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Abstract
A dimer model is a quiver with faces embedded in a surface. We define and investigate notions of consistency for
dimer models on general surfaces with boundary which restrict to well-studied consistency conditions in the disk
and torus case. We define weak consistency in terms of the associated dimer algebra and show that it is equivalent
to the absence of bad configurations on the strand diagram. In the disk and torus case, weakly consistent models are
nondegenerate, meaning that every arrow is contained in a perfect matching; this is not true for general surfaces.
Strong consistency is defined to require weak consistency as well as nondegeneracy. We prove that the completed
as well as the noncompleted dimer algebra of a strongly consistent dimer model are bimodule internally 3-Calabi-
Yau with respect to their boundary idempotents. As a consequence, the Gorenstein-projective module category of
the completed boundary algebra of suitable dimer models categorifies the cluster algebra given by their underlying
quiver. We provide additional consequences of weak and strong consistency, including that one may reduce a strongly
consistent dimer model by removing digons and that consistency behaves well under taking dimer submodels.
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1. Introduction

Dimer models were introduced as a model to study phase transitions in solid state physics. In this setting,
a dimer model is a bicolored graph embedded into a surface, representing a configuration of particles
which may bond to one another. The physics of this system is described by perfect matchings of the
graph; see the survey [38] and references therein. Moreover, to a dimer model one may associate a dimer
algebra, which is the Jacobian algebra of a certain quiver with potential, whose combinatorics and
representation theory relate to the physics of the dimer model. In the physics literature, dimer models on
tori have seen the most study, especially those satisfying certain consistency conditions [32]. Under these
conditions, several authors including Mozgovoy and Reineke [43], Davison [15] and Broomhead [11],
showed that the dimer algebra is 3-Calabi-Yau. Ishii and Ueda [33] showed that the moduli space M𝜃

of stable representations of the dimer algebra with dimension vector (1, . . . , 1) and a generic stability
condition 𝜃 in the sense of King [40] is a smooth toric Calabi-Yau 3-fold. Moreover, the center Z of
the dimer algebra 𝐴𝑄 is a Gorenstein affine 3-fold, the dimer algebra 𝐴𝑄 is a non-commutative crepant
resolution of Z, and M𝜃 is a crepant resolution of Z [33]. Properties of the category of coherent sheaves
over M𝜃 may be understood through the combinatorics of the dimer model, opening a rich connection
to mirror symmetry [8, 9, 23, 29].

Many equivalent definitions of consistency have been introduced for torus dimer models. See, for
example, [6, Theorem 10.2], [7, 11, 37, 43]. In particular, consistency of a dimer model is equivalent to
the absence of certain bad configurations in the strand diagram of the dimer model [8, Theorem 1.37].

Dimer models on disks have been studied separately, and are of particular interest to the theory of
cluster algebras. Postnikov introduced plabic graphs and strand diagrams in [44]. Scott [50] showed
that the homogeneous coordinate ring of the Grassmannian Gr(𝑘, 𝑛) is a cluster algebra, in which
certain seeds are indexed by (𝑘, 𝑛)-Postnikov diagrams. Jensen-King-Su [36] gave an additive cate-
gorification for this cluster structure, and Baur-King-Marsh [4] interpreted this categorification as the
Gorenstein-projective module category over the completed boundary algebra of the associated dimer
model. Pressland extended these results to arbitrary Postnikov diagrams in [48] and observed that a
dimer model coming from a Postnikov diagram satisfies a thinness condition, which is analogous to the
algebraic consistency conditions in the torus literature.

A systematic study on dimer models on more general surfaces was initiated by Franco in [16].
This study is largely concerned with the master and mesonic moduli spaces on dimer models, which
may be computed using the combinatorics of perfect matchings. Operations such as removing an edge
and the dual untwisting map were investigated in [16, 21, 27]. Quiver mutation and square moves were
connected with cluster mutation in [17], and further connected with combinatorial mutation of polytopes
in [26]. Dimer models on general surfaces were connected with matroid polytopes and used to obtain a
partial matroid stratification of the Grassmannian, generalizing the place of dimer models in disks in the
matroid stratification of the Grassmannian [19, 18, 20, 10, 25]. Various generalizations of the notions
of consistency in the disk and torus case have been considered in this body of work.

We define a new notion of consistency for dimer models on compact orientable surfaces with or
without boundary. We call a dimer model path-consistent if, for any fixed vertices 𝑣1 and 𝑣2 and a fixed
homotopy class C of paths from 𝑣1 to 𝑣2, there is a unique (up to path-equivalence) minimal path r
from 𝑣1 to 𝑣2 in C such that any path from 𝑣1 to 𝑣2 in C is equivalent to r composed with some number
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face-paths. When Q is a dimer model on a torus, path-consistency is equivalent to the many consistency
conditions in the literature. When Q is a dimer model on a higher genus surface without boundary,
path-consistency is equivalent to the weaker notions of consistency rather than the stronger algebraic
consistency. See [6, Theorem 10.2]. When Q is on a disk, path-consistency is the thinness condition
appearing in Pressland [48].

We associate a strand diagram to a dimer model and define bad configurations. We say that a
dimer model is strand-consistent if it has no bad configurations. This matches the notion of zigzag
consistency of general dimer models on surfaces with boundary briefly considered in the first section
of [8]. In particular, it agrees with the well-studied notions of consistency in the torus case.

Our first main theorem is as follows, where we exclude the case of a sphere without boundary, as
such a dimer model is never strand-consistent. A key idea of the proof is to observe that either notion
of consistency of a dimer model is equivalent to consistency of its (possibly infinite) universal cover
model, which enables the assumption of simple connectedness.

Theorem A (Theorem 4.13). Let Q be a dimer model not on a sphere. The following are equivalent:

1. The dimer model Q is path-consistent.
2. The dimer model Q is strand-consistent.
3. The dimer algebra 𝐴𝑄 is cancellative.

We may thus say that a weakly consistent dimer model is a model not on a sphere satisfying any
of the above equivalent conditions. This generalizes results in the case of the torus [6, Theorem 10.1],
[34]. This was also shown for dimer models on the disk corresponding to (𝑘, 𝑛)-diagrams in [4]. The
implication (2) =⇒ (1) for general dimer models on disks appears in [48, Proposition 2.11]. A corollary
of our result is the reverse direction in the disk case (Corollary 4.14).

As an application, we use the strand diagram characterization of consistency to prove that dimer
submodels of weakly consistent dimer models are weakly consistent (Corollary 5.1). This gives us
practical ways to get new weakly consistent models from old and to understand equivalence classes of
minimal paths.

Next, we study perfect matchings of weakly consistent dimer models. In the torus case, perfect
matchings of the dimer model feature prominently [34, 11, 6]. Perfect matchings of a torus dimer model
generate the cone of R-symmetries, which have applications in physics. Perfect matchings may be used
to calculate the perfect matching polygon of the dimer model, which is related to the center of the
dimer algebra. Perfect matchings of a dimer model on a disk [13, 41] are the natural analog and may
be connected with certain perfect matching modules of the completed dimer algebra to understand the
categorification given by the boundary algebra of a dimer model on a disk [13]. Over arbitrary compact
surfaces with boundary, perfect matchings may be used to describe the master and mesonic moduli
spaces associated to the dimer model. Moreover, perfect matchings of a dimer model on a general
surface may be calculated by taking determinants of Kasteleyn matrices [31], [16, §5]. In Theorem 6.7,
we show that any (possibly infinite) simply connected weakly consistent dimer model has a perfect
matching. This means that the universal cover model of any weakly consistent dimer model has a
perfect matching. However, we give an example of a (non-simply-connected) weakly consistent dimer
model which has no perfect matching (Example 6.8). One important notion for dimer models in the
disk and torus is nondegeneracy, which requires that all arrows are contained in a perfect matching.
We extend this definition to general surfaces and show that nondegeneracy gives a positive grading to
the dimer algebra. We define a strongly consistent dimer model as one which is weakly consistent and
nondegenerate. In the disk and torus case, weak and strong consistency are equivalent, but this is not
true for more general surfaces. We then use [48] to prove the following result.

Theorem B (Theorem 7.7). Let Q be a finite strongly consistent dimer model. Then the dimer algebra
𝐴𝑄 and the completed dimer algebra 𝐴𝑄 are bimodule internally 3-Calabi-Yau with respect to their
boundary idempotents.
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When Q is a dimer model on a disk, we recover [48, Theorem 3.7]. When Q has no boundary,
this translates to the algebra being 3-Calabi-Yau [46, Remark 2.2]. Hence, we recover the statement in
the torus (and closed surface of higher genus) literature that consistent dimer models are 3-Calabi-Yau
proven in [15, Corollary 4.4]. Using [2, Theorem 4.1 and Theorem 4.10], Theorem B immediately
implies the following.

Corollary C (Corollary 7.9). Let Q be a strongly consistent, Noetherian, and boundary-finite
(Definition 7.11) dimer model with no 1-cycles or 2-cycles. Then the Gorenstein-projective module
category of the completed boundary algebra of Q categorifies the cluster algebra given by the ice quiver
of Q.

