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Abstract

Objective: Ultrasonic vocalisations (USVs) emitted by rats may reflect affective states.
Specifically, 50 kHz calls emitted during juvenile playing are associated with positive affect.
Given that depression is characterised by profound alterations in this domain, we proposed that
USV calls may configure a suitable tool for assessing depressive-like states. Utilising the Flinders
Sensitive Line (FSL), a well-established animal model of depression, we assessed USV calls
emitted by rats during tickling, a procedure based on juvenile rats’ rough-and-tumble play.
Methods: Juvenile FSL rats and their control counterparts, the Flinders Resistant Line (FRL) and
Sprague Dawley, were submitted to tickling sessions to imitate rats playing behaviour. The rats
were tickled daily for 6 weeks starting at PND21. Tickling sessions were recorded for further
acoustic analysis of 50 kHz calls. Results: Tickling increased 50 kHz calls in all the strains. FSL
rats emitted more calls than control strains and exhibited a higher number of flat-trill
combination calls. Conclusion: Tickling is a robust method for inducing 50 kHz USV calls.
Analysing USV calls emitted during tickling configurates a suitable method for studying
affective states relevant to depression. FSL rats did not present anhedonia but rather higher
reward sensitivity, which may underlie their stress vulnerability.

Significant outcomes

• Tickling induced 50 kHz USV calls in FSL and SD young rats.
• Tickling induced a higher 50 kHz USV response in FSL than SD or FRL.
• USV pattern can be used to infer emotional states in rodents.
• FSL does not seem to be a suitable model for studying anhedonia.
• FSL may serve as a model of non-adaptive reward sensitivity.

Limitations

• Animals were single-housed to increase playing behaviour during tickling sessions.

Introduction

Depression is a severe and life-threatening disease with extensive personal and societal costs
(Whiteford et al., Whiteford et al., 2013). Despite the recent advancements (Krystal et al., 2024),
current pharmacological treatments are unsatisfactory as most present a delayed onset, limited
efficacy and poor long-term symptom control (Dwyer & Duman, 2013, Gigliucci et al., 2013).
Thus, there is an urgent need to refine the preclinical methods used to discover putative
antidepressants (Cryan & Lucki, 2002, Neumann et al., 2011, Gururajan et al., 2019). The forced
swim test is a predictive tool to assess antidepressant-like behaviour (Porsolt et al., 1977a;
Porsolt et al., 1977b; Porsolt et al., 1978, Cryan & Lucki, 2002, Cryan & Slattery, 2007, Slattery
et al., Slattery & Cryan, 2012). Despite being highly popular due to its feasibility and
reproducibility, its use, interpretation and conceptualisation are criticised.

Rats emit ultrasonic vocalisations (USVs), inaudible to the human ear. These reflect the
affective state of the rats (Knutson et al., 1999). For instance, when rats have their tails pinched
or are exposed to other aversive stimuli, they elicit 22 kHz vocalisations associated with negative
affect (Panksepp, 1999, Knutson et al., 2002). Similarly, maternal separation induces calls of
40 or 60 kHz (Boulanger-Bertolus et al., 2017; Kaidbey et al., 2019). Alternatively,
administration of amphetamine either systemically or directly in the nucleus accumbens, a
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vital structure of the reward system, was linked to 50 kHz
vocalisations (Burgdorf et al., 2001; Burgdorf & Panksepp, 2001).
These vocalisations are also spontaneously elicited when juvenile
rats play with each other, suggesting its association with positive
affect (Panksepp, 1999, Knutson et al., 2002). The experimenter
can imitate the juvenile rats’ rough-and-tumble play through a
tickling-like stimulation, increasing 50 kHz vocalisations. The
number of calls elicited can be used to infer depressive and anxiety-
like behaviour (Burgdorf et al., 2001; Mallo et al., 2007).

