1999). There have been several studies on
particle dispersion in direct numerical simulations of turbulent flows (Squires & Eaton
1991; Marshall 2005; Bec et al. 2007). An alternative approach to model the turbulence has
also been widely taken. Intense vortices, generated by vortex stretching, are the building
blocks of turbulent flows (Moffatt, Kida & Ohkitani 1994). These prevalent turbulent flow
structures are sampled by the suspended inertial particles, and this can influence their
clustering. Therefore, the ultimate goal of understanding inertial particle dynamics in
turbulent flows is equally well-served by studying motion of particles in model vortical
flows (Tio et al. 1993; Lasheras & Tio 1994; Marcu, Meiburg & Newton 1995; Raju &
Meiburg 1997; Marshall 1998; Varaksin & Ryzhkov 2022), as the underlying physics can
be well-elucidated.

Our purpose is to understand the effect of systemic rotation on particle clustering.
We present an argument for why the physics in a rotating system is worth studying.
Conventional wisdom suggests that inertial particles denser than the suspending fluid
centrifuge out of vortical regions and cluster in regions of high strain (Squires & Eaton
1991; Wang & Maxey 1993; Reade & Collins 2000; Aliseda et al. 2002). An explanation
for this is provided in Haller & Sapsis (2008) and Sapsis & Haller (2010) for the case
of particles of small inertia, characterised by small Stokes number St (ratio of particle
relaxation time scale to a characteristic flow time scale). In the field description of particle
velocity v̂, an approximation that is allowed when St � 1 (Maxey 1987; Druzhinin 1995;
Ferry & Balachandar 2001), its divergence at any spatial point x̂ is given by

∇̂ · v̂ = −St
{
|Ŝ(x̂, t)|2 − |ω̂(x̂, t)|2

}
. (1.1)

Here, Ŝ and ω̂ are the strain-rate tensor and the rotation-rate tensor, respectively, of the
underlying incompressible flow field û(x̂, t), t is time, |.| is the Euclidean matrix norm
and ˆ(·) refers to quantities in the laboratory-fixed frame. A positive divergence implies
the evacuation of a neighbourhood, while a negative divergence implies clustering. They
further argued that the net divergence from any region encompassed by a closed streamline
is positive, i.e. there can thus be no clustering in the neighbourhood of an elliptic fixed
point in the laboratory frame. In particular, we may conclude that particles of St � 1
will evacuate the vicinity of an isolated vortex and constantly move further from it. In
the presence of background rotation, the criterion is modified. Ravichandran, Perlekar &
Govindarajan (2014) showed that

∇ · v = −St
{
|S(x, t)|2 − |ω(x, t)|2 + 2Ω2

}
≡ StQrot, (1.2)

where Ω is the constant angular speed of the frame of reference, and quantities without
the over-hat are written in the rotating frame. Thus, particles of small St can cluster into
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regions within closed streamlines. This opens up the possibility that a significant loading
of particles can be trapped in the vicinity of vortices in rotating systems for long times.
Therefore, the physics of particle collisions, coalescence and growth in rotating systems
can be significantly different. The above equation also defines the Okubo–Weiss parameter
Qrot in the rotating frame of reference.

A pair of co-rotating point vortices, executing motion on a circle at a constant angular
velocity, is a prototypical flow description which permits clustering in atypical locations
due to the condition (1.2). The dynamics of infinitely heavy point-like particles (finite
St, ρp/ρf → ∞) suspended in such vortical flows with systemic rotation has been the
subject of several studies. Angilella (2010) and Ravichandran et al. (2014) considered a
point vortex pair of equal strengths, whereas Nizkaya, Angilella & Buès (2010) considered
unequal strengths. They showed that such inertial particles can get trapped at various
attracting fixed points in the rotating frame, whose exact locations vary with the Stokes
number. Further, an attracting fixed point may cease to exist beyond a critical Stokes
number or give way to multiple attracting points. Angilella, Vilela & Motter (2014) showed
that particles can undergo transient clustering (and chaos) near co-rotating vortices in
the presence of a wall. Nath & Roy (2024) find similar behaviour for infinitely dense
inertial particles near a single non-axisymmetric (elliptical) vortex in the presence of
shear. Tanga et al. (1996) proposed the trapping of heavy dust particles in the vortices
present in rotating solar nebulae as a mechanism for planetesimal formation. Along similar
lines, Gerosa, Méheut & Bec (2023) have reported enhanced clustering of heavy inertial
particles in Keplerian turbulence with rotation and shear, which model gaseous systems in
protoplanetary discs.

Our background flow consists of a pair of co-rotating Lamb–Oseen vortices of identical
circulation, Γ . The fact that Lamb–Oseen vortex closely emulates a typical vortical
structure seen in two-dimensional (2-D) turbulence (Gallay & Wayne 2002; Ramadugu,
Perlekar & Govindarajan 2022) legitimises our choice. The width of the vortices is taken
to be sufficiently small compared with their separation. Two identical vortices which are
initially far apart undergo merger in four stages (Cerretelli & Williamson 2003). In the first
diffusive stage they maintain their individual Gaussian structure and mutual separation
while executing constant angular velocity motion on a circle. In two dimensions, as the
flow Reynolds number, Re ≡ Γ/ν, where ν is the kinematic viscosity of the fluid, is
made arbitrarily large, the first stage of merger can last for an arbitrarily long time. Once
the vortices diffuse to a radius of about 0.3 times their separation, the second stage of
merger begins and the large-scale motion is no longer periodic. For simplicity, we assume
a high enough flow Reynolds number such that the vortices execute circular motion with
constant angular velocity during our simulation time. We distinguish our work from earlier
studies in our consideration of inertial particles that are finitely dense (ρp/ρf < ∞).
Consequently, we have an additional dimensionless parameter in our problem in addition
to the Stokes number, namely the density factor R, which is a measure of particle to
fluid density ratio. We model the dynamics of inertial particles in our study using the
Maxey–Riley equation (MRE) which includes the Basset–Boussinesq history (BBH) force.
A majority of inertial particle studies employ the reduced MRE, i.e. omit the BBH force.
For finite ρp/ρf , however, the effects of the BBH force could become significant, and
are expected to be pronounced for near-neutrally buoyant particles (ρp ∼ ρf ). In order to
understand the dynamics as well as to isolate the effects of the history force, we study both
the reduced MRE without the BBH force and the MRE with the BBH force. The reduced
MRE represents a dynamical system in the position–velocity state space, i.e. given the
present state of the particle, the future state is uniquely determined. However, upon the
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inclusion of the BBH force, the resulting integro-differential equation enforces non-local
dynamics in time. Indeed, the entire past trajectory is required to determine a future state
of the particle. Our recent studies (Prasath, Vasan & Govindarajan 2019; Jaganathan,
Govindarajan & Vasan 2024) enable us to interpret the full MRE as a dynamical system
embedded in an extended space. This reinterpretation offers computational advantages, as
we shall briefly discuss in our numerical methods § 2.1. We note here that Chong et al.
(2013) and Daitche & Tél (2014) have previously conducted studies on inertial particle
clustering with the BBH force included in their models in different flows.