We use the term ‘categorification’ for brevity during the introduction; see Corollary 7.9 for a more
rigorous statement. We give some examples of strongly consistent dimer models on annuli satisfying
the requirements of Corollary C.

Next, we use the theory of dimer submodels to get some interesting results about equivalence classes
of minimal paths in (weakly and strongly) consistent dimer models. We prove that in a weakly consistent
dimer model, minimal leftmost and rightmost paths in a given homotopy class between two vertices are
unique when they exist. If we further assume nondegeneracy, then they always exist.

Finally, we study the reduction of dimer models. In the disk case, consistent dimer models with at
least three boundary vertices may be reduced in order to obtain a dimer model with no 2-cycles and an
isomorphic dimer algebra [48, §2]. We show in Proposition 9.1 that a similar process may be used to
remove certain, but not all, digons in the non-simply-connected case. Figure 21 gives a weakly (but not
strongly) consistent dimer model with a digon which may not be removed in this way. However, Corol-
lary 9.3 states that if we require strong consistency, then we may remove all digons from a dimer model.

The article is organized as follows. In Section 2, we define dimer models and prove that path-
consistency is equivalent to cancellativity. We also show that these notions behave well when passing
to the universal cover of a dimer model. In Section 3, we develop some technical theory of basic and
cycle-removing morphs in order to prove that a path-consistent and simply connected dimer model
has no irreducible pairs (Theorem 3.19). This result is used in Section 4 to complete the proof of
Theorem A by showing that path-consistency and strand-consistency are equivalent. Next, in Section 5,
we introduce dimer submodels and prove that dimer submodels of weakly consistent dimer models are
weakly consistent (Corollary 5.1). This gives us practical ways to get new weakly consistent models from
old and to understand equivalence classes of minimal paths. Section 6 is dedicated to perfect matchings
of weakly consistent dimer models. In Section 7, we prove that the noncompleted and completed dimer
algebras of a strongly consistent dimer model are bimodule internally 3-Calabi-Yau with respect to their
boundary idempotents (Theorem B). As a result, we obtain our categorification result in Corollary C.
In Section 8, we use the results of Section 5 to understand the equivalence classes of minimal paths
in (weakly and/or strongly) consistent dimer models. Lastly, in Section 9, we discuss the process of
reducing a dimer model by removing digons. We prove that if Q is strongly consistent, then all digons
may be removed.

2. Covers and consistency

In this section, we define a dimer model on an arbitrary surface with boundary. We introduce path-
consistency, which generalizes notions of consistency of dimer models on the disk and torus. We show
that path-consistency is equivalent to cancellativity. Moreover, we prove that these notions work well
with taking the universal cover of a dimer model.

2.1. Dimer models

We begin by defining dimer models, following [4, §3]. A quiver is a directed graph. A cycle of Q is a
nonconstant oriented path of Q which starts and ends at the same vertex. A cycle of length a is called
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an a-cycle. Two cycles 𝛼1 . . . 𝛼𝑎 and 𝛽1 . . . 𝛽𝑏 are cyclically equivalent if 𝑎 = 𝑏 and there is some 𝑗 ∈ Z
such that 𝛼𝑖 = 𝛽𝑖+ 𝑗 (where the subscript addition is calculated modulo a) for all 𝑖 ∈ [𝑎]. If Q is a quiver,
we write 𝑄cyc for the set of cycles in Q of length at least two up to cyclic equivalence.

Definition 2.1. A quiver with faces is a triple 𝑄 = (𝑄0, 𝑄1, 𝑄2), where (𝑄0, 𝑄1) are the vertices and
arrows of a quiver and 𝑄2 ⊆ 𝑄cyc is a set of faces of Q.

A digon of Q is a face in𝑄2 consisting of two arrows. Given a vertex 𝑖 ∈ 𝑄0, we define the incidence
graph of Q at i to be the graph whose vertices are given by the arrows incident to i and whose arrows
𝛼 → 𝛽 correspond to paths

𝛼
−→ 𝑖

𝛽
−→

which occur in faces of Q.

Definition 2.2. A (locally finite, oriented) dimer model with boundary is given by a quiver with faces
𝑄 = (𝑄0, 𝑄1, 𝑄2), where 𝑄2 is written as a disjoint union 𝑄2 = 𝑄𝑐𝑐

2 ∪ 𝑄𝑐𝑙
2 , satisfying the following

properties:

1. Each arrow of 𝑄1 is in either one face or two faces of Q. An arrow which is in one face is called a
boundary arrow, and an arrow which is in two faces is called an internal arrow.

2. Each internal arrow appears once in one cycle bounding a face in𝑄𝑐𝑐
2 and once in one cycle bounding

a face in 𝑄𝑐𝑙
2 .

3. The incidence graph of Q at each vertex is connected.
4. Any vertex of Q is incident with a finite number of arrows.

A vertex of Q is called boundary if it is adjacent to a boundary arrow, and otherwise it is called
internal.

Given a dimer model with boundary Q, we may associate each face F of Q with a polygon whose
edges are labeled by the arrows in F and glue the edges of these polygons together as indicated by
the directions of the arrows to form a surface with boundary 𝑆(𝑄) into which Q may be embedded
[7, Lemma 6.4]. The surface 𝑆(𝑄) is oriented such that the cycles of faces in 𝑄𝑐𝑐

2 are oriented positive
(or counter-clockwise) and the cycles of faces in𝑄𝑐𝑙

2 are oriented negative (or clockwise). The boundary
of 𝑆(𝑄) runs along the boundary arrows of Q. If 𝑆(𝑄) is a disk, then we say that Q is a dimer model on
a disk. If 𝑆(𝑄) is simply connected, then we say that Q is a simply connected dimer model.

A dimer model Q is finite if its vertex set is finite. Note that Q is finite if and only if 𝑆(𝑄) is compact.
Suppose that Q is a finite quiver such that every vertex has finite degree. Suppose further that Q

has an embedding into an oriented surface Σ with boundary such that the complement of Q in Σ is a
disjoint union of discs, each of which is bounded by a cycle of Q. We may then view Q as a dimer model
with boundary by declaring 𝑄𝑐𝑐

2 (respectively 𝑄𝑐𝑙
2 ) to be the set of positively (respectively, negatively)

oriented cycles of Q which bound a connected component of the complement of Q in Σ. All dimer
models may be obtained in this way.

Let Q be a dimer model and let p be a path in Q. We write 𝑡 (𝑝) and ℎ(𝑝) for the start and end
vertex of p, respectively. If a path q can be factored in the form 𝑞 = 𝑞2𝑝𝑞1, where ℎ(𝑞1) = 𝑡 (𝑝) and
𝑡 (𝑞2) = ℎ(𝑝), we say that p is in q or that q contains p as a subpath and we write 𝑝 ∈ 𝑞. Corresponding
to any vertex v is a constant path 𝑒𝑣 from v to itself which has no arrows.

Any arrow𝛼 in Q is associated with at most one clockwise and one counter-clockwise face of the dimer
model. We refer to these faces as 𝐹𝑐𝑙𝛼 and 𝐹𝑐𝑐𝛼 , respectively, when they exist. Let 𝑅𝑐𝑙𝛼 (respectively 𝑅𝑐𝑐𝛼 )
be the subpath of 𝐹𝑐𝑙𝛼 (respectively 𝐹𝑐𝑐𝛼 ) beginning at ℎ(𝛼) and ending at 𝑡 (𝛼), and consisting of all
arrows in 𝐹𝑐𝑙𝛼 (respectively 𝑅𝑐𝑐𝛼 ) except for 𝛼. A path in Q of the form 𝑅𝑐𝑙𝛼 (respectively 𝑅𝑐𝑐𝛼 ) for some
𝛼 is called a clockwise return path (respectively a counter-clockwise return path) of 𝛼.
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Definition 2.3. Given a dimer model with boundary Q, the dimer algebra 𝐴𝑄 is defined as the quotient
of the path algebra C𝑄 by the relations

𝑅𝑐𝑐𝛼 − 𝑅𝑐𝑙𝛼

for every internal arrow 𝛼 ∈ 𝑄1.

We now make more definitions. We say that two paths p and q in Q are path-equivalent if their
associated elements in the dimer algebra 𝐴𝑄 are equal. If p is a path in Q, we write [𝑝] for the path-
equivalence class of p under these relations.