The Flinders Sensitive Line (FSL) is an inbred line widely
validated as a model of depression (Overstreet, 1992, Overstreet
et al., 2013). Studies on face validity demonstrate: (I) reduced
sucrose intake following stress and increased immobility in the
forced swim test, suggesting a depressive-like phenotype
(Wegener G., 2012); (II) elevated REM sleep and impairments
in the novel object recognition task, modelling disturbed sleep
and cognitive deficits related to depression (Wegener et al., 2012).
Studies on construct validity in this model show serotonergic,
cholinergic, neurotrophic and morphological abnormalities,
which have been implicated in depression in humans
(Overstreet & Wegener, 2013; Strenn et al., 2015; Ardalan
et al., 2017; Kirkedal et al., 2019; Tillmann & Wegener, 2019,
Treccani et al., 2019; Abildgaard et al., 2021; Arjmand et al., 2023;
Domingos et al., 2024). Emphasising its predictive validity, the
FSL rat shows decreased immobility in the forced swim test when
treated chronically and acutely with drugs that have antidepres-
sant effects in humans (du Jardin et al., 2016; Marchetti et al.,
2020). Therefore, the present study examined the emission of
USVs during tickling stimulation in the FSL rat compared to the
Flinders Resistant Line (FRL) and outbred Sprague Dawley (SD)
rats – both commonly used controls for the FSL rat.

The aims of the study were to i) characterise and ii) investigate
the applicability of USVs as a screening method for depressive-
like behaviour in a rodent model of depression. It was
hypothesised that the depressive-like phenotype of the FSL rat
would be reflected in the ultrasonic response to tickling
stimulation.

Methods

Animals

Juvenile 22-day-old male FSL (n= 27), FRL (n= 24) and SD
(n= 23) rats were obtained from the in-house breeding colony at
the Translational Neuropsychiatry Unit, Aarhus University
(Denmark). Animals were housed at 22 ± 2oC and kept at a
12-hour light/dark cycle (lights on at 07:00) with access to food and
water ad libitum. The rats had access to a hide, nestingmaterial and
a wooden stick throughout the experiment. All animal procedures
were approved by the Danish National Committee for Ethics in
Animal Experimentation (permission ID: 2012-15-2934-00254).
Baseline characteristics of the animals are given in Table 1.

Experimental design

On postnatal day 21, the rats were weaned from their mothers. All
rats were single-housed during the entire experimental period to
increase play behaviour during tickling sessions (Panksepp, 1981;
Panksepp et al., 1984). The rats were randomly assigned to the
experimental groups (tickling/light-touch). All experimental
procedures were carried out in the rat’s light cycle.

Tickling

The rats were tickled daily for 6 weeks starting from postnatal day
21. A tickling session consisted of 15 s acclimatisation to the
tickling cage followed by 15 s hand-play with the experimenter,
touching the nape of the neck and abdomen, then 15 s of no
stimulation followed by 15 s tickling. During the last three seconds
of each bout of tickling, attempts were made to pin down the rat
and vigorously tickle the abdomen. This method has been
described elsewhere (Knutson et al., 1998; Mallo et al., 2007). A
dorsal light-touch group was used as a control group for the tickled
rats. As previously described, light touch has been used as a control
for tickling, as it is a discernible stimulation but presumably with
less reward value (Burgdorf et al., 2001; Burgdorf & Panksepp,
2001; Yamamuro et al., 2013). Acoustic foam was used to isolate
the Plexiglas container where the tickling took place (Brudzynski &
Pniak, 2002). The same experimenter conducted all the tickling
sessions and was blinded to the strain of the rats.