Our study finds a host of new clustering features that occur in rotating flows of finitely
dense particle suspensions. Particles of finite density have a higher propensity to be
trapped forever in the system than infinitely dense particles. A significant fraction of
particles in the system participate in extreme and permanent clustering on to attractors,
up to Stokes numbers of order one. The final clusters, or attractors, rotate with the system.
They can be point-like, in the form of attracting fixed points, or annulus-like, in the form
of limit cycles of varying periodicities or chaotic attractors. Depending on the Stokes
number and the density ratio, there are a variety of transitions from one type of attractor
to another. Beyond a critical Stokes number, no particles are trapped forever, but there
can be long-lasting transients. Particle trapping is enhanced significantly, and the particle
attractors often qualitatively altered, by the inclusion of the BBH force.

Since we refer to trapping and clustering repeatedly, it is useful to distinguish between
them. Trapping refers to the condition of particles to be constrained to a particular
predefined region. Clustering, on the other hand, refers to a collection of particles
progressively occupying smaller volumes with time. A clustering set of particles need
not remain in a fixed region, whereas trapped particles need not cluster.

The rest of the paper is organised as follows. In § 2, we describe the physical model
of inertial particles in co-rotating vortex pair and the associated governing equations. We
also outline the numerical methods and analysis tools used in the study. In §§ 3 and 4, we
discuss the trapping dynamics observed in the model with and without the BBH force for
particles of different inertia and densities. We conclude in § 5 with a discussion on our
observations and the limitations of the model.

2. Governing equations for the flow and particles

The Lamb–Oseen vortices in the pair are of identical strength Γ and core-width b, with
their centres separated by a distance d, chosen such that b � d, as shown in figure 1(a).
In accordance to the Biot–Savart law, these vortices revolve around each other on a circle
of diameter d, with an angular speed Ω = Γ/πd2, while maintaining a constant mutual
angular separation of π. The corresponding time period of rotation is T = 2π/Ω .

The separation length d, the time period of rotation T = 2π/Ω and their ratio U = d/T
provide natural length, time and velocity scales to non-dimensionalise the system. In the
non-dimensional form, the background flow field is given by

û(x̂, t) = πez ×
[
(1 − exp(−|x̂ − X̂ |2/b2))

x̂ − X̂

|x̂ − X̂ |2 + (1 − exp(−|x̂ + X̂ |2/b2))
x̂ + X̂

|x̂ + X̂ |2

]
,

(2.1)

where the instantaneous vortex centres are at X̂ = (cos(2πt)/2, sin(2πt)/2), and ez is the
unit vector perpendicular to the plane of the vortices. The non-dimensional vortex width
is set to b = 0.1 throughout our analysis, without loss of generality.
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Figure 1. (a) Schematic showing two identical vortices executing circular motion at a constant rate. The
coordinate system rotates with them. (b) Vortex locations (red dots) and representative tracer-particle
trajectories (closed orbits shown in black lines) are shown in the rotating frame of reference. Region II is
the primary host for the attracting orbits of inertial particles. The green points are hyperbolic fixed points from
which heteroclinic orbits emanate, which separate regions I, II and III. Region III contains simple closed orbits
encircling both vortices. (c) Negative of the Okubo–Weiss parameter Qrot overlaid by a representative limit
cycle (attractor) of inertial particle trajectories.

We are interested in the dynamics of inertial particles in the above unsteady background
flow in the absence of gravity. We model the particles as rigid and spherical with radius a,
and of negligible particle slip Reynolds number, i.e. Rep = a|vd(t) − ud(rd, t)|/ν � 1.
Here, u(·, t) is the background fluid velocity, and v(t) and r(t) are the instantaneous
particle velocity and location respectively, which are dimensional when indicated with
subscript ‘d’, non-dimensional otherwise. We also assume negligible shear Reynolds
number, Res = a2s/ν, where s = |∇ud| is a measure of velocity gradients in the flow
field. These are fair assumptions for sufficiently small particles. Further, we assume that
the particles are in dilute suspension, allowing us to neglect their mutual interaction as
well as their effect on the flow (one-way coupling). The dynamics of an inertial particle
in such a suspension, under the above assumptions, is governed by the MREs (Gatignol
1983; Maxey & Riley 1983) given in non-dimensional form as

dr̂
dt

= v̂, (2.2a)

dv̂

dt
= −(v̂ − û(r̂))

St
+ R

Dû
Dt

(r̂)

−
√

3R
πSt

[
(v̂0 − û0)√

t
+

∫ t

0
ds

1√
t − s

{
d
ds

(v̂(s) − û(r̂(s)))
}]

, (2.2b)

where the subscript 0 denotes a quantity at the initial time. The three forcing terms on
the right-hand side of (2.2b) are the viscous Stokes drag, the force due to local fluid
acceleration (which includes the added mass and pressure drag effects) and the BBH
force, respectively. We ignore the Faxén corrections, which account for the differential
flow curvature effects across the diameter of the particle, assuming that the particle is
sufficiently small. The two non-dimensional numbers that feature in the equation are the
density factor R, and Stokes number St, defined as

R ≡ 3/(2β + 1), St ≡ τp/T, (2.3)

where β = ρp/ρf is the ratio of particle and fluid densities, τp = a2/(3νR) is the relaxation
time of the particle and T is the time period of vortex rotation. Note that R → 0 for an
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infinitely dense particle, whereas R = 1 for a neutrally buoyant particle and R = 3 for
a light particle such as a bubble. The limit St → 0 corresponds to a tracer/non-inertial
particle which faithfully follows the fluid streamlines. We shall work in the regime 0 <

R < 1 and 0 < St < 1, which corresponds to an inertial particle that is finitely denser than
the fluid.

The dynamics is better brought to light by our choice of frame of reference. We choose
a reference-frame rotating with the non-dimensional angular velocity of the vortex pair.
In this co-rotating frame, the background flow is steady, and the stationary vortices are
centred at (±1/2, 0). The representative streamlines of the stationary flow are shown in
figure 1(b), which also defines the x and y coordinates. We may define three water-tight
regions based on the behaviour of tracer particles. Region I includes the close vicinity of
the vortices; tracer particles seeded in this region execute closed trajectories encompassing
the vortex closest to them, and are influenced primarily by that vortex. In region II, which
is of primary interest to us, the tracer particles move on closed orbits passing through their
initial positions. They are, on average, equally influenced by the two vortices. Region III is
the far-field, where tracers execute closed orbits encircling both vortices. As we go further
from the origin and into Region III, tracer particles increasingly perceive the system as
a single vortex of twice the strength. In figure 1(c), we plot the modified Okubo–Weiss
parameter, Ωrot, which is most negative in the red region. According to (1.2), heavy
particles of St → 0 will have higher propensity to cluster in the red region. Overlaid on
this plot is a typical limit cycle for finitely dense inertial particles, where particles reach
asymptotically in time. This suggests that finitely dense particles of finite Stokes number
can cluster in regions well outside that predicted by (1.2), which is valid only for very small
Stokes number. Upon comparing the locations of the closed streamlines in figure 1(b)
to the limit cycle in figure 1(c), we demonstrate that particles can cluster within closed
streamlines enclosing elliptic fixed points in a rotating frame.