The set of left-morphable (respectively right-morphable) arrows for p is the set of internal arrows
𝛼 ∈ 𝑄1 such that 𝑅𝑐𝑐𝛼 (respectively 𝑅𝑐𝑙𝛼 ) is in p. The set of morphable arrows for p is the set of arrows
which are left-morphable or right-morphable for p. Let 𝛼 be a morphable arrow for p. We also say that p
has the morphable arrow 𝛼. Then p contains 𝑅𝑐𝑙𝛼 or 𝑅𝑐𝑐𝛼 as a subpath and may possibly contain multiple
such subpaths. If 𝑝′ is a path obtained from p by replacing a single subpath 𝑅𝑐𝑙𝛼 with 𝑅𝑐𝑐𝛼 (𝑅𝑐𝑐𝛼 with 𝑅𝑐𝑙𝛼 ,
respectively), then we say that 𝑝′ is a basic right-morph (respectively, basic left-morph) of p. We omit
the word ‘basic’ when the context is clear. If p only has one subpath which is a copy of 𝑅𝑐𝑙𝛼 or 𝑅𝑐𝑐𝛼 , then
we say that 𝑝′ is an unambiguous basic (right or left) morph of p and we write 𝑝′ = 𝑚𝛼 (𝑝). We say that
𝛼 is an unambiguous morphable arrow for p in this case. Since the relations of 𝐴𝑄 are generated by the
relations {𝑅𝑐𝑐𝛼 − 𝑅𝑐𝑙𝛼 : 𝛼 is an internal arrow of 𝑄}, two paths p and q are path-equivalent if and only
if there is a sequence of paths 𝑝 = 𝑟1, . . . , 𝑟𝑚 = 𝑞 such that 𝑟𝑖+1 is a basic morph of 𝑟𝑖 for 𝑖 ∈ [𝑚 − 1].

Suppose p is a cycle in Q which starts and ends at some vertex v and travels around a face of Q
once. Then we say that p is a face-path of Q starting at v. The terminology is justified by the following
observation, which follows from the defining relations.

Remark 2.4. Any two face-paths of Q starting at v are path-equivalent.

Definition 2.5. For all 𝑣 ∈ 𝑄0, fix some face-path 𝑓𝑣 at v. Then define

[ 𝑓 ] :=
∑
𝑣 ∈𝑄0

[ 𝑓𝑣 ] . (1)

If |𝑄0 | is finite, then [ 𝑓 ] is an element of 𝐴𝑄. It follows from Remark 2.4 that the path-equivalence
class [ 𝑓 ] is independent of the choice of 𝑓𝑣 for all 𝑣 ∈ 𝑄0. Moreover, the dimer algebra relations imply
that [ 𝑓 ] commutes with every arrow. Hence, if |𝑄0 | is finite, then [ 𝑓 ] is in the center of 𝐴𝑄. If |𝑄0 | is
not finite, then [ 𝑓 ] is not an element of the dimer model 𝐴𝑄. However, every element x of 𝐴𝑄 has a
well-defined product with f, so we use notation such as [𝑥 𝑓 𝑚] in this case as well.

The completed path algebra 〈〈C𝑄〉〉 is the completion of C𝑄 with respect to the arrow ideal. The
completed path algebra has as its underlying vector space the possibly infinite linear combinations of
(distinct) finite paths in Q. Multiplication in 〈〈C𝑄〉〉 is induced by composition. See [47, Definition 2.6].

Definition 2.6. The completed dimer algebra 𝐴𝑄 is the quotient of the completed path algebra C〈〈𝑄〉〉
by the closure �̂�𝑄 of the ideal generated by the relations 𝑅𝑐𝑐𝛼 − 𝑅𝑐𝑙𝛼 for each internal arrow 𝛼 with respect
to the arrow ideal.

Elements of 𝐴𝑄 are possibly infinite linear combinations of (finite) paths of Q, with multiplication
induced by composition.

2.2. Path-consistency

We now define path-consistency, which is a nice condition on the equivalence classes of paths between
two vertices. We prove some short lemmas about path-consistent models.

A path p in Q is also a path in the surface 𝑆(𝑄). We thus say that paths p and q of Q are homotopic
if they are homotopic as paths in 𝑆(𝑄).
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Definition 2.7. A path p in a dimer model Q is minimal if we may not write [𝑝] = [𝑞 𝑓 𝑚] for any𝑚 ≥ 1.

Definition 2.8. A dimer model 𝑄 = (𝑄0, 𝑄1, 𝑄2) is path-consistent if it satisfies the following path-
consistency condition:

Fix vertices 𝑣1 and 𝑣2 of Q. For any homotopy class C of paths in 𝑆(𝑄) from 𝑣1 to 𝑣2, there is a
minimal path 𝑝𝐶𝑣2𝑣1 , unique up to path-equivalence, with the property that any path p from 𝑣1 to
𝑣2 in Q in the homotopy class C satisfies [𝑝] = [ 𝑓 𝑚𝑝𝐶𝑣2𝑣1] for a unique nonnegative integer m.
We call m the c-value of p.

We remark that equivalent paths of a general dimer model must be homotopic, so in some sense, this
is the ‘lowest number of path equivalence classes’ that one could hope for in a dimer model.

Lemma 2.9. If p and q are paths in a path-consistent dimer model Q with ℎ(𝑝) = 𝑡 (𝑞), then the c-value
of the composition 𝑞𝑝 is greater than or equal to the c-value of p plus the c-value of q.

Proof. If p and q are paths in a path-consistent dimer model Q with ℎ(𝑝) = 𝑡 (𝑞), then we may write
[𝑝] = [ 𝑓 𝑚𝑝𝑟𝑝] and [𝑞] = [ 𝑓 𝑚𝑞𝑟𝑞] for some minimal paths 𝑟𝑝 and 𝑟𝑞 . Then 𝑚𝑝 is the c-value of p and
𝑚𝑞 is the c-value of q. Then, using the fact that [ 𝑓 ] is central, we calculate

[𝑞𝑝] = [ 𝑓 𝑚𝑞𝑟𝑞 𝑓
𝑚𝑝𝑟𝑝] = [ 𝑓 𝑚𝑞+𝑚𝑝𝑟𝑞𝑟𝑝] .

We have shown that [ 𝑓 𝑚𝑞+𝑚𝑝 ] may be factored out of [𝑞𝑝]; hence, the c-value of [𝑞𝑝] is greater than
or equal to 𝑚𝑞 + 𝑚𝑝 . �

Two paths are equivalent if and only if there is a sequence of basic morphs taking one to the other.
Since a basic morph cannot remove some arrows without replacing them with other arrows, the constant
path is the unique minimal path from a vertex to itself. This leads to the following remark.

Remark 2.10. If Q is path-consistent and p is a nonconstant null-homotopic cycle, then the c-value of
p is positive.

It is an important fact that all face-paths of a dimer model are null-homotopic. This lets us show the
following.

Lemma 2.11. Let Q be a path-consistent dimer model. Any proper subpath of a face-path of Q is
minimal.

Proof. Suppose p is a proper subpath of a face-path 𝑓𝑣 starting at 𝑣 := 𝑡 (𝑝). Let 𝑝′ be the subpath
of 𝑓𝑣 such that 𝑝′𝑝 = 𝑓𝑣 . If p is not minimal, then by definition of path-consistency, [𝑝] = [𝑟 𝑓 𝑚]
for some positive integer m and some minimal path r from v to ℎ(𝑝) homotopic to p. Then [𝑝′𝑝] =
[𝑝′𝑟 𝑓 𝑚] = [𝑝′𝑟 𝑓 𝑚𝑣 ]. Moreover, r is homotopic to p, and hence, 𝑝′𝑟 is homotopic to the face-path 𝑝′𝑝
and hence is null-homotopic. Then by Remark 2.10, it has some positive c-value of 𝑚′. By definition of
path-consistency, [𝑝′𝑟] = [ 𝑓 𝑚

′

𝑣 ]. It follows that

[ 𝑓𝑣 ] = [𝑝′𝑝] = [𝑝′𝑟 𝑓 𝑚𝑣 ] = [ 𝑓 𝑚
′

𝑣 𝑓 𝑚𝑣 ] = [ 𝑓 𝑚
′+𝑚

𝑣 ],

which is a contradiction since𝑚+𝑚′ ≥ 1+1 = 2 but all face-paths trivially have a c-value of 1. It follows
that p is minimal. �

Lemma 2.12. Let Q be a simply connected path-consistent dimer model. No proper subpath of a
face-path of Q is a cycle.

Proof. Suppose p is a proper subpath of a face-path of Q which is a cycle. By Lemma 2.11, the path p
is minimal. Since Q is simply-connected, p is null-homotopic. The only minimal null-homotopic path
from a vertex to itself is the constant path, so this is a contradiction. �
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2.3. Universal covers

We define the notion of a universal cover dimer model and show that it behaves well with respect to
path-consistency and the cancellation property.

Let Q be a dimer model. We construct a dimer model 𝑄 over the universal cover �𝑆(𝑄) of 𝑆(𝑄). We
consider Q to be embedded into 𝑆(𝑄), so that a vertex 𝑣 ∈ 𝑄 may be considered as a point of 𝑆(𝑄).
Similarly, we describe 𝑄 embedded into �𝑆(𝑄).

The vertices of 𝑄 are the points �̃� ∈ �𝑆(𝑄) which descend to vertices v of 𝑆(𝑄). For any arrow 𝛼
from v to w in Q and any �̃� ∈ 𝑄0, there is an arrow 𝛼�̃� obtained by lifting 𝛼 as a path in Q up to a path
in 𝑄 starting at �̃�. The face-paths of 𝑄 are similarly induced by lifting the face-paths of Q. It is not hard
to see that 𝑄 is a (locally finite) dimer model. The following facts follow by universal cover theory.

