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CLASSIFICATION OF ONE DIMENSIONAL DYNAMICAL
SYSTEMS BY COUNTABLE STRUCTURES

HENK BRUIN AND BENJAMIN VEJNAR

Abstract. We study the complexity of the classification problem of conjugacy on dynamical systems
on some compact metrizable spaces. Especially we prove that the conjugacy equivalence relation of interval
dynamical systems is Borel bireducible to isomorphism equivalence relation of countable graphs. This
solves a special case of Hjorth’s conjecture which states that every orbit equivalence relation induced by a
continuous action of the group of all homeomorphisms of the closed unit interval is classifiable by countable
structures. We also prove that conjugacy equivalence relation of Hilbert cube homeomorphisms is Borel
bireducible to the universal orbit equivalence relation.

§1. Introduction. Measuring the complexity of relations on structures is a very
general task. In this paper we use the notion of Borel reducibility (see Definition 2.1)
and the results of invariant descriptive set theory to compare the complexities of
classification problems. For more details on invariant descriptive set theory we refer
to the book by Gao [8]. For a short and nice introduction to the theory of Borel
reductions we refer to a paper by Foreman [7].

Several equivalence relations became milestones in this theory. Let us mention
four of those, which describe an increasing chain of complexities:

• the equality on an uncountable Polish space,
• the equality of countable sets of real numbers,
• the S∞-universal orbit equivalence relation (S∞ is the group of permutations

on N),
• the universal orbit equivalence relation.
Let us give several examples to make the reader more familiar with the above

relations. A classical example is a result of Gromov (see, e.g., [8, Theorem 14.2.1])
who proved that the isometry equivalence relation of compact metric spaces is a
smooth equivalence relation, which means that it is Borel reducible to the equality
of real numbers (or equivalently of an uncountable Polish space). The isomorphism
relation of countable graphs or the isomorphism relation of countable linear orders
are Borel bireducible to the S∞-universal orbit equivalence. The homeomorphism
equivalence relation of compact metrizable spaces and the isometry relation of
separable complete metric spaces were proved by Zielinski in [29] and by Melleray
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CLASSIFICATION OF ONE DIMENSIONAL DYNAMICAL SYSTEMS 563

in [21], respectively, to be Borel bireducible to the universal orbit equivalence relation
(see the survey paper by Motto Ros [23]).

In order to capture all the structures in one space we need some sort of coding.
This can be done by considering some universal space (e.g., the Hilbert cube or the
Urysohn space) and all its subspaces with some natural Polish topology or Borel
structure (e.g., the hyperspace topology or the Effros Borel structure). Sometimes
there are other natural ways to encode a given structure. For example the class of
separable complete metric spaces can be coded by the set of all metrics on N where
two metrics are defined to be equivalent if the completions of the respective spaces are
isometric. Fortunately in this case, by [8, Theorem 14.1.3] it does not matter which
of the two coding we choose. It is generally believed that this independence on a
natural coding is common to other structures and thus the statements are usually
formulated for all structures without mentioning the current coding. Nevertheless,
for the formal treatment some coding is always necessary.

The aim of this paper is to determine the complexity of some classification
problems of dynamical systems up to conjugacy. Dynamical systems of a fixed
compact metrizable space X can be naturally coded as a space of continuous
mappings of X into itself, with the uniform topology. This one as well as the subspace
of all self-homeomorphisms is well known to be a Polish space.

Let us mention several results which are dealing with the complexity of conjugacy
equivalence relation. It was proved by Hjorth that conjugacy equivalence relation
of homeomorphisms of [0,1] is classifiable by countable structures [12, Section
4.2] (in fact Borel bireducible to the universal S∞-orbit equivalence relation)
but conjugacy of homeomorphisms of [0, 1]2 is not [12, Section 4.3]. By a
result of Camerlo and Gao, conjugacy equivalence relation of both selfmaps and
homeomorphisms of the Cantor set are Borel bireducible to the S∞-universal orbit
equivalence relation [4, Theorem 5]. Kaya proved that conjugacy of pointed minimal
Cantor dynamical systems is Borel bireducible to the equality of countable subsets
of reals [14]. Conjugacy of odometers is smooth due to Buescu and Stewart [2].
The complexity of conjugacy of Toeplitz subshifts was treated several times—by
Thomas, Sabok, and Tsankov, and by Kaya [13, 26, 28]. Conjugacy of two-sided
subshifts is Borel bireducible to the universal countable Borel equivalence relation
due to Clemens [6]. There is an extensive exposition of results on the complexity
of conjugacy equivalence relation on subshifts of 2G for a countable group G in
the book by Gao, Jackson, and Seward [9, Chapter 9]. Recently, during the 8th
Visegrad Conference on Dynamical Systems in 2019 it was announced by Dominik
Kwietniak that conjugacy of shifts with specification is Borel bireducible to the
universal countable Borel equivalence relation.

In this paper, we deal with some of the missing parts. By mainly elementary and
standard tools (excluding the complexity level of countable structures), we prove:

Theorem A (See Theorem 3.16). The conjugacy equivalence relation of interval
maps is Borel bireducible to the S∞-universal orbit equivalence relation.

Also, we prove:

Theorem B (See Theorem 4.10). The conjugacy equivalence relation of homeo-
morphisms as well as conjugacy of selfmaps of the Hilbert cube is Borel bireducible to
the universal orbit equivalence relation.
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564 HENK BRUIN AND BENJAMIN VEJNAR

To this end we use some tools of infinite dimensional topology and a result of
Zielinski on the complexity of homeomorphism equivalence relation of metrizable
compacta [29] combining with some ideas of Krupski and the second author [19].
Finally we make a small overview on the complexity of conjugacy equivalence
relation of dynamical systems on the Cantor set, on the interval, on the circle, and
on the Hilbert cube.

§2. Definitions and notations. Let us define some standard notions from
descriptive set theory (see, e.g., [16]). A Polish space is a separable completely
metrizable topological space. Recall that a standard Borel space is a measurable
space (X,S) such that there is a Polish topology � on X for which the family
of Borel subsets of (X, �) is equal to S. In order to compare the complexities of
equivalence relations we use the notion of Borel reducibility.