Acoustic data acquisition, analysis and classification
The tickling sessions were recorded using Avisoft-RECORDER
USGH (v.4.2 Avisoft Bioacoustics, Berlin, Germany). A condenser
microphone CM16/CMPA (from AvisoftBioacoustics) was
secured 20 cm from the cage floor, and its signal was fed to the
Avisoft UltraSoundGate 416H with a sampling rate of 750 kHz.
Acoustical analysis was performed with the Avisoft SASlab Pro
(v.5.2 Avisoft bioacoustics, Berlin, Germany), and spectograms
were generated with a fast Fourier transformation (FFT)-length of
256 points and an overlap of 75% (FlatTop window, 100% frame
size). A semi-automatic recording of call parameters was used for
the quantitative analysis of the 2-minute tickling or light-touch
sessions. In accordance with Reno et al. (2013), calls with a
frequency between 30–90 kHz were considered 50 kHz calls and
between 20 and 30 kHz were considered 22 kHz calls (Reno et al.,
2013). Furthermore, calls were regarded as individual vocalisations
when separated by at least 20 ms. The minimum call length was set
at 5 ms and sounds shorter than this were considered noise. For the
50 kHz calls, the differences in morphology and call subtypes were
based on the classification by Wright et al. (Wright et al., 2010).
This classification consists of 14 call categories differently
modulate by diverse stimuli, environmental conditions and
inter-individual differences, ultimately allowing a more refined
analysis of the affective state (Wright et al., 2010). The qualitative
evaluation of the calls was carried out on the first 15 s stimulations
of experimental day 23, as this was the day with the largest quantity
of calls. The categorisation was made manually based on the
predefined frequency patterns described by Wright et al.

Data analysis and statistics

All statistics were conducted using SPSS version 22 and GraphPad
Prism 10 for Windows (GraphPad Software, San Diego, CA). The
statistical analysis of differences between periods of tickling versus
periods without tickling and among ticking sessions was done with
repeated-measures one-way analysis of variance (ANOVA) with
planned post hoc pairwise comparisons using Geisser-Greenhouse
correction for sphericity and Bonferroni for multiple comparisons.
The statistical analysis of differences between the tickling and the
light-touch groups or strain differences for call categories was done
using a two-way ANOVA with post hoc Bonferroni for multiple
comparisons. Spearman’s correlation coefficient was used to
determine the inter-individual stability of calls between days.

2 Linda Marie Kai et al.

https://doi.org/10.1017/neu.2024.61 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2024.61


The qualitative differences in calls between strains were analysed
by a one-way ANOVA, followed by a Tukey post hoc test. A two-
tailed p-value of less than 5% was considered significant for
all tests.

Results

Ultrasonic vocalisations

More than 71.000 calls were counted, and more than 2.100 were
classified according to Wright et al., categories (Wright et al.,
2010). As 22 kHz calls accounted for less than 2.9 % of calls on day
1 and 0.6 % on day 6, these were not further analysed. Also, 40 of
the 74 rats produced calls which could not be classified as 50 kHz as
their frequency was below 30 kHz. They did not have the
appearance of 22 kHz either, as they were shorter (<300 ms) or
presented frequency modulations. This type of call may be
reminiscent of infants’ vocalisations. They were primarily present
in the first days of recording, after which they decreased. On
experimental day 13, only three rats produced these calls, and they
were not further analysed. Finally, in the qualitative evaluation of
the call profiles, 26% of the calls could not be classified and went
into a miscellaneous group.

Tickling increases the production of 50 kHz calls

The number of calls was significantly different among strains and
stimulation type on both days, 1 [Strain: F (2, 66)= 7.358,
p= 0.0013; Stimulation: F (1, 66)= 47.75; p< 0.0001; Interaction:
F (2, 66)= 5.334, p= 0.0071] and 23 [Strain: F (2, 66)= 11.07,
p< 0.0001; Stimulation: F (1, 66)= 132.5, p< 0.0001; Interaction:
F (2, 66)= 8.123, p= 0.0007]. The number of calls was higher in
tickled animals. This difference was not statistically significant for
the FRL rats on day 1 (Fig. 1). Moreover, while no differences
among strains were noticed in the light-touch group, tickled FSL
emitted more calls than FRL and SD on both days.

Furthermore, in the tickled group (Fig. 2), there was a
significant difference in the number of calls emitted between
periods of stimulation and no-stimulation [Strain: F (2,
45)= 0.8199, p= 0.4427; Time Interval: F (2.707, 121.8)= 17.03,
p< 0.0001; Interaction: F (14, 315)= 0.6060, p= 0.8599].