1. If 𝑆(𝑄) is not a sphere, then �𝑆(𝑄) is not a sphere.
2. The surface �𝑆(𝑄) is simply connected.
3. Let 𝑝 and 𝑞 be paths in 𝑄 with the same start and end vertices which are lifts of paths p and q of Q,

respectively. Then [𝑝] = [𝑞] in 𝐴𝑄 if and only if [𝑝] = [𝑞] in 𝐴𝑄.

Universal covers are useful to consider because simple cycles on the universal cover have well-defined
interiors. The following remark gives another advantage of universal covers.

Remark 2.13. Choose vertices �̃�1 and �̃�2 of 𝑄. Any two paths from �̃�1 to �̃�2 are homotopic and hence
descend to homotopic paths in Q. Then this choice of vertices gives a homotopy class C of paths
between the corresponding vertices 𝑣1 and 𝑣2 of Q. The paths from �̃�1 to �̃�2 in 𝑄 correspond precisely
to the paths from 𝑣1 to 𝑣2 in the homotopy class C. Equivalence classes of paths in the dimer algebra
are respected by this correspondence.

Remark 2.13 relates Q and 𝑄 in a useful way. Many of our technical results require simple connect-
edness. Passing to the universal cover model allows us to prove things about general dimer models Q by
considering their simply connected universal cover models. In particular, we may study path-consistency
of Q by studying path-consistency of 𝑄.

Proposition 2.14. A dimer model Q is path-consistent if and only if 𝑄 is path-consistent.

Proof. Suppose Q is path-consistent. Choose vertices �̃�1 and �̃�2 of 𝑄; these correspond to vertices 𝑣1
and 𝑣2 of Q and induce a homotopy class C of paths between them. By Remark 2.13, the paths in 𝑄
from �̃�1 to �̃�2 correspond to the paths in Q from 𝑣1 to 𝑣2 in C. By path-consistency of Q, each such path
in Q is equivalent to 𝑝𝐶𝑣2𝑣1 composed with some power of a face-path, hence 𝑄 is path-consistent.

The other direction is similar. �

It follows from Lemma 2.12 and Proposition 2.14 that a path-consistent dimer model cannot have
contractible loops.

Definition 2.15. A dimer algebra 𝐴𝑄 = C𝑄/𝐼 is called a cancellation algebra (or cancellative) if for
paths 𝑝, 𝑞, 𝑎, 𝑏 of Q with ℎ(𝑎) = 𝑡 (𝑝) = 𝑡 (𝑞) and 𝑡 (𝑏) = ℎ(𝑝) = ℎ(𝑞), we have [𝑝𝑎] = [𝑞𝑎] ⇐⇒

[𝑝] = [𝑞] and [𝑏𝑝] = [𝑏𝑞] ⇐⇒ [𝑝] = [𝑞]. We call this the cancellation property.

Lemma 2.16. 𝐴𝑄 is a cancellation algebra if and only if 𝐴𝑄 is a cancellation algebra.

Proof. This follows because [𝑝] = [𝑞] in 𝐴𝑄 if and only if [𝑝] = [𝑞] in 𝐴𝑄, where 𝑝 and 𝑞 are any
lifts of p and q to 𝑄 with 𝑡 (𝑝) = 𝑡 (𝑞). �

Lemma 2.17. Let p be a path in Q of length m. Then the composition of face-paths 𝑓 𝑚
𝑡 (𝑝)

is equivalent
to a path beginning with p.

Proof. Let 𝑝 = 𝛾𝑚 . . . 𝛾1 be a product of arrows. For each 𝛾𝑖 , let 𝑅𝛾𝑖 be a return path of 𝛾𝑖 . The path
𝑅𝛾1 . . . 𝑅𝛾𝑚𝛾𝑚 . . . 𝛾1 is equivalent to 𝑓 𝑚

𝑡 (𝑝)
and begins with p. �

We now show that the notions of path-consistency and cancellativity coincide.

https://doi.org/10.1017/fms.2025.18 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.18


Forum of Mathematics, Sigma 9

Theorem 2.18. A dimer model Q is path-consistent if and only if 𝐴𝑄 is a cancellation algebra.

Proof. By Lemma 2.16 and Proposition 2.14, it suffices to show the result on the universal cover 𝑄.
Suppose that𝑄 is path-consistent. We prove that 𝐴𝑄 is a cancellation algebra. Accordingly, take paths

𝑝, 𝑞, 𝑎 of 𝑄 with ℎ(𝑎) = 𝑡 (𝑝) = 𝑡 (𝑞) and ℎ(𝑝) = ℎ(𝑞). We show that [𝑝𝑎] = [𝑞𝑎] =⇒ [𝑝] = [𝑞].
The case of left composition is symmetric. By path-consistency, we may write [𝑝] = [𝑟 𝑓 𝑚𝑝 ] and
[𝑞] = [𝑟 𝑓 𝑚𝑞 ], where r is a minimal path from 𝑡 (𝑝) to ℎ(𝑝), necessarily homotopic to p and q by simple
connectedness. Given [𝑝𝑎] = [𝑞𝑎], we have [ 𝑓 𝑚𝑝𝑟𝑎] = [ 𝑓 𝑚𝑞𝑟𝑎]. Then 𝑚𝑝 = 𝑚𝑞 by path-consistency.
We have shown that

[𝑞] = [𝑟 𝑓 𝑚𝑞 ] = [𝑟 𝑓 𝑚𝑝 ] = [𝑝],

and the proof of this direction is complete.
Suppose now that 𝐴𝑄 is a cancellation algebra. We first show that only a finite number of face-paths

may be factored out of any path p, and that this number is bounded by the number of arrows in p. Suppose
to the contrary that there is some path p of Q with m arrows such that we may write [𝑝] = [𝑝′ 𝑓 𝑚

′
] for

some 𝑚′ > 𝑚. By Lemma 2.17, [𝑝′ 𝑓 𝑚′
] = [𝑙 𝑝] for some nonconstant cycle l at ℎ(𝑝). Applying the

cancellation property to the equation [𝑝] = [𝑝′ 𝑓 𝑚
′
] = [𝑙 𝑝] gives that l is equivalent to the constant

path, which is a contradiction. This shows that only a finite number of face-paths may be factored out
of any path of 𝑄.

Then any path p of𝑄 is equivalent to 𝑟 𝑓 𝑚 for a minimal path r and a nonnegative integer m. Suppose
[𝑝] = [𝑟 𝑓 𝑚] = [𝑟 ′ 𝑓 𝑚

′
] for some nonnegative integers m and 𝑚′ and minimal paths r and 𝑟 ′. Without

loss of generality, suppose 𝑚 ≤ 𝑚′. By the cancellation property, [𝑟] = [𝑟 ′ 𝑓 𝑚
′−𝑚]. Then if 𝑚′ > 𝑚,

we have factored a face-path out of r, contradicting minimality of r; hence, 𝑚′ = 𝑚 and [𝑟] = [𝑟 ′].
Then if𝑄 is not path-consistent, there must be minimal paths p and q between the same vertices which

are not equivalent. Take m which is greater than the length of p and the length of q. By Lemma 2.17,
[𝑝 𝑓 𝑚] = [𝑝𝑞′𝑞] for some path 𝑞′ from ℎ(𝑞) to 𝑡 (𝑞). Suppose we have shown that 𝑝𝑞′ is equivalent to
𝑓 𝑚

′ for some 𝑚′. Then

[𝑝 𝑓 𝑚] = [𝑝𝑞′𝑞] = [𝑞 𝑓 𝑚
′

] .

By the cancellation property, we get either [𝑝] = [𝑞 𝑓 𝑚
′−𝑚] or [𝑞] = [𝑝 𝑓 𝑚−𝑚′

]. Since p and q are
minimal, we have 𝑚 = 𝑚′ and [𝑝] = [𝑞], contradicting our initial assumption. The proof is then
complete if we show that any cycle is equivalent to a composition of face-paths. We do so now.

Suppose to the contrary and take a simple cycle 𝑙 = 𝛾𝑠′ . . . 𝛾1 which is not equivalent to a composition
of face-paths and such that every simple cycle inside the disk bounded by l is equivalent to a composition
of face-paths. Note that if �𝑆(𝑄) is a sphere, then choose one of the two regions that l bounds as being
the disk. For any arrow 𝛾𝑖 ∈ 𝑙, let 𝑅𝛾𝑖 be the return path of 𝛾𝑖 inside of the disk bounded by l. As in
Lemma 2.17, set 𝑙 ′ := 𝑅1 . . . 𝑅𝑠′ . Then 𝑙 ′𝑙 = 𝑅1 . . . 𝑅𝑠′𝛾𝑠′ . . . 𝛾1 is equivalent to 𝑓 𝑠

′

𝑡 (𝑙)
. Moreover, 𝑙 ′ is a

cycle lying in the area bounded by l. If 𝑙 ′ is a simple cycle strictly contained in l, then 𝑙 ′ is equivalent
to a composition of face-paths by choice of l. If 𝑙 ′ is not a simple cycle, then one-by-one we remove
simple proper subcycles of 𝑙 ′, each of which is strictly contained in the area defined by l and hence is
equivalent to a composition of face-paths. Then we replace them with a composition of face-paths until
we get [𝑙 ′] = [ 𝑓 𝑠

𝑡 (𝑝)
] for some s.

