
J. Fluid Mech. (2024), vol. 984, A19, doi:10.1017/jfm.2024.209

Flow–acoustic resonance mechanism in tandem
deep cavities coupled with acoustic eigenmodes
in turbulent shear layers

Peng Wang1,2, Sichang Jia1,2, Zheng He1,2, Chuangxin He1,2,
Hyung Jin Sung3 and Yingzheng Liu1,2,†
1Turbomachinery Institute, School of Mechanical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, PR China
2Gas Turbine Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240,
PR China
3Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

(Received 20 September 2023; revised 18 January 2024; accepted 27 February 2024)

This study presents the interplay of flow and acoustics within tandem deep cavities,
focusing on the resonance mechanism occurring between turbulent shear layers and
acoustic eigenmodes. The arrangement inside the tandem deep cavities includes both
close and remote configurations. A combined fully coupled and decoupled aeroacoustic
simulation strategy was devised. Employing an advanced high-order spectral/hp element
method in conjunction with implicit large eddy simulation, the nonlinear compressible
Navier–Stokes equations were solved to acquire internal flow–acoustic resonant field.
In parallel, the linearized Navier–Stokes equations were tackled to determine coherent
shear layer perturbations with external acoustic forcing. Based on acoustic measurements,
the mainstream Reynolds number approaches approximately Rein = O(105), where we
identified the presence of frequency lock-in and a resonance range. Aeroacoustic noise
sources were examined by implementing spectral proper orthogonal decomposition to
decompose the pressure fields into hydrodynamic and acoustic components. As feedback
intensified, the flow characteristics by the acoustic forcing effect and the flow-interactive
effect were categorized according to the development of concurrent turbulent shear layers.
Subsequently, the alternating and synchronous behaviours of concurrent shear layers
resonated with the out-of-phase and in-phase acoustic eigenmodes were identified, and the
corresponding large-scale counter-rotating vortex pairs and co-rotating vortex structures
at the cavity entrances were extracted. The acoustic power generated by the Coriolis
force was calculated using Howe’s vortex-sound analogy, and the aeroacoustic energy
transfer mechanism between large-scale shear layer vortices with acoustic eigenmodes

† Email address for correspondence: yzliu@sjtu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 984 A19-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yzliu@sjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.209&domain=pdf
https://doi.org/10.1017/jfm.2024.209


Flow–acoustic resonance mechanism

was further explored. Finally, a linear response of coherent perturbations of the concurrent
shear layers by external acoustic forcing was established. The amplification of flow in
the streamwise direction toward the main duct led to the formation of coherent vortex
structures, accompanied by separation bubbles into the main duct.

Key words: aeroacoustics, shear layer turbulence

1. Introduction

Flow–acoustic interaction is a common issue in modern engineering applications. This
intricate coupling frequently gives rise to undesirable consequences such as elevated noise
emissions, structural vibrations and even acoustic fatigue. These adverse effects, in turn,
exert an impact on multiple fronts, including compromised aerodynamic performance,
curtailed operational cycles and diminished service lifespans of associated equipment and
facilities. Addressing and mitigating flow–acoustic interaction is imperative to ensuring the
longevity, efficiency and effectiveness of engineering systems. By effectively managing
this interaction, engineers and researchers can foster enhanced operational stability,
reduced noise pollution and prolonged service intervals, contributing to the overall
reliability and sustainability of critical machinery and infrastructure.

Depending on the acoustic oscillation intensity, flow–acoustic interaction can be
classified into two types. The first type is characterized by weak flow–acoustic coupling,
observed in open spaces, such as instances of jet noise and airfoil noise. The interplay
between acoustic phenomena and fluid dynamics is relatively subtle, resulting in less
pronounced effects on the overall system behaviour. The second type involves strong
flow–acoustic coupling, encountered in enclosed spaces. This encompasses phenomena
such as confined cavity noise and duct acoustics. In such settings, the interaction
between the acoustics and fluid dynamics exerts a more profound influence, leading
to more conspicuous repercussions on the system’s behaviour. In weak couplings, the
aerodynamic noises would be generated by turbulent flow behaviours under the effects of
Kelvin–Helmholtz instability, boundary layer transition or flow separations, while the flow
dynamics is almost unaffected by the radiated acoustic waves (Ahuja & Mendoza 1995). In
strong couplings, however, aero-acoustical energy can be accumulated and high-intensity
acoustic counterforces are established, especially when the natural acoustic eigenmodes
of the enclosed volume are excited by the intrinsic turbulent fluctuations, originating
from flow passing the structural discontinuities. In this regard, the magnitude of the
acoustic particle velocity reaches the same order as the mainstream flow velocity, the
acoustic forcing on the flow dynamics is not negligible but inversely amplifies the turbulent
fluctuations into the resonant mode (Hirschberg & Rienstra 2004). Such a phenomenon has
been reported in the F35B fighter, the annular combustion chamber and piping system in
nuclear power plants and in gas transport stations. Comprehensive understanding of the
flow–acoustic interaction mechanism containing the elevated unsteady flow behaviours
and associated aeroacoustic energy production is highly desirable for the related scientific
community and engineering components.

The present study focuses on the interaction between turbulent shear layers of cavity
flow with internal and external acoustic forcing, respectively. In general, depending on
the length-to-depth ratio (Lc/Dc) of a cavity, it can be classified into shallow cavity
with Lc/Dc > 1 and deep cavity with Lc/Dc < 1. In comparison, aerodynamic noises
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radiated from shallow cavities subjected to high Mach number incoming flow can be
formulated by the Rossiter formulation, and the feedback mechanism be described as shear
layer perturbations being gradually amplified along the cavity mouth, then impinging on
the downstream cavity corner and producing acoustic waves, which propagate upstream
and excite further shear layer instabilities to close the loop (Rowley, Colonius & Basu
2002). Differently, strong flow–acoustic couplings occur within deep cavities even at quite
low Mach numbers, inducing strong aeroacoustic pulsations, with amplitudes close to or
exceeding the dynamic pressure head of the mainstream flow. Such strong aeroacoustic
pulsations can be attributed to two effects, i.e. the amplification of incident acoustic waves
into elevated external acoustic forcing and the excitation of natural acoustic eigenmodes
into self-sustained internal acoustic forcing.

By conducting a global stability analysis with exterior disturbance, the Kelvin–Helmholtz
instability of a cavity shear layer can be strengthened by enhanced aeroacoustic feedback at
selected frequencies (Yamouni, Sipp & Jacquin 2013). According to Nakiboğlu, Manders
& Hirschberg (2012), this feedback effect was produced by the resultant intensive velocity
fluctuations and continuous vorticity convection from shedding vortices at the leading edge
of the cavity. Bourquard, Faure-Beaulieu & Noiray (2021) experimentally measured and
theoretically modelled the aeroacoustic feedback using stochastic differential equations
and Fokker–Planck equations; the intermittency from stable to unstable feedback was
observed in the vicinity of supercritical Hopf bifurcations. In another aspect, Shaaban
& Ziada (2018a) constructed acoustic standing-wave oscillations along with mainstream
flow passing through multiple cavities; elevated acoustic pulsations were identified from
different coupling combinations among hydrodynamics modes and harmonic acoustic
modes. By performing acoustic forcing at the end of a deep cavity through the linearized
Navier–Stokes equation (LNSE) and compressible large eddy simulation (LES), Boujo,
Bauerheim & Noiray (2018) identified the amplification of kinetic energy and nonlinear
saturation mechanism of turbulent shear layers when increasing the forcing intensity.

Internal acoustic forcing is closely related to natural acoustic modes, such as
longitudinal modes of multiple shallow cavities, diametral modes of annular cavities and
depth-oriented standing-wave modes of deep cavities. The excitation of these acoustic
modes gives rise to remarkable acoustic pressure pulsations, trapped within the enclosed
cavity volume or radiated away depending on the direction of acoustic mode. Under
the influence of aeroacoustic feedback from longitudinal acoustic modes, the shear
layer oscillations inside multiple cavities/side branches or a corrugated pipe present a
similar feature with well-organized vortex shedding behaviour (Nakiboğlu et al. 2011;
Shaaban & Ziada 2018b). Due to the special azimuthal characteristics of the diametral
acoustic mode, the interactive shear layers demonstrate an intensified three-dimensionality
and even a spinning rotation behaviour (Faure-Beaulieu, Pedergnana & Noiray 2023a;
Faure-Beaulieu et al. 2023b). These observations were corroborated through phase-locked
particle image velocimetry (PIV) measurements (Ziada, Bolduc & Lafon 2017) and
high-fidelity LES simulations (Abdelmwgoud, Shaaban & Mohany 2020; Wang et al.
2020). As for the depth-oriented acoustic mode, the direction of its acoustic particle
velocity is generally perpendicular to that the streamwise-transported shear layer. This
configuration results in a more significant production of acoustic power under the influence
of the Coriolis force. According to Bruggeman et al. (1991), Tonon et al. (2011a), three
kinds of shear layer behaviours can be classified with respect to the dimensionless acoustic
pulsation amplitude (ua/Uin, ua is the amplitude of acoustic particle velocity and Uin is the
mainstream velocity at the inlet): linear amplification of shear layer with a low-amplitude
regime of ua/Uin < O(10−2), nonlinear growth of the shear layer due to the concentration
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of emergent shedding vorticity with a moderate-amplitude regime of O(10−2) < ua/Uin <

O(10−1) and geometrical sensitivity of the shear layer with a high-amplitude regime of
ua/Uin = O(1). Especially, the high-amplitude acoustic pulsations by the depth-oriented
acoustic mode and its geometric sensitivity were confirmed by Larchevêque et al. (2004);
Thornber & Drikakis (2008). With periodic deep cavities in close arrangement along a
lined wall surface, convective aeroacoustic instability by coupling between the grazing
shear flow and incident acoustic waves was also confirmed by Dai & Aurégan (2018).
Further exploration of the effects of the geometrical arrangement and acoustic forcing on
the dynamics of turbulent shear layers should provide valuable insights for the field of
cavity noise, enabling the development of more efficient and adaptable systems.

