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Abstract. The aim of this paper is to develop the theory of groups definable in the p-adic field Qp ,
with “definable f -generics” in the sense of an ambient saturated elementary extension of Qp . We call such
groups definable f-generic groups.

So, by a “definable f -generic” or dfg group we mean a definable group in a saturated model with a
global f -generic type which is definable over a small model. In the present context the group is definable
over Qp , and the small model will be Qp itself. The notion of a dfg group is dual, or rather opposite to that
of an fsg group (group with “finitely satisfiable generics”) and is a useful tool to describe the analogue of
torsion-free o-minimal groups in the p-adic context.

In the current paper our group will be definable over Qp in an ambient saturated elementary extension
K of Qp , so as to make sense of the notions of f -generic type, etc. In this paper we will show that
every definable f -generic group definable in Qp is virtually isomorphic to a finite index subgroup of a
trigonalizable algebraic group over Qp . This is analogous to the o-minimal context, where every connected
torsion-free group definable in R is isomorphic to a trigonalizable algebraic group [5, Lemma 3.4]. We will
also show that every open definable f -generic subgroup of a definable f -generic group has finite index, and
every f -generic type of a definable f -generic group is almost periodic, which gives a positive answer to the
problem raised in [28] of whether f -generic types coincide with almost periodic types in the p-adic case.

§1. Introduction. In the recent years there has been growing interest in the
interaction between topological dynamics and model theory. This approach was
introduced by Newelski [22], then developed in a number of papers, including [4, 15,
27, 28, 38], and now called definable topological dynamics. Definable topological
dynamics studies the action of a group G definable in a structure M on its type space
SG(M ) and tries to link the invariants suggested by topological dynamics (e.g.,
enveloping semigroups, minimal subflows, Ellis groups, ...) with model-theoretic
invariants.

This framework allows us to generalize stable group theory to some unstable
groups with tame behaviour. Under the assumption that the theory T has NIP,
the class of definably amenable groups is a reasonable choice for the class of stable-
like groups in NIP context since Newelski’s conjecture [22] holds. Namely, the
smallest type-definable subgroup of G of bounded-index, written G00, exists and
G/G00 is isomorphic to its Ellis group (see [4]). In the stable case, this coincides
with the space (group) of generic types of G.

We will now be assuming that our ambient theory T is NIP.
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ON GROUPS WITH DEFINABLE F-GENERICS DEFINABLE IN P-ADICALLY CLOSED FIELDS 1335

As generic types may not always exist in the NIP environment, other notions were
introduced to describe the generic-like formulas and types. The notion of f -generic
was first introduced in [13] and then slightly modified in [4]. We let M be a so-called
“monster” model (of whatever complete theory we are working with). Recall that
this means that M is κ-saturated and κ-strongly homogeneous for some suitably
large κ. If the reader is willing to make some set-theoretic assumptions, they can
just take M to be κ-saturated and of cardinality κ for suitable κ. Let G be a group
definable in M. A definable subset (or formula)X ⊆ G (definable over M) is said to
be f -generic if for every g ∈ G , the left translate gX does not fork over M. A global
type p ∈ SG(M) is f -generic if every formula in p is f -generic. A global f -generic
type p is strongly f -generic if every G-translate of p does not fork over a fixed small
submodel M (equivalently by NIP is invariant under automorphisms fixing M).

One of the nice observations in [4] was that an NIP group is definably amenable
if and only if it admits a global strongly f -generic type. Now there are two extreme
case for a global strongly f -generic type p in NIP environment:

(i) p (as well as every left translate) is finitely satisfiable in some fixed small
model M. In this case p is actually generic, meaning that for every formula
φ in p, finitely many translates of φ cover G. We call p a finitely satisfiable
generic, abbreviated as fsg.

(ii) p (so also all its translates) is definable over some fixed small model M, and
we call p a definable f -generic, abbreviated as dfg.

A definable group G is said to be an fsg group if it admits a global fsg type, and a
dfg group if it admits a global dfg type.

In [11], Hrushovski, Peterzil, and Pillay proved that fsg groups coincide with
definably compact groups in o-minimal expansions of real closed field. Moreover,
in [23], Onshuus and Pillay proved that it is also true for groups definable in Qp.
The above results say that the model-theoretic concept of fsg is able to describe the
topological concept of “compactness” in o-minimal and p-adic context.

On the other hand, putting various results together, we know that for definably
connected groups definable in o-minimal expansions of RCF , torsion-free is
equivalent to being dfg. Here are some details. The left implies right direction
is precisely Proposition 4.7 in [6]. For the right implies left direction: The proof of
Lemma 1.15 in [28] shows that if G is dfg, then there is aG0-invariant definable type,
so by connectedness there is a G-invariant definable type p. Now we know G to be
definably amenable, so by Propositions 2.6 and 4.6 of [6], there is a normal definable
torsion-free (solvable) subgroup H of G such that G/H is definably compact (and
definably connected). We claim that G/H is trivial, which will show that G = H
is torsion-free. Assuming G/H nontrivial, p gives rise to a G/H -invariant type
p/H of G/H , which implies that (G/H )00 = G/H , a contradiction to definable
compactness of G/H (for example, to the truth of Pillay’s conjecture).

Since torsion-free means “totally non-definably compact” for groups definable in
o-minimal expansions of RCF this translates into dfg meaning “totally non fsg” in
the o-minimal context. This observation is also witnessed by the following:

Fact 1.1 [34]. Th(Qp) and o-minimal theories are distal.
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1336 ANAND PILLAY AND NINGYUAN YAO

Note that distality of a theory implies that no global types can be both definable
and finitely satisfiable (in a small model), and in fact such types are weakly
orthogonal.

Anyway it is natural to ask what happens in the p-adic context. We will be working
with Th(Qp) in the ring language and we will actually be restricting ourselves to
groups definable in or over the standard model Qp.

Question 1. Are dfg groups exactly “totally noncompact” groups in this p-adic
context?

The aim of the paper is to answer this question. Our first result is a structure
theorem for dfg groups over Qp, which gives a positive answer to Question 1.

Theorem 1. Let G be a group definable over Qp with dfg, then there is a normal
sequence

G0 � ··· � Gi � Gi+1 � ··· � Gn,

where the Gi are definable over Qp, and such that G0 is finite, Gn is a finite index
subgroup of G, and each Gi+1/Gi is definably (over Qp) isomorphic to either the
additive group Ga , or a finite index subgroup of the multiplicative group Gm.

Recall that if G is a definable group in a structure M, then by definition a type
in SG(M ) is almost periodic if the closure of its G-orbit is a minimal G-invariant
closed subset of SG(M ). In the following, the ambient model M is assumed to be
saturated. The following conjecture was raised in [28].

Conjecture 1. Let G be a dfg group definable in an NIP structure. Then any
global f-generic type is almost periodic.

The following theorem gives a positive answer to Conjecture 1 in the p-adic case.
The proof makes use of a recent result in [37].