In the rotating frame, the non-dimensional background flow field is given by the
transformation

û(x̂) − 2πez × x̂ → u(x), (2.4)

whereas the equation of motion (2.2b) for the particle, upon defining a slip velocity vrel ≡
v − u(r), reads as

dr
dt

= v, (2.5a)

dv

dt
= −vrel

St
+ R

{
Du
Dt

(r) + 4πez × u(r) − 4π2r
}

−
√

3R
πSt

[
vrel,0√

t
+

∫ t

0
ds

dvrel(s)/ds + (2πez) × vrel(s)√
t − s

]

− 4πez × v + 4π2r. (2.5b)

Note that the variables in (2.5) are now measured in the co-rotating frame.

2.1. Numerical methods
We perform numerical simulations of inertial particles for a range of Stokes number
and density ratios. Without the BBH force, (2.5) reduces to a nonlinear ordinary
differential equation (ODE). Therefore, for the part of the analysis where we exclude the
BBH force, we use the standard fourth-order Runge–Kutta scheme to integrate particle

996 A44-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.706


Inertial particle trapping in a rotating vortex pair

trajectories in accordance with (2.5). The time step is chosen between �t = 10−3 and
10−4. However, with the inclusion of the BBH force, the equation of motion is an
integro-differential equation. This precludes the direct use of standard time integrators,
such as the Runge–Kutta schemes, to integrate the history-dependent particle trajectories
without incurring quadratically growing computational cost and a linearly increasing
memory storage cost. We therefore use the explicit time integrator for the MRE prescribed
in Jaganathan et al. (2024). This explicit integrator possesses the benefits of standard
integrators, in particular a nominal linear growth rate of computational costs with
simulation time and a time-independent memory storage requirement. The algorithm
involves rewriting (2.2b) as a local-in-time system of equations following a Markovian
embedding procedure. The embedding introduces an auxiliary variable which encodes the
history of particle trajectory exactly and evolves according to an ODE. Consequently, the
resultant set of equations represents a dynamical system in an abstract extended space.
We solve (2.2b) using the second-order Runge–Kutta time-differencing method (with
10−4 < �t < 10−3) in Jaganathan et al. (2024) in the laboratory frame, and then transform
the variables to their counterparts in the rotating frame.

For detecting an attractor, we initially place sufficient number of particles (> 2500)

on a uniform grid over a chosen spatial region in [−1.5, 1.5] × [0, 1.5]. In the results
presented, the initial particle velocity is set to zero in the rotating frame. We evolve their
trajectories over a long enough time to achieve motion on an attractor. We use the last
5 % of the trajectory to calculate the properties of the attractor. Fixed points are easy to
detect in our simulations, since the velocity of a particle in the rotating frame goes to
zero as it approaches a fixed point. To detect limit cycles, we note that at its extremities
in the x-direction, we must have the x component of the particle velocity vx = 0 in the
rotating frame. We count the number of distinct x locations at which vx = 0 and divide by
two to get the period of the limit cycle. When every such location is distinct, we have a
chaotic attractor. We point out that in the event of a basin of attraction (BoA) being very
small, there is a chance that we may have missed the attractor entirely. Therefore, we may
not have found the exhaustive set of all attractors, but that was not the purpose of our
study. Without the BBH force, a few tens of non-dimensional time are typically sufficient
for particles to converge to an attractor, whereas with the inclusion of the BBH force the
system takes longer to converge to the final attractor. The time taken for this depends on
the resolution we require. By ∼ 10T the attractors are clearly delineated, but we run the
simulations sometimes for ∼ 500T for near-perfect convergence. Given reasonable access
to compute power, this study would have been prohibitive by the brute force method of
solving for the BBH force for a large ensemble of particles and long integration times, and
speaks to the efficacy of our numerical method.

In figure 2, we show a typical evolution of an ensemble of particles in the position space.
In figure 2(a), we have a uniformly seeded particle ensemble with R = 0.84, St = 0.22,
each particle coloured either in maroon or black. Figure 2(b) shows their respective
positions after 10 time periods of rotation: the maroon patch of particles has converged
to an attractor (a limit cycle here) whereas the black patch of particles has centrifuged
out spirally. Since we are interested in clustering and trapping behaviour of particles,
centrifuging particles (coloured black in the figures) are excluded from our study and the
results therein.

In the upcoming sections, we restrict our discussion to a co-rotating vortex pair
of identical strengths, and to the case of particle velocity initialised to zero in the
rotating frame. Unequal vortex strengths and different initial conditions are discussed in
Appendices A and B, respectively. We see that while the behaviour is qualitatively similar,
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(a) (b)

Figure 2. Typical evolution of an ensemble of inertial particles (ρp/ρf > 1) in the position space, in the
rotating frame of an identical vortex pair. The particles are uniformly seeded near the vortex pair as shown
in (a). Particles after 10 time periods of rotation, evolved under reduced MRE, are shown in (b). A fraction
of particles (coloured maroon) get trapped to an attractor such as a fixed point or a limit cycle. However, a
majority of particles (coloured black) are centrifuged out in spiralling orbits. The former set of particles forms
our primary focus.

significant quantitative variations can exist. Thus, our model flow is to be treated as one
bringing out general physical features of trapping and clustering, and not as a predictive
tool.

3. Particle trapping dynamics

Region II in figure 1(b) is of special interest in the context of particle trapping. Attracting
orbits of various descriptions are contained within this region, allowing trapping of
particles for long times. Moreover, a high level of clustering happens in this region,
which is of significance in different contexts. We discuss Region I no further, except
to mention that inertial particles which begin within them are expected to display the
standard centrifuging behaviour to leave the vicinity after a brief transient (Ravichandran
& Govindarajan 2015).

The Stokes number St and the density parameter R are the pertinent non-dimensional
numbers in our context. At the initial time, particles of a fixed St and R are placed in a dense
uniform grid across a region of interest, and their asymptotic behaviour is categorised.
Broadly, higher-Stokes-number particles quickly exit the region whereas those at lower
Stokes number can either be trapped in the vicinity forever, or spend varying amounts of
time in the vicinity before leaking out.

We begin by examining the dynamics in the absence of the BBH force. Under this
approximation, we have a finite-dimensional nonlinear dynamical system, and standard
principles for the behaviour of such systems apply. The case where R = 0.84, i.e. each
particle is 1.285 times denser than the fluid, is discussed first since it displays what we
term as canonical behaviour in this context, namely that the attractor undergoes successive
period-doubling bifurcations to chaos. Typical attractors for particles of increasing Stokes
number are shown in panels (i) of figure 3: a fixed point, a period-2 limit cycle and a
chaotic (strange) attractor. We remark that these attractors as shown are in a rotating frame.
What appears as a fixed point in figure 3(a) is actually a point which undergoes periodic
motion along a circle in the laboratory-fixed frame. Thus, particles which collect here are
in continuous motion. Similarly, what appears as a limit cycle in the rotating frame fills
an annular region in the laboratory frame. All particles starting within the corresponding
BoAs shown in panels (ii) of figure 3 asymptotically reach their respective attractors and
never leave the vicinity.
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Figure 3. Typical asymptotic states shown in maroon (i) and their corresponding basins of attraction (ii) for
a finitely dense inertial particle with density factor R = 0.84 (ρp/ρf ≈ 1.3) and varying Stokes number St,
without the BBH force: (a) St = 0.09. (b) St = 0.22. (c) St = 0.24. Red dots indicate the vortex centres in
the rotating frame. In (a) the particle spirals (shown in blue) into a fixed point attractor, whereas in (b,c) the
particle is trapped into a limit cycle of period 2 and a strange attractor, respectively. The orbits are overlaid on
the separatrices of the background flow for clarity of their scale and location. Mirror-symmetric patterns exist
in the lower half-plane.