The objective of the present study is to explore the interaction between a streamwise
shear layer and perpendicular acoustic forcing with high amplitude using a hybrid
computational aeroacoustics method and acoustic measurements. To strengthen the
novelty and complexity, we focus on the resonant behaviours and coherent perturbations
of the turbulent concurrent shear layers by the high-intensity acoustic forcing inside the
ducted tandem deep cavities. A combined numerical strategy containing fully coupled and
decoupled aeroacoustic simulation was performed to investigate the following issues: first,
we acquired the fully coupled aeroacoustic fields with self-sustained acoustic oscillations
by using a high-order spectral/hp element method and directly solving the nonlinear
compressible Navier–Stokes equations. Next, we determined the coherent perturbations
of a shear layer perturbated purely by external acoustic forcing through solving the
compressible LNSEs. Based on the simulation results, the aeroacoustic noises generated
by concurrent turbulent shear layers were firstly investigated in conjunction with spectral
proper orthogonal decomposition (SPOD). The intensified flow characteristics by the
acoustic eigenmodes were categorized according to the shear layer development tendency.
The kinematics of shear layer vortices and coherent shear layer perturbations in response
to internal and external acoustic forcing with out-of-phase or in-phase oscillations were
examined. The aeroacoustic energy transfer mechanism between the flow field and acoustic
field was further explored.

2. Problem formulation and acoustic measurement

2.1. Problem description
A depiction of the flow–acoustic interaction within tandem deep cavities is illustrated in
figure 1(a): concurrent shear layers are formed when flow passes the entrances of two
cavities; the internal acoustic forcing can originate from the excited acoustic eigenmodes.
Similar to a single cavity, the shear layer perturbations can excite the quasi-trapped
acoustic modes of each cavity and the acoustic oscillation amplifies the shear layers in
a feedback way. Differently, more complex interactions appear as the two isolated cavities
are connected by the global acoustic eigenmode. This complexity has been confirmed
by acoustic measurements of Ziada & Bühlmann (1992), Okuyama et al. (2012) and
Tonon, Willems & Hirschberg (2011b). The excited acoustic pulsations would not only be
trapped inside the cavities, but also propagate outside along the main duct. More attention
should be paid on the far upstream and downstream equipment. These clarifications
can be confirmed by exploring the acoustic eigenmodes using acoustic modal analysis
to solve the acoustic Helmholtz equation (Barbieri & Barbieri 2006). In the acoustic
modal analysis, tetrahedral elements were generated to discretize the acoustic domain,
ensuring at least five grid nodes per acoustic wavelength. The inlet and outlet were treated
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Figure 1. (a) Schematic of flow–acoustic interaction within tandem deep cavities; (b) contour plots of the
acoustic eigenmodes corresponding to the four configurations with π = 1, 4, 8, 16; the first row represents
the first-order mode and the second row represents the second-order mode.

as non-reflective acoustic soft boundaries, allowing acoustic waves to pass. Results are
illustrated in figure 1(b), in which four configurations with π = L/Dm = 1, 4, 8, 16 are
selected for demonstration. Here, L is the distance between the vertical centrelines of the
tandem deep cavities and Dm = 40 mm is the size of the square cross-section of the main
duct. The length, depth and width of the two cavities are equally fixed at Lc = 0.8Dm,
Dc = 4Dm and Wc = Dm. Here, a depth-to-length ratio of 5 : 1 is utilized to effectively
facilitate the excitation of the depth-oriented acoustic mode. A spanwise ratio of 1 : 1
between the main duct and tandem deep cavities promotes a quasi-two-dimensional flow
feature around the centreplane of the main duct. With π = 1, 4 of close arrangement,
their first-order eigenmodes demonstrate an antisymmetric standing-wave feature, as an
out-of-phase acoustic pressure distribution is identified inside the tandem deep cavities.
With π = 8, 16, their first-order eigenmodes demonstrate a symmetric standing-wave
feature, as an in-phase acoustic pressure distribution is identified inside the tandem cavities
even in faraway arrangements, while an out-of-phase acoustic pressure is identified at
the middle section of the main duct. In comparison, the second-order eigenmodes are
harmonics of the first-order eigenmodes, but the acoustic pressure distribution is not a
purely standing-wave feature due to propagation along the main duct.

2.2. Acoustic measurements
A schematic diagram of the experimental set-up for acoustic measurements of the ducted
tandem deep cavities is illustrated in figure 2(a). This set-up includes the construction
of an open-circuit wind channel. To attain a low background noise level and maintain
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Figure 2. (a) Experimental set-up of acoustic measurements for tandem deep cavities; (b) plots of r.m.s. of
wall pressure fluctuation as a function of mainstream Reynolds number, the selected monitor is locating at
the endplate of upstream deep cavity; (c) plots of SPSLs; (d) spectrogram for the four configurations with
π = 1, 4, 8, 16.

a stable air temperature within the wind channel, the air-breathing running mode of the
downstream fan was activated. As part of the set-up, a sizable silencer was constructed
and integrated. To attain a consistent inflow characterized by low turbulence intensity,
we employed a diffuser with a 6 : 1 contraction ratio, along with the incorporation of
a honeycomb layer and two wire-mesh layers at the inlet section. Two acoustic liners,
optimized for frequencies exceeding 200 Hz, were crafted and positioned both upstream
and downstream of the test section to mitigate the reflection of acoustic waves within the
wind channel. The total length of the experimental set-up extended to a measurement of
8 metres. Here, we focus on two variables, i.e. the mainstream Reynolds number (Rein) and
the distance ratio between the two deep cavities. The range of Rein varies from 0.2 × 105

to 2 × 105 considering the side length (Dm) of the mainstream duct and the mainstream
velocity (Uin: 7.5–75 m s−1). The maximum mainstream Mach number (Main) remains
below 0.3, indicative of an incompressible air environment within the wind channel.
A fully developed turbulent flow profile can be achieved as the leading edge of the
upstream deep cavity located almost 50Dm downstream of the inlet diffuser. As a result, the
inlet turbulence intensity was measured to be below 2 % using a hot-wire measurement; the
maximum total sound pressure level was below 70 dB with high-speed running of the fan,
far less than the acoustic oscillation intensity. A dynamic pressure transducer array with a
total of 11 PCB-103B02 sensors was flush mounted at the backplate of the ducted tandem
deep cavities to detect the frequency, amplitude and waveform of the excited acoustic
modes. The pressure signals were simultaneously measured by an NI-cDAQ-9172 data
acquisition equipment at a sampling frequency of 51.2 kHz. For demonstration purposes,
the monitoring location was chosen to be at the endplate of the upstream cavity, which
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corresponds to the antinode of the acoustic eigenmode. Since this position is distant from
the mainstream flow and acts as a flow dead zone, the measured pressure fluctuations can
be considered as purely acoustic pulsations.

In figure 2(b), we plotted the root mean square (r.m.s.) of the measured acoustic
pulsations, normalized by the inlet dynamic pressure head, as a function of the mainstream
Reynolds number. Within specific ranges of Rein, the flow passing through the tandem
cavities can induce acoustic resonances owing to the aeroacoustic feedback occurring
between concurrent shear layers and their associated natural acoustic eigenmodes.
Comparatively, the configuration with π = 8 gives rise to the strongest acoustic pulsations,
then the configuration with π = 1. As for π = 8, an obvious range of 0.8 × 105 ≤ Rein ≤
1.7 × 105 can be identified with essentially intensified acoustic pulsations; the maximum
amplitude reaches two times of the inlet dynamic pressure head at Rein = 1.17 × 105. It is
noteworthy that the resultant acoustic particle velocity ratio reaches ua/Uin = 0.76, which
corresponds to the high-amplitude regime according to Bruggeman et al. (1991) and Tonon
et al. (2011a). As for π = 1, the Reynolds number range with intensified acoustic pulsation
amplitudes remains similar to the configuration with π = 8, the maximum amplitude
reaches 1.5 times of the inlet dynamic pressure head at Rein = 1.03 × 105 and the
resultant acoustic particle velocity ratio reaches ua/Uin = 0.57 within the high-amplitude
regime. In this configuration, another peak value of 0.8 times the inlet dynamic pressure
head, which has an acoustic particle velocity ratio of 0.38, can also be found at
Rein = 1.29 × 105. As for π = 4, 16, the excited acoustic pressure pulsations were
relatively attenuated, the maximum values are below 0.4 times the inlet dynamic pressure
head and the acoustic particle velocity ratios drop to ua/Uin < O(10−1), corresponding
to a moderate-amplitude regime. The amplitude discrepancy can be explained in view
of the acoustic damping coefficient (ξ) of the excited acoustic eigenmodes. As the
acoustic eigenmodes were determined by solving the eigenvalue problem of the acoustic
Helmholtz equation, one can obtain the real part and imaginary parts of their eigenvalues
(λa = a + bi). The real part (a) represents the eigenfrequency of an acoustic eigenmode,
while the imaginary part can be used to calculate the acoustic damping coefficient (ξ =
b/

√
a2 + b2). Here, a larger damping coefficient represents more potential dissipation

within an acoustic system. In our study, the derived damping coefficients for a tandem deep
cavity with close and half-wavelength arrangements are ξπ=1 = 0.015, ξπ=8 = 0.0012,
respectively. Consequently, the half-wavelength arrangement is found to induce the most
robust acoustic pulsations.