Definition 2.1. Suppose that X and Y are sets and let E, F be equivalence
relations on X and Y respectively. We say that E is reducible to F, and we denote
this by E ≤ F , if there exists a mapping f : X → Y such that

x E x′ ⇐⇒ f(x) F f(x′),

for every x, x′ ∈ X . The mapping f is called a reduction of E into F. If the sets X and
Y are endowed with Polish topologies (or standard Borel structures), we say that E
is Borel reducible to F, and we write E ≤B F , if there is a reduction f : X → Y of
E into F which is Borel measurable. We say that E is Borel bireducible to F, and we
write E ∼B F , if E is Borel reducible to F and F is Borel reducible to E.

In a similar fashion we define being continuously reducible if in addition X and Y
are Polish spaces and f is continuous.

In the whole paper we set N for all positive integers, I = [0, 1] and we denote
the closure operator by Cl. For a separable metric space X we denote by K(X )
the hyperspace of all compacta in X with the Hausdorff distance dH and the
corresponding Vietoris topology. If X is a Polish space K(X ) is known to be Polish.
For compact metric spaces X,Y we consider the space C (X,Y ) of all continuous
mappings of X into Y with the supremum metric. In this way we get a Polish space.
Especially the collection of all continuous selfmaps of X is denoted shortly byC (X ).
We also denote by Inj(X,Y ) the collection of all embeddings of X into Y and by
H(X ) the collection of all homeomorphisms of X. These are again known to be
Polish spaces.

The equality equivalence relation of real numbers is denoted by E=. We denote
by E=+ the equivalence relation on RN defined by (an)E=+ (bn) if and only if
{an : n ∈ N} = {bn : n ∈ N}. The last equivalence relation is called the equality of
countable sets.

We say that an equivalence relation E defined on a standard Borel space X
is classifiable by countable structures if there is a countable relational language L
such that E is Borel reducible to the isomorphism relation of L-structures whose
underlying set is N. An equivalence relation E on a standard Borel space X is said
to be an orbit equivalence relation if there is a Borel action of a Polish group G on X
such that xEx′ if and only if there is some g ∈ G for which gx = x′.
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Let C be a class of equivalence relations on standard Borel spaces. An element
E ∈ C is called universal for C if F ≤B E for every F ∈ C. It is known that for every
Polish group G there is an equivalence relation (denoted by EG) on a standard
Borel space that is universal for all orbit equivalence relations given by continuous
G-actions. We are particularly interested in the universal S∞-equivalence relation
ES∞ , whereS∞ is the group of all permutations ofN. It is known that an equivalence
relation is classifiable by countable structures if and only if it is Borel reducible to
ES∞ . Moreover ES∞ is known to be Borel bireducible to isomorphism equivalence
relation of countable graphs. Also there exists a universal orbit equivalence relation
which is denoted by EG∞ . We should also note that all the mentioned equivalence
relations are analytic sets, i.e., images of standard Borel spaces with respect to a
Borel measurable map. We have a chain of complexities

E= ≤B E=+ ≤B ES∞ ≤B EG∞

and it is known that none of these Borel reductions can be reversed.

§3. Interval dynamical systems. In this section we prove that conjugacy of interval
dynamical systems is classifiable by countable structures. The strategy of our proof
is as follows. In the first part we describe a natural reduction of interval dynamical
systems to some kinds of countable structures. We assign to every f ∈ C (I ) a
countable invariant set Cf ⊆ I of some dynamically exceptional points for f. Since
the set Cf does not need to be dense in I we do not have enough information to
capture the dynamics of f by restricting toCf . On the other hand the dynamics on the
maximal open intervals of I \ Cf is quite simple. Hence it will be enough to define
an invariant countable dense subset Df in I \ Cl(Cf) arbitrarily. Consequently,
we get that for f conjugate to g there exists a conjugacy of f to g which sends
the set Cf ∪Df onto Cg ∪Dg . Finally it is enough to assign to every f ∈ C (I ) a
countable structure Ψ(f) whose underlying set is Cf ∪Df and which is equipped
with one binary relation ≤�Cf∪Df and one mapping f �Cf∪Df (which can be as
usual considered as a binary relation). We will prove then that if two such structures
Ψ(f) and Ψ(g) are isomorphic then f and g are conjugate.

In the second part we prove that this reduction can be modified using some sort of
coding so that the assigned countable structures share the same support and so that
the new reduction is Borel. To this end we use the Lusin–Novikov selection theorem
[16, Theorem 18.10] several times.

For g ∈ C (I ) we denote by Fix(g) the set of fixed points of g, i.e., those points
for which g(x) = x. We omit the proof of the following “folklore” lemma. The key
idea of the proof is the back and forth argument.

Lemma 3.1. Let f, g ∈ C (I ) be increasing homeomorphisms such that Fix(f) =
Fix(g) = {0, 1} and letA,B ⊆ (0, 1) be countable dense sets that are invariant in both
directions for f and g respectively. Then there is a conjugacy h of f and g satisfying
h(A) = B .

Definition 3.2. For f ∈ C (I ) let us say that a point z ∈ I is a left sharp local
maximum of f if there is some � > 0 such that f(x) < f(z) for x ∈ (z – �, z)
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566 HENK BRUIN AND BENJAMIN VEJNAR

and f(x) ≤ f(z) for x ∈ (z, z + �). In a similar fashion we define left sharp local
minimum, right sharp local minimum, and right sharp local maximum.

Notation 3.3. LetMf be the union of {0, 1} and the set of all left and right sharp
local maxima and minima. It is easily shown that the setMf is countable. For a closed
set F ⊆ I denote by Acc(F ) the set of all accessible points of F in R, i.e., those points
x ∈ F for which there exists an open interval (a, b) ⊆ R \ F for which x = a or x = b.

For every f ∈ C (I ) let us denote by Cf the smallest set such that:
(a) Mf ⊆ Cf ,
(b) if f–1(y) contains an interval then y ∈ Cf ,
(c) if n ∈ N then Acc(Fix(fn)) ⊆ Cf ,
(d) f(Cf) ⊆ Cf ,
(e) if y ∈ Cf then Acc(f–1(y)) ⊆ Cf .