The FSL rat produces more calls than their controls during
tickling

Quantitative analysis of calls during tickling revealed a significant
effect of strain, day and interaction on the number of calls
produced [Strain: F (1.991, 179.2)= 127.9, p< 0.0001; Day:
F (5, 90)= 13.17, p< 0.0001; Interaction: F (10, 180)= 3.014,
p= 0.0015]. Post hoc analysis showed that FSL emitted more calls
than FRL rats. Moreover, apart from day 1, FSL also produced

more calls than SD, and on days 13 and 23, FRL emitted more calls
than SD (Fig. 3).

Furthermore, a correlation study was performed to evaluate
whether the quantity of calls was temporally stable. FSL rats did not
show a correlation between days; however, SD (from day 6) and
FRL (from day 13) did (see Table 2).

Qualitative call profiles among strains

Lastly, 57 and 2074 calls were classified in the light-touch and
tickled groups, respectively. The qualitative analysis is graphically
presented in Fig. 4. The percentage of calls of each type can be
found in the S1 table.

The qualitative analysis of the calls for each strain in the tickled
group is graphically presented in Fig. 5A-C. The percentage of each
call type can be found in Table S2. No differences in the relative
number of calls were found among strains for trill [Figure 5D: F (2,
45)= 0.3944, p= 0.6764], flat [Figure 5E: F (2, 45)= 1.308,
p= 0.2804], multistep [Figure 5G: F (2, 45)= 0.2524, p= 0.7780]
and upward ramp calls [Figure 5H: F (2, 45)= 0.9351, p= 0.4000].
However, significant strain differences were observed in flat-trill
[Figure 5F: F (2, 45)= 6.162, p= 0.0043] and complex calls [Figure
5I: F (2, 45)= 5.164, p= 0.0096].

Discussion

This is the first time ultrasonic calls emitted by FSL during tickling
have been investigated. Our results showed that I) tickling is a
suitable procedure to induce 50 kHz vocalisation in rats and II) the
ultrasonic response of tickled FSL rats significantly differs from
FRL and SD rats.

This study demonstrated a significant difference in the number
of calls produced by the tickled rats compared to the light-touch
group, which is in line with previous reports (Panksepp, 1999;
Panksepp & Burgdorf, 2000; Burgdorf et al., 2001; Hori et al.,
2013). Furthermore, when evaluating the subtypes of calls emitted,
the tickled groups produced trill and flat-trill combinations,
whereas the light-touch groups did not produce any flat-trill
combinations and only very few trill calls. These call types were
previously related to tickling (Schwarting et al., 2007) and other
rewarding stimuli like psychostimulants (Ahrens et al., 2009;
Simola et al., 2010, Wright et al., 2010). Furthermore, previous
reports have shown that pair-tested rats presented a higher
proportion of trill calls compared to single-tested rats after saline
or amphetamine treatment (Wright et al., 2010). Despite the rats in
our study being single-housed, we observed increased calls after
tickling.

Furthermore, tickled FSL rats produced significantly more calls
than FRL and SD controls. This contrasts with the pattern observed
in other animal models of depression, which showed fewer USV
calls (Mallo et al., 2009, Rao & Sadananda, 2015, Burke et al., 2021).

Table 1. Group characteristics. Group distributions of age andweight at the beginning of the experiment. Values are expressed asmeans ± SD. FSL= Flinders Sensitive
Line rat, FRL= Flinders Resistant Line rat, SD= Sprague Dawley

FSL FRL SD

Group Tickled Light-touch Tickled Light-touch Tickled Light-touch

Group size 16 8 16 11 16 7

Age (days) 21.6 (±1.1) 21.9 (±1.4) 21.5 (±0.8) 21.9 (±0.8) 23 (±0.8) 22.8 (±0.9)