In terms of the frequency information, the sound pressure spectrum levels (SPSLs) were
calculated through the fast Fourier transformation method to delineate the acoustic spectra
at the pressure sensors. The spectrograms in figure 2(d) illustrate that the fundamental
frequencies of the above-mentioned aeroacoustic instabilities are 480 Hz for π = 1 and
520 Hz for π = 8, which are close to the first-order acoustic eigenmodes in figure 1(b).
Beyond this fundamental frequency, several high-order harmonic frequencies are also
highlighted in the spectrograms. In accordance with Ziada & Lafon (2014), such a
frequency lock-in phenomenon confirms the occurrence of flow–acoustic resonance by
the natural acoustic eigenmodes. Four quantitative plots with respect to the intensified
acoustic pulsations are plotted in figure 2(c). The discrepancies between the experimental
measurements and acoustic modal analysis are around 2 %, which could be attributed to the
turbulence interaction effect. Accounting for the flow convection effect tends to marginally
elevate the predicted eigenfrequencies. In addition, the slight frequency changes of the
measured pressure pulsations at different Reynolds numbers may be attributed to the
transport speed of the shear layer vortex, according to Tonon et al. (2011a).
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Figure 3. Waveform identification (a), spatio-temporal evolution of the flow-excited acoustic pulsations along
the ducted tandem deep cavities with π = 1, Rein = 1.03 × 105 (b) and Rein = 1.29 × 105 (b); and π = 8,
Rein = 1.18 × 105 (d,e). The white square symbols in (a) and (d) denote the sensor locations; in (b,c) and (e),
the abscissa denotes the sensor number, starting at the endplate of the upstream cavity, the time intervals were
sampled equally within one acoustic period corresponding to the fundamental frequency.

In addition to frequency lock-in phenomenon at a single pressure monitor, we also
identified the acoustic waveform from the dynamic pressure sensor array and explored
their spatio-temporal evolution, which are illustrated in figure 3. The results further
confirm the correspondence of the excited acoustic pulsations with the natural acoustic
eigenmodes of the duct–cavity configurations. Here, the three flow conditions with
π = 1, Rein = 1.03 × 105, π = 1, Rein = 1.29 × 105 and π = 8, Rein = 1.18 × 105 were
analysed. Sinusoidal features of the identified acoustic waveform for the two configurations
are highly consistent with the acoustic pressure distribution of their first-order acoustic
eigenmodes. A plausible interpretation of the discrepancies in amplitudes will be
discussed using the following numerical simulation results. A comparative view between
the two configurations demonstrates that anti-phase propagation motions of the excited
acoustic waves can be found in the tandem deep cavities in close proximity; while
closely in-phase propagation motions are found for the tandem deep cavities in the
latter configuration. Especially, the acoustic pressure pulsations in the lengthy main
duct demonstrate anti-phase propagation motions with the above-mentioned synchronous
tendencies between the faraway-arranged tandem deep cavities. Such an interesting special
phenomenon was attributed the equivalence between the distance and sum of the tandem
deep cavities, serving as a half-wavelength arrangement as their distance is equal to the
half of the acoustic wavelength (λ = ca/fa ≈ 640 mm, with ca the sound speed and fa
the eigenfrequency of the first-order acoustic eigenmode). These observations, in terms of
the intensified pulsations, locked frequencies and in-phase or out-of-phase waveform of
the measured acoustic pressure pulsations, strongly validate the occurrence of resonance
between the ongoing concurrent shear layers and the natural acoustic eigenmodes.
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3. Fully coupled aeroacoustic simulation

3.1. High-order spectral/hp element method
The flow–acoustic interaction problem can be described by the nonlinear Navier–Stokes
equations, containing the continuity, momentum and energy equations. In the present
study, both the incompressible and compressible governing equations are solved for
comparison, which artificially highlights the acoustic forcing effect on the turbulent
shear layers. A spectral/hp element discretization method, which is implemented in
the opensource package of Nektar++ (Cantwell et al. 2015; Moxey et al. 2020),
is used to solve the governing equations. This discretization approach combines
the inherent geometric flexibility of the finite-element method with the exponential
convergence and superior accuracy of the spectral method. This is realized by employing
high-order Lagrangian interpolations in the finite-element formulation’s expansion base
function. Consequently, resolution convergence can be achieved by refining the mesh
distribution (h-type refinement), or by increasing the interpolation order, Np, within
the basis expansion ( p-type refinement). Spectral/hp element discretization serves as
the underpinning approximation for both continuous Galerkin (CG) and discontinuous
Galerkin (DG) formulations. Fundamental information of the spectral/hp method can be
found in Karniadakis & Sherwin (2005), and an outline is provided herein. In general, the
solution domain (Ω) is segregated into Ne non-overlapping elements (Ωe). Within each
of these elements, we then seek approximate solutions, uδ , belonging to the finite-element
space

χP = {φ ∈ L2(Ω)|φ|Ωe ∈ PP(Ωe)}, (3.1)

where PP(Ωe) is the space of polynomials of order Np defined in the element Ωe.
In this work, the incompressible Navier–Stokes equations are solved via a velocity

correction scheme where velocity and pressure are typically decoupled. A weak pressure
Poisson problem is formulated by taking the inner product over the domain Ωe with respect
to the gradient of test function, ∇v, i.e.∫

Ωe

∇v · ∂uδ

∂t
dx +

∫
Ωe

∇v · N (uδ) dx = −
∫

Ωe

∇v · ∇p dx +
∫

Ωe

∇v · ν∇2uδ dx,

(3.2)

where N (uδ) = uδ · ∇uδ . Using the identity ∇2uδ = −∇ × ∇ × uδ + ∇(∇ · uδ), we can
enforce the divergence to be zero by setting the last term to zero. By integrating the first,
second and last terms in (3.2) by parts, we obtain the weak pressure equation

∫
Ωe

∇v · ∇pn+1 dx = ∫
Ωe

v∇ ·
(

∂uδ

∂t

n+1

+ N (u)n+1

)
dx

− ∫
∂Ωe

v

(
∂u
∂t

n+1
+ N (u)n+1 + ν∇ × ∇ × un+1)

)
· n dx,

(3.3)

where ∂Ωe is the boundary of the elements, n indicates the normal to the element and
the superscript n + 1 denotes the time step we aim to compute. By using a backward
approximation of the time derivative, along with a consistent extrapolation for the
nonlinear term N (uδ)n+1, the pressure at time step n + 1 can be calculated. Then, the
velocity at step n + 1 can be solved by using the pressure just calculated at n + 1. For
compressible simulation, we substitute uδ ∈ χP into the compressible Navier–Stokes
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Flow–acoustic resonance mechanism

equations, multiply the resulting equation by a test function ν ∈ χP and apply the
divergence theorem to obtain the weak form∫

Ωe

∂uδ

∂t
· ν dx +

∫
∂Ωe

( f c
n(u

δ) − f v
n(u

δ, ∇uδ)) · ν ds

−
∫

∂Ωe

( f c
i (u

δ) − f v
i (u

δ, ∇uδ)) · ∂ν

∂xi
dx = 0. (3.4)

The subscript n denotes the normal flux on the boundary of element (∂Ωe). Equation
(3.4) currently encompasses operations exclusive to local elements. However, to keep
the solution within a space of bounded variation and to allow information to propagate
between elements requires some elemental coupling. In a CG setting, the approximate
solution adheres to the C0-continuous requirement by ensuring the polynomial expansion
is continuous across elemental boundaries. In a DG setting, the normal fluxes appearing in
the boundary integral are replaced by unique numerical fluxes to ensure appropriate flux
quantities are continuous between elements.

3.2. Implicit large eddy simulation
Currently, employing direct numerical simulation of the Navier–Stokes equations for
high Reynolds number flows remains unaffordable. An alternative approach is LES, in
which the larger-scale motions are resolved, whereas the smaller scales are modelled. The
underlying rationale for LES is underpinned by the fact that the larger scales carry the
majority of the flow energy, owing to their magnitude and strength, and are responsible
for most transport mechanisms; hence, they should be precisely simulated. Conversely,
the smaller scales, which have a comparatively minor influence on the mean flow, can
be approximated. Furthermore, these scales tend to be more uniform and isotropic,
making them more amenable to modelling than the larger scales. In this study, the
implicit-LES (iLES) methodology will be adopted, interpreting the unresolved eddies
through numerical dissipation. We employ a spectral vanishing viscosity (SVV) in the
iLES to carry out a reasonable numerical representation of under-resolved turbulence.
The SVV technique was first introduced into the spectral Fourier method by Tadmor
(1989) with the primary objective of suppressing high-frequency oscillations without
compromising the physical characteristics of the flow at lower frequencies. This ensures
stability in the simulations while retaining solution accuracy. Kirby & Sherwin (2006)
introduced a multi-dimensional SVV operator within the solution domain. In this
approach, the following term is added to the governing equations to achieve the artificial
SVV dissipation:

SVV = vsvv

d∑
i=1

∂

∂xi

[
Qd ∗ ∂u

∂xi

]
, (3.5)

where vsvv represents the effective dissipation strength and Qd denotes the SVV kernel
that determines the manner in which dissipation impacts the elementwise polynomial
modes within the spectral/hp element discretization. The numerical study here is carried
out based on the SVV-iLES method with a DG kernel in the spectral/hp space. The
dissipative attributes of this methodology align closely with those of the conventional DG
method, which is considered a viable strategy for achieving a harmonious balance between
dissipation and precision. Especially for the compressible iLES, Roe’s approximate
Riemann solver (Moura, Sherwin & Peiró 2015) was combined with the DG discretization
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Num. Num.
Governing Discretization Poly. DOF Points 	t

Configuration Cases equations scheme Order (106) (106) (μs)

Time Space

Close-arrangement 1 3-D, Com DIRK DG Np (x,y) = 4,
Np (z) = 3

2.9 60.4 1

2 2-D, Com DIRK DG Np (x,y) = 5 0.17 0.69 1
3 2-D, Incom IMEX CG Np (x,y) = 5 0.1 0.15 1

Half-wavelength
arrangement

4 3-D, Com DIRK DG Np (x,y) = 4,
Np (z) = 3

3.4 70.7 1

5 2-D, Com DIRK DG Np (x,y) = 5 0.23 0.92 1
6 2-D, Incom IMEX CG Np (x,y) = 5 0.12 0.17 1

Table 1. Flow conditions for numerical simulations using high-order spectral/hp element method.
Here, DOF denotes degree of freedom; 2-/3-D denotes two-/three-dimensional; Com./Incom. denotes
compressible/incompressible simulation; DIRK denotes diagonally implicit Runge–Kutta method and IMEX
stable implicit–explicit (IMEX) scheme for time marching; DG and CG denote discontinuous and continuous
Galerkin method, respectively.

to deal with the unfiltered Navier–Stokes equations without a sub-grid scale model.
This methodology, credited for its commendable numerical dissipation characteristics
and numerical stability, has garnered widespread adoption in the spectral/hp method for
under-resolved turbulence simulations (Moura et al. 2020; Mengaldo et al. 2021). In
addition, in high-order compressible simulations, numerical aliasing can induce numerical
instabilities, particularly in flow regimes dominated by convection. These instabilities
might manifest as oscillations in the numerical solution, which do not genuinely represent
physical phenomena but are artefacts of the numerical approach. Generally, there are two
kinds of nonlinearities: partial differential equation (PDE) nonlinearities, associated with
nonlinear and quasi-linear fluxes, and geometrical nonlinearities, linked to deformed or
curved meshes. Given that Nektar++ addresses nonlinearities of PDE and geometric
aliasing separately during the projection and solution of the equations, the selection
of quadrature points should be predicated on the maximum order of the nonlinearities
(Mengaldo et al. 2015).