Lemma 3.4. The set Cf is countable for every f ∈ C (I ).

Proof. LetS1 be the union ofMf , all the values of f at locally constant points and
all the sets Acc(Fix(fn)) for n ∈ N. Clearly S1 is countable. Let Si+1 = Si ∪ f(Si) ∪⋃
{Acc(f–1(y)) : y ∈ Si}. Clearly Cf =

⋃
{Si : i ∈ N} and thus it is countable. 


Note that Cf depends only on the topological properties of I and the dynamics
of f. That is if f and g are conjugate by some homeomorphism h, then h(Cf) = Cg .
This is clear because h mapsMf ontoMg , locally constant intervals of f to locally
constant intervals of g and periodic points of f to periodic points of g.

Let us denote by Jf the collection of all maximal open subintervals of I \ Cf .

Lemma 3.5. Let J ∈ Jf . Then either f �J is constant or f �J is one to one and
in this case f(J ) ∈ Jf . Also f–1(J ) is the finite union (possibly the empty union) of
elements of Jf .

Proof. Let us prove first thatf �J is either constant or one-to-one. Suppose that
the contrary holds. Then there are points x, y, z ∈ J such thatf(x) = f(y) �= f(z)
and x �= y. Let us suppose that x < y < z and f(x) < f(z) (the other possibilities
are just easy modifications). Let u = minf �[x,z] and let v = max(f–1(u) ∩ [x, z]).
It follows that v ∈ (x, z) is a right sharp local minimum. By Notation 3.3(a) it
follows that v ∈ Cf which is a contradiction since J is disjoint from Cf .

Suppose now that f �J is one-to-one and let us prove that f(J ) ∈ Jf . Observe
first that f(J ) is disjoint from Cf ; otherwise there would be a point y ∈ f(J ) ∩ Cf
and since f–1(y) is a closed set not containing the whole set J there will be a point
in Accf–1(y) ∩ J which is a contradiction with Notation 3.3(e). We need to prove
that f(J ) is a maximal interval disjoint from Cf . Suppose that J = (a, b). Then
there are an, bn ∈ Cf such that an → a, bn → b. By continuity of f it follows that
f(an) → f(a) and f(bn) → f(b). Also f(an), f(bn) ∈ Cf by Notation 3.3(d).
Thus the maximality follows.

Observe first that f–1(J ) is a countable union of disjoint collection of open
intervals and if we prove that each of the intervals is mapped by f onto J it will follow
by continuity that such a collection is in fact finite. Denote (a, b) = J and let (c, d )
be a maximal interval in f–1(J ). Clearly (c, d ) ∩ Cf = ∅ by Notation 3.3(d), so it is
enough to prove that it is maximal with this property. Note thatf(c), f(d ) ∈ {a, b};
otherwise we get a contradiction with (c, d ) being maximal interval in f–1(J ). Also
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it cannot happen that f(c) = f(d ); otherwise there will be a point of left local
maximum or minimum in (c, d ) which would produce a point in Mf ∩ (c, d ),
which in turn would give a point in Cf ∩ J , by Notation 3.3(a) and (d). Hence
f((c, d )) = J . Moreover, by the first part of this proof we get that f �(c,d ) is one-
to-one and thus it is either increasing or decreasing. Without loss of generality
suppose the first case. Let us distinguish several possibilities. If f ≥ f(c) on
a left neighborhood of c then c is a point of right sharp local minimum and
thus c ∈ Cf . Otherwise choose a sequence an ∈ Cf such that an → a. We define
points cn = max([0, c] ∩ f–1(an)). These are eventually well defined, cn → c and
cn ∈ Accf–1(an). Hence by Notation 3.3(e) cn ∈ Cf . We can proceed in a similar
way with the point d and thus the interval (c, d ) is maximal subinterval of I \ Cf . 


Example 3.6. For the tent map f(x) = min{2x, 2(1 – x)}, the set Cf contains
all the dyadic numbers in I ; thus Cf is a dense subset of I and hence Jf = ∅. For
the map g = 1

4f we have

Cg = {2–n, 1 – 2–n : n ∈ N} ∪ {0, 1},
Jg = {(2–n–1, 2–n), (1 – 2–n, 1 – 2–n–1) : n ∈ N}.

Notation 3.7. Let Gf be a directed graph on Jf where (J,K) forms an oriented
edge if and only if f(J ) = K . Note that for everyK ∈ Jf there are only finitely many
J ∈ Jf for which f(J ) = K . Hence every vertex of the graph Gf admits only finitely
many arrows to enter. Let Ef = Q ∩ I \ Cl(Cf) and let

Df =
⋃
n∈Z

fn(Ef).

Note that the union is taken over all integers. In spite of that it follows by Lemma 3.5
that Df is countable. Let us define

Ψ(f) = (Cf ∪Df,≤�Cf∪Df , f �Cf∪Df ).

Theorem 3.8. The mapping Ψ is a reduction of orientation preserving conjugacy
of interval dynamical systems to the isomorphism relation of countable structures.

Proof. Suppose first that f is conjugate to g via some increasing homeomor-
phism h, that is f = h–1gh. We want to find an isomorphism ϕ : Ψ(f) → Ψ(g).
Since h does not need to map Df to Dg , we need to do some more work. In fact
we find a conjugacy h̄ of f and g such that h̄(Cf ∪Df) = Cg ∪Dg . Then it will be
enough to define a mapping ϕ : Cf ∪Df → Cg ∪Dg as the restriction of h̄. We will
define h̄ by parts. First of all we define h̄ on the set Cl(Cf) in the same way as h.

Clearly h induces an isomorphism of the graphs (Jf,Gf) and (Jg , Gg). We will
consider the components of the symmetrized graphsGf andGg . Note that J,K ∈ Jf
are in the same component of Gf if there are m, n ≥ 0 such that fm(J ) = fn(K).