Either way, 𝑙 ′ is equivalent to some composition of face-paths 𝑓 𝑠
𝑡 (𝑝)

. Then [ 𝑓 𝑠
′

𝑡 (𝑝)
] = [𝑙 ′𝑙] = [ 𝑓 𝑠

𝑡 (𝑝)
𝑙].

Since 𝑙 ′ is a subpath of 𝑙 ′𝑙, we must have that 𝑠′ ≥ 𝑠. Then the cancellation property gives [ 𝑓 𝑠′−𝑠
𝑡 (𝑝)

] = [𝑙]

and l is equivalent to a composition of face-paths, contradicting the choice of l. This completes the proof
that all cycles are equivalent to a composition of face-paths and yields the theorem. �
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2.4. Winding numbers

In later sections, we will make use of the winding number of an (undirected) cycle around a point in a
simply connected dimer model. We now set up notation and prove a lemma.

A signed arrow 𝛼𝜀 of Q is an arrow 𝛼 along with a sign 𝜀 ∈ {1,−1}. We consider

ℎ(𝛼𝜀) :=

{
ℎ(𝛼) 𝜀 = 1
𝑡 (𝛼) 𝜀 = −1

and 𝑡 (𝛼𝜀) :=

{
𝑡 (𝛼) 𝜀 = 1
ℎ(𝛼) 𝜀 = −1

.

A walk on Q is a string of signed arrows 𝑝 := 𝛼𝜀𝑚𝑚 . . . 𝛼𝜀1
1 of Q such that ℎ(𝛼𝜀 𝑗

𝑗 ) = 𝑡 (𝛼
𝜀 𝑗+1
𝑗+1 ) for all

𝑗 ∈ [𝑚−1]. The walk p is a cycle-walk if ℎ(𝛼𝜀𝑚𝑚 ) = 𝑡 (𝛼𝜀1
1 ). Furthermore, we write 𝑝−1 = 𝛼−𝜀1

1 . . . 𝛼−𝜀𝑚𝑚 .

Definition 2.19. Let p be a path in 𝑄 and let F be a face of 𝑄. Let q be a walk on 𝑄 from ℎ(𝑝) to 𝑡 (𝑝).
We write Wind(𝑞𝑝, 𝐹) for the winding number of the path 𝑞𝑝, considered as a path on the surface�𝑆(𝑄), around some point in the interior of F.

Lemma 2.20. Let p be a path in 𝑄 and let q be a walk on 𝑄 such that 𝑞𝑝 is a cycle-walk. Let 𝛼 be a
left-morphable arrow for p. Then for any face F of 𝑄,

Wind(𝑚𝛼 (𝑝)𝑞, 𝐹) =

{
Wind(𝑞𝑝, 𝐹) − 1 𝐹 ∈ {𝐹𝑐𝑙𝛼 , 𝐹

𝑐𝑐
𝛼 }

Wind(𝑞𝑝, 𝐹) else.
(2)

Proof. If 𝐹 = 𝐹𝑐𝑐𝛼 or 𝐹 = 𝐹𝑐𝑙𝛼 , then 𝑅𝑐𝑐𝛼 winds around F for some positive angle 0 ≤ 𝜃 ≤ 2𝜋, while 𝑅𝑐𝑙𝛼
winds around F for an angle of 𝜃 − 2𝜋. Left-morphing at 𝛼 switches the former for the latter, leading to
a net decrease of 2𝜋 radians. Then Wind(𝑚𝛼 (𝑝)𝑞, 𝐹) = Wind(𝑞𝑝, 𝐹) − 1 in this case. If F is any other
face, then 𝑅𝑐𝑙𝛼 and 𝑅𝑐𝑐𝛼 do not wind differently around F and the winding number does not change. �

3. Morphs and chains

In this section, we prove some technical results about basic morphs with the goal of proving that a path-
consistent and simply connected dimer model has no irreducible pairs (Theorem 3.19). This result will
be used in Section 4 to characterize path-consistency in terms of the strand diagram of a dimer model.
We start with a definition.

In the preceding, we have used the fact that two paths p and q are equivalent if and only if there is
a sequence of basic morphs taking p to q. We introduce the idea of a chain of morphable arrows that
allows us to talk about sequences of morphs applied to a path in special cases.

Recall that a morphable arrow 𝛼 for p is unambiguous if p only has one subpath which is a copy
of 𝑅𝑐𝑙𝛼 or 𝑅𝑐𝑐𝛼 . In this case, there is a unique path 𝑝′ = 𝑚𝛼 (𝑝) obtained by replacing the subpath
𝑅𝑐𝑙𝛼 with 𝑅𝑐𝑐𝛼 , or vice versa. If 𝛼1, . . . , 𝛼𝑟 ∈ 𝑄1 with each 𝛼𝑖 an unambiguous morphable arrow for
𝑚𝛼𝑖−1 ◦ · · · ◦ 𝑚𝛼1 (𝑝) for all 𝑖 ≤ 𝑟 , we call the sequence 𝑎 = 𝛼𝑟 . . . 𝛼1 a morphable chain, or simply a
chain, for p. We introduce the notation 𝑚𝑎 (𝑝) := 𝑚𝛼𝑟 ◦ · · · ◦𝑚𝛼1 (𝑝), and we say that a is a chain from
p to 𝑚𝑎 (𝑝). For some 𝑖 ∈ [𝑟], we say that 𝛼𝑖 is a left-morph (respectively right-morph) of a if 𝛼𝑖 is
left-morphable (respectively right-morphable) for 𝑚𝛼𝑖−1...𝛼1 (𝑝). Note that since 𝛼𝑖 is an unambiguous
morphable arrow for this path, 𝛼𝑖 is either a left-morph or a right-morph of a, but not both. If 𝛼𝑖 is a
left-morph (respectively right-morph) for all i, we say that a is a left-chain (respectively right-chain).
Two chains a and b of p are equivalent if 𝑚𝑎 (𝑝) = 𝑚𝑏 (𝑝).

Since we require morphable arrows of a chain to be unambiguous, it may be the case that paths p
and q are equivalent despite there being no chain from p to q. For example, this is true if p and q are
equivalent but distinct and every morphable arrow for p is ambiguous. In reasonable circumstances;
however, the notion of a chain is often sufficient. For example, minimal paths (in path-consistent dimer
models) have no unambiguous morphs, so two minimal paths are equivalent if and only if there is a
chain from one to the other.
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Figure 1. An example of a cycle-removing morph.

3.1. Cycle-removing morphs

In this subsection, we let 𝑄 be a path-consistent and simply connected dimer model, and we define a
new type of morph which weakly decreases the c-value of a path and preserves the property of being an
elementary path, which we define now.

Definition 3.1. A elementary path in a dimer model Q is a (possibly constant) path which is not a
face-path and which contains no cycles as proper subpaths.

Note that an elementary path may never contain all arrows in a given face-path. Then if p is elementary,
no morphable arrow for p is in p. Moreover, every morphable arrow for p is unambiguous. We also have
the following.

Definition 3.2. Let p be an elementary path in a path-consistent dimer model 𝑄. Let 𝛼 be a right-
morphable arrow for p. If 𝑚𝛼 (𝑝) is elementary, we define the cycle-removing right-morph 𝜔𝛼 (𝑝) to be
𝑚𝛼 (𝑝).

If not, write 𝑝 = 𝑝′′𝑅𝑐𝑙𝛼 𝑝
′ for subpaths 𝑝′ and 𝑝′′ of p. This decomposition is unique because

morphable arrows for elementary paths are unambiguous. Let 𝑣0 := ℎ(𝛼) and number the vertices of
𝐹𝑐𝑐𝛼 counter-clockwise as ℎ(𝛼) = 𝑣0, 𝑣1, . . . , 𝑣𝑚 = 𝑡 (𝛼). Let a be the largest integer less than m such
that 𝑣𝑎 ∈ 𝑝′. Note that if 𝑣𝑚 ∈ 𝑝′, then 𝑝′′ is constant by elementariness. Let b be the smallest integer
greater than 0 such that 𝑣𝑏 ∈ 𝑝′′.