Theorem 2. Suppose that G is a dfg group definable over Qp, then every global
f-generic type of G is almost periodic.

The paper is organized as follows. In the rest of this introduction we will recall
precise notation, definitions, and results from earlier papers, relevant to our results.
In Section 2.1, we will prove some general results for dfg and fsg groups. In
Section 2.2, we will characterise the one-dimensional dfg groups definable over Qp.
Section 2.3 contains the key lemmas of the paper, where we proved that every
algebraic group containing an open dfg subgroup is trigonalizable. In Section 2.4,
we prove a structure theorem for an arbitrary dfg group definable over Qp, showing
that every dfg group is virtually trigonalizable over Qp, and concluding that every
global f -generic type of a dfg group is almost periodic.

1.1. Notations. We will assume a basic knowledge of model theory. Good
references are [19] and [31]. Let T be a complete theory in a language L and let
M be the monster model, in which every type over a small subset A ⊂ M is realized,
where “small” means |A| < |M|. We will assume T to be 1-sorted. By x, y, z we
mean finite tuples of variables, and a, b, c ∈ M finite tuples from M. For a subset A
of M, LA is the language obtained from L by adjoining constants for elements of A.
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As a rule, by a formula we will mean an LM-formula (unless otherwise stated). For
an arbitrary elementary submodel M of M and anLM -formula φ(x), φ(M ) denotes
the definable subset of M |x| defined by φ, and a set X ⊆Mn is definable if there
is an LM -formula φ(x) such that X = φ(M ). If X̄ ⊆ Mn is definable, defined with
parameters from M, then X̄ (M ) will denote X̄ ∩Mn, the realizations from M, which
is clearly a definable subset ofMn. Suppose that X ⊆ Mn is a definable set, defined
with parameters from M, then we write SX (M ) for the space of complete types
concentrating on X. We use freely basic notions of model theory such as definable
type, heir, coheir, .... The book [31] is a possible source.

We will be distinguishing in the current paper, between definable and interpretable.
So by a definable set in the saturated structure M we mean a subset of Mn defined
by a formula with parameters.

1.2. Topological dynamics. Our reference for (abstract) topological dynamics
is [1].

Given a (Hausdorff) topological group G, by a G-flow we mean a continuous
action G × X → X of G on a compact (Hausdorff) topological space X. We
sometimes write the flow as (X,G). Often it is assumed that there is a dense orbit,
and a G-flow (X,G) with a distinguished point x ∈ X whose orbit is dense is called
a G-ambit (although we will not make much use of this notation).

In spite of p-adic algebraic groups being nondiscrete topological groups, we will
be treating them as discrete groups so as to have their actions on type spaces being
continuous. So in this background section we may assume G to be a discrete group,
in which case a G-flow is simply an action of G by homeomorphisms on a compact
space X.

By a subflow of (X,G) we mean a nonempty closed G-invariant nonempty
subspace Y of X (together with the action of G on Y). (X,G) will always have
minimal subflows. A point x ∈ X is almost periodic if the closure of its orbit is a
minimal subflow.

Let (X,G) and (Y,G) be flows (with the same acting group). A homomorphism
from X to Y is a continuous map f : X −→ Y such that f(gx) = gf(x) for all
g ∈ G and x ∈ X .

Fact 1.2. Let (X,G) and (Y,G) be flows, f : X −→ Y a homomorphism. Then:

(i) If X0 is a minimal subflow of X, then Y0 = f(X0) is a minimal subflow of Y.
(ii) If Y is a minimal flow, then f is onto.

1.3. Definably amenable groups. Let T be any first-order theory, let M |= T be a
very saturated model, and let G be a group ∅-definable in M defined by the formula
G(x). For anyM ≺ M,G(M ) = {g ∈Mn|g ∈ G} is a subgroup of G. BySG (M ) we
mean the space of all complete types over M concentrating onG(x). It is easy to see
that SG(M ) together with the type of the identity element is a G(M )-ambit, taking
the dense orbit to be {tp(g/M )| g ∈ G(M )}. From now on, we will, throughout this
paper, assume that every formula φ(x) ∈ LM, with parameters in M, is contained in
G(x), namely, the subset φ(M) defined by φ is contained in G. Suppose that φ ∈ LM
and g ∈ G(M ), then the left translate gφ(x) is defined to be φ(g–1x). It is easy to
check that (gφ)(M ) = gX with X = φ(M ).
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1338 ANAND PILLAY AND NINGYUAN YAO

Definition 1.3. Let the notation be as above.

• A definable subset X ⊆ G is generic if finitely many left translates of X cover
G. Namely, there are g1, ... , gn ∈ G such that G = ∪1≤i≤ngiX .

• A definable subset X ⊆ G is weakly generic if there is a non-generic definable
subset Y ⊆ G such that X ∪ Y is generic.

• A definable subset X ⊆ G is f -generic if for some/any model M over which
X is defined and any g ∈ G , gX does not divide over M. Namely, for any
M-indiscernible sequence (gi : i < �), with g = g0, {giX : i < �} is consis-
tent.

• A formula φ(x) is generic if the definable set φ(M) is generic. Similarly for
weakly generic and f -generic formulas.

• A type p ∈ SG (M ) is generic if every formula φ(x) ∈ p is generic. Similarly
for weakly generic and f -generic types.

• A type p ∈ SG (M ) is almost periodic if p is an almost periodic point of the
G(M )-flow SG (M ).

• A global type p ∈ SG (M) is strongly f -generic over a small model M if every
left G(M)-translate of p does not fork over M. A global type p ∈ SG (M) is
strongly f -generic if it is strongly f -generic over some small model.

Fact 1.4 [22]. LetAP ⊆ SG(M ) be the space of almost periodic types, andWG ⊆
SG(M ) the space of weakly generic types. ThenWG = cl(AP).

Recall that a type definable over A subgroup H ≤ G has bounded index
if |G/H | < 2|T |+|A|. For groups definable in NIP structures, the smallest type-
definable subgroup G00 exists (see [11]). Namely, the intersection of all type-
definable subgroups of bounded index still has bounded index. We call G00 the
type-definable connected component of G. Another model theoretic invariant is
G0, called the definable-connected component of G, which is the intersection of all
definable subgroups of G of finite index. Clearly, G00 ≤ G0.

Recall also that a Keisler measure over M on X, with X a definable subset ofMn,
is a finitely additive probability measure on the Boolean algebra of M-definable
subsets of X. When we take the monster model, i.e., M = M, we call it a global
Keisler measure. A definable group G is said to be definably amenable if it admits a
global (left) G-invariant Keisler measure.

The following facts will be used later.

Fact 1.5 [4]. Let G be a group definable in a saturated NIP structure M. Then:
(i) G is definably amenable if and only if it admits a global type p ∈ SG(M) with

bounded G-orbit.
(ii) G is definably amenable if and only if it admits a strongly f-generic type.