Let us distinguish two cases for the components of Gf . If a component of Gf
contains an oriented cycle, choose an element J in there (note that the cycle is
unique). Hence there is n ∈ N such that fn(J ) = J . By using Notation 3.3(c) it
follows that either all the points of J are fixed points for fn or there are no fixed
points of fn in J and the same has to be true for gn on h(J ). In the first case we
just let h̄ � J to be any homeomorphism of Cl(J ) and Cl(h(J )), and in the second
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case we obtain by Lemma 3.1 that there is a conjugacy h̄ �Cl(J ) of fn �Cl(J ) and
gn �Cl(h(J )) sending Df ∩ J onto Dg ∩ h(J ). In components that do not contain
an oriented cycle we choose J arbitrarily, and let h̄ �J be an arbitrary increasing
homeomorphism J → h(J ) which maps J ∩Df onto h(J ) ∩Dg .

For any K that is in the same component as J find m, n ≥ 0 such that fm(J ) =
fn(K) ∈ Jf and define h̄ on K using the definition of h̄ on J as

(g–n �h(K))g
mh̄(f–m �J )fn.

On the other hand suppose that ϕ is an isomorphism of the countable structure
Ψ(f) to Ψ(g). Hence ϕ : Cf ∪Df → Cg ∪Dg is a bijection preserving the order.
Thus it can be extended to an increasing homeomorphism ϕ̃ : I → I . We claim that
ϕ̃ conjugates f and g. Consider any point x ∈ Cf ∪Df and compute

g(ϕ̃(x)) = g(ϕ(x)) = ϕ(f(x)) = ϕ̃(f(x)),

where the middle equality follows from ϕ being an isomorphism of Ψ(f) and Ψ(g).
Since the set Cf ∪Df is dense it follows by continuity that g(ϕ̃(x)) = ϕ̃(f(x)) for
every x ∈ I . Hence f and g are conjugate. 


3.1. Borel coding. We need to verify that the mapping Ψ that was proved in
Theorem 3.8 to be a reduction can be coded in a Borel way. We use standard
notation for the Borel hierarchy, especially Σ0

1 is used for the collection of all open
sets, Σ0

2 is used for the collection of countable unions of closed sets, etc. For a set
B ⊆ X × Y and x ∈ X let us denote by Bx the set {y ∈ Y : (x, y) ∈ B} and call it
vertical section of B.

The following seems to be folklore in descriptive set theory, but for the sake of
completeness we include a proof.

Proposition 3.9. Let X,Y be Polish spaces and B ⊆ X × Y be a Borel set with
countable vertical sections. Then the set

⋃
x∈X {x} × Cl(Bx) is Borel as well.

Proof. Let B be a countable base for the topology of Y. By the Lusin–Novikov
selection theorem, we can assume that B =

⋃
fn for some Borel mapsfn : X → Y .

It follows that

(X × Y ) \
( ⋃
x∈X

{x} × Cl(Bx)

)
=

⋃
U∈B

⋂
n∈N

((X \ f–1
n (U )) ×U ).

Hence the set under discussion is Borel. 


Let us denote Γ = {(K, a) ∈ K(I ) × I : a ∈ Acc(K)}.

Lemma 3.10. The set Γ is a Σ0
2-set.

Proof. The sets

Ln = {(K, a) ∈ K(I ) × I : a ∈ K,K ∩ (a – 2–n, a) = ∅},

Rn = {(K, a) ∈ K(I ) × I : a ∈ K,K ∩ (a, a + 2–n) = ∅}

are closed for every n ∈ N. Hence the set
⋃

(Ln ∪Rn) is a Σ0
2-set. 
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Notation 3.11. For a set B ⊆ C (I ) × I let us define

B→ = {(f,f(x)) : (f, x) ∈ B},
B← = {(f, x) : (f,f(x)) ∈ B},
B⇐ = {(f, x) : x ∈ Acc(f–1(y)), (f, y) ∈ B}.

Lemma 3.12. Let B ⊆ C (I ) × I be a Borel set with countable vertical sections.
Then the sets B→, B←, and B⇐ are Borel as well.

Proof. The evaluation mapping e : C (I ) × I → I , e(f, x) = f(x) is continu-
ous. Hence the mapping Φ: (f, x) �→ (f, e(f, x)) is continuous as well. Especially,
the restriction of Φ to B is Borel and also countable-to-1. Since by [16, Exercise
18.14] countable-to-1 image of a Borel set is Borel we conclude that Φ(B) = B→ is
Borel.

By the Lusin–Novikov selection theorem we can write B =
⋃
Fn for some Borel

maps Fn. It follows then that

B← =
⋃
n∈N

{(f, x) : e(f, x) = Fn(f)}

and thus it is a Borel set.
The mapping p : C (I ) × I → K(I ), p(f, y) = f–1(y) is upper semicontinuous

and hence it is Borel by [16, Exercise 25.14]. The set Γ is Borel by Lemma 3.10
and it has nonempty and countable vertical sections. Hence Γ =

⋃
bn for some

Borel mappings bn : K(I ) → I , by the Lusin–Novikov selection theorem. The
mapping Ψn : (f, y) �→ (f, bn(f–1(y))) = (f, bn(p(f, y))) is a Borel mapping and
its restriction to B is countable-to-1. Hence by [16, 18.14] the set

⋃
Ψn(B) = B⇐ is

Borel. 

Lemma 3.13. Let X,Y,Z be standard Borel spaces, f : X → Y a Borel mapping,

andR⊆Y ×Z a Borel binary relation. Then the setR ◦ f= {(x, z) : (f(x), z) ∈ R}
is Borel.

Proof. Define F : X × Z → Y × Z by F (x, z) = (f(x), z). Clearly F is a Borel
mapping and R ◦ f = F –1(R) which is consequently a Borel set. 


Lemma 3.14. The set

A = {(f, x) ∈ C (I ) × I : x ∈ Cf ∪Df}
is a Borel subset of C (I ) × I .