0
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Figure 4. Bifurcation diagram for R = 0.84 (ρp/ρf ≈ 1.3) without the BBH force. An attracting fixed point
exists below St = 0.12, whereas for 0.12 < St < 0.22 we have a period-1 limit cycle, followed by ever more
complex limit cycles as the Stokes number increases. There are no asymptotic attractors beyond Stcrit =
0.24675.

Next, we construct a bifurcation diagram, shown in figure 4 for R = 0.84(ρp/ρf ≈ 1.3).
Below St ≈ 0.12, the attractor is a fixed point, and beyond we have limit cycles of
increasing complexity. The extrema on the horizontal axis of the limit cycles are plotted
on the ordinate of the figure. A textbook period-doubling route to chaos ensues. We
have checked that the Stokes number gap between successive bifurcations goes down
asymptotically as the Feigenbaum number, with chaos setting in at St = 0.232. It is seen
that the BoA for the higher Stokes number is smaller (see figures 3 and 6).

A general observation which is relevant for all the attractors we find is as follows.
The attractors are manifolds of dimension lower than two. This means all particles
which initially occupy a 2-D BoA not only remain in the vicinity indefinitely, but
actually converge on to objects of smaller dimension. This focusing of particles is a
signature of caustics formation, and is indicative of extreme clustering. The clustering thus
achieved can enormously enhance opportunities for collision and coalescence. Whether
for carbonaceous material in the ocean participating in carbon fixing, swimmers who
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Figure 5. Bifurcation diagram for R = 0.84 (ρp/ρf ≈ 1.3) with the inclusion of the BBH force. Trapping
prevails for a wider range of Stokes numbers than without the BBH force (compare with figure 4). A period-2
limit cycle (shown in green), with a very small BoA, coexists with the period-1 limit cycle (in orange) near
Stcrit ≈ 0.5.

benefit from clustering in their quest for reproduction or dust in protoplanetary discs
agglomerating into planetesimals, such attractors are thus of consequence.

The stage is now set to discuss the physics we miss when the BBH force is neglected, as
well as to bring to light the non-monotonic and counterintuitive response of the system to
both St and R. Figure 5 shows the bifurcation diagram for R = 0.84 (ρp/ρf ≈ 1.3) with the
inclusion of the BBH force. Though the dynamics now is not a standard dynamical system
in the position–velocity state space, we obtain fixed points and limit cycles. The contrast
with figure 4 is self-evident. Interestingly, the bifurcation from a fixed point to a limit cycle
occurs at a similar Stokes number with and without the BBH force. However, the period-1
limit cycle persists with the BBH force up to a rather large Stokes number of Stcrit ≈ 0.5
whereas without the BBH force, there was no attractor beyond St ≈ 0.25. The fact that
trapping of particles of relatively large inertia takes place in this simple vortical system
is remarkable, and underlines the need for including the BBH force in our studies. As the
Stokes number approaches the critical value, we find the BoA splitting into two with a very
small BoA corresponding to a period-2 limit cycle (shown in green in figure 5), while the
vast majority of particles are attracted to the period-1 cycle. As previously seen in panels
(ii) of figure 3, the BoA is a sensitive function of the Stokes number.

The area of the BoA is a direct measure of the fraction of particles which get trapped in
an attractor. The area of such BoA is obtained for a range of Stokes numbers, and shown in
figure 6, with and without the BBH force, for R = 0.84(ρp/ρf ≈ 1.3). The measurement
involves storing the initial locations of all particles which get trapped in the attractor, and
calculating the area of the region over which the initial locations are spread. Whether with
or without the BBH force, as the Stokes number becomes higher, i.e. particles become
more inertial, their propensity to leave the vicinity monotonically increases. Thus, the
BoAs shrink steadily. At this value of R, this feature is as would be intuitively expected, but
we shall soon see different behaviour for particles that are denser. There is a sharp cut-off
at a Stokes number, which we refer to as Stcrit, beyond which no particles are trapped. The
Stcrit ≈ 0.25 for the case without the BBH force, and is significantly greater at Stcrit ≈ 0.5
when the BBH force is included. Close to Stcrit, the BoA shows a sensitive dependence on
Stokes number, i.e. a rapid shrinking of the area of the BoA to zero. The behaviour past the
critical Stokes number is ‘leaky’, i.e. particles slowly escape from the region of interest.
Notably, in addition to missing the significant trapping of particles of larger inertia, the
fraction of particles trapped is seen to be grossly underestimated at all Stokes numbers by
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Figure 6. Variation of the area of the BoA with the Stokes number for R = 0.84(ρp/ρf ≈ 1.3), with and
without the BBH force.

neglecting the BBH force. In the case with the BBH force the period-doubling route is left
incomplete.

We move on to higher particle density, i.e. smaller R, with bifurcation plots shown
in figure 7. Changing the density ratio introduces unexpected features in the dynamics.
In figure 7(a,b) we see period-doubling bifurcations followed by unusual period-halving
bifurcations back to a fixed point at higher Stokes number. We also see that a small
difference in density ratio changes the behaviour from chaotic to periodic. For the same
density ratio as in figure 7(a), the inclusion of the BBH force converts the dynamics to
that on a canonical period-doubling bifurcation route to chaos, as seen in figure 7(d).
Interestingly, at this density ratio too, the BBH force does not significantly change the
Stokes number at the first bifurcation occurs: going from fixed point to limit cycle.
Through most of the range of St, a fixed point or a limit cycle persists, followed by a
rapid breakdown into chaos within a short range of Stokes number. At the larger density
ratio of ∼7 (figure 7c), only two small regimes of particle trapping are seen. In contrast,
with the inclusion of the BBH force, figure 7(d,e), trapping is more widespread across
St. A period-halving bifurcation occurs here too (figure 7e), but at a higher density ratio
than without the BBH force. Here too, at higher Stokes, we regain a fixed point as the sole
attractor. Another non-standard feature seen in several of these bifurcation diagrams is
the existence of gaps. Within these windows, no particles are trapped in the vicinity of the
vortices. In fact, in figure 7(e), two windows are visible, so the actual Stokes number of the
period-halving bifurcation, from a 2-cycle to a simple limit cycle, is not obtainable, though
a period-1 limit cycle followed by a fixed point are evident at higher Stokes numbers. In
particulate flows, we have come to expect a monotonic trend in complexity as the Stokes
number increases, so the transition, as we move up in St, from an attractor, to no particles
being trapped, and back to particle-trapping in an attractor, is worthy of remark. Moreover,
during period-halving, an increase in St simplifies the attractor, and we hope that these
findings alone will be intriguing enough to the reader to be motivated to explore particulate
flows in this context.