3.3. Numerical set-up
The primary geometric parameters of the computational domain align with those detailed
in § 1.1. Based on the experimental results from figure 2(b), two configurations that exhibit
the most pronounced acoustic disturbances have been chosen. One of these configurations
corresponds to π = L/Dm = 1, and it is referred to as a ‘close arrangement’. The other
configuration, with π = 8, is termed a ‘half-wavelength arrangement’. For the close
arrangement, the mainstream Reynolds number is Rein = 1.03 × 105, and this corresponds
to an inlet Mach number of Main = 0.12; and for the half-wavelength arrangement, Rein =
1.17 × 105 and Main = 0.13. As for the computational domain, the total streamwise
length is approximately Ltot = 30Dc, with an inlet distance approximately Lin = 8Dc away
from the upstream cavity; and the spanwise size is extended to Dz = 0.8Dm. Before
conducting the three-dimensional (3-D) simulation, a series of 2-D simulations were
conducted to see the independence of the h-type mesh and sensitivity of the p-type order.
The entire computational domain is meshed with structured hexahedral and quadrilateral
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Flow–acoustic resonance mechanism

grids. The specific grid configurations and polynomial set-ups are listed in table 1.
Additionally, the nodal basis is evaluated for a number of Gauss–Lobatto–Legendre
quadrature points, which should be greater than Np. This implementation facilitates
polynomial de-aliasing of the nonlinear terms. Regarding the boundary conditions, the
bottom surface and all the wall surfaces of the tandem deep cavities were assigned a no-slip
condition. Simultaneously, non-reflective boundary conditions using a Riemann-invariant
treatment were set at the inlet and outlet to eliminate the influence of reflected acoustic
waves on the simulations. The outflow boundary is located at a relatively distant
downstream position from the cavity, ensuring ample distance for the vortex dissipation.
In incompressible iLESs, SVV was implemented to deal with small-scale turbulence
structures, a second-order-accurate stiffly stable implicit–explicit (IMEX) scheme was
used for time marching method and the CG method was used for spatial discretization.
Besides, the advection term is explicitly integrated, whereas the viscous term is implicitly
integrated. In compressible iLESs, the DG method was implemented as the spatial
discretization method, along with Roe’s Riemann solver to compute the convective
flux f c

n, and the symmetric interior penalty method (Hartmann & Houston 2006) for
the computation of viscous flux f v

n. An implicit time advancing method is carried out
using the second-order, singly diagonally implicit Runge–Kutta (DIRK) method. This
allows us to take large time steps, and hence the time step is chosen only based on
physical time resolution considerations and not on numerical stability, the resultant
Courant–Friedrichs–Lewy (CFL) number was around 1.

4. Results and discussion

This section presents an overview of 3-D fully coupled flow–acoustic resonance fields
within the tandem deep cavities obtained from our high-order iLES results. The analysis
of the aeroacoustics is conducted using SPOD by decomposing the aerodynamic and
aeroacoustic components of the pressure pulsations. The intensified flow dynamics
resonated with acoustic eigenmodes is categorized according to the developments of
turbulent shear layers. Subsequently, the kinematics of concurrent shear layers are
demonstrated with vorticity variation and 3-D vortex structures. Finally, aeroacoustic
energy transfer between flow field and acoustic field is elucidated by employing
sound-vortex theory.

4.1. Aeroacoustics in tandem deep cavities
Cavity noise can be characterized as a flow–acoustic interactive oscillation, wherein
the inherent shear layer instability couples with acoustic feedback mechanisms (Rowley
et al. 2002). Specifically, in deep cavities, the acoustic feedback is closely dependent
on the natural acoustic eigenmodes. The excitation of acoustic eigenmodes significantly
enhances and elevates the shear layer instability into large-scale vortex structures. Figure 4
demonstrates the simulated flow pulsations within the tandem deep cavities through
the high-order compressible iLES. The predicted peak frequencies in terms of pressure
pulsations and velocity fluctuations for the two configurations agree well with preliminary
measurements, and also the order sensitivity is tested to confirm the final selection for 3-D
compressible iLES. The instantaneous pressure pulsations at four selected moments within
one acoustic period corresponding to the fundamental peak frequencies are displayed.
For the closely arranged configuration, an alternating pressure variation between the
tandem deep cavities is identified, which is attributed to the excitation of the first-order
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Figure 4. Schematic of flow pulsations within the tandem deep cavities using high-order spectral/hp element
method and iLES: pressure spectrum (a), velocity spectrum (b) and instantaneous pressure fluctuation
field (c) within one acoustic period of close-arrangement; pressure spectrum (d), velocity spectrum (e)
and instantaneous pressure fluctuation field ( f ) within one acoustic period of half-wavelength arrangement.
Pressure monitor is the endpoint of upstream cavity, velocity monitor is the middle point of the entrance of the
upstream cavity.

acoustic eigenmode. As for the half-wavelength arrangement, the iLES-simulated pressure
pulsations demonstrate a synchronous variation between the tandem deep cavities, but the
opposite is true with the main duct. These results validate the applicability of the present
simulation method and confirm the resonance phenomenon.

A pressure decomposition framework based on SPOD is established to confirm the
dominance of acoustic eigenmodes and consistency with coherent shear layer vortex
structures. The SPOD technique, originated from POD (Lumley 2007) and developed by
Towne, Schmidt & Colonius (2018), has proven its efficiency in the reduced-order analysis
of dynamic flow fields. To decompose the reduced fluctuating flow field by SPOD, 10 000
snapshots of flow data were divided into Nblk = 80 segments with an overlapping ratio of
50 %, the resulting frequency resolution is 	f = 5 Hz. When the flow data only contain the
fluctuating pressure field, we capture dominant pressure fluctuation modes in accordance
with the fundamental frequencies and their high-order harmonics. Similarly, when the flow
data only contain the fluctuating velocity field, we capture the dominant vortex structures.
Detailed information on SPOD can also in found in Schmidt & Colonius (2020).

Figure 5 illustrates the SPOD analysis results for the tandem deep cavities in close
arrangement. In figure 5(a), the SPOD eigenvalues are normalized by the total pressure
fluctuation energy. The first two modes are most energetic, referred to as dominant modes
and highlighted in red and blue, and the other modes with a low-energy contribution
are gradually neglected with a colour shift from black to white. As frequency increases,
a tonal peak at 478.5 Hz and its high-order harmonics especially at 1494.1 Hz and
2436.5 Hz are closely identified from the profiles of first- and second-order SPOD

984 A19-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.209


Flow–acoustic resonance mechanism
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Figure 5. The SPOD analysis of the fluctuating pressure fields within tandem deep cavities in close
arrangement: (a) eigenvalue spectra of each SPOD mode normalized by the total energy of pressure
fluctuations; (b) normalized SPOD eigenvalues at selected eigenfrequencies; (c) spatial feature of the dominant
modes.

modes. These frequencies are in close consistency with those of the natural acoustic
eigenmodes. Their normalized eigenvalues in figure 5(b) can nearly reach 92 %, 83 %
and 45 %, respectively, demonstrating their absolute dominance when constructing the
pressure fluctuation field. The corresponding spatial features are illustrated in figure 5(c),
in which a high consistency can be confirmed between the three first-order SPOD modes
with the acoustic eigenmodes in figure 1. The approximate invariance of the streamwise
pressure with respect to different vertical locations along each cavity represents that the
aerodynamic pressure pulsations were removed, only the 1-D depth-wise aeroacoustic
pressure pulsations are trapped within the acoustically compact cavities. As frequency
increases, the wavelength becomes shorter, more compact zones with intensified acoustic
pressure pulsations appear within the cavities, constituting the acoustic standing-wave
modes. Simultaneously, the second SPOD mode represents the aerodynamic pressure
pulsations, as alternately positive and negative pressure fluctuations appear along the
cavity entrances; their amplitudes and scales are gradually amplified towards the
downstream cavity due to the more expanded shear layer developments, which will be
revisited in § 4.3.

Figure 6 illustrates the SPOD results for the half-wavelength-arranged configuration.
Similarly, the acoustic pressure pulsations, in accordance with the first three orders of
natural acoustic eigenmodes, are successfully decomposed. On this basis, both the tandem
deep cavities and the in-between main duct served as acoustically compact volumes, as
the acoustic standing waves were trapped along their wall surfaces. Excepting the acoustic
components, hydrodynamic pressure fluctuations are mainly found within the cavity
volumes and attaching along the near-wall surface of the main duct. These decomposed
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Figure 6. The SPOD analysis of the fluctuating pressure fields within the ducted tandem deep cavities in
half-wavelength arrangement: (a) eigenvalue spectra; (b) eigenvalue plots; (c) spatial feature of dominant
modes.

SPOD modes are consistent with Ho & Kim (2021), who used the momentum potential
theory with the Helmholtz decomposition developed by Doak (1989) and numerically
implemented by Unnikrishnan & Gaitonde (2016) to decompose the flow–acoustic
resonance fields into acoustic and hydrodynamic pressure waves.