Proof. Let us prove first that the set Ba := {(f, x) : x ∈Mf} is Borel. As the
set {(f, x) : x is a left sharp local maximum} can be written in the form⋃
ε>0

⋂
�>0

⋃
�>0

{(f, x) : ∀z ∈ [x – ε, x – �] : f(z) ≤ f(x) – � & ∀z ∈ [x, x + ε] : f(z) ≤ f(x)},

it follows that it is a Σ0
3 set. By symmetry it follows that Ba is the union of four

Σ0
3-sets and thus it is Borel. The set Bb := {(f, y) : f–1(y) contains an interval}

is a Σ0
2-set. Let Bc := {(f, x) ∈ C (I ) × I : x ∈ Acc(Fix(fn)), n ∈ N}. The map-

ping Fn : C (I ) → K(I ), Fn(f) = Fix(fn) is upper semicontinuous (since if fi
converge uniformly to f and xi converge to x with fni (xi) = xi then fn(x) =
limi fni (limj xj) = limj limi fni (xj) = limj fnj (xj) = limj xj = x by the Moore–
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Osgood theorem) and thus it is Borel. Since Γ is a Borel set by Lemma 3.10
we conclude that the composition Γ ◦ Fn is Borel because the composition of a
Borel binary relation and a Borel mapping (in that order) is a Borel relation by
Lemma 3.13. Hence Bc =

⋃
n∈N

Γ ◦ Fn is Borel. Hence the set B = Ba ∪ Bb ∪ Bc is
Borel. Define recursively B1 = B , Bn+1 = Bn ∪ B→

n ∪ B⇐
n for n ∈ N. All these sets

are Borel by Lemma 3.12. It follows that A1 =
⋃
Bn = {(f, x) : x ∈ Cf} is Borel.

Since A1 has countable vertical sections and it is Borel we conclude using
Proposition 3.9 that A2 =

⋃
f∈C (I )({f} × Cl(A1,f)) is Borel as well. Consequently

A3 = {(f, x) : x ∈ Ef} = (C (I ) ×Q) \ A2 is Borel. By Lemma 3.12 we conclude
that all the setsAn+1 = An ∪ A→

n ∪ A←
n , n ≥ 3 are Borel. FinallyA = A1 ∪

⋃
n≥3An

is a Borel set. 


Theorem 3.15. The orientation preserving conjugacy of interval dynamical systems
is Borel bireducible to the S∞-universal orbit equivalence relation.

Proof. By the result of [12, Section 4.2] orientation preserving conjugacy of
increasing interval homeomorphisms is Borel bireducible to the S∞-universal orbit
equivalence relation. Hence especially the S∞-universal orbit equivalence relation is
Borel reducible to increasing conjugacy of orientation preserving interval dynamical
systems.

Let us argue for the converse. The set A from Lemma 3.14 is Borel and it has
nonempty and countable vertical sections. Hence by the Lusin–Novikov selection
theorem we can find Borel mappings Fn : C (I ) → I such that

⋃
Fn = A. Since all

the vertical sections are infinite we can additionally suppose that for every pair
(f, x) ∈ A there is exactly one n ∈ N satisfying Fn(f) = x. Let

Φ(f) = (N, R,m),

where R is a binary relation and m is a unary function such that aRb iff
Fa(f) ≤ Fb(f) andm(a) = b ifff(Fa(f)) = Fb(f) for a, b ∈ N. There is a natural
isomorphism Φ(f) → Ψ(f),a �→ Fa(f). Hence clearly Φ is a reduction. It is routine
to verify that Φ is Borel by the fact that the mappings Fn are Borel. 


Let us note that the same conclusion as in the previous theorem can be proved
without assuming orientation preserving conjugacy but with just conjugacy. The
reason is that in the proofs of Theorem 3.15 and Theorem 3.8 we can simply
consider a ternary betweenness relation T instead of the binary relation of linear
order ≤, i.e., (x, y, z) ∈ T if and only if y is an element of the smallest interval
containing x and z. This ternary relation is clearly forgetting the order of I. Also by
[12, Exercise 4.14]ES∞ is Borel reducible to conjugacy of interval homeomorphisms.
Thus we get the following result.

Theorem 3.16. The conjugacy of interval dynamical systems is Borel bireducible
to the S∞-universal orbit equivalence relation.

We note that Theorem 3.16 is a special case of Hjorth’s conjecture
[12, Conjecture 10.6] stating that every equivalence relation induced by a continuous
action of the group H(I ) of all interval homeomorphisms on a Polish space is
classifiable by countable structures. In this case the homeomorphism group acts on
the space of continuous selfmaps by conjugacy. Similarly one can prove that the
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orbit equivalence relations induced by natural left or right composition actions of
the homeomorphism group on the space of continuous selfmaps are Borel reducible
to the S∞-universal equivalence relation. Also it is known that the orbit equivalence
induced by the homeomorphism group action H(I ) on the hyperspace K(I ) is Borel
bireducible to the S∞-universal orbit equivalence relation (see [12, Exercise 4.13]
or [5] for a proof). All these are special cases of Hjorth’s conjecture.

§4. Hilbert cube dynamical systems. Since the homeomorphism equivalence
relation of metrizable compacta is known to be Borel bireducible to the universal
orbit equivalence relation, it is not surprising that conjugacy of dynamical systems
on the Hilbert cube is of the same complexity, which is the main result of this
section. In a dynamical system (X,f), a point x is called a locally attracting fixed
point if f(x) = x and there is a neighborhood U of x such that for every z ∈ U the
trajectory (fn(z))n∈N converges to x. The notion of a Z-set in the Hilbert cube Q
plays an important role and it describes a kind of relative homotopical smallness.

Definition 4.1. A closed subset A of a (separable metric) space X is called a
Z-set in X if for every open cover U of X and every continuous function f of the
Hilbert cube Q into X there is a continuous function g : Q → X such that f and
g are U -close (i.e., for every x ∈ X there is U ∈ U such that f(x), g(x) ∈ U ) and
g(Q) ∩ A = ∅.