Since 𝑝 = 𝑝′′𝑅𝑐𝑙𝛼 𝑝
′ is elementary, 𝑝′ and 𝑝′′ do not intersect except for possibly at the endpoints

𝑡 (𝑝′), ℎ(𝑝′′) if they coincide. Then any proper subcycle of 𝑚𝛼 (𝑝) = 𝑝′′𝑅𝑐𝑐𝛼 𝑝
′ must involve some 𝑣𝑖 for

𝑖 ∈ {1, . . . , 𝑚 − 1}; hence, either 𝑎 > 0 or 𝑏 < 𝑚 or both. Moreover, 𝑎 ≤ 𝑏.
Let 𝑞′ be the subpath of 𝑝′ from 𝑡 (𝑝′) to 𝑣𝑎. Let 𝑅′ be the subpath of 𝑅𝑐𝑐𝛼 from 𝑣𝑎 to 𝑣𝑏 . Let 𝑞′′ be

the subpath of 𝑝′′ from 𝑣𝑏 to ℎ(𝑝′′). If 𝑞′′𝑅′𝑞′ is not a face-path, define the cycle-removing right-morph
𝜔𝛼 (𝑝) to be 𝑞′′𝑅′𝑞′. Otherwise, define𝜔𝛼 (𝑝) to be the constant path. For example, see Figures 1 and 2.

We similarly define cycle-removing left-morphs.

Intuitively, the cycle-removing right-morph𝜔𝛼 (𝑝) is obtained by removing the proper subcycles from
𝑚𝛼 (𝑝) to get an elementary path. Since 𝑄 is path-consistent, any cycle is equivalent to a composition
of face-paths; hence, 𝑚𝛼 (𝑝) is equivalent to 𝜔𝛼 (𝑝) 𝑓

𝑚 for some 𝑚 ≥ 0.
We define cycle-removing morphs only for simply connected and path-consistent dimer models

because without these hypotheses, there may be cycles which are not equivalent to a composition of
face-paths. Hence, we may have that 𝑚𝛼 (𝑝) is not equivalent to 𝜔𝛼 (𝑝) 𝑓

𝑚 for any 𝑚 ≥ 0. If Q is path-
consistent but not simply connected, we can pass to𝑄, do a cycle-removing morph, and pass back to Q.
The result is that we do the corresponding basic morph and remove null-homotopic cycles of Q.

If p is elementary and 𝑚𝛼 (𝑝) contains a proper subcycle, we say that 𝛼 creates a proper subcycle of
p. Observe that 𝛼 creates a proper subcycle if and only if 𝜔𝛼 (𝑝) ≠ 𝑚𝛼 (𝑝).
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Figure 2. The top left shows a clockwise cycle p at v. The bottom left shows 𝑚𝛼 (𝑝). In the notation of
Definition 3.2, 𝑎 = 𝑏 and the paths 𝑝′, 𝑞′, 𝑅′, 𝑞′′ are all constant paths at v; hence, 𝜔𝛼 (𝑝) is constant.
The top right shows a clockwise cycle q at a different v, and the bottom right shows 𝑚𝛼 (𝑞). In this case,
𝑞′′𝑅′𝑞′ is the clockwise square face containing v, so 𝜔𝛼 (𝑞) is defined to be constant.

Lemma 3.3. Let p be an elementary path in a path-consistent quiver 𝑄 and let 𝛼 be a right-morphable
arrow for p. Then we have the following:

1. The cycle-removing right-morph 𝜔𝛼 (𝑝) is elementary.
2. The cycle-removing right-morph 𝜔𝛼 (𝑝) contains some arrow of 𝑅𝑐𝑐𝛼 if and only if 𝜔𝛼 (𝑝) is noncon-

stant.
3. The arrow 𝛼 creates a proper subcycle if and only if 𝜔𝛼 (𝑝) does not contain all of 𝑅𝑐𝑐𝛼 .

Proof. Parts (1) and (3) follow from the definitions. We prove (2). Certainly, if 𝜔𝛼 (𝑝) is constant, then
it contains no arrow of 𝑅𝑐𝑐𝛼 . However, if 𝜔𝛼 (𝑝) is nonconstant, then in the notation of Definition 3.2,
we must have 𝑎 < 𝑏. Then some arrow of 𝑅𝑐𝑐𝛼 is contained in 𝑅′ and hence is contained in 𝜔𝛼 (𝑝) =
𝑞′′𝑅′𝑞′. �

Remark 3.4. Many of the definitions and results appearing above as well as later in the text are
symmetric. If one switches ‘left’ for ‘right’ and ‘clockwise’ for ‘counter-clockwise’ in the statements
and proofs, the analogous arguments and results hold. We will refer to these as dual results without
stating them separately.

3.2. Left, right, good and bad

For the remainder of Section 3, we assume that �𝑆(𝑄) is not a sphere. We now define a notion of one path
being to the right of another. We obtain some conditions under which cycle-removing morphs behave
well with respect to this concept of left and right.

Definition 3.5. Suppose p and q are elementary paths in a simply connected dimer model 𝑄 which is
not on a sphere with 𝑡 (𝑝) = 𝑡 (𝑞) and ℎ(𝑝) = ℎ(𝑞). We say that p is to the right of q if the following
conditions are satisfied.

1. The shared vertices of p and q may be ordered 𝑣1, . . . , 𝑣𝑚 such that 𝑣𝑖 is the ith vertex among
{𝑣1, . . . , 𝑣𝑚} to appear in p and is the ith such vertex to appear in q. We remark that if p is an
elementary cycle and q is trivial, then 𝑚 = 2 and 𝑣1 = 𝑣2.

https://doi.org/10.1017/fms.2025.18 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.18


Forum of Mathematics, Sigma 13

Figure 3. The paths p and q bound two disks and p is to the right of q.

Figure 4. The path q is to the right of p and r is to the right of q, but r is not to the right of p.

2. For all 𝑖 ∈ [𝑚 − 1], if 𝑝𝑖 (respectively 𝑞𝑖) is the subpath of p (respectively q) from 𝑣𝑖 to 𝑣𝑖+1, then
either 𝑝𝑖 and 𝑞𝑖 are the same arrow or 𝑞−1

𝑖 𝑝𝑖 is a counter-clockwise (necessarily simple) cycle-walk.
In the latter case, we say that p and q bound the disk 𝑞−1

𝑖 𝑝𝑖 .

See Figure 3. We remark that if q is constant and p is an elementary counter-clockwise cycle, then p is
to the right of q with 𝑚 = 2 and 𝑣1 = 𝑣2. Similarly, an elementary clockwise cycle at v is to the left of
the constant path at v.

We warn the reader that Definition 3.5 does not form a partial order on paths in𝑄 with the same start
and end vertices as the relation is not transitive. See Figure 4 for an example.

Remark 3.6. Definition 3.5 relies on the notion of a simple cycle-walk being clockwise or counter-
clockwise. This is only well defined when the surface is not a sphere. In the following, we will prove
that path-consistency implies strand-consistency while making heavy use of the notions of left and
right as well as those of clockwise and counter-clockwise, culminating in the proof of Proposition 4.12.
These arguments require 𝑄 not to be on a sphere, and indeed dimer models on spheres may not be
strand-consistent but may be cancellative, so Proposition 4.12 does not hold in this case.

Definition 3.7. A path p is a rightmost path (respectively leftmost path); there are no right-morphable
(respectively left-morphable) arrows for p.

Definition 3.8. An irreducible pair is a pair of paths (𝑝, 𝑞) in 𝑄 such that 𝑞−1𝑝 is a simple counter-
clockwise cycle-walk, p is leftmost, and q is rightmost.

If (𝑝, 𝑞) is an irreducible pair, then p is to the right of q. Note that p or q may be constant. If this is true,
then the other path in the pair cannot be a face-path by elementariness. The notion of an irreducible pair
appears in [6] when Q is a dimer model on a torus. We now make preparations to prove that irreducible
pairs may not occur in path-consistent dimer models.

Definition 3.9. Let p be an elementary path of 𝑄 and let 𝛼 be a morphable arrow for p. We say that 𝛼 is
good if 𝛼 is a left-morphable arrow or if 𝛼 is a right-morphable arrow such that 𝑚𝛼 (𝑝) does not contain
a proper counter-clockwise subcycle. If 𝛼 is a right-morphable arrow for p such that 𝑚𝛼 (𝑝) contains a
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proper counter-clockwise subcycle, then we say that 𝛼 is bad. A cycle-removing chain 𝑎 = 𝛼𝑟 . . . 𝛼1 of
p is good if each 𝛼𝑖 is a good morphable arrow for 𝜔𝛼𝑖−1...𝛼1 (𝑝). Otherwise, a is bad.

There is an asymmetry to our definitions of good and bad cycle-removing morphs. This is because
we intend to apply them only to the leftmost path p in an irreducible pair (𝑝, 𝑞). Our strategy will be
to obtain a good cycle-removing chain taking p to a minimal path 𝑝′, where 𝑞−1𝑝 is contained in the
area enclosed by the simple counter-clockwise cycle-walk 𝑞−1𝑝′. Dually, one obtains a minimal path
𝑞′ so that (𝑞′)−1𝑝′ is a simple counter-clockwise cycle-walk, which we show to be impossible in the
path-consistent case.