4.2. Intensified flow characteristics by acoustic eigenmodes
As feedback, the excited acoustic eigenmodes would foster the turbulent shear layers into
elevated characteristics. Here, the acoustic-intensified development tendency of shear layer
can be determined with its momentum thickness (θ)

θ =
∫ y0.99

y0

u
Uin

(
1 − u

Uin

)
dy, (4.1)

where y0.99 and y0 represent the vertical positions where the streamwise velocities are
equivalent to u/Uin = 0.99 and u/Uin = 0, respectively. In addition, two incompressible
simulations were performed for the two configurations under their resonant conditions,
restraining the occurrence of resonance.

Following Forestier, Jacquin & Geffroy (2003), the evolution of the shear layer can
be categorized into three distinct regions: the linear growth region, the free convection
region and the spurious decrement region. They considered a shear layer within a single
deep cavity (Lc/Dc = 2.4) but with high-speed mainstream flow reaching Main = 0.8.
As a result, the momentum thickness slope in the linear growth region is approximately
ϑ = dθ/dx = 0.12, and it decreases to ϑ = 0.042 in the free convection region, finally
decreasing to negative values in the spurious decrement region. In the present study within
the close-arrangement configuration (figure 7a), the slope in the linear growth region
is significantly amplified to ϑ = 0.24 in the upstream cavity of the close-arrangement
configuration, but rapidly decreases to ϑ = 0.046 in the convection region (here,
‘free’ was removed as the shear layer is affected by internal acoustic forcing). In the
downstream cavity, the momentum thickness slope in the linear growth region is further
amplified to ϑ = 0.33, and then decreases to ϑ = 0.056 in the convection region. The
enlarged momentum thickness slopes in the linear growth regions are attributed to the
cavity-by-cavity interaction from the incompressible simulations. This comparison yields a
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Figure 7. Development characteristics of turbulent shear layers over the tandem deep cavities, represented by
the time-averaged profiles of shear layer momentum thickness: (a) close arrangement, (b) half-wavelength
arrangement. Here, du and dd denote the distances to upstream corners of the upstream and downstream
cavities.

clear increment in the shear layer momentum thickness, confirming significantly expanded
turbulent shear layers by the resonant acoustic oscillation. This result shows a good
agreement with the PIV measurement by Wang et al. (2020), in which the shear layers
were affected by a depth-oriented acoustic standing-wave mode inside a channel with
symmetric deep cavities. In figure 7(b), corresponding to tandem deep cavities with a
half-wavelength arrangement, the most distinct finding is that the upstream shear layer is
more intensified than the downstream shear layer. This is evident in the streamwise velocity
distribution and momentum thickness. One plausible interpretation for this phenomenon
could be attributed to the acoustic damping of acoustic particle oscillations within the
extended main duct. This is because the acoustic pressure pulsations within the upstream
cavity are more intense than those in the downstream cavity and the main duct, as depicted
in figure 3(d). From Alenius, Åbom & Fuchs (2015), the acoustic damping is caused by
the transmission loss by the convective turbulence interaction effect. Another convincing
interpretation can refer to the acoustic particle velocity and the resultant aeroacoustic
energy production/dissipation. It can be seen from figure 10(c,d) that the vertical acoustic
velocity is greater around the downstream corner of the upstream cavity, which can
produce more aeroacoustic energy, shown in figure 15. Conversely, it is greater around the
upstream corner of the downstream cavity, which oppositely dissipates the aeroacoustic
energy.

As a result, the augmented flow characteristics induced by the excited acoustic
eigenmodes are discernible within the three regions of shear layer development, as
illustrated in figures 8 and 9. Four statistical flow quantities were extracted, i.e. the r.m.s.
of the streamwise velocity fluctuation (urms), the r.m.s. of the vertical velocity fluctuation
(vrms), the Reynolds shear stress (Ruv) and the turbulent kinetic energy (k). Here, we have
three significant findings to highlight. The first finding pertains to the global intensification
resulting from the acoustic resonance effect, when compared with the incompressible
simulation results, in the distribution of vertical velocity fluctuations and the turbulent
kinetic energy below the cavity entrance ( y/Dm < 0). This observation is closely linked to
the oscillations of the acoustic particle velocity (ua), which are determined by the acoustic
pressure gradient (∇pa) from the acoustic Euler equation

ua = ∇pa(x, y, z, t)
2π · ρ0 · fr

. (4.2)
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Figure 8. Acoustic-intensified flow characteristics inside the tandem deep cavities in close arrangement
in different development regions, represented by streamwise and vertical velocity fluctuations (left two
columns), Reynolds shear stress and turbulence kinetic energy (right two columns): (a) linear growth region,
(b) convection region and (c) spurious decrement region. Three locations at dc/Lc = 0.2, 0.5, 0.8 within the
three development regions were selected for demonstration; dc denotes the distance to the upstream corner of
each cavity.
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Figure 9. Intensified flow dynamics by acoustic eigenmode of the tandem deep cavities in half-wavelength
arrangement, represented by the turbulence kinetic energy.

Here, the acoustic pressure and eigenfrequency (fr), corresponding to the excited acoustic
eigenmodes, were obtained from previous acoustic modal analysis and subsequently
extracted for reference. Figure 10 illustrates the spatial characteristics of the acoustic
particle velocity at a specific phase. For the remaining phases, the distribution exhibited
a similar pattern, albeit with distinct velocity values. In addition, this intensification
characteristic is significantly reinforced at the downstream cavity due to the initially
higher shear layer thickness. This strengthening is primarily associated with the flow
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(c)
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Figure 10. Contour plots of acoustic particle velocity within the tandem deep cavities: (a) streamwise
component (uac) and (b) vertical component (vac) for closely arranged configuration; (c) streamwise component
(uac) and (d) vertical component (vac) for half-wavelength-arranged configuration.

convection effect. In close arrangement, the strongly oscillating flow from the upstream
cavity promptly convects to the downstream cavity. This behaviour is further substantiated
by the vorticity and vortex structure variations depicted in figure 11, affirming a
notable reinforcement within the downstream cavity. In contrast, in the half-wavelength
arrangement, the intensity of oscillations in the incoming flow from the upstream cavity
to the downstream cavity diminishes along the lengthy main duct. This attenuation is
evident in figure 12, resulting in a marginal reinforcement of the flow intensification
characteristics, as depicted in figure 9.

The second finding relates to the variation in flow characteristics across the different
development regions of the turbulent shear layers. In the closely arranged configuration,
the flow quantities at the upstream cavity are almost gradually intensified from the
linear growth region to the convection region and then the spurious decrement region.
However, the flow quantities of the linear growth region at the downstream cavity are
most intensified and then gradually attenuated at the convection and spurious decrement
regions. We attribute this characteristic to the flow interaction effect, as the initial
shear layer oscillation is stronger in the downstream cavity. In contrast, due to the
relatively weak flow interaction effect, the flow variation is nearly synchronized in the
half-wavelength-arranged tandem deep cavities. The third finding involves the variations in
the peak values of the flow parameters. Typically, the peak values tend to occur just below
the cavity entrance, a pattern that is supported by the incompressible results. Nonetheless,
owing to the acoustic forcing effect, these peak locations can extend further into the cavity
volumes within the first two regions and even rise above the cavity entrance within the last
region. This suggests a broader flapping motion of shear layers inside the closely spaced
tandem deep cavities.

4.3. Kinematics of shear layer vortex structures
To illustrate the dynamic flow behaviours, the vorticity distribution and 3-D vortex
structures were extracted from the high-order iLES results at four moments with constant
time intervals within one acoustic cycle. Note that the vortex structures were calculated
by the Q-criterion, coloured by the quantity of flow swirl and simultaneously displayed
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Figure 11. Alternating behaviours of shear layer vortices resonated by the acoustic eigenmode of tandem
deep cavities in close arrangement, presented by the temporal evolution of vortex vorticity, vortex structures
determined by Q-criterion, coloured with flow swirl and overlapped with wall pressure fluctuations. The four
snapshots were selected to be equally spaced within one acoustic period.

with wall pressure fluctuations. Owing to the frequency lock-in mechanism between
the acoustic field and flow field, shear layer vortices were continuously formed at the
acoustic eigenfrequency; within one acoustic cycle, the shear layer vortex can be classified
into three stages, i.e. the formation, convection and impingement regions, which can be
qualitatively identified from the time-variant vorticity distribution in all the cavities of
figures 11 and 12. In the formation stage, the downward shear layer separated at the
leading corner and produced a significant region with intensive vortex vorticity but small
spatial scale. In the convection stage, the shear layer vortex became gradually enlarged
and transported downstream with alternating rollup and rolldown motions of the shear
layer. When coming to the impingement stage, the shear layer vortices impinged into the
downstream corner and collapsed into two portions, one portion dropped into the cavity
volume and another portion mixed into the mainstream flow, giving rise to separation
bubbles along the duct wall.

Such a vortex shedding process has been widely documented in related literature.
However, in the current study, the most notable distinction lies in the interactions between
the shear layers of the upstream and downstream cavities, which are connected by the
shuttled acoustic particle oscillations. For tandem deep cavities in close arrangement,
the first-order acoustic eigenmode with antisymmetric feature was resonated at Rein =
1.03 × 105, the resultant acoustic particle oscillations shuttled between the tandem cavities
can foster the concurrent shear layer vortices into antiphase shedding motion. In the
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Figure 12. Synchronous behaviours of shear layer vortices resonated by the acoustic eigenmode of tandem
deep cavities in half-wavelength arrangement, presented by the temporal evolution of vortex vorticity of vortex
vorticity and 3-D vortex structures, coloured with flow swirl and overlapped with wall pressure fluctuations.

upstream cavity, the vortex structures are mostly concentrated together, yielding energetic
vortex system structures with intensive vorticity magnitudes. Throughout a single acoustic
cycle, these vortices progress through the formation, convection and impingement stages
sequentially. However, at the same moments in the downstream cavity, the shear layer
vortices were already reaching the middle point at t1; convecting downstream and
impinging into the trailing edge from t2 to t3; new vortices were formed just around the
trailing edge at t4. Another interesting phenomenon is the presence of 3-D vortex structures
that appear more chaotic, enlarged and extended along the cavity entrance. These
structures can be attributed to the interactions caused by flow oscillations originating from
the upstream cavity. In addition, in accordance with Ho & Kim (2021), when the shear
layer vortices impinge upon the downstream corner, they create a low-pressure region
on the trailing surface, which enhances the transfer of maximum energy to the acoustic
pressure pulsations.