An introduction to this notion can be found in [22, Chapter 5]. Mostly, we will need
the following properties on Z-sets in the Hilbert cube. First, every homeomorphism
of Z-sets can be extended to a homeomorphism of the Hilbert cube [22, Theorem
5.3.7]. Second, the Hilbert cubeQ × I contains a topological copy of itselfQ × {0}
as a Z-set [22, Lemma 5.1.3] and similarly the base in the cone of the Hilbert cube is
a Z-set. Third, every closed subset of a Z-set in Q is a Z-set in Q [22, Lemma 5.1.2].
If follows from the first and second properties that there is topologically just one way
to embed the Hilbert cube into itself as a Z-set (namelyQ × {0} included inQ × I ).
For the purpose of this paper, an absolute retract is just a space homeomorphic to a
retract of the Hilbert cube (which is equivalent to being a retract of every separable
metric space, in which it is embedded). A space X is said to have the disjoint cell
property if for every ε > 0, n ∈ N, and continuous mappings f, g : I n → X there
are continuous mappings f′, g ′ : I n → X with disjoint images such that f and f′ as
well as g and g ′ are ε-close. The last two notions give a topological characterization
of the Hilbert cube.

Theorem 4.2 (Toruńczyk; see, e.g., [22, Theorem 4.2.25]). A space X is
homeomorphic to the Hilbert cube if and only if it is an absolute retract with the
disjoint cell property.

The following proposition is a special case of [29, Proposition 1] and it can be
easily proved using the back and forth argument. Another reference for the proof is
[20, Propositions 9 and 10]. Our formulation is using a slightly different language.

Proposition 4.3. LetK ⊆ A,L ⊆ B be four nonempty compact metrizable spaces
such that A \K and B \ L are dense sets of isolated points in A and B respectively.
Then every homeomorphism of K onto L can be extended to a homeomorphism of A
onto B.

https://doi.org/10.1017/jsl.2022.67 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.67


572 HENK BRUIN AND BENJAMIN VEJNAR

The following will be useful in the proof of Theorem 4.10.

Proposition 4.4 [10, Theorem 2.6] or [22, Corollary 4.2.24]. If X is a
nondegenerate Peano continuum then there exists a homotopyH : K(X ) × I → K(X )
for which:

• H (A, 0) = A for every A ∈ 2X ,
• H (A, t) is finite for every t > 0 and A ∈ 2X .

Recall that ifY ⊆ X and ε > 0 we say that X is ε-deformable into Y if there exists
a continuous mapping ϕ : X × I → X such that ϕ(x, 0) = x, ϕ(x, 1) ∈ Y and the
diameter of ϕ({x} × I ) is at most ε for every x ∈ X . The following proposition was
proved in [18, Theorem 1.1 and Corollary 1.3].

Proposition 4.5. Let X be a compact space such that for every ε > 0 there exists
an absolute retract Y ⊆ X for which X is ε-deformable into Y. Then X is an absolute
retract.

By a result of [1] the union of two Hilbert cubes, whose intersection is a Z-set in
each of the cubes and which is homeomorphic to the Hilbert cube, is the Hilbert
cube again. By the result of [11], even a weaker condition is enough to get the same
conclusion:

Proposition 4.6. Let X be a space which is the union of two Hilbert cubes Q1

and Q2. Suppose that Q1 ∩Q2 is a Hilbert cube which is a Z-set in Q1. Then X is a
Hilbert cube.

It should be noted here that a space which is the union of two Hilbert cubes
intersecting in a Hilbert cube may not be a Hilbert cube [27].

Lemma 4.7. Let X be a compact metric space which is the union of Hilbert cubes
Q, Q1, Q2, ... such that Qi ∩Qj = ∅ and Q ∩Qi is a Hilbert cube which is a Z-set in
Qi for every i, j ∈ N, i �= j. Suppose moreover that the diameter of Qi tends to zero.
Then X is homeomorphic to the Hilbert cube as well.

Proof. Let us denote Xi = Q ∪Q1 ∪ ··· ∪Qi and observe that it is homeomor-
phic to the Hilbert cube for every i ∈ N by an inductive usage of Proposition 4.6.
To make the same conclusion for X we use Toruńczyk’s theorem.

There is topologically just one way to embed the Hilbert cube into itself as a Z-set.
Hence every pair (Qi ,Qi ∩Q) is equivalent to (Q × I, Q × {0}) because Qi ∩Q is
a Z-set in Qi and it is homeomorphic to the Hilbert cube. Thus simply there is
a homotopy hi : Qi × I → Qi such that hi(x, t) = x for t = 0 or x ∈ Qi ∩Q and
hi(x, 1) ∈ Q ∩Qi . Let us denote

si(x, t) =

{
x, x ∈ Xi ,
hj(x, t), x ∈ Qj, j > i.

Since the diameter of Qi tends to zero, the diameters of si({x} × I ) are sufficiently
small for large i. Hence for every ε > 0 it follows that X is ε-deformable into Xi
for some i ∈ N. Moreover, for every i ∈ N, Xi is an absolute retract. Hence X is an
absolute retract by Proposition 4.5.

Let us argue that X has the disjoint cell property (see [22, p. 294]). Denote
ri(x) = si(x, 1). Then ri : X → Xi is a retraction. Suppose that f, g : I n → X are
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continuous mappings and ε > 0. Then for sufficiently large i ∈ N diameters of Qj
are smaller than ε for j ≥ i . Hence ri is ε-close to identity on X. Since Xi is
homeomorphic to the Hilbert cube it has the disjoint cell property and thus there
are continuous mappings f′, g ′ : I n → Xi with disjoint images such that ri ◦ f and
f′ as well as ri ◦ g and g ′ are ε-close. It follows by the triangle inequality that f
and f′ as well as g and g ′ are 2ε-close. Thus X has the disjoint cell property. As
mentioned at the beginning of the proof, by Toruńczyk’s theorem it follows that X
is homeomorphic to the Hilbert cube. 


An equivalence relation E on a Borel subset Y of a Polish space X is said to be
countably separated if there is a sequence (Zn)∞n=1 of E-invariant Borel subsets of Y
such that for all x, y ∈ Y , the points x and y are E-equivalent if and only if the sets
{n ∈ N ; x ∈ Zn} and {n ∈ N ; y ∈ Zn} are equal. A transversal for an equivalence
relation E ⊆ X × X is a set T ⊆ X whose intersection with every E-equivalence
class is a one point set.