Good morphs are useful because a good cycle-removing morph behaves reasonably well with respect
to the notion of one path being to the left or right of another. Consider the following.
Lemma 3.10.
(1) Let q be an elementary path in 𝑄 and let p be any elementary path to the right of q. Let 𝛽 be a left-

morphable arrow for p which is not a left-morphable arrow for q. Then 𝜔𝛽 (𝑝) is to the right of q.
(2) Let p be an elementary counter-clockwise cycle in 𝑄 and let 𝛼 be a right-morphable arrow for p

such that𝑚𝛼 (𝑝) has no proper counter-clockwise subcycle. Then p is contained in the area enclosed
by 𝜔𝛼 (𝑝).

Proof. To see (1), it suffices to reduce to the case where p and q share only their start and end vertices.
In this case, they bound one disk 𝑞−1𝑝 and a left-morph of p at 𝛽 results in a path contained in the area
enclosed by 𝑞−1𝑝.

We now prove (2). We show that Wind(𝜔𝛼 (𝑝), 𝐹) ≥ Wind(𝑝, 𝐹) for any face F. It follows that
𝜔𝛼 (𝑝) is also an elementary counter-clockwise cycle. Since any face F is in the interior of p (respectively
𝜔𝛼 (𝑝)) if and only if Wind(𝑝, 𝐹) > 0 (respectively Wind(𝜔𝛼 (𝑝), 𝐹) > 0), it further follows that if F
is in the interior of p, then F is in the interior of 𝜔𝛼 (𝑝) and the statement is proven.

Let p be an elementary counter-clockwise cycle in 𝑄 and let 𝛼 be a right-morphable arrow for
p such that 𝑚𝛼 (𝑝) has no proper counter-clockwise subcycle. By Lemma 2.20, Wind(𝑚𝛼 (𝑝), 𝐹) ≥

Wind(𝑝, 𝐹). The path 𝜔𝛼 (𝑝) is obtained from 𝑚𝛼 (𝑝) by deleting some number of proper elementary
subcycles. All of these are clockwise and hence have a winding number less than or equal to zero around
F, by assumption. It follows that their deletion can only increase the winding number around F, and we
have

Wind(𝜔𝛼 (𝑝), 𝐹) ≥ Wind(𝑚𝛼 (𝑝), 𝐹) ≥ Wind(𝑝, 𝐹).

If F is enclosed within p, then Wind(𝑝, 𝐹) = 1, and the above inequality forces Wind(𝜔𝛼 (𝑝), 𝐹) = 1.
It follows that F is enclosed within 𝜔𝛼 (𝑝). This ends the proof. �

Note that the conditions of (1) and (2) of Lemma 3.10 necessitate that the morphable arrows
considered are good. Some caution must be shown when considering whether cycle-removing morphs
move paths to the right or left, particularly when the morphs are bad. For example, see the bad right-
morph of Figure 5. On the left is a path p with a right-morphable arrow 𝛼, and on the right is the path
𝜔𝛼 (𝑝). Note that p is not contained in the area enclosed by 𝜔𝛼 (𝑝), justifying the limited scope of
Lemma 3.10 (2).

3.3. Irreducible pairs

The goal of this section is to show that irreducible pairs (Definition 3.8) cannot appear in simply
connected path-consistent dimer models. We begin with some technical lemmas about cycle-removing
morphs.
Lemma 3.11. Let p be an elementary path in a path-consistent quiver 𝑄. Let 𝛼 be a right-morphable
arrow for p and let 𝛽 be a left-morphable arrow for 𝜔𝛼 (𝑝) distinct from 𝛼. Then 𝛽 is a left-morphable
arrow for p.
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Figure 5. On the left is a counter-clockwise cycle p at v. Cycle-removing right-morphing p at the arrow
𝛼 results in a clockwise cycle which does not enclose p.

Proof. Any subpath of 𝜔𝛼 (𝑝) which is not a subpath of p must contain some arrow 𝛾 of 𝑅𝑐𝑐𝛼 . Since
𝜔𝛼 (𝑝) does not contain 𝛼, the only counter-clockwise return path which 𝛾 could be a part of is 𝑅𝑐𝑐𝛼 . This
shows that 𝜔𝛼 (𝑝) contains no counter-clockwise return paths which are not in p, other than possibly
𝑅𝑐𝑐𝛼 . The result follows. �

Definition 3.12. We say that a (cycle-removing) chain 𝑎 = 𝛼𝑟 . . . 𝛼1 of an elementary path p is crossing-
creating if 𝑚𝛼𝑖 ...𝛼1 (𝑝) is elementary for 𝑖 < 𝑟 but 𝑚𝑎 (𝑝) is not elementary.

If a path p of a path-consistent dimer model is not minimal, then there must be a crossing-
creating chain of p. Our goal is now to show that there must be a good crossing-creating chain of p
(Proposition 3.17). Our first step is Lemmas 3.13 and 3.14. These show that an elementary path must
have a crossing-creating left-chain under certain technical conditions.

Lemma 3.13. Let p be an elementary counter-clockwise cycle in 𝑄. Let 𝛼 be a right-morphable arrow
for p such that 𝑚𝛼 (𝑝) has no proper counter-clockwise subcycle. Suppose there is a crossing-creating
left-chain of 𝜔𝛼 (𝑝). Then there is a crossing-creating left-chain of p.

Proof. Let 𝑏 = 𝛽𝑠 . . . 𝛽1 be a crossing-creating left-chain of 𝜔𝛼 (𝑝). Let j be maximal such that
𝑏′ := 𝛽 𝑗 . . . 𝛽1 is a left-chain of p as well as 𝜔𝛼 (𝑝). If 𝑏′ is crossing-creating for p, then we are done,
so suppose 𝑏′ is not a crossing-creating chain of p.

Suppose first that b is a left-chain of p, and hence that 𝑗 = 𝑠 and 𝑏′ = 𝑏. Since b creates a crossing
of 𝜔𝛼 (𝑝) but not of p, there must be a proper subcycle of 𝑚𝑏 (𝜔𝛼 (𝑝)) starting at a vertex v of 𝜔𝛼 (𝑝)
which is not a vertex of p. Then left-morphing 𝑚𝛽𝑠−1...𝛽1 (𝑝) at 𝛽𝑠 must add v to p. By Lemma 3.10
(2), the area bounded by p is contained in the area bounded by 𝜔𝛼 (𝑝). In particular, vertices of 𝜔𝛼 (𝑝)
which are not vertices of p are not in the area bounded by p. Since left-morphing p at b does not create
any crossings, 𝑝 = 𝜔𝑏 (𝜔𝑏 (𝑝)) is obtained by applying the (cycle-removing) right-chain b to 𝜔𝑏 (𝑝).
Then Lemma 3.10 (2) applied to 𝜔𝑏 (𝑝) shows that 𝜔𝑏 (𝑝) is strictly contained in the area bounded by p.
Since v is not in the area bounded by p, the vertex v cannot be in 𝜔𝑏 (𝑝). This is a contradiction.

It follows that b is not a left-chain of p and hence that 𝑗 < 𝑠. We claim that 𝑅𝑐𝑙𝛼 ∈ 𝑚𝛽 𝑗′ ...𝛽1 (𝑝) and
that no arrow of 𝐹𝑐𝑙𝛼 is in 𝑚𝛽 𝑗′ ...𝛽1 (𝜔𝛼 (𝑝)) for any 1 ≤ 𝑗 ′ ≤ 𝑗 . Since 𝑅𝑐𝑙𝛼 ∈ 𝑝 and 𝛽1 does not create
a crossing of p, we must have 𝛽1 ∉ 𝐹𝑐𝑙𝛼 . Since no arrow of 𝐹𝑐𝑙𝛼 is in 𝜔𝛼 (𝑝) and 𝑅𝑐𝑐𝛽1

∈ 𝜔𝛼 (𝑝), for
any 𝛼′ ∈ 𝐹𝑐𝑙𝛼 we must have 𝛽1 ∉ 𝐹𝑐𝑐𝛼′ . It follows that 𝑅𝑐𝑙𝛼 is in 𝑚𝛽1 (𝑝) and that no arrow of 𝐹𝑐𝑙𝛼 is in
𝑚𝛽1 (𝜔𝛼 (𝑝)). We repeat this argument to see that 𝑅𝑐𝑙𝛼 ∈ 𝑚𝛽 𝑗′...𝛽1 (𝑝) and that no arrow of 𝐹𝑐𝑙𝛼 is in
𝑚𝛽 𝑗′...𝛽1 (𝜔𝛼 (𝑝)) for any 1 ≤ 𝑗 ′ ≤ 𝑗 , proving the claim.