For the tandem deep cavities in the half-wavelength arrangement, the excited acoustic
eigenmode presents a symmetric feature and the resultant acoustic particle oscillations are
in phase between the two cavities but out of phase along the main duct. The simultaneous
shuttling acoustic particle oscillations foster the concurrent shear layer vortices into almost
synchronous shedding motion, as shown in figure 12. The energetic shear layer vortices go
through the same stages, i.e. the formation, convection and impingement, simultaneously.
A slight discrepancy in the location of the shear layer vortices is attributed to the
mainstream flow convection effect. Due to the magnitude discrepancy of excited acoustic
pressure pulsations, the variations of the vorticity distribution and vortex structures within
each cavity demonstrate different distributions. Relatively, a series of small-scale vortex
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Figure 13. The SPOD analysis of the fluctuating velocity fields within the ducted tandem deep cavities in
close arrangement (a) and half-wavelength arrangement (b). The eigenvalue spectra are normalized by the total
energy of velocity fluctuations, and the spatial feature of dominant vortex structures are demonstrated.

vorticity are rolled-up and rolled-down by the shear layer separations within the upstream
cavity; the vortex structures herein are mostly concentrated together and organized in
sequence. Different from upstream cavity, larger-scale vortex structures are identified
inside the downstream cavity.

Subsequently, SPOD analysis is implemented to extract dominant vortex structures from
the fluctuating velocity fields. Figure 13 illustrates the SPOD results, combined with
the frequency spectra, eigenvalues and spatial features of decomposed SPOD modes.
This information was obtained directly from the real and imaginary parts of the SPOD
modes. The SPOD eigenvalues were normalized to be quantitatively represented as a
fraction of the energy contribution to the total flow fluctuation energy, integrated over
all SPOD modes and frequencies. As the frequency increases, a tonal peak at 478.5 Hz
is observed, which is closely locked onto the eigenfrequency of the first-order acoustic
mode. The local peaks at almost twice and three times the harmonics of this fundamental
frequency can also be found. The corresponding spatial features of these energetic SPOD
modes are illustrated, in which the vertical velocity fluctuations are displayed by removing
the low-intensity values. The most intensified velocity fluctuations are formed along
the cavity entrances; the global spatial scales become gradually compact with increased
frequencies. These alternately positive and negative velocity fluctuations yield coherent
vortex structures, which are qualitatively denoted by the annotated arrows. These vortex
structures are formed under the Kelvin–Helmholtz instability mechanism when the shear
layer separates from the leading edges. As for the first-order mode at 478.5 Hz, a pair
of counter-rotating vortex structures are located at the centres of the upstream and
downstream cavities, respectively. They align with the oscillation of acoustic particles
shuttling between these cavities, resulting in an alternating motion of the concurrent shear
layers. Conversely, in the second mode at this frequency, the vortex structures rotate in
the same direction. In the high-frequency harmonics, comparable yet slightly attenuated
vortex structures are observed within the upstream cavity. More vortex structures appear at
the downstream cavity. This contrasting alteration between the upstream and downstream
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cavities can lead to more intensified velocity variations and shear layer oscillations inside
the downstream cavity.

Figure 13(b) illustrates the outcomes of the SPOD analysis for the tandem deep
cavities arranged with a half-wavelength spacing. These results enable the identification
of coherent vortex structures linked to the synchronized motion of shear layers. Likewise,
the fundamental frequency at 522.5 Hz and its higher-order harmonics, closely aligned
with the corresponding acoustic eigenfrequencies, are discernible within the frequency
spectrum of the decomposed SPOD modes. The eigenvalues reach remarkable values
of 80 %, 30 % and 25 % for these respective modes. This underscores their significant
dominance in shaping the synchronous shear layer motions during construction. The
corresponding spatial characteristics are portrayed mainly with a sequence of alternating
positive and negative velocity fluctuations. As for the most energetic SPOD mode at
522.5 Hz, two co-rotating vortex structures are formed along the entrances of the
upstream and downstream cavities, respectively. Under the influence of the acoustic
particle oscillations herein, these fluctuations exhibit consistent directions. Differing from
the close arrangement, where the coherent vortex structures are situated at the centres
of the tandem cavities, the vortex structures in this scenario are instead adhering to the
leading and trailing edges of each individual cavity. In this situation, essential fluid streaks
are issued to or absorbed from the main duct, yielding a series of vortex pairs along the
bottom wall of the main duct. Owing to these coherent vortex structures, the shear layers
oscillate in synchrony. Furthermore, aligned with the intensified flow dynamics within the
upstream cavity compared with the downstream one, a greater number of vortex structures
is observed within the upstream cavity. As the flow progresses towards the main duct and
downstream cavity, the velocity fluctuations gradually diminish.

4.4. Aeroacoustic energy transfer mechanism
To reveal the aeroacoustic energy transfer mechanism between the turbulent shear layers
and the acoustic eigenmodes, Howe’s acoustic analogy (Howe 1975) was performed to
calculate the acoustic power production by the vortex vorticity. For a homentropic flow, the
acoustic power (PH) is mainly produced by the vorticity convection of vortex structures
through the essential measure of the triple product (ω × u) · ua, which can be formulated
by

〈PH〉 = −
∫

ρ0〈(ω × u) · ua〉 dV. (4.3)

The integration of acoustic power over an acoustic cycle permits the determination of the
aeroacoustic energy quantity, its positive value represents energy transfer from the flow
field to the acoustic field as a production source, while its negative value represents a
dissipation sink of the flow field that absorbs energy from the acoustic field. It should be
noted that a phase lag of 90◦ should be considered when determining the acoustic particle
velocity. This analogy has been successfully implemented to underpin the aeroacoustic
energy production mechanism. Here, by referring to D’Elia, Humbert & Aurégan (2022),
we expand Howe’s acoustic analogy with time-averaged and coherent components to see
the major contribution source. The time-averaged acoustic power, computed over one time
period within a designated fluid volume (dV), was calculated as follows:

〈PH〉 = −
∫

V
〈(Fxua + Fyva)〉 dV, (4.4)
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Figure 14. Aeroacoustic energy transfer mechanism between turbulent shear layers and out-of-phase acoustic
eigenmodes inside tandem deep cavities with close arrangement.

where F = Fxx + Fyy = −ρ0(ω × u) symbolizes the Coriolis force vector. The symbol
〈∗〉 denotes the average operator over one acoustic cycle. With triple decomposition but
neglecting the random term, the total vorticity and velocity are written as ω = (Ω0 + ω′)z,
u = (U0 + u′)x + (V0 + v′)y, the acoustic article velocity is also written in a vector style
as ua = uax + vay. Subsequently, the inner product of average terms and the coherent term
of the Coriolis force vector within a cycle can be respectively disregarded. Thus, each
component of the vector F can be divided into two contributions, and their inner product
with the acoustic velocity yields four acoustic power terms as follows:

P̂1_1 = 〈(ρ0Ω0v
′)ua〉, P̂1_2 = 〈(ρ0ω

′V0)ua〉, P̂2_1 = 〈−(ρ0Ω0u′)va〉,
P̂2_2 = 〈−(ρ0ω

′U0)va〉. (4.5a–d)

Through this decomposition, we delineate the contribution maps of each term to the total
aeroacoustic energy transfer within one acoustic cycle, as shown in figures 14 and 15
for the closely arranged and half-wavelength-arranged tandem deep cavities, respectively.
The blanked areas with small values were removed to highlight the major sources and
sinks. In addition, we also normalized the acoustic power by a reference value with
Pref = ρ0c0|ua|2/2, the legends for each panel were also adjusted.

For the acoustic power generated by the horizontal Coriolis force, the P̂1_1 component
contributes more than P̂1_2, this is evident for both configurations. In P̂1_1, the mean
vorticity Ω0 presents pronounced amplitudes along the cavity entrances, especially at the
corners of the deep cavities. When considering the vertical velocity fluctuation, we observe
that, due to its minimal near-wall variations, the acoustic power contribution here is
effectively filtered out. The extensive regions of intensified acoustic power values situated
within the cavity mouths are attributed to two sources: the hydrodynamic convection
from cavity to cavity, and the horizontal component of the acoustic particle velocity. In
closely arranged tandem deep cavities, the oscillations of acoustic particle are out of
phase between the upstream and downstream cavities. This triggers an interesting dynamic,
where the direction of the acoustically induced particle motion counteracts the direction
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Figure 15. Aeroacoustic energy transfer mechanism between turbulent shear layers and in-phase acoustic
eigenmodes inside tandem deep cavities with half-wavelength arrangement.

of convective transport between the cavities. This mechanism gives rise to distinct sound
generation and absorption regions in the upstream and downstream cavities, respectively.
However, in the half-wavelength arrangement, the standing waves in the upstream and
downstream cavities are in phase, leading to similar spatial distributions of the horizontal
acoustic speed. The pairing of sound sources and sinks observed in the previous set-up
is not present. Regarding the P̂1_2 component, the areas contributing to acoustic power
are largely equivalent for both arrangements. Two crucial observations merit attention.
Initially, the confinement of the vertical velocity around the cavity corners results in a
corresponding limitation of the acoustic power distribution within the same spatial region.
Secondly, vorticity fluctuations lack phase correlation with horizontal acoustic particles,
only producing irregularly scattered acoustic sources and sinks at locations where the
horizontal acoustic particle velocity is considerable.