Moreover,

Fact 1.6 [4]. Let G be a definably amenable group definable in a saturated NIP
structure M. Then:

(i) Weakly generic definable subsets, formulas, and types coincide with f-generic
definable subsets, formulas, and types, respectively.

(ii) p ∈ SG(M) is f-generic if and only if it has bounded G-orbit.
(iii)p ∈ SG(M) is f-generic if and only if it is G00-invariant.
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(iv) The type-definable subgroup H fixing a global f-generic type is exactly G00.
(v) G/G00 is isomorphic to the Ellis group of SG(M ) for anyM ≺ M.

Note that in the context of Fact 1.6, if p is global f -generic type which is either
definable over, or finitely satisfiable in, a small model, then p will be strongly f -generic
(because of parts (iii) or (iv)).

Remark 1.7. Fact 1.6(v) gives a positive answer to the so-called Ellis group
conjecture. The equality between G/G00 and the Ellis group, under possibly
additional assumptions, was suggested first by Newelski [22] in Question 5.5 and
Problem 5.6. A precise formulation under an assumption of NIP and definable
amenability was made by Pillay [27]. This makes it reasonable to consider definably
amenable groups as the “stable-like” groups in NIP environment.

1.4. Groups definable in (Qp,+,×, 0, 1). We will be referring a lot to the
comprehensive survey in [2] for the basic model theory of the p-adic field Qp. A key
point is Macintyre’s theorem [18] that Th(Qp,+,×, 0, 1) has quantifier elimination
in the language where we add predicates Pn(x) for the nth powers for each n ∈ N+.
The valuation is quantifier-free definable in this expanded language, in particular is
definable in the language of rings (see Section 3.2 of [2]). Let us give some notation
we will be using. M denotes the structure (Qp,+,×, 0, 1), Qp

∗ = Qp\{0} is the
multiplicative group and Z is the ordered additive group of integers, the value group
ofQp. The group homomorphism � : Qp

∗ −→ Z is the valuation map. The valuation
map � induces an absolute valuation | | on Qp: for each x ∈ Qp, |x| = p–�(x) if x �= 0
and |x| = 0 otherwise. The absolute valuation makes the p-adic fieldQp into a locally
compact topological field, with basis given by the sets �(x – a) ≥ n for a ∈ Qp and
n ∈ Z. The ring of p-adic integers (valuation ring)

Zp = {x ∈ Qp| x = 0 ∨ �(x) ≥ 0}
is of course a definable subset of Qp. We can add new predicates O(x) for the
valuation ring and O×(x) for the elements with valuation 0. So O(M ) = O(Qp) =
Zp and O×(M ) = O×(Qp) = {x ∈ Qp|�(x) = 0}.

It is convenient to refer to Section 3 of [25] for various notions such as
definable p-adic analytic manifold and definable p-adic analytic group. (One can
also consult [23].) In the background are the notions of dimension of definable
(with parameters) sets in the structure M = (Qp,+,×, 0, 1) as well as theorems
on p-adic cell decomposition and definable functions, which are due to van den
Dries and Scowcroft [9]. But we mention here a few details: For X a definable set
in M, say X ⊆ Qp

n, dim(X ) is the greatest k ≤ n such that some projection on
Qp
k contains an open set. An n-dimensional definable p-adic analytic manifold is a

topological space with a covering by finitely many open sets each homeomorphic to
an open definable (in M) subset of Qp

n such that the transition maps are definable
and analytic. See [32] for analytic functions over complete fields. A definable
p-adic analytic group is a definable p-adic analytic manifold equipped with a group
structure which is definable and analytic when read in the appropriate charts. Such
a definable p-adic analytic group is a definable group in M and Lemma 3.8 of [25]
says that conversely any group G definable in M can be definably equipped with the
structure of a definable p-adic analytic group.
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In the current paper we will really be concerned with groups G definable in
the structureM = (Qp,+,×, 0, 1). However, the various notions introduced in the
previous section depend on an ambient saturated model. So we let M denote a very
saturated elementary extension (K,+,×, 0, 1) of M. We also letN = (K,+,×, 0) ≺
M be an elementary extension of M. So K and K are p-adically closed fields. The
dimension of definable sets is defined as before, but can also be defined in terms
of the underlying algebraic closure relation, which coincides with field-theoretic
algebraic closure: assuming X is definable over a finite set A, then dim(X ) can be
described as the maximum of dim(ā/A) as ā ranges over points of X. We have the
notion of a “definable Ck-manifold in N (or over K),” a topological space with a
finite covering by open sets each homeomorphic to an open definable subset of Kn

(fixed n) with transition maps definable and Ck . Either adapting the methods of
[25] or by transfer from the caseK = Qp, one sees that for any group G definable in
N and for any k < �, G can be definably equipped with the structure of a definable
Ck-manifold in N with respect to which the group structure is Ck . In contrast with
the analogous situation for real closed fields, it seems not to be known whether we
can also do it for k = ∞. On the other hand if G is defined with parameters from Qp,
then G(Qp) is as in the previous paragraph, and so the definable analytic manifold
and group structure on G(Qp) DOES give rise to a definable C∞-structure on G
with respect to which the group operation is C∞.

Recall from [23] that a definable manifold X over K is definably compact, if for
any definable continuous function f : O(K)\{0} −→ X , the limit lim

x→0
f(x) exists

in X. Definable compactness agrees with compactness if K is Qp. A definable subset
of Kn with the induced topology is definably compact if and only if it is closed and
bounded.

Let G be a group definable in N with parameters from Qp. As remarked above
G(Qp) has (definably in M) the structure of a p-adic analytic (Lie) group, and as
such has an open compact subgroup, which must be definable in M. It follows that
G has a Qp-definable subgroup C with dim(C ) = dim(G) and C (Qp) is compact
(and C definably compact).

Let C be a group definable in N over Qp which is (with its definable manifold
topology) definably compact. Then C (Qp) is compact. We have the standard part
map st : C −→ C (Qp). The kernel of st is precisely the group of infinitesimals of
C and coincides with the intersection of all Qp-definable subgroups of C of finite
index. This is elaborated on in the following fact.

Fact 1.8. Let C be a group definable in M over Qp.

(i) If C definably compact, then C 00 = C 0 coincides with ker(st), and st induces
a homeomorphism between C/C 0 (with its logic topology) and the p-adic Lie
group C (Qp).

(ii) C is definably compact iff C has fsg.

Proof. For (i) see Corollary 2.4 of [23].
The left implies right direction of (ii) is Corollary 2.3(iv) of [23]. The right to left

direction (easy direction) does not appear explicitly in [23], but appears in somewhat
greater generality in Proposition 3.1 of [16] �
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Fact 1.9 [29]. If G is a one-dimensional group definable over Qp, then G is abelian-
by-finite, hence definably amenable.