Weight (day 3) 54.6 (±7) 53.2 (±5.6) 61.8 (±9) 56.6 (±13) 70.3 (±18) 72 (±19)
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Figure 1. Differences in the no. of calls emitted by animals submitted to light-touch or tickle. (A) Number of calls on day 1 by strain. (B) Number of calls on day 23 by strain. Data
presented as mean ± SEM. *p< 0.05 compared to light-touched of the same strain. #p < 0.05 compared to SD and FRL.
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The increase in 50 kHz calls observed in juvenile FSL suggests
higher sensitivity to rewarding stimulus, which contradicts the core
anhedonic state found in depression. However, animal models of
depression often resemble some but not all depression features
(Gururajan et al., 2019). For instance, whether FSL can emulate
anhedonia is a matter of controversy. Previous reports showed
mixed findings in adult or prepubertal FSL (Pucilowski et al., 1993;
Matthews et al., 1996; Malkesman et al., 2005; Sanchez et al., 2018).
However, when exposed to specific environmental stressors,
anhedonia was observed in FSL, perhaps revealing a heightened
sensitivity to external stimuli (Pucilowski et al., 1993). Taken
together, FSL seems more sensitive to reward and aversive

interventions. In agreement with the enhanced sensitivity of FSL,
we found an increase in flat-trill combinations: previous data
showed that flat-trill combinations induced by reward stimulus
(playing, amphetamines) were only increased in pair-tested
animals and not in single animals. At the same time, FSL enhanced
this call type compared to the other strains (Wright et al., 2010).
Curiously, in humans, high environmental sensitivity during
childhoodmay constitute a risk factor for developing depression as
an adult (Lionetti et al., 2022). Furthermore, the vulnerability
aspects of sensitivity to reward are associated with high expression
of traits such as FEAR, SADNESS and ANGER (Pulver et al., 2020)
of the Affective Neuroscience Personality Model (Davis &

Table 2. Stability in call profiles across days in the three strains. Correlation of calls between days across strains. FSL= Flinders Sensitive Line rat, FRL = Flinders
Resistant Line rat, SD= Sprague Dawley

Day2 Day6 Day13 Day23 Day35

FSL

Day1 Spearmans correlation 0,658** −0,094 0,165 0,368 0,029

Sig. (2-tailed) 0,006 0,729 0,542 0,161 0,914

Day2 Spearmans correlation −0,113 −0,155 0,135 0,109

Sig. (2-tailed) 0,676 0,568 0,617 0,688

Day6 Spearmans correlation −0,065 0,115 −0,218

Sig. (2-tailed) 0,812 0,672 0,418

Day13 Spearmans correlation ,632** 0,483

Sig. (2-tailed) 0,009 0,058

Day23 Spearmans correlation 0,252

Sig. (2-tailed) 0,347

FRL

Day1 Spearmans correlation 0,871** 0,46 −0,006 −0,102 0,037

Sig. (2-tailed) <0,001 0,073 0,983 0,707 0,892

Day2 Spearmans correlation 0,607* 0,258 −0,035 0,212

Sig. (2-tailed) 0,013 0,334 0,897 0,43

Day6 Spearmans correlation 0,617* 0,331 0,244

Sig. (2-tailed) 0,011 0,21 0,361

Day13 Spearmans correlation 0,714** 0,675**

Sig. (2-tailed) 0,002 0,004

Day23 Spearmans correlation 0,706**

Sig. (2-tailed) 0,002

SD

Day1 Spearmans correlation 0,511* 0,383 0,478 0,23 0,233

Sig. (2-tailed) 0,043 0,144 0,061 0,39 0,386

Day2 Spearmans correlation 0,524* 0,632** 0,439 0,556*

Sig. (2-tailed) 0,037 0,009 0,089 0,025

Day6 Spearmans correlation 0,856** 0,812** 0,864**

Sig. (2-tailed) <0,001 <0,001 <0,001

Day13 Spearmans correlation 0,720** 0,696**

Sig. (2-tailed) 0,002 0,003

Day23 Spearmans correlation 0,848**

Sig. (2-tailed) <0,001
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Panksepp, 2011). These emotional traits serve as depression
vulnerability mediators in adverse environments. Consistently, it
has been demonstrated in rats that higher reward sensitivity
corresponds to higher sensitivity to chronic mild stress (Koiv et al.,
2019). Single housing may additionally have been the stressor to
precipitate 50 kHz USV response from the more reward-
sensitive FSL.