The following proposition by Burgess is a special kind of a selection theorem and
it will serve as a useful tool to complete the Borel coding argument, which is by no
means straightforward.

Proposition 4.8 [3]. Let G be a Polish group, let X be a Polish space, and let α be
a continuous action of G on X. Denote by E the orbit equivalence relation induced by
α and let Y be an E-invariant Borel subset of X. Let EY be the restriction of E to Y
and assume that EY is countably separated. Then there is a Borel transversal for EY .

In the next proposition, we denote by KX (Q) the collection of subspaces of Q
which are homeomorphic to X. It is known for a long time that this is always a Borel
set [25].

Proposition 4.9. There is a Borel mapping � : KQ(Q) → Inj(Q,Q) such that the
image of �(R) equals to R.

Proof. Let G be the homeomorphism group of Q and let us consider the action
α of G on Inj(Q,Q) given by g · h = h ◦ g–1. It follows that the corresponding orbit
equivalence relation E induced by α satisfies that fEg if and only if the images of
f and g are equal. Moreover E is countably separated as if we consider a countable
base B of Q and ZB = {f ∈ Inj(Q,Q) : Im(f) ∩ B �= ∅} for B ∈ B then f E g if
and only if {B ∈ B : f ∈ ZB} = {B ∈ B : g ∈ ZB} and also the sets ZB are clearly
invariant with respect to E. By a straightforward application of Proposition 4.8
we get that there is a Borel transversal T of E. As the mapping 	 : f �→ Im(f),
Inj(Q,Q) → K(Q) is Borel (even continuous), the graph of 	 is a Borel subset of
Inj(Q,Q) ×K(Q). As moreover T is a Borel subset of the domain of 	 and 	 is
one-to-one on T it follows that the mapping � = (	|T )–1 has a Borel graph and thus
it is a Borel mapping. Clearly for everyR ∈ KQ(Q) we get that �(R) is an embedding
of Q into Q whose image equals R. 


Some ideas for the proof of the following come from the paper [19].

Theorem 4.10. The conjugacy of Hilbert cube homeomorphisms (or selfmaps) is
Borel bireducible to EG∞ .

Proof. For one direction it is enough to prove that the homeomorphism
equivalence relation of metrizable compacta is Borel reducible to conjugacy of
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Q

Q

Q

K

Cdn

Figure 1. The compactum QK .

Hilbert cube homeomorphisms because the first relation is Borel bireducible to
EG∞ by the main result of [29]. To this end let

Q = {x ∈ 
2 : 0 ≤ xn ≤ 1/n},
Q′ = Q × I × {0},
Q′′ = Q × I × [– 1, 1],

Q′– = Q × I × [– 1, 0],

and let ‖ · ‖ be the usual norm on 
2.
Let us fix a homotopy H : K(Q) × I → K(Q) given by Proposition 4.4 for the

case X = Q. Let us fix K ∈ K(Q). We want to find a homeomorphism fK of a
Hilbert cube QK ⊆ Q′′ such that the topological information about K is somehow
encoded in the dynamics offK . LetDKn = H (K, 2–n), n ∈ N. Let εn be the minimum
of 1/n and the smallest distance of different points in DKn . For every d ∈ DKn fix a
set

Bdn = {(x, 2–n, 0) ∈ Q′′ : ‖d – x‖ ≤ εn/3}.

It follows that Bdn is always homeomorphic to the Hilbert cube since it is affinely
homeomorphic to an infinite dimensional compact convex subset of a Hilbert
space [17]. Let Cdn be the cone in Q′′ with base Bdn and with the vertex (d, 2–n, 2–n),
d ∈ DKn , n ∈ N, i.e., the union of all segments with end points (d, 2–n, 2–n) and
p, p ∈ Bdn . The cone over the Hilbert cube is homeomorphic to the Hilbert cube
[22, Theorem 1.7.5], which applies to Cdn . Let QmK = Q′– ∪

⋃
{Cdn : n ∈ N, n ≤ m,

d ∈ DKn } andQK =
⋃
{QmK : m ∈ N} (see Figure 1). Note thatQK is a closed subset

of Q′′.
Since Q′– ∩ Cdn = Bdn is homeomorphic to the Hilbert cube, which is a Z-set in

Cdn , we inductively obtain by Lemma 4.7 that QK is a Hilbert cube.

https://doi.org/10.1017/jsl.2022.67 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.67


CLASSIFICATION OF ONE DIMENSIONAL DYNAMICAL SYSTEMS 575

Let h(x) =
√
x, x ∈ I or any fixed homeomorphism of I with two fixed points

0, 1; and 1 being a locally attracting fixed point. We define

fK (x) =

⎧⎪⎨
⎪⎩
x, x ∈ Q′–,

((1 – h(t))a + h(t)d, 2–n, 2–nh(t)),
x = ((1 – t)a + td, 2–n, 2–nt) ∈ Cdn ,

d ∈ DKn , t ∈ I, n ∈ N.

All the points in Q′– are fixed points for fK and these are clearly not attracting.
All the points in

⋃
DKn are fixed points of fK and these are attracting. There are

no other fixed points of fK . It follows that K is homeomorphic (or even equal) to
the set of fixed points that are limits of attracting points but not attracting by itself
(and thus defined only by dynamical notions). Hence if fK and fL are conjugate
then K and L are homeomorphic, K,L ∈ K(Q).

On the other hand if K,L are homeomorphic compacta in Q then the sets K ∪⋃
n∈N
DKn × {2–n} and L ∪

⋃
n∈N
DLn × {2–n} are homeomorphic by Lemma 4.3.

This homeomorphism can be simply extended to a homeomorphism

ϕ : (K × {(0, 0)}) ∪
⋃

{Bdn (K) : d ∈ DKn , n ∈ N} → (L× {(0, 0)})

∪
⋃

{Bdn (L) : d ∈ DLn , n ∈ N}.