1.5. Definable groups and quotient groups. We will try to give some coherent
notation regarding definable groups and algebraic groups. Our underlying first-order
theory is Th(Qp) in the ring language (or in the Macintyre language, a definitional
expansion). As in Section 1.4, M denotes the standard model,M a “monster model,”
and N ≺ M a not necessarily saturated elementary extension of M. When we speak
of a group definable in M , N, or M, we mean the obvious thing. When we speak of
a group G definable over Qp (for example) we typically mean a group definable in
M defined with parameters from Qp. In this caseG(Qp) denotes the group definable
in Qp by the same formulas defining G in M. On the other hand if for example G is
a group definable in Qp then we can consider the groups definable in N or M by the
same formulas, which we may refer to as G(K), G(K), or G(N ), G(M). In general,
when we speak of a definable object (set, or group) we mean a definable object in the
monster modelMof Th(Qp). As mentioned in Section 1.4 we are mainly interested in
groups definable in the standard model M, but we will need information about their
interpretations in M. Let us again emphasize that we distinguish between definable
and interpretable (definable in Keq) and our groups will be definable.

The usual mathematical notation for algebraic groups is to consider an algebraic
group G over a field K as something like a functor which takes a field L containing
K to the group G(L). Alternatively, one can identify G with G(L) for a given
algebraically closed field containing K, where the variety structure as well as the group
structure are given by data (polynomial equations, transition maps, morphisms)
over K. (See [26] for more details on this and the later discussion of algebraic varieties
and groups over algebraically closed fields.) With this notation the algebraic groups
we will consider will be over Qp and we will consider their groups G(Qp) and G(K)
of Qp-points, and K-points. Of course the latter will be also definable groups in the
structures M, M, respectively, in the earlier sense, but essentially just quantifier-free
definable in the ring language.

So in this paper we will slightly modify notation, by defining a p-adic algebraic
group to be the group G(Qp) of Qp-points of an algebraic group G over Qp. When
G is a linear algebraic group over Qp, thenG(Qp) will simply be a subgroup of some
GLn(Qp) defined by a finite system of polynomial equations over Qp. So a p-adic
algebraic group is a special case of a group definable in M. As above we denote
by G(K) the group of K-points of G, which is consistent with our earlier notation
regarding definable groups.

We now just want to observe that the quotient of a p-adic algebraic group by a
p-adic algebraic subgroup can be seen as a definable (rather than just interpretable)
set in M: So we are given algebraic groups G,H over Qp such that H (Qp) is a
subgroup of G(Qp). We assume G to be connected as an algebraic group. Let L be
an algebraically closed field containing Qp such as Qp

alg . ThenH (L) is a subgroup
of G(L). But then by elimination of imaginaries in ACF together with a theorem
of Weil, G(L)/H (L) is, in the structure (L,+,×), definably isomorphic over Qp
to an algebraic variety X (L) over Qp, which is a homogeneous space for G(L) all
defined over Qp. Namely we have a surjective morphism f : G(L) → X (L) defined
over Qp, constant on cosets of H (L) in G(L) and inducing a bijection between
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G(L)/H (L) and X (L). Restricting f to G(Qp) gives a definable (in M) bijection
between G(Qp)/H (Qp) and a subset Y of X (Qp) which is definable in M and can
be seen, by dimension reasons, to be an open subset of the p-adic manifold X (Qp),
so a p-adic manifold itself. In the case where H (Qp) is normal in G(Qp), then Y
becomes an open subgroup of the p-adic algebraic group X (Qp).

§2. Main results.

2.1. fsg groups and dfg groups over Qp.

Fact 2.1. Let G be a group definable in M over Qp and suppose G to be definably
amenable. Then there is an algebraic group H over Qp and a finite-to-one Qp-definable
group homomorphism from G00 toH (K).

Explanation. This follows from Theorem 2.19 of [21], making use of the proof of
Corollary 2.22 of [21].

Lemma 2.2. Let G be a definably amenable group over Qp such that G00 = G0.
Then there is a Qp-definable subgroup A ≤ G(Qp) of finite index and a finite normal
subgroup A0 ⊆ A such that A/A0 is Qp-definably isomorphic to an open subgroup of
a p-adic algebraic group.

Proof. By Fact 2.1, there is an algebraic group H over Qp and a definable
over Qp finite-to-one group homomorphism from G00 to H (K). Since G00 = G0,
by compactness, there is a Qp-definable finite index subgroup A ≤ G and a Qp-
definable finite-to-one group homomorphism f from A(Qp) toH (Qp). LetH0(Qp)
be the Zariski closure of im(f) inH (Qp), thenH0(Qp) is a p-adic algebraic group.
By Remark 2.13 of [12], dim(im(f)) = dim(H0(Qp)). By the topological definition
of dimension im(f) has interior inH0(Qp), hence im(f), being a subgroup, is open
in H0(Qp). �

Fact 2.3 [28]. Assuming NIP. If a definable group G has dfg, then G00 = G0.

Corollary 2.4. Let G be a group definable over Qp which is either fsg or dfg. Then
there is a finite index Qp-definable subgroupA ≤ G(Qp) and a finite normal subgroup
A0 ⊆ A such that A/A0 is Qp-definably isomorphic to an open subgroup of a p-adic
algebraic group.

Proof. By Facts 1.8 and 2.3 and Lemma 2.2. �

2.2. One-dimensional dfg groups over Qp. Recall that the dp-rank of a partial
type �(x) over A is ≥ κ if there are a |= �(x) and κ sequences (Ii , i < κ) mutually
indiscernible over A and none of which is indiscernible overAa. Dp-minimal theories
are theories in which all nonalgebraic 1-types have dp-rank 1. Every dp-minimal
theory has NIP.

Fact 2.5 [7]. Th(Qp) is dp-minimal.

Fact 2.6 [35]. Assume that T has NIP. Let N |= T be a small model. If p is an
N-invariant global type of dp-rank 1, then p is either finitely satisfiable in N or definable
over N.
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Fact 2.7 [35]. Assume that T is dp-minimal, and acl satisfies exchange. Then
dp-rank coincides with the acl-dimension.

Fact 2.8 [13]. If T has NIP then a global complete type does not fork over a small
submodel M iff it is M-invariant.

Lemma 2.9. Let G be a Qp-definable group of dimension 1. Then G is either dfg
or fsg.

Proof. By Fact 1.9, G is definably amenable. By Fact 1.6, G admits a strongly
f -generic type. Let p ∈ SG(K) be a global strongly f -generic type. There is a small
submodel M such that every left translate of p does not fork over M, and hence
M-invariant by Fact 2.8. By Facts 2.5 and 2.6, p is either definable over M or finitely
satisfiable in M. So G is either dfg or fsg. �

Recall the notion of generically stable type from [13]: a global type p is generically
stable if it is both definable and finitely satisfiable in some small model.

Fact 2.10 [34]. Let p ∈ S(K) be a non-algebraic global type. Then p is not
generically stable.

Corollary 2.11. If G is an infinite Qp-definable group which has dfg then G is
NOT definably compact.