As for acoustic power generated by the vertical Coriolis force, the P̂2_1 term presents
an intriguing scenario, which is characterized by stripe-shaped regions within the cavity
entrance. These striped regions are a consequence of streamwise vortex shedding, wherein
essential vorticity becomes coupled with the constrained fluctuations of streamwise
velocity within the shear layer. When examining the term P̂2_2, it becomes evident that
this term exhibits the most pronounced spatial distribution characteristics of acoustic
power. This feature is a result of the significant magnitudes of the coherent vorticity
ω′, and the fact that the horizontal velocity U0 exceeds V0, which further enhances
the production of acoustic power. As a result, this dominance leads to the magnitude
of the P̂2_2 term being approximately one order of magnitude higher than other terms,
with the exception of specific regions where other contributions may surpass it. These
findings are also consistent with the experimental results presented in D’Elia et al. (2022).
The spatial distribution of this acoustic power contribution exhibits a high degree of
consistency across both configurations: the area from the upstream corner of the cavity
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to the mid–lower part consistently acts as an acoustic sink, while the region from the
mid–upper part to the downstream corner functions as an acoustic source. Undoubtedly,
the coherent vorticity fluctuations dominate the distribution of acoustic power production,
these energetic areas are closely associated with the downward convection, vertical
flapping and rolling-up motions of the turbulent shear layers. It should be noted that, even
though the spatial distributions of aeroacoustic power in the upstream and downstream
cavities are similar, there is a 180° phase difference in the instantaneous acoustic power
distributions for the closely arranged configuration, which is attributed to the phase
difference between the standing waves within two cavities.

Another explanation on the aeroacoustic energy transfer is from the view on
phase-dependent variations of the acoustic source or sink. During the initial half of the
acoustic cycle, local high-pressure stagnation zones induced by shear layer fluctuations
near the upstream corner, in conjunction with separated flows, will yield compressive
(high-pressure) sound waves within the cavity. Simultaneously, the negative acoustic
pressure gradient along cavity depth prompts acoustic particles to uniformly move towards
the cavity endplate. Consequently, the downward clockwise shedding vortices carrying
negative vorticity interacted with the negative acoustic particle velocity, making this region
act as an acoustic sink. This interaction transfers aeroacoustic energy from the sound
field to the flow field and subsequently facilitates the shed vortex as well as the shear
layer. In the latter half of the acoustic cycle, interactions between large-scale vortices
and the downstream corner lead to the creation of additional rarefaction or low-pressure
sound waves. These waves eventually interfere with waves reflected from the cavity
bottom. At this juncture, the positive acoustic pressure gradient along the cavity depth
stimulates the acoustic particles to uniformly move towards the cavity opening. As a
result, the negative vorticity region produced by the large-scale vortices and deflection
of the shear layer towards the mainstream due to twisting–suction effect (Elder 1980),
through their product with the positive acoustic particle velocity, cause this region to
serve as an acoustic source. This interaction transfers hydrodynamic energy from the flow
field to the sound field, thereby ensuring energy conservation for self-sustained resonant
oscillations. These findings were also indicated in the work of Dai, Jing & Sun (2015), in
which a force-balance relationship between the cavity opening and the cavity bottom was
established when the grazing shear layer coupled with the cavity acoustic eigenmode.

5. Decoupled aeroacoustic simulation

This section proposes a decoupled aeroacoustic simulation strategy to further reveal the
coherent perturbations of turbulent shear layers produced purely by external acoustic
forcing. Two effects should be taken into consideration to improve the acoustic simulation
accuracy, i.e. the flow convection effect and the turbulence interaction effect, which can
dissipate or amplify the acoustic fields nonlinearly (Gikadi, Föller & Sattelmayer 2014;
Du et al. 2016). This can be implemented by solving the LNSEs upon the mean flow field
and considering the flow velocity, pressure, density and especially turbulent viscosity,
as known quantities. By solving compressible LNSEs on the steady-state turbulent flow
but with periodic acoustic forcing, the turbulent flow induced acoustic scattering and
acoustically excited fluid perturbations can be determined.

5.1. Numerical set-up
The decoupled aeroacoustic simulation is classified into three major steps, the first obtains
the steady-state or time-averaged flow field from flow simulation, the second maps the
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Figure 16. Numerical set-up (a) for the decoupled aeroacoustic simulation using linearized Navier–Stokes
equations with out-of-phase (b) and in-phase (c) external acoustic forcing imposed on the closely arranged
and half-wavelength-arranged tandem deep cavities, respectively. The enlarged panels highlight the acoustic
scattering around the cavity entrances.

flow information from the fluid mesh to the acoustic mesh and the third numerically
solves the compressible LNSEs. Here, the shear stress transport (SST) turbulence model
is used to determine the steady-state turbulent flow within the tandem deep cavities,
as much less numerical diffusion and better prediction of the eddy viscosity can be
achieved. Note that the time-averaged flow fields from the previous LES results were
not used as a base flow, as they have been already excited by the acoustic resonance
oscillations and superimposed with the turbulence fluctuations. The SST-simulated mean
flow quantities containing the turbulent viscosity (μτ ) were interpolated from the
flow mesh onto the acoustic mesh during the mapping step. The LNSEs around the
mapped base flow were numerically solved with a generalized minimal residual solver
(Saad & Schultz 1986) and a Galerkin/least-square finite element (FE) stabilization
scheme. A gradient term stabilization was introduced to suppress the Kelvin–Helmholtz
instabilities by the reactive terms of the LNSEs. The numerical set-up is depicted in
figure 16(a), where two configurations, one with a close arrangement and the other
with a half-wavelength arrangement, were established. The boundary conditions for their
flow simulations were kept consistent with the previous LESs. To discretize the fluid
domain and acoustic domain, two sets of meshes were generated. Triangular elements
and boundary layer elements were adopted within the computational domains. For flow
meshes, the thickness of the first cell was determined such that y + value was almost close
to 1, and approximately 0.2 and 0.5 million elements were finally generated within the two
configurations. For the acoustic mesh, approximately10 nodes per acoustic wavelength
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were set to describe the acoustic wave propagation without numerical dissipation. The
frequency range of the incident acoustic waves was set to 200–3500 Hz with a step
of 	f = 10 Hz, yielding a maximum element size of 0.01 mm with additional mesh
refinement around the cavity entrances. The number of acoustic meshes reached 0.06
million for one configuration and 0.08 million for the other configuration. Note that the
incident acoustic waves were planar waves, as their frequencies were below the cutoff
frequency of the main duct. During acoustic simulations, the acoustic source regions were
added at the two cavity endplates and harmonic pressure forcing was set as a source term
to LNSEs. This was implemented by writing an expression into the LNSEs to define
the direction, amplitude, frequency, phase and wavenumber information. For the close
arrangement, a phase difference of 180◦ was applied between the two endplate acoustic
sources, therefore out-of-phase acoustic forcing was created and acted on the concurrent
shear layers; for the half-wavelength arrangement, in-phase acoustic forcing was created
at the two cavity endplates. Besides, regions with a perfectly matched layer (PML)
were also set at the inlet, outlet and cavity endplates to dissipate the incoming acoustic
waves and prevent acoustic wave reflections. Here, PML imposes a complex-valued
coordinate transformation (frequency domain) or inverse Laplace transformation (time
domain) to satisfy the Sommerfeld radiation condition that can effectively maintain its
wave impedance and eliminate wave reflections (Johnson 2021). An adiabatic condition
was applied to the wall surface to make the temperature perturbation at the walls consistent
with the pressure perturbations using the Neumann condition. To save computational cost,
the acoustic simulations were conducted in the frequency domain rather than the time
domain.

Figures 16(b) and 16(c) illustrate the successfully applied acoustic forcing fields to the
tandem deep cavities, their frequencies and intensities were kept in consistency with the
abovementioned experimental results. After the incident acoustic waves were generated at
the cavity endplates, they propagate across the turbulent shear layers, enter the main duct
and radiate outside through the PMLs. Four snapshots with different phases were utilized
for demonstration; out-of-phase acoustic forcing was observed for the closely arranged
configuration and in-phase acoustic forcing was for the half-wavelength configuration,
confirming that the present LNSE model can mimic the internal acoustic forcing excited
by the acoustic eigenmodes. Furthermore, upon closer examination of the isoline patterns
within the highlighted panels, we observed a sequence of acoustic pulsations surrounding
the entrances of the cavities and the downstream wall surfaces. These observations
suggest the presence of acoustic scattering phenomena. These locations were nearly
coincident with the vortices within the shear layers, providing confirmation that the current
decoupled aeroacoustic simulations successfully captured the interactions between the
stable turbulent shear layers and the external acoustic forcing.

To further confirm the present results, two measures, i.e. coherent kinetic energy (Ĝk)

and coherent vorticity convection (Ĝω), are used to delineate the linear response of the
turbulent shear layers to the external acoustic forcing by referring to Boujo et al. (2018)

Ĝk = 1
u2

ac

(∫∫
�c

(ũ2 + ṽ2) dx dy
)

, Ĝω = 1
uac

(∫∫
�c

(ω̃zŪ) dx dy
)

, (5.1a,b)

where Ωc is the integrated domain spanning the streamwise extension of each cavity,
ω̃z = ∂xṽ − ∂yũ is the spanwise vorticity of the coherent response. The first measure is
useful to evaluate the kinetic energy of the acoustically excited fluid perturbation, the
second is associated with the Coriolis force and represents the acoustic power production.
Globally, both measures exhibit substantial amplification followed by dissipation as the
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Figure 17. Linear response of turbulent shear layers to the harmonic acoustic forcing: (a) coherent kinetic
energy by out-of-phase acoustic forcing in closely arranged tandem deep cavities; (b) coherent kinetic energy by
in-phase acoustic forcing in half-wavelength-arranged tandem deep cavities; (c) coherent vorticity convection
by out-of-phase acoustic forcing; and (d) coherent vorticity convection by in-phase acoustic forcing. The
frequency range of incident acoustic wave varied between 100 and 3000 Hz with a frequency interval of 10 Hz.
The broad frequency bands from the compressible iLES simulations are also annotated for comparison.

frequency of the applied acoustic forcing increases, as shown in figure 17. For the closely
arranged configuration, we observe two distinct peaks near 550 Hz and 1100 Hz, whereas
for the half-wavelength-arranged configuration, two peaks are identified in close proximity
to 620 Hz and 1270 Hz. Obviously, the first peaks can be related to the resonated acoustic
eigenmodes but are overpredicted, and the second peaks are harmonics of the first peaks.
The overprediction can be attributed to the influence of convective flow effects. Typically,
turbulence interaction effects tend to shift resonance towards lower frequencies, while
convective flow effects have the opposite effect, pushing it towards higher frequencies
(Meliga 2017). This phenomenon also accounts for the frequency difference observed
between the two tandem cavities. The spatial patterns of coherent perturbations within the
shear layers will be examined in the upcoming section, focusing on these two dominant
frequencies as indicated by the LNSE results.