With these examples, we demonstrate the general trend in our system: the long-time
behaviour of inertial particles with the BBH force at a given density parameter R is in
broad qualitative agreement with the behaviour without BBH at a higher R. In other words,
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Figure 7. Bifurcation diagrams for different representative density ratios: (a) R = 0.5 (ρp/ρf = 2.5);
(b) R = 0.48 (ρp/ρf ≈ 2.6); (c) R = 0.2 (ρp/ρf = 7); (d) R = 0.5 (ρp/ρf = 2.5); (e) R = 0.2 (ρp/ρf = 7).
In (a–c) the BBH force is neglected, whereas in (d,e) it is included. On the ordinate are the extrema of the
x-coordinate of the asymptotic trajectories.

a denser particle, with the inclusion of the BBH force, behaves qualitatively like a lighter
particle without the BBH force, asymptotically in time.

Two sample BoAs are shown without the BBH force in figure 8(a,b), to give a visual
idea of how the BoA shrinks as we approach Stcrit. The Stokes numbers chosen correspond
to period-doubling and period-halving bifurcations, respectively. Over a range of St, the
areas of the BoA are shown in figure 8(c), with and without the BBH force, for a higher
density ratio than in figure 6. Again, with the BBH force, we see the trapping of particles
of significantly higher St than the dynamics we obtain by neglecting would suggest.
Moreover, the BoA is significantly larger with the BBH force than without for the entire
range of Stokes number. We may conclude that the neglect of the BBH force will seriously
underestimate the number of particles trapped in the vicinity of vortices. Interestingly at
this higher particle density, in the absence of the BBH force, the size of the BoA varies
non-monotonically with Stokes number, and a small non-zero fraction of particles remains
trapped even at high Stokes number. We do not have an explanation for this anomalous
behaviour. The anomalous behaviour vanishes in this case upon the inclusion of the BBH
force, showing a monotonic decrease of BoA size with Stokes number and a rapid decrease
to zero just before Stcrit. We hasten to note that the dynamics including the BBH force too
showed such anomalous behaviour elsewhere, as evidenced by the gap in figure 7(e) in the
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Figure 8. (a,b) BoAs for R = 0.5 (ρp/ρf = 2.5) without the BBH force during period-doubling (St = 0.320)
and period-halving (St = 0.483), respectively (see figure 7a). Note the difference in sizes. (c) Variation of the
size of the BoA with Stokes number at R = 0.5, with and without the BBH force.

region 0.16 < St < 0.25 where size of BoA drops to zero. Thus, this particular feature is
not merely a consequence of neglecting the BBH force. Since particles of higher Stokes
number get centrifuged out of the vicinity of vortices faster, we would have expected a
shrinking BoA with increasing particle inertia. This canonical expectation is belied over
some ranges of density ratio.

It is relevant to mention that these broad findings on the effect of the BBH force are in
contrast with those for the flow past a solid cylinder (Daitche & Tél 2011, 2014), where the
inclusion of the BBH force reduces caustics as well as destroys attractors. Such reduction in
clustering was also seen by Guseva, Feudel & Tél (2013) in convective cell flow. Similarly,
Chong et al. (2013) studied finitely dense inertial particles in a viscous streaming flow
created by an oscillating cylinder, wherein they concluded that the BBH force resists
particle trapping. Evidently, the physics of the BBH force cannot be oversimplified thus.

The case of the infinitely dense particle was studied by Angilella (2010) upon neglecting
the BBH force, where it was shown analytically that there is a fixed point up to
St = (2 − √

3)/2π and no attractor beyond. We repeated the calculations with the BBH
force included for ρp 	 ρf , and found the critical Stokes number unchanged. Further,
our computations for the location of the fixed point for all Stokes numbers below this
are in excellent agreement with the analytical results of Angilella (2010). We note the
qualitative difference between infinitely dense particles and our largest density ratio of
R = 0.2(ρp/ρf = 7) (figure 7e). We thus confirm that the BBH force has a noticeable
effect on finitely dense particles, especially when particle densities are of the same order
of magnitude as that of the surrounding fluid. This indicates that the BBH force should be
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Figure 9. Phase plots for inertial particles, without the BBH force, based on (a) the period of the attracting
orbit. The regime occupied by limit cycles of period 2 and above is very narrow. (b) The logarithm of the size
of the BoA. Particles of near-neutral densities tend to stay longer. In both plots, there is anomalous behaviour
at R ∼ 0.5.

included as a significant force when studying solid–liquid systems such as microplastics
in the ocean.

To give an idea of the complexity in the solutions, we provide a phase plot in figure 9,
where the behaviour across density ratios and Stokes number without the BBH force is
summarised. Figure 9(a) shows the different kinds of attracting orbits that one obtains. At
a given density ratio, as we move up in Stokes number, in some part of the regime, we
go from attracting orbits to no attracting orbits, whereas in other portions we can go back
to attracting fixed points or limit cycles over a range of Stokes numbers. We may identify
the following three regimes: for 1 > R � 0.5 we have a period-doubling route to chaos,
for 0.5 > R > 0.35 a period-doubling route, which may go all the way to chaos or may be
limited to a few bifurcations, is followed by period halving, leading to a single fixed point,
and for 0.35 > R we have only attracting fixed point in the regime where we have trapped
particles. With the BBH force, we have the three regimes, but the transitions all happen
at lower values of R. In figure 9(a) the density ratio of R ∼ 0.5 is most interesting, where
the existence of attracting orbits at large Stokes number is possible, and there is sensitive
dependence on the density ratio. Chaotic attractors only exist at R � 0.5, i.e. when the
particle and fluid densities are comparable. Here, too, the range of Stokes numbers at a
given R over which chaotic attractors are seen is very narrow. The corresponding areas of
the BoA are shown as a phase plot in figure 9(b). Broadly, at low Stokes numbers, as the
particles become denser, the BoA shrinks. However, at intermediate Stokes number and
density ratios, we see non-monotonic behaviour. As R → 1 (i.e. ρp ∼ ρf ), the particles
are near neutrally buoyant, and over a range of Stokes numbers, the entire region II
corresponds closely to the BoA. Invariably, in this limit, the attractor is a fixed point.

4. Particle leakage

We have seen that for every density ratio R, there is a critical Stokes number, Stcrit,
above which no particle remains indefinitely in the vicinity of the system. We now ask
what happens beyond Stcrit. Figure 10 shows two sets of particle trajectories, with the
same initial conditions, but one with St slightly less than Stcrit and the other with St
slightly greater than Stcrit. The first set is trapped forever, whereas the second set escapes.
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2
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–2 0 2

Figure 10. Leakage of particles past the trapping criteria without the BBH force, for the representative case
of R = 0.84 (ρp/ρf ≈ 1.3) with Stcrit = 0.24675. The trajectories of a set of particles in the narrow range
St ∈ (0.2465, 0.2470) about Stcrit, with identical initial conditions, are shown. Trajectories for St < Stcrit are
coloured red, where particles are seen to remain trapped, whereas those for St > Stcrit are coloured blue, where
particles escape. The green dot is the saddle fixed point at Stcrit, whose location does not vary visibly for the
narrow range of St shown.