Proof. Suppose for a contradiction (using Fact 1.8) that G were both dfg and
fsg. Let p be a global definable (strongly) f -generic type. By [14] p is generic, namely
every formula in p is generic. By Proposition 4.2 of [11], p (and all its translates)
are finitely satisfiable in a small model. So p is generically stable, which contradicts
Fact 2.10. This proves the corollary. �

The following is from [24]. Part (a) is Lemma 2.1 there, part (b)(i) is contained in
Proposition 2.3 there, and part (b)(ii) in Proposition 2.4. Let us emphasize that the
data in items (ii) and (iii) of part (a) determine complete types over M as is proved
in [24].

Fact 2.12. (a) The complete 1-types over M (orQp) are precisely the following:
(i) The realized types tp(a/M ) for each a ∈ Qp.

(ii) For each a ∈ Qp and coset C of (K∗)0, the type pa,C saying that x is
infinitesimally close to a (i.e., �(x – a) > n for each n ∈ N), and (x –
a) ∈ C .

(iii) For each coset C as above the type p∞,C saying that x ∈ C and �(x) < n
for all n ∈ Z.

(b)
(i) A global type of Ga(K) is (strongly) f-generic iff it is an heir of some p∞,C .

(ii) A global type of Gm(K) is (strongly) f-generic iff it is an heir of some p∞,C
or p0,C .

Part (ii) of the next remark is precisely Remark 2.2(ii) from [24].

Remark 2.13. (i) Let q(x) ∈ S1(K) be a ∅-definable 1-type. By Fact 2.12, we
see that if q is NOT infinitesimally close to any point of Qp over Qp, then q is
a global heir of some p∞,C .

(ii) Conversely, any global complete 1-type extending the partial type �(x) < Γ
is an heir of some p∞,C , and hence definable over Qp.
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Lemma 2.14. Suppose that G is a one-dimensional group definable over Qp. Letf :
Zp\{0} −→ G(Qp) be a definable continuous function such that lim

x→0
f(x) /∈ G(Qp),

and α ∈ K̄ � K such that α �= 0 and �(α) > Γ. Then tp(f(α)/K) is a global definable
f-generic type of G.

Proof. First let us check that the notation in the statement of the lemma makes
sense. First the continuity of f is meant with respect to the p-adic topology onZp and
the definable p-adic analytic group topology on G(Qp) from Section 1.4. For any
elementary extensionN = (K,+,×, 0) ofM = (Qp,+,×, 0), f(K) is a continuous
definable over Qp function from O \ {0} toG(K), which we may also write as just f.
So for α ∈ K̄ � K, nonzero such that �(α) > Γ, f(α) ∈ G(K̄).

Note that tp(α/K) is ∅-definable. Since lim
x→0
f(x) /∈ G(Qp), f(α) is not

infinitesimally close (over Qp) to any point of G(Qp). Moreover, since G(Qp) has a
definable manifold structure, for any g ∈ G(Qp), gf(α) is not infinitesimally close
to any point of G(Qp) over Qp.

By Lemma 2.2, letH (Qp) be a one-dimensional algebraic group,U (Qp) ≤ G(Qp)
a Qp-definable subgroup of finite index, and � : U (Qp) −→ H (Qp) a definable
finite-to-one homomorphism. Let V (Qp) = �(U (Qp)). Since U (Qp) is generic, we
may assume that f(α) ∈ U (K̄). Let � = �(f(α)). Then, for any g ∈ V (Qp), g� is
not infinitesimally close to any point of V (Qp) over Qp.

Claim. � is not infinitesimally close to any point ofH (Qp).

Proof. As any open subgroup is clopen, we see thatV (Qp) is a clopen subgroup
of H (Qp). Now suppose for a contradiction that � is infinitesimally close to
h ∈ H (Qp) over Qp, then h ∈ cl(V (Qp)) = V (Qp). A contradiction. �

Now H (Qp) is a p-adic algebraic group (as defined in Section 1.5). So H (Qp) is
definably isomorphic to (Qp,+), or (Qp

∗,×), or a definably compact group C (Qp)
(which is either an anisotropic group or an elliptic curve). But any point in C (K̄) is
infinitesimally close to its standard part inC (Qp) over Qp. SoH (Qp) is isomorphic
to (Qp,+), or (Qp

∗,×).
As � is not infinitesimally close to any point of H (Qp), and tp(�/K) is definable

over ∅, we conclude by Remark 2.13 and Fact 2.12 that tp(�/K) is the heir of
some p∞,C in the case H = (Qp,+), and the heir of some p∞,C or some p0,C

in the case that H = (Qp
∗,×). Either way tp(�/K) is a global definable (strong)

f -generic of H. So theV (K)-orbit of tp(�/K) is bounded. Since � : U (K) −→ V (K)
is a finite-to-one homomorphism, the U (K)-orbit of tp(f(α)/K) is bounded. This
implies that tp(f(α)/K) is a global f -generic type of G. �

Proposition 2.15. Let G be a one-dimensional Qp-definable group. If H ⊆ G is
an open dfg subgroup of G definable over Qp, then H has finite index in G.

Proof. By Corollary 2.11, there is a definable continuous functionf : Zp\{0} →
H (Qp) such that lim

x→0
f(x) /∈ H (Qp). Moreover, we claim the following.

Claim. There is a definable continuous function f : Zp\{0} → H (Qp) such that
lim
x→0
f(x) /∈ G(Qp).
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Proof. Suppose NOT. Then H (Qp) = cl(H (Qp)) is definably compact. This
contradicts Corollary 2.11. �

Let f be a definable continuous function f : Zp\{0} → H (Qp) such that
lim
x→0
f(x) /∈ G(Qp), and α ∈ K̄ � K such that v(α) > Γ. By Lemma 2.14,

tp(f(α)/K) is a global definable f -generic type of both G and H. Now
tp(f(α)/K) ∈ SH (K) is G00-invariant. So G00 ⊆ H . By compactness, H has finite
index. �

Corollary 2.16. Let G be a one-dimensional dfg group definable over Qp. Then
G00 = ∩n∈N+nG .

Proof. By Fact 1.9, we may assume that G is commutative. Consider the map
fn : G −→ nG given by x �→ nx. Let tp(α/K) ∈ SG(K) be a definable f -generic
type. Then there is a small submodel M ≺ K such that every left nG-translate of
tp(nα/K) is definable over M. So nG is a dfg group. By Proposition 2.15, nG has
finite index for each n ∈ N+. On the other hand, if H ≤ G is a definable subgroup
of index n with n ∈ N+, then nG ≤ H . So G0 = ∩n∈N+nG . By Fact 2.3, we have
G00 = ∩n∈N+nG as required. �

Recall that a definable group is definably connected if it has no proper finite
index definable subgroups. We will call a definable group G is definably totally
disconnected if every finite index definable subgroup of G is NOT definably
connected. Namely, a definably totally disconnected group has no minimal finite
index definable subgroups.