Both the sets in the domain and range of ϕ are Z-sets in Q′– since these are closed
subsets of the Z-set Q′ × {0} [22, Lemmas 5.1.2 and Lemma 5.1.3]. Hence ϕ can
be extended to a homeomorphism ϕ′ : Q′– → Q′–[22, Theorem 5.3.7]. It remains
to extend ϕ′ linearly on the cones to obtain a homeomorphism ϕ′′. It follows that
ϕ′′ conjugates fK and fL. Note that we can identify fK with its graph and thus
it can be considered as a closed subspace of Q′′ ×Q′′. To verify that the mappings
K �→ QK and 	 : K(Q) → K(Q′′ ×Q′′), K �→ fK are Borel is a routine which is
usually omitted in this type of proof.

However, we are still not done, since fK is defined on the topological copy of the
Hilbert cubeQK which differs when changing K. Let us consider the Borel mapping
� given by Proposition 4.9. We redefine the mappingfK by conjugating it via �(QK )
in the following way. The mapping K �→ �(QK )–1 ◦ fK ◦ (�(QK )), K(Q) → H(Q)
is the desired Borel reduction.

To conclude the proof it is enough to Borel reduce conjugacy of Hilbert cube maps
to EG∞ . Consider structures of the form (Q,R) where R is a closed binary relation
on Q. Two such structures (Q,R) and (Q,S) are said to be isomorphic if there is a
homeomorphism � : Q → Q for which (� × �)(R) = S. By a fairly more general
result [24] it follows that such isomorphism equivalence relation is Borel reducible
toEG∞ . There is a Borel (even continuous) reduction which takes a continuous map
f : Q → Q and assigns (Q, graph(f)) to it. Combining the two reductions we get
the desired one. 


§5. Concluding remarks and questions. Let us summarize some of the results on
the complexity of conjugacy equivalence relation in Table 1 in which we consider
conjugacy equivalence relation of maps, homeomorphisms, and pointed transitive
homeomorphisms of the interval, circle, Cantor set, and Hilbert cube, respectively.
Let us recall that a pointed dynamical system is a triple (X,f, x), where (X,f) is a
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Homeomorphisms/maps Pointed transitive homeomorphisms
Interval ES∞ [12], Theorem 3.16 ∅ Note 5.2
Circle ES∞ Note 5.3 E= Note 5.4
Cantor set ES∞ [4] E=+ [14], Note 5.5
Hilbert cube EG∞ Theorem 4.10 ? Question 5.6

Table 1. The complexity of conjugacy equivalence relation.

dynamical system and x ∈ X . We say that a pointed dynamical system (X,f, x) is
transitive if the forward orbit of x in (X,f) is dense. Two pointed dynamical systems
(X,f, x) and (Y, g, y) are called conjugate if there is a conjugacy of (X,f) and (Y, g)
mapping x to y. We proceed by a series of simple notes as comments on Table 1.

Note 5.1. Conjugacy of pointed transitive maps of the interval is smooth; indeed
it is enough to assign to every pointed transitive dynamical system (I, f, x) the N× N

matrix of true and false: (fm(x) < fn(x))m,n∈N which determines f uniquely up to
increasing conjugacy.

Note 5.2. There are no transitive homeomorphisms on the interval.

Note 5.3. The complexity result by Hjorth [12, Section 4.2] that conjugacy
of interval homeomorphisms is Borel bireducible to ES∞ , remains true for circle
homeomorphisms simply by a modification of the original proof. A modification of
the proof of Theorem 3.16 will give a similar result for circle maps. The same method
as for the interval case can be used just by considering left or right local maxima and
minima defined in an obvious way and then iterating this set forward and backward
in a similar manner as in Notation 3.3. Thus conjugacy of circle selfmaps is Borel
bireducible to the S∞-universal orbit equivalence relation.

Note 5.4. Transitive homeomorphisms of the circle are well known to be conjugate
to irrational rotations. Hence the rotation number is a complete invariant and hence
conjugacy of (pointed ) transitive homeomorphisms of the circle is Borel bireducible to
the equality on irrationals (or on an uncountable Polish space).

Note 5.5. By a result of Kaya [14], conjugacy of pointed minimal homeomorphisms
of the Cantor set is Borel bireducible to the equality of countable sets E=+ . Note that
his proof works in the same vein for pointed transitive homeomorphisms of the Cantor
set. Let us recall the main part of his construction in this case. Let X be the Cantor set
and B the collection of all clopen sets in X. To a pointed transitive system (X,f, x) we
assign the collection

Ret(f, x) = {RetB(f, x) : B ∈ B},
where RetB(f, x) = {n ∈ Z : fn(x) ∈ B}. It can be verified that the mapping Φ
defined as

Φ(f, x) = (RetB(f, x) : B ∈ B) ∈ P(Z)B

is a reduction of pointed transitive Cantor maps to the equality of countable sets in
P(Z)B, i.e., (f, x) is conjugate to (g, y) if and only if Ret(f, x) = Ret(g, y).

The following question is the missing part to complete Table 1.
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Question 5.6. What is the complexity of conjugacy of transitive pointed Hilbert
cube homeomorphisms (or maps)?

It was explained to us by Kaya [15] that conjugacy equivalence relation of pointed
transitive Hilbert cube homeomorphisms is a Borel relation. The main reason is
that every conjugacy of such systems preserves the distinguished point and thus it
is automatically prescribed on a dense subset. Hence there is at most one conjugacy
between such systems. Let us note that neitherES∞ norEG∞ is Borel and thus these
equivalence relations cannot answer Question 5.6.

Since triangular maps, i.e., maps f : I 2 → I 2 of the form f(x, y) =
(g(x), h(x, y)) for continuous maps g : I → I and h : I 2 → I , lie in between
one-dimensional and two-dimensional and there is a gap in the complexity of the
last two mentioned equivalence relations, the following question is natural.

Question 5.7. What is the complexity of conjugacy of triangular maps? Is it Borel
bireducible to ES∞ or to EG∞?

Positive answer to the next question would provide a strengthening of
Theorem 3.16.

Question 5.8. Is conjugacy of closed binary relations on the closed interval Borel
reducible to the S∞-universal orbit equivalence relation?

The answer to the preceding question is affirmative if Hjorth’s conjecture is true.
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