At St = Stcrit one point on the chaotic attractor in phase space coincides with the saddle
point. This is termed a crisis, (Grebogi, Ott & Yorke 1983), where the chaotic attractor
disappears, making way for a chaotic saddle. The dynamics near the chaotic saddle is
‘leaky’, i.e. all particles near the chaotic saddle will leave the vicinity in finite time.

A particle starting at a given location is traced until it leaves the system, and the time at
which it leaves the system is noted down as its residence time within the region of interest.
We define the ‘system’ by a circle of radius 2, centred at the origin. While the numbers for
residence time depend weakly on this choice, a change in the definition will not change
our conclusions. This residence time is plotted for all initial locations in figure 11, for
three Stokes numbers. At St = 0.24, which is less than Stcrit (figure 11a), we have a patch
of particles whose residence time is nominally equal to the simulation time Tmax, and we
have confirmed that this patch corresponds to the BoA whose particles are permanent
residents. However, past the critical Stokes number, at St = 0.25, all particles escape at
finite times (figure 11b). There are sharp ridges in the figure, and particles originating on
these have a large residence time. These ridges are separated by valleys of very low particle
residence times. Although the area of the BoA is zero, the fact that particles can remain in
the vicinity and close to each other for tens of rotation time-scales signifies the enhanced
opportunity for collisions even beyond Stcrit. At the even higher St of 0.255, in figure 11(c),
the residence times have already dropped significantly.

The stable manifold of the saddle point corresponding to the case in figure 11(b), at
St = 0.25, is shown in figure 12(a) for v0 = 0 particles. It theoretically represents the
original locations (in phase space) of particles which flow into the saddle, approaching it as
t → ∞. It occupies zero area and has a fractal dimension of approximately 1.7. A particle
starting exactly on the stable manifold would have infinite residence time. Particles starting
very close to the stable manifold will have large but finite residence times. Therefore, we
see a close correspondence between the ridges of high residence times in figure 11(b)
and the stable manifold in figure 12(a). The fractal nature of the stable manifold and
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Figure 11. Residence times of inertial particles for the density ratio R = 0.84 (ρp/ρf ≈ 1.3), without the BBH
force: (a) St = 0.24 < Stcrit; (b) St = 0.25 > Stcrit; (c) St = 0.255 > Stcrit. The colour at a given position
indicates the residence time of a particle starting at that location.

the fractal distribution of ridges and valleys in the residence time plot are signatures of
transient chaos (Tél 2015). In figure 12(b), we show that the fractal dimension of the stable
manifold falls sharply as St increases. A stable manifold of fractal dimension 1 indicates
no transient chaos, and the reduction in fractal dimension with increasing Stokes indicates
a corresponding reduction in transient chaos.

In figure 13(a,b), we plot the residence times including the BBH force at R =
0.84 (ρp/ρf ≈ 1.3), just below and above the Stcrit≈ 0.5. As before, when St < Stcrit,
the residence time for particles in the BoA, denoted by the dark patch in figure 13(a), is
infinite. We recall from figure 5 that the corresponding attractors are the coexisting simple
period-1 limit cycle and a period-2 limit cycle, with the latter associated to a very small
BoA. In the case without the BBH force, we had seen that the residence times outside the
BoA were very small, but here, we find long residence times in the valleys as well. These
valleys spiral inward as we increase St where the BoA shrinks rapidly (as was seen in
figure 6). Just beyond Stcrit the residence time plot is given by figure 13(b). Again we find
closely spaced ridges and valleys in the residence times. In contrast to the case without the
BBH force, where we found a chaotic saddle with long-lasting transients close by, here we
do not find any evidence of a chaotic saddle. Instead, a significant number of particles
spend a long time near a structure which resembles period-1 orbit before eventually
escaping. Although with the BBH force, we no longer have a standard dynamical system
in the position–velocity state space, this structure resembles a periodic-orbit saddle seen
in standard dynamical systems.

In figure 13(c,d), the residence time is provided for R = 0.5, just below and just above
Stcrit, respectively. The BBH force is included. It will be recalled from figure 7(d) that there
is a chaotic attractor before the sudden disappearance of the BoA. This is reminiscent of
R = 0.84 without the BBH force. The irregular spatial distribution of residence times in
figure 13(d) is also similar to the plots in figure 11(b,c). All these are signatures of transient
chaos.
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Figure 12. (a) Stable manifold of the saddle point shown by the blue dot (slightly shifted for clarity), for
R = 0.84 (ρp/ρf ≈ 1.3) and St = 0.25, without the BBH force. The manifold shown is a fractal object with
an approximate fractal dimension of 1.7. The vortex centres are indicated by red dots. (b) Fractal dimension,
calculated using the box-counting method, for St > Stcrit for R = 0.84 (ρp/ρf ≈ 1.3). Error bars indicate the
variation in the calculated dimension for different box sizes. The dotted line indicates the trend and is not an
exact quantitative measure.

For both R = 0.5 and R = 0.84, at St just below Stcrit the basin boundary itself has an
irregular fractal-like structure, which was absent without the BBH force. We note that
fractal basin boundaries arise in the context of inertial particles in flow, such as, for heavy
(R = 0) inertial particles due to the interplay between transient chaos and fixed point
attractors (Angilella et al. 2014), and for finitely dense inertial particles due to the addition
of the BBH force (Guseva et al. 2013).

We see that residence times can vary greatly, even for particles starting out at
neighbouring locations. It is thus worthwhile to calculate the probability densities of
residence times. Figure 14(a) shows the distribution of residence times, without the
BBH force, for all particles initialised in the region of interest for four Stokes numbers
above the critical. The distributions are all exponential, which is a signature of transient
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Figure 13. Residence time plots with the inclusion of the BBH force for two density ratios around their
corresponding critical Stokes numbers: R = 0.84 (ρp/ρf ≈ 1.3) with Stcrit ≈ 0.5 in the top panels (a,b) and
R = 0.50 (ρp/ρf = 2.5) with Stcrit ≈ 0.69 in the bottom panels (c,d). For each R, a plot each is provided for
a St slightly below and slightly above the respective Stcrit: (a) R = 0.84, St = 0.495 < Stcrit; (b) R = 0.84,

St = 0.508 > Stcrit; (c) R = 0.50, St = 0.685 < Stcrit; (d) R = 0.50, St = 0.705 > Stcrit.
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Figure 14. Distributions of residence times of inertial particles of R = 0.84, at Stokes numbers just beyond
the critical, as indicated in the legends. (a) In the absence of the BBH force, we see an exponential distribution
of residence times. The slope increases rapidly as St moves further away from Stcrit (= 0.24675). (b) In the
presence of the BBH force. Particles which last a long time in the vicinity display an exponential distribution in
residence times, whereas the probability of staying is non-monotonic in the residence time at smaller residence
times. Here Stcrit ≈ 0.5.

chaos, i.e. the existence of a chaotic saddle (Tél 2015). Note that even beyond Stcrit the
residence times are still O(10) time periods, which can be significant. However, note that
residence time does decrease very rapidly as we move away from Stcrit. Figure 14(b) is a
corresponding residence time distribution plot for the same density ratio, but with BBH,
for particles whose Stokes number is just above the critical. While the long residence time
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Figure 15. Logarithm of the size of basins occupied by particles with long but finite residence time, i.e. Tesc >

10T . Note that as R → 1, i.e. the particle becomes more neutrally buoyant, a significant fraction of particles
can have long residence times for a significant range of St.

particles display a short exponential-like feature, over moderate residence times, we see
that the probability of a given residence time varies non-monotonically with the residence
time. This is another feature we obtained only with the inclusion of the BBH force, which
means further study is needed to understand the nature of the transients beyond Stcrit with
the BBH force.