5.2. Coherent perturbations of turbulent shear layers
The linear response of the steady-state turbulent shear layers to harmonic acoustic
forcing is characterized in terms of the phase-dependent evolution of streamwise velocity
perturbation and the superimposed streamlines, as shown in figure 18. Noting that the
phase variation gives rise to different acoustic pressure gradients acting on the shear
layers. Globally, the response is localized within the shear layer and downstream boundary
layer, which is reasonable with the large flow gradient and turbulent viscosity here.
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Figure 18. Phase-dependent evolution of coherent streamwise velocity perturbation (ũ) and coherent energy
density (Gk) by (a,c) out-of-phase acoustic forcing of closely arranged tandem deep cavities, and (b,d) in-phase
acoustic forcing of half-wavelength-arranged tandem deep cavities.

Distinctive wavepacket structures originate from the cavity entrances, and they exhibit a
streamwise expansion along the main duct while simultaneously contracting vertically as
they approach the cavity’s end. Simultaneously, weak velocity perturbations are generated
at the upstream cavity corner and amplified when transported towards the downstream
corner by the streamwise convecting shear layers; this process is a typical response of
shear layer instability.

The present study can be discerned through a comparative analysis between the two
tandem cavities in different arrangements. In the case of close arrangement, application
of out-of-phase acoustic forcing resulted in opposing yet notably intensified velocity
perturbations at the downstream cavity. Additionally, distinctive vortex structures with
varying rotation directions were observed. This phenomenon supported the iLES finding
with a more expanded shear layer within the downstream cavity. Such amplification
can be confirmed in figure 18(c), in which the coherent energy density was calculated
and plotted along the cavity entrances, almost one level higher energy density can be
found along the downstream cavity than the upstream cavity. As for the half-wavelength
arrangement, the applied in-phase acoustic forcing yielded similar but slightly intensified
velocity perturbations at the downstream cavity, and the rotation directions of vortex
structures were also same. Here, the discrepancy between the LNSE result and iLES result
is attributed to the downstream acoustic intensity; as in iLES, the resonance intensity is
quite attenuated compared with the upstream cavity. When coming to the phase-dependent
evolution process of the coherent vortex structures, the number and spatial scale of the
coherent vortex structures within the cavity entrances are vary periodically.

Under the influence of acoustic forcing, a large-scale vortex structure initially
occupies the cavity entrance but evolves into two smaller-scale vortex structures in the
subsequent phase. Subsequently, they reconfigure into a single large-scale vortex structure,
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Figure 19. Phase-dependent evolution of coherent shear layer perturbations inside tandem deep cavities,
presented by synthetic streamwise velocity (ũ + Ū) and synthetic spanwise vorticity (ω̃z + Ω̄z):
(a) with out-of-phase acoustic forcing of the close arrangement; (b) with in-phase acoustic forcing of the
half-wavelength arrangement.
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Figure 20. Phase-dependent evolution of coherent shear layer perturbations, represented by momentum
thickness: (a) closely arranged and (b) half-wavelength-arranged tandem deep cavities.

characterized by streamwise displacement and an opposite rotation direction. This process
can induce a streamwise growth of energy density from the upstream corner but with
fluctuations when approaching the downstream corner. Besides, alternating variations
of the coherent vortex structures and energy density can be identified between the two
cavities in close arrangement, but synchronous variation of the half-wavelength-arranged
configuration, consolidating the coherent perturbations of the turbulent shear layers.

Figures 19 and 20 illustrate the phase-dependent evolution of the synthetic streamwise
velocity, synthetic spanwise vorticity and shear layer momentum thickness in response to
the external acoustic forcing acting on the tandem deep cavities. These three quantities
took the time-averaged flow fields into consideration, and can demonstrate the dynamic
responses of mean flow to the periodic acoustic forcing. In figure 19(a) for the tandem
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deep cavities in close arrangement, snapshots of streamwise velocity, spanwise vorticity
and superimposed velocity streamlines depict the formation, convection and collapse
processes of the coherent vortex structures within the two cavity entrances. A phase
difference between the two cavities demonstrates the occurrence of alternating motion.
This can be further explored by the variations of shear layer momentum thickness,
as plotted in figure 20(a). Periodic oscillations of the shear layer can be observed by
tracing the phase-dependent locations of the maximum thickness, indicating a periodic
flapping motion of the turbulent concurrent shear layers. During the first half-acoustic
period, the maximum thickness of the upstream shear layer gradually increased and
the corresponding locations gradually transported and approached the downstream wall
surfaces; during the second half-period, after the shear layer impinging on the downstream
wall surface, the maximum thickness gradually decreased and their locations gradually
approached the upstream trailing edge. When looking into the downstream cavity, the
shear layer momentum thickness was significantly amplified with larger values. However,
the evolution process demonstrates a phase lag with the upstream shear layer. As the shear
layer has already impinged on the trailing edge within the first half of an acoustic period;
while in the second half, the locations of maximum thickness appeared almost at the
centre of the cavity entrance. Such phase-differentiated shear layer perturbations by the
out-of-phase acoustic forcing are in consistency with the alternating resonance behaviour.

In figure 20(b), phase-similar shear layer perturbations by the in-phase acoustic
forcing are found in the half-wavelength arrangement, which are consistent with the
abovementioned synchronous resonance behaviour of the turbulent shear layers. Even the
momentum thickness demonstrates a slight intensification at the downstream cavity; the
locations of the maximum thicknesses are close in each cavity at all of the four phases.
Two kinds of flow structures are also found from LNSE results, i.e. the accompanying
recirculation zone below the shear layer vortex structures and the separation bubble along
the downstream main duct wall surface. The recirculation zone is formed by the turbulent
entrainment effect and its oscillation is driven by the shear layer vortices. Regarding
the separation bubble, it originated when the downstream shear layer vortex structures
impinged upon the downstream corner and subsequently amplified, convecting along the
main duct wall surface. Similar flow structures, characterized by recirculation zones and
separation bubbles, can also be observed in Wang et al. (2020) and Ho & Kim (2021).
This separation bubble was also attributed to the divergence of Reynolds stress, which
can lead to an increase in the thickness of the shear layer (Mantič-Lugo & Gallaire 2016).
Now, focusing on the half-wavelength arrangement, as shown in figure 19(b), the flow
structures resulting from in-phase acoustic forcing bear a resemblance to the previously
mentioned findings. These include coherent vortex structures along the cavity entrances
accompanied by recirculation zones inside the cavity volumes and separation bubbles
along the downstream main duct wall surface. Nonetheless, two notable differences can be
observed. First, there is a synchronous evolution process between the two tandem cavities,
which is consistent with the iLES results. Second, there is the appearance of an additional
separation bubble originating from the upstream cavity corner. This is logical as these two
cavities are spaced further apart.

6. Conclusions

The resonance mechanism and coherent perturbations of turbulent shear layers inside
tandem deep cavities undergoing internal and external acoustic forcing were explored by
solving the nonlinear and linearized Navier–Stokes equations, respectively. Implicit-LES
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(iLES) through a high-order spectral/hp element method was implemented to directly solve
the compressible Navier–Stokes equations; thus fully coupled aeroacoustic fields inside
the tandem deep cavities with close and half-wavelength arrangements were respectively
acquired, in which the acoustic eigenmodes were significantly excited at high Reynolds
numbers (Rein = O(105))but low Mach numbers (Main < 0.15). As a complementary
strategy, an acoustic finite-element method was performed to solve the LNSEs to acquire
the decoupled aeroacoustic fields. The coherent perturbations of turbulent concurrent
shear layers in response to the external acoustic forcing can be determined. In sum,
the major findings are provided as below: first, alternating behaviour of shear layer
vortices between tandem deep cavities in close arrangement was found, resonated by the
out-of-phase acoustic eigenmodes, yielding significantly amplified shear layer oscillations
inside the downstream cavity entrance; the maximum growth rate of the shear layer
momentum thickness reached approximately ϑ = 0.12, in accordance with high-amplitude
resonance regime. Conversely, a synchronous behaviour of shear layer vortices was
observed within tandem deep cavities arranged at half-wavelength intervals. These cavities
resonated due to their in-phase acoustic eigenmodes. Another distinction involves the
dissipation of shear layer oscillations along the entrance of the downstream cavity. Next,
by conducting spectral proper orthogonal analysis of iLES-simulated velocity fields, the
dominant vortex structures were extracted: counter-rotating vortex pairs was identified
at the entrances of closely arranged tandem deep cavities, while co-rotating vortex
structures were identified for the half-wavelength-arranged tandem deep cavities. Third,
through the calculation of acoustic power generated by the Coriolis force acting on vortex
vorticity using Howe’s sound-vortex analogy, we were able to establish the aeroacoustic
energy transfer between flow fields and acoustic fields. The component 〈−(ρ0ω

′U0)va〉
contributes significantly to the overall acoustic power production. During the initial half
of the acoustic period, the shear layer vortices are formed and evolve, leading to the
dissipation of acoustic energy. In the latter half of the acoustic period, the shear layer
interacts with the trailing corners, resulting in significant acoustic power generation and
the transfer of energy to the acoustic waves. Finally, the LNSEs model was employed to
predict the flow–acoustic resonance between turbulent shear layers with external acoustic
forcing. The overprediction of peak frequencies may be attributed to the convective flow
effect rather than the turbulence dissipation effect. The linear response of turbulent shear
layers agrees well with the compressible iLES results. Additional detailed information
regarding wall-attached separation bubbles resulting from the streamwise amplification
of the shear layer is captured by using the present LNSEs model. Furthermore, the
recirculation zones beneath, caused by the downward dissipation of the shear layer
vortices, are captured well.
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