Note that Ga(K) is definably connected since Ga(K)0 = Ga(K), while Gm(K) is
definably totally disconnected since Gm(K)0 =

⋂
n∈N+ Pn(K∗) (see [24]).

Proposition 2.17. Let G be a one-dimensional dfg group definable over Qp.

1. If G(Qp) is definably connected, then there is a finite normal subgroup A0 such
that G(Qp)/A0 is definably isomorphic to (Qp,+).

2. If G(Qp) is definably totally disconnected, then there is a definable subgroup
A ≤ G of finite index, and a finite normal subgroup A0 ≤ A(Qp) such that
A(Qp)/A0 is definably isomorphic to (Pn(Qp

∗),×).

Proof. By Lemma 2.2, there are a one-dimensional algebraic group H and a
definable finite-to-one group homomorphism f fromA(Qp) toH (Qp), whereA ≤ G
is a finite index subgroup definable over Qp. Clearly, A has dfg. Let tp(α/K) be a
global definable f -generic type of A. Then tp(f(α)/K) is also a global definable
f -generic type of im(f). As im(f) has dfg, im(f) ≤ H has finite index by
Proposition 2.15. SoH (Qp) is dfg, and hence is either (Qp,+) or (Qp

∗,×).
If G(Qp) is definably connected. Then im(f) is definably connected. So H (Qp)

has to be (Qp,+), and hence is im(f).
If G(Qp) is totally disconnected, then im(f) is also totally disconnected. So

H (Qp) has to be (Qp
∗,×), and hence im(f) contains (Pn(Qp

∗),×) for some n.
Replace A(Qp) by f–1(Pn(Qp

∗)) if necessary. �

https://doi.org/10.1017/jsl.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.37


1346 ANAND PILLAY AND NINGYUAN YAO

2.3. Algebraic groups with open dfg subgroups. The following will be used later:

Fact 2.18 [23]. Let X ⊆ Kn be open, definable and defined over Qp. Let X =
Y1 ∪ Y2, where the Yi are definable in K. Then one of the Yi contains an open
Qp-definable subset.

Lemma 2.19. Let H be an algebraic group over Qp, and G an open Qp-definable
dfg subgroup of H (K). Suppose A is an algebraic subgroup of H, also defined over
Qp. LetG/A(K) be the set of cosets g/A(K) for g ∈ G . ThenG/A(K) infinite implies
G/A(K) is not definably compact (equivalently G(Qp)/A(Qp) is not compact.)

Proof. We start with some explanations, partly suggested by the referee. First
the quotient spaceH (Qp)/A(Qp) (a homogeneous space forH (Qp)) can be viewed
as a definable (rather than interpretable) set in M, and moreover a definable p-adic
manifold. This is by the last paragraph of Section 1.5. So G(Qp)/A(Qp), as defined
in the statement of the lemma will be a definable submanifold ofH (Qp)/A(Qp), and
a homogeneous space forG(Qp), and we call it C (Qp). So C = C (K) is a definable
(over Qp) manifold in the sense of Section 1.4, and also a homogeneous space for
G = G(K). Note also that the lemma we are proving is a natural generalization of
Corollary 2.11 to homogeneous spaces (transitive flows).

Let � : G → C be the natural Qp-definable projection map.
So we have the action of G = G(M) on C = C (M) and hence also an action on

the type space SC (M) of global types concentrating on C. We will call a definable
subset X of C generic if finitely many G-translates of X cover C, and likewise a type
p ∈ SC (M) generic if all formulas in p are generic.

We first show that for anyQp-definable open subsetO(M) ofG(M),�(O(M)) con-
tains a Qp-definable open subset of C (M). Take g ∈ O(M) such that dim(g/Qp) =
dim(G), then we have g ∈ �–1(�(g)) and

dim(�–1(�(g))) = dim(gA) = dim(A).

So dim(g/Qp, �(g)) ≤ dim(A), and thus

dim(�(g)/Qp) = dim(g, �(g)/Qp) – dim(g/Qp, �(g)) ≥ dim(G) – dim(A).

As �(g) ∈ �(O(M)), we see that

dim(O(M)) ≥ dim(�(g)/Qp) ≥ dim(G) – dim(A) = dim(H/A) ≥ dim(C ).

So �(O(M)) contains a Qp-definable open subset of C (M) as required.
Now suppose for a contradiction that C (Qp) is definably compact and infinite.

Then C (Qp) is compact as a topological space (as mentioned earlier, definable
compactness and compactness agree for definable p-adic manifolds).

Claim. SC (M) has a generic type which is moreover finitely satisfiable in Qp (i.e.,
in C (Qp)).

Proof. Let p(x) be any type in SC (M ) which contains only open definable sets,
and let p′(x) ∈ SC (M) be a coheir of p. We will show that p′ is a generic type of
SC (M) as defined above. So let X be a definable set inp′. By definability of types over
Qp, X ∩ C (Qp) = Y is a definable set in the structure M. Note that Y has interior
in the sense of the space C (Qp), because otherwise Y /∈ p, so X ∧ ¬(Y (M)) ∈ p′,
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but the latter definable set does not meet C (Qp), contradicting p′ being finitely
satisfiable in M. We have shown that Y has interior in C (Qp). It follows that Y (M)
contains a Qp-definable open set.

Now consider Y (M) = (X ∩ Y (M)) ∪ ((¬X ) ∩ Y (M)). Note that (¬(X ) ∩
Y (M)) ∩ C (Qp)) = ∅ so in particular does not contain any Qp-definable open
set. It follows from Fact 2.18 that X ∩ Y (M) contains a Qp-definable open set, so
in particular, X contains a Qp-definable open set Z. As C (Qp) is compact, finitely
many G(Qp) translates of Z(Qp) cover C (Qp). So finitely many G-translates of Z
cover C, so finitely many G-translates of X cover C. So X is generic, and as X was
an arbitrary definable set in p′ we have shown that p′ is generic. This completes the
proof of the claim. �

Let us now complete the proof of the lemma. Note that we have a G(M)-flow
map from (G(M), SG (M)) to (G(M), SC (M)) induced by �. By our assumptions, let
r ∈ SG(M) be a definable f -generic type. By Lemma 1.15 of [28] (and its proof) the
orbit (G(M) · r) is closed, hence a minimal subflow of SG(M). Then �(G(M) · r) is
a minimal subflow of SC (M). But SC (M) has generic types, by the claim, hence as
is well-known (see [22]) has a unique minimal subflow. By the claim, let p ∈ SC (M)
be generic and finitely satisfiable in C (Qp). But then p is of the form �(q) for some
q ∈ G(M) · r. As q is definable, so is �(q) = p. Then p is both definable and finitely
satisfiable, which contradicts distality. �

Remark 2.20. Note that if G and H are definable groups, and G has dfg, and
f : G −→ H is a definable onto homomorphism, then H has dfg.