The regions in the R–St parameter space where a significant number of particles have
a large but finite residence time are shown in figure 15, without the BBH force. We note
the non-monotonicity in Stokes number here too. Close to neutral density, long-lasting
transient are seen to be extensive, and can be an important contributor to particle collisions.
Away from neutral density (R = 1), most of the particles which eventually escape do so
within a few time periods (O(T)), so the phenomenon of trapping and clustering becomes
evident early on. However, to visual accuracy, the convergence time of trapped particles to
their respective attractors can be O(10T), or even higher with the BBH force.

5. Summary and discussion

We have examined the dynamics of inertial particles that are denser than the fluid in the
simplest rotating and vortical system: that of two identical vortices in periodic circular
motion. We have found significant levels of particle trapping in the vicinity, even for
particles of significant Stokes number. The inclusion of the BBH force results in higher
levels of trapping for a given Stokes number, i.e. much larger BoA. It also results in a
wider range of Stokes number over which trapping occurs. These are in contrast to earlier
findings on the effects of BBH in other flows. The trapped particles are attracted to fixed
points or limit cycles of varying complexity, all the way to chaotic attractors. Thus, there
is extreme clustering into lower-dimensional (zero area) manifolds, of particles initially in
a finite BoA. Particles in a rotating system thus do not follow the expectation that they will
constantly centrifuge out of vortical regions, and collect in regions of high strain. In fact,
the attractors do not correspond to the highest strain regions.

The trapped particles undergo a rich variety of dynamics in the R–St parameter space.
The BoA is in some part non-monotonic function of the Stokes number and, in fact,
we can have a range of Stokes numbers devoid of particle-trapping. A period-doubling
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route to chaos is observed in some parameter ranges, whereas an unusual period-halving
back to a fixed point is seen in other parts of the parameter space. This regime is
physically interesting because it belies the expectation gained so far that particles of
higher inertia have a propensity to attain more complicated limiting trajectories. A given
behaviour observed at a given particle density without the BBH force appears at a much
higher particle density (lower R) with the inclusion of the BBH force. Moreover, a given
bifurcation typically happens at a higher St with the BBH force than without.

Close to a critical Stokes number Stcrit, which depends on R, there is a sudden drop
in the BoA. Beyond this, no particles are trapped forever, since a crisis occurs and the
chaotic attractor becomes a chaotic saddle. Beyond this, the system displays alternating
ridges of high but finite residence time and valleys of low residence time. The range of
Stokes number over which long-lasting transients are seen expands at particle densities
close to neutral buoyancy. One remarkable qualitative difference with the addition of the
BBH force is that the period doubling route to chaos can remain incomplete until the
rapid disappearance of the attractor. Correspondingly, the transient dynamics beyond Stcrit
resemble the dynamics near a non-chaotic saddle. Further, the distribution of residence
times is exponential without the BBH force and also with the BBH force for higher values,
but is non-monotonic with the BBH force just beyond Stcrit. Just before the crisis, the basin
boundaries with the BBH force appear to have a fractal nature, unlike without the BBH
force. Thus, the case with the BBH force merits further inquiry in this context.

We now discuss the limitations of our model. We recall that the MRE is a model
equation derived in the small particle Reynolds number limit, Rep → 0. In practical
scenarios where Rep is only finitely small, the effects due to flow inertia will become
significant in long but finite time. Therefore, the validity of the MRE in various regards
including the form of the history force and quasi-steady drag force are questionable after
long simulation time. However, our results are valid and insightful in the cases where
significant clustering is observed within short times, subject to the condition Rep < 1.

The MRE is widely used at Stokes numbers of O(1) but the need to satisfy this
requirement simultaneously with Rep � 1, as well as keeping the particle size small,
i.e. a/d � 1 imposes additional restrictions. By expressing Rep in terms of our control
parameters R and St, we obtain the scaling relation Rep(a/d) ∼ RSt|vrel|, where we recall
that vrel is a non-dimensional quantity. For a small particle under the influence of a
single vortex, the vortex turnover time may be used to define St. In our model, the St
is defined using the system’s period of rotation. In both cases, when St ∼ O(1) we usually
have |vrel| ∼ O(1). In principle, the above scaling requirement can be satisfied if R → 0,
but in an experiment, even in the extreme limit of solid particles in air, we typically
have R ∼ 10−3 at the lowest. Demanding arbitrary smallness of the particle size (a/d)

is therefore penalised by large Rep near vortices. For finite density ratios, as in our case,
satisfying the requirements is even harder. From our computations of slip velocity, we find
that the slip velocities with the BBH force are usually significantly lower than without it.
At the highest Stokes numbers in our study, Rep ∼ O(10) for a/d ∼ O(10−2) for some
part of the dynamics. However, close to the fixed points, and often near the limit cycles,
slip velocities are low and so is Rep. The small Rep assumption is more reasonable for
very dense and near-neutrally buoyant particles. Due to this, and the findings in Maxey,
Chang & Wang (1996) that show applicability of the MRE for Rep � 17, we expect that
our findings have qualitative significance. In fact, the MRE (with the BBH force) has been
previously used to study chaotic dynamics for Rep ∼ O(1) (Daitche & Tél 2014; Daitche
2015) in a different flow. We note that estimates of Rep are rarely discussed in the literature,
and need more attention. There is a need for modelling unsteadiness at higher Reynolds
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numbers for different background flows. For higher particle concentrations a stochastic
model based on particle resolved simulations has been provided (Tavanashad et al. 2019;
Lattanzi et al. 2022) where inter-particle interactions, and their history effects, have been
accounted for.

Our model also assumes one-way coupling between the particles and the underlying
fluid and therefore our results hold in the dilute limit of particle concentration. If the
concentration of particles becomes high due to clustering itself, the feedback of particles
on the fluid is no longer negligible. Feedback from particles is known to affect vortex
merger (Shuai, Roy & Kasbaoui 2024). In these cases a separate study on inertial particles
in the ensuing flow dynamics under two-way coupling is required. We have ignored gravity
from our model to isolate and study the effects of hydrodynamic forces on inertial particle
dynamics. Although co-rotating vortices do occur commonly in turbulence, the merger
process will include effects from the rest of the flow, as well as viscous effects depending
on the local flow Reynolds number. The relevance of our results for true turbulence will
therefore be affected by these other factors.