Lastly, we performed a correlational analysis to determine
whether the quantity of calls produced by a rat on one day was

associated with the number of calls produced on later experimental
days. Significant temporal stability was found for the SD rat from
day 6 and the FRL rat from day 13. However, the number of calls
emitted by FSL was not associated with the number of calls emitted
on later days. A previous study on the temporal stability of the
USVs produced during tickling stimulation in Wistar rats showed
the calls from the beginning of the second week of stimulation to be
associated with calls produced on later experimental days (Mallo
et al., 2007). The apparent instability in the number of calls

Total=57

Trill

Total=2074

Flat-Trill
Complex
Upward ramp
Multi-step
Others

(A) (B)

Figure 4. Qualitative analysis of calls in animals tickled or
light-touch. (A) Distribution of calls in animals submitted to
light-touch. (B) Distribution of calls in tickled animals. The three
strains weremerged in the two groups (tickled and light-touch).
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Figure 5. Qualitative analysis of calls in tickled animals by strain. (A) Calls distribution across categories in SD. (B) Calls distribution across categories in FRL. (C) Calls distribution
across categories in FSL. (D) Relative quantity of trill calls in SD, FRL and FSL. (E) Relative quantity of flat calls in SD, FRL and FSL. (F) Relative quantity of trill-flat calls in SD, FRL and
FSL. (G) Relative quantity of multistep calls in SD, FRL and FSL. (H) Relative quantity of upward ramp calls in SD, FRL and FSL. (I) Relative quantity of complex calls in SD, FRL and
FSL. D-I Data presented as mean ± SEM. *p< 0.05 as indicated.
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produced between days in the FSL rat may thus be a characteristic
of this specific phenotype andmay relate to their reward sensitivity
as a representation of depression vulnerability. One could
speculate that this reflects a heightened sensitivity to the tickling
stimulation. Hence, minor variations in the stimulation between
days may lead tomore significant differences in the number of calls
produced in the FSL rats compared to the SD and FRL rats.

Thus, instead of a depressive-like phenotype, the FSL rat may
present a hypersensitive phenotype, which displays a heightened
sensitivity to its environment regardless of whether the stimuli are
appetitive or aversive. Thus, our findings have important
implications for future studies of the FSL rat within the field of
depression. If the depressive-like phenotype is to be modelled, it
may be advantageous to expose the FSL rat to an environmental
stressor. Moreover, emotional hyperreactivity was related to
bipolar disorder in patients (M’bailara et al., 2009, Henry et al.,
Henry et al., 2012). Considering the neurochemical profile and the
behavioural phenotype of FSL, some authors have already
suggested its potential as a preclinical tool for bipolar depression
(Mncube et al., 2021). The hypersensitive trait may endorse this
hypothesis. Future research should address the performance of FSL
in bipolar-like tests such as amphetamine-induced hyperlocomo-
tion, social interaction or their response to mood stabilisers.
Moreover, combining environmental stress and tickling would be
interesting to explore the USV profile of stressed FSL compared to
controls.

Conclusions

The current study aimed to investigate whether USVs may be
utilised as an alternative non-stressful tool to assess depressive-like
behaviour in rats. The main finding of this study – a profound
difference in vocalisations between an animal model of depression
and controls during tickling sessions – suggests that this may be a
fruitful endeavour. However, more studies on USVs in other rat
models of depression are needed as the FSL rat may not be the
preferred rat model to use, as it apparently shows heightened
reward sensitivity and hencemight notmodel anhedonia, at least at
an early age. Instead, USVs in the FSL rat may provide a readout in
a model of general vulnerability.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/neu.2024.61.
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