At this point we will need some of the basic theory of linear algebraic groups. The
notation in the literature (such as [20]) for (linear) algebraic groups over a field k is
consistent with our notation from Section 1.5 where k = Qp. See Chapter 14 of [20]
for the notions of unipotent elements in a linear algebraic group G and unipotent
algebraic subgroups G. An algebraic group G over Qp is trigonalizable over Qp if
it is isomorphic over Qp to a group of upper triangular matrices in some GLn. An
algebraic torus over Qp is split over Qp if it is isomorphic over Qp to a product of
copies of the multiplicative group. A connected linear solvable algebraic group G
over Qp is split over Qp if G admits a subnormal series of algebraic subgroups over
Qp whose quotients are isomorphic over Qp to the additive or multiplicative group.
A connected semisimple algebraic group G over Qp is said to be isotropic if contains
a nontrivial Qp-split algebraic torus defined over Qp. Let G be a reductive algebraic
group over Qp. A parabolic subgroup is a connected subgroup P of G such that the
quotient variety G/P is complete.

We summarise the various facts from the literature that we need (specialized to
the case k = Qp).

Fact 2.21. (i) (See Theorem 16.33 of [20]) Let G be a connected linear
solvable algebraic group over Qp. Then G has a maximal unipotent algebraic
subgroup, Gu which is normal and over Qp and G/Gu is an algebraic torus
(over Qp).

(ii) (See Proposition 16.52 of [20]) Any connected solvable linear algebraic group
over Qp which is split over Qp is trigonalizable over Qp.
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(iii) (See Corollaire 4.17 of [3]) Let G be a (connected ) semisimple algebraic group
overQp. Then G isQp-isotropic if and only if G has a proper parabolic subgroup
P defined over Qp.

(iv) (Theorem 3.1 of [30]) Suppose G is a connected semisimple algebraic group
over Qp which is not Qp-isotropic. Then G(Qp) is compact.

Proposition 2.22. Let H be a connected (not necessarily linear) algebraic group
over Qp. Suppose that H (M) contains an open Qp-definable dfg subgroup G, then H
is linear, solvable, and the algebraic torusH/Hu ( from part (i) of the fact above) splits
over Qp.

Proof. The algebraic group H admits a short exact sequence of connected
algebraic groups over Qp

1 −→ L −→ H −→ A −→ 1

with L a linear algebraic, and A an abelian variety. NowG(Qp)/L(Qp) definably over
Qp embeds in A(Qp) which is compact, so G(Qp)/L(Qp) is compact so definably
compact. If A is nontrivial, then dim(L) < dim(H ), so asG(Qp) is open inH (Qp),
G(Qp)/L(Qp) is infinite. By Lemma 2.19 this implies that G(Qp)/L(Qp) is not
definably compact, so not compact, a contradiction. So A is trivial and hence H is
linear.

Let R = rad(H ) be the solvable radical of H, the maximal connected normal
solvable algebraic subgroup of H, which is automatically defined over Qp. Let S
be the quotient H/R a connected semisimple algebraic group over Qp. We want to
show that S is trivial, so H will be solvable, as desired. Suppose for a contradiction
that S is nontrivial.

As in the statement of Lemma 2.19, we define G/R(K) to be the set of cosets
g/R(K) in H (K)/R(K) for g ∈ G , which (as R is normal in H and G an open dfg
subgroup of H (K)) is an open Qp-definable dfg subgroup of S(K). As G/R(K)
is infinite, by Lemma 2.19 G/R(K) is not definably compact, so G(Qp)/R(Qp) is
not compact. But the latter is a closed subgroup of S(Qp), whereby S(Qp) is not
compact. By Fact 2.21(iv), S is Qp-isotropic. So by Fact 2.21(iii), S has a proper
parabolic subgroup P defined overQp. AsS/P is a complete variety defined overQp,
(S/P)(Qp) is compact, so (S/P)(K) is definably compact. Let X be the image of G
(or ofG/R(K)) in (S/P)(K). Then X is also definably compact, again contradicting
Lemma 2.19. This contradiction proves that S was trivial, and soH = R is solvable.

We finally have to prove that the toric part T = H/Hu of H splits over Qp. T is an
algebraic torus defined over Qp, and by page 53 of [30] for example, T is an almost
direct product of tori T1, T2 defined over Qp where T1 is Qp-split and T2 has no
nontrivial split subtorus over Qp. We have to show that T2 is trivial. Otherwise T2

is nontrivial, and by Theorem 3.1 of [30] T2(Qp) is compact so T2(K) is definably
compact. Now H has a proper normal algebraic subgroup H1 defined over Qp
(namely the preimage of T1 under the homomorphism H → H/Hu) such that the
quotient H/H1 = T2. But by Lemma 2.19, as usual the image of G in (H/H1(K) is
infinite and not definably compact, a contradiction. This completes the proof of the
proposition. �

Corollary 2.23. Let H be a connected algebraic group over Qp. IfH (K) contains
an open Qp-definable dfg subgroup G say, then H is trigonalizable over Qp.
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Proof. By the previous proposition H is linear, solvable, andH/Hu is a Qp-split
torus. As we are in characteristic 0 the unipotent part Hu of H is split (i.e., admits
a subnormal series of algebraic subgroups over Qp whose quotients are isomorphic
over Qp to the additive group). Hence H itself is a Qp-split solvable group over Qp.
By Fact 2.21(ii), H is trigonalizable over Qp. �

2.4. dfg Groups and f -generic types. Let A, B, C be definable groups, defined
over Qp, such that A ≤ B and � : B −→ C is Qp-definable, such that, moreover,

1 −→ A i−−→ B �−−→ C −→ 1

is a short exact sequence, where i : A −→ B is the inclusion map. Since Th(Qp) has
definable Skolem functions (see [8]), let f : C −→ B be a Qp-definable section of �.
Every element b of B can be written uniquely as af(�(b)) for some a ∈ A.

We will be freely using Facts 1.5 and 1.6 in the following.

Lemma 2.24. Fix notation as above. Suppose that B is definably amenable, then
both A and C are definably amenable. Moreover if b ∈ B(M̄) is such that tp(b/M) is
an f-generic type, then both tp(�(b)/M) and tp(a/M) are f-generic types of C and A,
respectively.

Proof. Since tp(b/M) is B00-invariant, we see that tp(�(b)/M) is �(B00)-
invariant, so C is definably amenable and tp(�(b)/M) is an f -generic type of C.

Let 	 : B → A be the function given by 	(x) = x · f(�(x))–1, then a = 	(b). For
each a0 ∈ A, we have

a0 · a = a0 · b · f(�(b))–1 = (a0 · b) · f(�(a0 · b))–1 = 	(a0 · b).
Since tp(b/M) is f -generic, we see that

A · tp(b/M) = {tp(a0 · b/M)| a0 ∈ A}
is bounded. So the A-orbit of tp(a/M)

{tp(a0 · a/M)| a0 ∈ A} = {tp(	(a0 · b)/M)| a0 ∈ A}
is bounded. We conclude that A is definably amenable and tp(a/M) is an f -generic
type of C. �

Lemma 2.25. Let the notation be as above. Suppose that B has dfg. Then both A
and C have dfg.