In spite of its limitations, our toy model study brings to attention an important aspect of
extreme clustering in rotating flows. In fact if the rotation rate is externally applied rather
than driven by a flow, we get an extra handle which can potentially mitigate the limitations.
The attraction of particles towards a manifold of dimension smaller than the spatial
dimension, like a pair of fixed points or limit cycles, will result in extreme clustering.
This can be a major contributor to particle collision and agglomeration, and in the case of
tiny living organisms, to enabling communication and sexual reproduction. The relevance
of these findings to particle aggregation in protoplanetary discs, in rotating systems in
the ocean and also in turbulent-flow neighbourhoods dominated by a few strong vortices
are worth investigation. Future studies on simple model flows, consisting of characteristic
combinations of vortices, with and without rotation of the entire system, in two and three
dimensions, would be illuminating, and provide a platform to understand some features
of particulate turbulent flows. We therefore hope that our work will motivate experiments
and further theory on this important question.
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Appendix A. Dynamics in the vicinity of vortices of unequal strength

In order to demonstrate the qualitative generalisation of our findings to unequal vortices,
we show the representative case of inertial particles near two co-rotating vortices with
relative vortex strength ratio Γ1/Γ2 = 0.5. The weaker vortex is placed on the left in the
rotating frame, without loss of generality. It suffices to consider the case without the BBH
force for qualitative comparisons.

The unequal vortex strength breaks symmetry with respect to the line joining the centres
of the vortices. Therefore, we have separate R–St phase plots, namely figure 16(b,c),
for the top and bottom half-planes, respectively. For comparison, we have placed these
plots alongside the case of identical vortices, Γ1/Γ2 = 1 (figure 16a). Despite significant
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Figure 16. Trapping phase plots in the R–St space based on the type of attractor for vortex strength ratios
(Γ1/Γ2) of 1.0 and 0.5, without the BBH force: (a) Γ1/Γ2 = 1.0; (b,c) Γ1/Γ2 = 0.5. The former is presented
here again to enable direct comparison. The latter case breaks the top-down symmetry, leading to different
dynamics in the regions above and below the vortices shown in the different phase plots (b,c).
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Figure 17. BoAs without the BBH force at R = 0.84 (ρp/ρf ≈ 1.3) for St = 0.09 and St = 0.24, with the
initial conditions: (i) v0 = 0rot; (ii) v0 = u. For this density ratio, we have BoA(ii) > BoA(i). However, the
BoA sizes are comparable for smaller Stokes number: (a) St = 0.09, v0 = 0rot; (b) St = 0.24, v0 = 0rot;
(c) St = 0.09, v0 = u; (d) St = 0.24, v0 = u.

quantitative differences, the overall similarity in the structure of these phase plots is
unmistakable. Whether for an equal-strength or unequal-strength pair, inertial particles
near co-rotating vortex pair of any vortex strength ratio can get trapped into attracting
orbits of differing complexities depending on the Stokes number St and density ratio
parameter R, and the non-monotonic variation of trapping behaviour with increasing
Stokes number can be noted for a range of R. Further, we note that our phase plots at
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Figure 18. BoAs without the BBH force at R = 0.50 (ρp/ρf = 2.5) for St = 0.10 and St = 0.32, with the
initial conditions: (i) v0 = 0rot; (ii) v0 = u. Already at St = 0.1 there is a visible quantitative difference, but the
BoA sizes are comparable. Notably, at St = 0.32, BoAs are insignificant for the initial condition (ii). In contrast
to the case of R = 0.84, we have BoA(i) 	 BoA(ii) for the higher Stokes number: (a) St = 0.10, v0 = 0rot;
(b) St = 0.32, v0 = 0rot; (c) St = 0.10, v0 = u; (d) St = 0.32, v0 = u.

R → 0 recover the trapping states found in Nizkaya et al. (2010) for the vortex strength
ratio 0.5, namely there are two attracting fixed points at low St whereas there is only one
at a higher St.

Appendix B. Effects of particle initial velocity on the BoAs

In real-life scenarios, it is impractical to control the initial conditions, and each particle’s
initial velocity could be different from that of its neighbours. Therefore, it serves us
well to study two typical initial velocities, namely (i) v0 = 0 in the rotating frame and
(ii) v0 = u( y0) (zero relative velocity). We denote their respective BoAs by the
appropriate subscript. But we must note that the attractors themselves, and quantities
like Stcrit, are properties of the flow geometry and particle St and R, and not of the
initial conditions. Initial condition (i) is chosen for its simplicity for the majority of this
study, whereas (ii) describes particles which, just before the computations begin, have
zero Stokes number, but at t = 0 go through a sudden growth to become more inertial,
e.g. due to agglomeration or, in the case of cloud water droplets, due to condensation.

Without the BBH force, BoAs for two density ratios and two Stokes numbers each are
shown in figures 17 and 18 for the two initial conditions. We find that sizes of BoAs are
relatively insensitive to initial conditions for small Stokes numbers, St � 0.1, whereas at
moderate Stokes numbers there is a significant effect. With the BBH force, the effect of
initial conditions is weak up to a larger Stokes number, as evident from figures 19 and 20.
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Figure 19. BoAs with the BBH force at R = 0.84 (ρp/ρf ≈ 1.3) for St = 0.09, St = 0.24 and St = 0.495,
with the initial conditions, (i) v0 = 0rot and (ii) v0 = u. For St = 0.09 as well as for St = 0.24, the BoAs
are comparable in size for the different initial conditions. But there is a significant difference at the larger
St = 0.495: (a) St = 0.09, v0 = 0rot; (b) St = 0.24, v0 = 0rot; (c) St = 0.495, v0 = 0rot; (d) St = 0.09,

v0 = u; (e) St = 0.24, v0 = u; ( f ) St = 0.495, v0 = u.
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Figure 20. BoAs with the BBH force at R = 0.50 (ρp/ρf = 2.5) for St = 0.32 and St = 0.685, with the
initial conditions (i) v0 = 0rot and (ii) v0 = u. For St = 0.32, BoA sizes are comparable for the two
initial conditions. However, for the higher St = 0.685 there is a large difference: (a) St = 0.32, v0 = 0rot;
(b) St = 0.685, v0 = 0rot; (c) St = 0.32, v0 = u; (d) St = 0.685, v0 = u.
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At higher Stokes, the effect of changing initial condition from (i) to (ii) on the BoA
depends on the density ratio itself. For closer to neutrally buoyant particles, BoA(ii) >

BoA(i) (see figure 17b,d) for without the BBH force and figure 19(c, f ) for with the BBH
force), whereas for denser particles BoA(i) > BoA(ii). In fact, at higher density ratios and
higher St, we find BoA(ii) ≈ 0, making condition (i) ideal to detect attractors. This happens
because an inertial particle on an attracting fixed point always has v = 0 in the rotating
frame. Hence, the corresponding BoA is guaranteed to have a non-zero area. A similar
trend for higher St is observed with the BBH force. For R = 0.84 (ρp/ρf ≈ 1.3), BoA(ii) >

BoA(i) (see figure 19c, f ). For R = 0.5 (ρp/ρf = 2.5), BoA(i) > BoA(ii) (see figure 20b,d),
where, again, BoA(ii) is much smaller and harder to detect.

Further the trend of the BoAs with the BBH force being larger than those without
persists with initial condition (ii) as well (compare figures 17c,d and 19d,e), however to
a differing quantitative extent.

To summarise, the sizes of the BoAs are only weakly affected by initial conditions at
small Stokes numbers but are quite sensitive at high St. The sensitivity increases as the
particles become heavier, and is lower with the BBH force than without it. However, the
trend of BoA size being larger with BBH than without it persists.
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