Proof. Let tp(b/M) be a global f -generic type definable over some small
model M0. Then, by Lemma 2.24, we see that both tp(�(b)/M) and tp(a/M) are
f -generic types of C and A, respectively.

Assume that M0 contains the parameters of A,B,C and �, then a, �(b) ∈
dcl(M0, b), we see that tp(�(b)/M) and tp(a/M) are definable over M0, and
hence dfg types of C and A, respectively. This concludes the proof that A and
C have dfg. �

Remark 2.26. Let A,B be algebraic groups over Qp such that A is a subgroup
of B, andB(K) is dfg. Since the coset space (B/A)(K) is definable, a similar argument
to the proof of Lemma 2.25 shows that A(K) is also dfg.
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Proposition 2.27. Let H be an algebraic group overQp and G an open dfg subgroup
of H (K) definable over Qp. Then G has finite index in H (K).

Proof. The proof is by induction on dim(H ). The statement holds for
dim(H ) = 1 by Proposition 2.15.

Now assume that dim(H ) > 1.
By Corollary 2.23, H is trigonalizable over Qp, and hence there is a short exact

sequence of algebraic groups over Qp

1 −→ A i−−→ H �−−→ C −→ 1,

where A a one-dimensional algebraic group central in H, and C an algebraic group
of dimension dim(H ) – 1. Then we have an induced short exact sequence:

1 −→ A(K) ∩G i−−→ G �−−→ �(G) −→ 1.

By Lemma 2.25, we see that both A(K) ∩G and �(G) are open dfg subgroups of
A(K) and C (K), respectively. By induction hypothesis, both A(K) ∩G and �(G)
have finite index in A(K) and C (K), respectively. This concludes that G has finite
index in H (K). �

Corollary 2.28. Suppose that G1 ≤ G2 are dfg groups definable over Qp. If
dim(G1) = dim(G2), then G1 has finite index in G2.

Proof. By Corollary 2.4, there are a finite index subgroup A of G2 and a finite
normal subgroup A0 of A, with both A and A0 definable over Qp, and such that
A/A0 is Qp-definably isomorphic to an open subgroup of H (K) for some algebraic
group H defined over Qp. Let f : A −→ H (K) be the finite-to-one homomorphism
with ker(f) = A0 as in Fact 2.1. By Proposition 2.27, im(f) has finite index in
H (Qp). As G1 ∩ A has finite index in G1, we see that G1 ∩ A has dfg. So the image
f(G1 ∩ A) is an open dfg subgroup of H (K), and hence has finite index in H (K)
by Proposition 2.27. It follows easily that G1 has finite index in G2. �

A generalization of Corollary 2.28 has been proved in [10, Corollary 4.4].
We now prove the following two structure theorems for dfg groups using

Proposition 2.27:

Theorem 2.29. Let G be an open dfg Qp-definable subgroup of H (K) where H is
an algebraic group defined over Qp. Then there is a normal sequence

{idG} = G0 � ··· � Gi � Gi+1 � ··· � Gn = G

such that eachGi is definable overQp and eachGi+1/Gi is definably overQp isomorphic
to a one-dimensional dfg group.

Proof. Induction on dim(G). Clearly, the statement is trivial if dim(G) = 1.
Now assume that dim(G) > 1. As we showed in Proposition 2.27, there is a short
exact sequence

1 −→ A i−−→ H �−−→ C −→ 1

with A a one-dimensional algebraic group central in H, and C an algebraic group
of dimension dim(H ) – 1, where everything is over Qp. Both A(K) ∩G and �(G)
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are open dfg subgroups of A(K) and C (K), respectively. By induction hypothesis,
there is a normal sequence

{idC } = D0 � ··· � Di � Di+1 � ··· � Dn = �(G)

such that each Di+1/Di is definably isomorphic to a one-dimensional dfg group
over Qp. It is easy to see that the normal sequence

{idG} ≤ G0 = G ∩ A(K) � ··· � Gi+1 = G ∩ �–1(Di) � ··· � Gn+1 = G

meets our requirements. �

Theorem 2.30. Let G be a group definable over Qp with dfg. Then there is a normal
sequence

G0 � ··· � Gi � Gi+1 � ··· � Gn
of Qp-definable groups, such that G0 is finite, Gn is a finite index subgroup of G, and
Gi+1/Gi is isomorphic to a one-dimensional dfg group over Qp.

Proof. By Corollary 2.4, there is a finite index subgroup A1 ≤ G and a
finite normal subgroup A0 ⊆ A, all Qp-definable, such that A1/A0 is Qp-definably
isomorphic to an open subgroup ofH (K) for H some (connected) algebraic group
defined over Qp. Let f : A1 −→ H (K) be the finite-to-one homomorphism with
ker(f) = A0 as in Fact 2.1. By Proposition 2.27, im(f) has finite index in H (K).
Moreover H is trigonalizable over Qp by Proposition 2.22.

Clearly, the statement is trivial if dim(G) = 1. Now assume that dim(G) > 1.
As we showed in Proposition 2.27, there is a short exact sequence

1 −→ A i−−→ H �−−→ C −→ 1

with A a one-dimensional algebraic group central in H, and C an algebraic group
of dimension dim(H ) – 1, all defined over Qp. Both A(K) ∩ im(f) and �(im(f))
are open dfg subgroups of A(K) and C (K), respectively. By Theorem 2.29, there is
a normal sequence

{idC } = D0 � ··· � Di � Di+1 � ··· � Dn = �(im(f))

such that each Di+1/Di is definably isomorphic to a one-dimensional dfg group
over Qp. Let Ei = �–1(Di) ∩ im(f). It is easy to see that Di = �(Ei), thus
Ei/(A(K) ∩ im(f)) ∼= Di . So

Ei+1/Ei ∼=
(
Ei+1/(A(K) ∩ im(f))

)
/
(
Ei/(A(K) ∩ im(f))

) ∼= Di+1/Di

is definably isomorphic to a one-dimensional dfg group over Qp. We conclude that

E0 � ··· � Ei � Ei+1 � ··· � En = im(f)

is a normal sequence such that E0 = A(K) ∩ im(f) and each Ei+1/Ei is definably
isomorphic to a one-dimensional dfg group over Qp. Let G0 = A0 and Gi+1 =
f–1(Ei), we see that the normal sequence

G0 � ··· � Gi � Gi+1 � ··· � Gn+1 = A1

satisfies our requirement. �
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Finally we answer the Conjecture 1 in the p-adic case, making use of the following.

Fact 2.31 [37]. Let H be a trigonalizable algebraic group over Qp. Then every
global complete f-generic type of H (K) is almost periodic.

By Proposition 2.27 and Fact 2.31, we easily conclude the following.

Theorem 2.32. Suppose that G is a dfg group over Qp. Then every global complete
f-generic type of G is almost periodic.
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