First, we suppose that 𝑚𝛼 (𝑝) is not elementary and hence that 𝜔𝛼 (𝑝) does not contain all of 𝑅𝑐𝑐𝛼 .
In particular, either the arrow 𝛼′ following 𝛼 in 𝑅𝑐𝑐𝛼 or the arrow 𝛼′′ preceding 𝛼 in 𝑅𝑐𝑐𝛼 (or both) are
absent from 𝜔𝛼 (𝑝). Suppose that 𝛼′ is not in 𝜔𝛼 (𝑝); the 𝛼′′ case is the same. Since 𝑏′ is a left-chain
of p and 𝑅𝑐𝑙𝛼 is in 𝑚𝛽 𝑗′ ...𝛽1 (𝑝) by the claim above, the arrows 𝛼′ and 𝛼 may not be added by any morph
in 𝑏′ without creating a crossing in p, which would contradict our choice of 𝑏′. Hence, neither 𝛼′ nor 𝛼
is in 𝑚𝛽 𝑗 ...𝛽1 (𝜔𝛼 (𝑝)). In particular, no return path of an arrow in 𝐹𝑐𝑐𝛼 is a subpath of 𝑚𝛽 𝑗 ...𝛽1 (𝜔𝛼 (𝑝)).
Since 𝛽 𝑗+1 is a left-morphable arrow for 𝑚𝑏′ (𝜔𝛼 (𝑝)) but not of 𝑚𝑏′ (𝑝), it must be the case that 𝑅𝑐𝑐𝛽 𝑗+1
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is a subpath of 𝑚𝑏′ (𝜔𝛼 (𝑝)) but not of 𝑚𝑏′ (𝑝). Since the only such subpaths contain some arrow of
𝑅𝑐𝑐𝛼 , we must have that 𝛽 𝑗+1 ∈ 𝐹𝑐𝑐𝛼 . This contradicts the fact that no return path in 𝐹𝑐𝑐𝛼 is a subpath of
𝑚𝛽 𝑗 ...𝛽1 (𝜔𝛼 (𝑝)).

However, suppose that 𝑚𝛼 (𝑝) is elementary, and hence that 𝜔𝛼 (𝑝) = 𝑚𝛼 (𝑝). As above, the arrow
𝛽 𝑗+1 must be in 𝐹𝑐𝑐𝛼 . If 𝛽 𝑗+1 ≠ 𝛼, then 𝛼 ∈ 𝑚𝛽 𝑗 ...𝛽1 (𝜔𝛼 (𝑝)), contradicting the claim in the third
paragraph, so 𝛽 𝑗+1 = 𝛼. Consider the chain 𝛽 𝑗+1𝛽 𝑗 . . . 𝛽1𝛼 of p. The left-morph 𝛽 𝑗+1 cancels out the
right-morph 𝛼 in this chain; hence, the left-chain 𝛽 𝑗+2𝛽 𝑗 . . . 𝛽1 of p is equivalent to 𝛽 𝑗+2 . . . 𝛽2𝛽1𝛼.
Then 𝛽𝑠 . . . 𝛽 𝑗+2𝛽 𝑗 . . . 𝛽1 is a crossing-creating left-chain of p. This completes the proof. �

Lemma 3.14. Let p be an elementary path in 𝑄. Let 𝛼 be a right-morphable arrow for p and let l be a
proper elementary counter-clockwise subcycle of𝑚𝛼 (𝑝). Suppose there is a crossing-creating left-chain
of l. Then there is a crossing-creating left-chain of p.

Proof. The proof is the same as that of Lemma 3.13, with l taking the place of 𝜔𝛼 (𝑝). �

Lemma 3.15. Let p be an elementary path and let 𝛼 be a right-morphable arrow for p. Then 𝑚𝛼 (𝑝)
does not contain a counter-clockwise face-path.

Proof. Any arrow added by right-morphing at 𝛼 is only a part of one counter-clockwise face, which is
𝐹𝑐𝑐𝛼 . Since p is elementary, 𝛼 is not in p and hence is not in 𝑚𝛼 (𝑝). The result follows. �

Before finally proving that any elementary path has a good crossing-creating chain (Proposition 3.17),
we first prove the special case that any counter-clockwise elementary cycle has a good crossing-creating
chain.

Proposition 3.16. Let p be a counter-clockwise elementary cycle in a path-consistent dimer model 𝑄.
Then p has a crossing-creating left-chain.

Proof. We induct on the c-value of p. For the base case, let p be an elementary counter-clockwise cycle
with a minimal c-value among elementary counter-clockwise cycles. By path-consistency, p must be
equivalent to a composition of face-paths and hence must have a crossing-creating chain. If p has a
good crossing-creating chain 𝑎 = 𝛼𝑟 . . . 𝛼1 such that 𝛼𝑟 is a right-morph, then 𝜔𝑎 (𝑝) is an elementary
counter-clockwise cycle by Lemma 3.10 (2), and necessarily has a lower c-value than p, contradicting
our choice of p. Suppose p has a good crossing-creating chain 𝑎 = 𝛼𝑟 . . . 𝛼1 such that 𝛼𝑟 is a left-
morph. If a is a left-chain, then there is nothing to show; otherwise, let j be maximal such that 𝛼 𝑗 is a
right-morph. Applying Lemma 3.13 to 𝑚𝛼1...𝛼𝑗−1 (𝑝) shows that there is a crossing-creating left-chain
of 𝑚𝛼1...𝛼𝑗−1 (𝑝). Repeating this process for each right-morph of a gives that there is a crossing-creating
left-chain of p. If p has a bad crossing-creating chain 𝑎 = 𝛼𝑟 . . . 𝛼1, then 𝛼𝑟 is a right-morph and 𝑚𝑎 (𝑝)
contains a proper subpath l which is a simple counter-clockwise cycle. By Lemma 3.15, l is not a face-
path and hence is elementary. This contradicts our choice of p, since l has a strictly lower c-value than p.
This completes the proof of the base case.

Now suppose that p is an elementary counter-clockwise cycle which does not have a minimal c-value.
There must be a crossing-creating chain 𝑐 = 𝛾𝑟 . . . 𝛾1 of p. We first show that there must be a crossing-
creating chain 𝑎𝑏 of p where b is a left-chain of p and a is a (possibly empty) right-chain of 𝑚𝑏 (𝑝).
Suppose c is not already of this form and let j be minimal such that 𝛾 𝑗−1 is a right-morph in c and 𝛾 𝑗 is
a left-morph in c.

If 𝛾 𝑗−1 and 𝛾 𝑗 are the same arrow, then 𝛾 𝑗 cannot create a crossing, and the term 𝛾 𝑗𝛾 𝑗−1 may be
removed from c to get an equivalent chain 𝛾𝑟 . . . 𝛾 𝑗+1𝛾 𝑗−2 . . . 𝛾1. If 𝛾 𝑗−1 and 𝛾 𝑗 are not the same arrow,
then by Lemma 3.11, 𝛾 𝑗 is a left-morphable arrow for 𝑚𝛾 𝑗−2...𝛾1 (𝑝) = 𝜔𝛾 𝑗−2...𝛾1 (𝑝). If this left-morph
creates a crossing, then let 𝑐1 := 𝛾 𝑗𝛾 𝑗−2 . . . 𝛾1. Otherwise, note that 𝛾 𝑗𝛾 𝑗−1 and 𝛾 𝑗−1𝛾 𝑗 are equivalent
chains of 𝑚𝛾 𝑗−2...𝛾1 (𝑝); hence,

𝑐1 := 𝛾𝑟 . . . 𝛾 𝑗+1𝛾 𝑗−1𝛾 𝑗𝛾 𝑗−2 . . . 𝛾1
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Figure 6. On the left, r winds to the right from 𝑡 (𝑝) to 𝑡 (𝛼). On the left, r winds to the left from 𝑡 (𝑝)
to ℎ(𝛼). In both cases, there is no way to complete the beginning of r (pictured) to a path from 𝑡 (𝑝) to
ℎ(𝑝) without breaking elementariness or entering 𝑞−1𝑝.

is a crossing-creating chain of p equivalent to c. We apply the above logic repeatedly to move all left-
morphs in c to the front. We end up with some crossing-creating chain 𝑐𝑚 = 𝑎𝑏, where b is a left-chain of
p and a is a right-chain of 𝑚𝑏 (𝑝). If a is trivial, then b is a crossing-creating left-chain and we are done.
Otherwise, let 𝑎 = 𝛼𝑟 . . . 𝛼1. Lemma 3.14 or Lemma 3.13 (depending on whether 𝑚𝑏𝑎 (𝑝) contains a
proper counter-clockwise subcycle) along with the induction hypothesis shows that 𝑚𝛼𝑟−1...𝛼1𝑏 (𝑝) has
a crossing-creating left-chain. We now repeatedly apply Lemma 3.13 to see that 𝑚𝑏 (𝑝) has a crossing-
creating left-chain 𝑏′. Then 𝑏′𝑏 is a crossing-creating left-chain of p. �

Proposition 3.17. Let p be an elementary path in a path-consistent dimer model 𝑄. Then there exists a
good cycle-removing chain from p to a minimal path.

Proof. We prove by induction on the c-value of p. The base case when p is minimal is trivial. Suppose
the result has been shown for paths with a strictly lower c-value than that of some non-minimal path p.
We first show that p has a good crossing-creating chain. Since p is not minimal, there is some crossing-
creating chain 𝑎 = 𝛼𝑟 . . . 𝛼1 of p. If 𝛼𝑟 is a left-morph or if𝑚𝑎 (𝑝) contains no proper counter-clockwise
subcycle, then a is a good crossing-creating chain of p. If not, then 𝑚𝑎 (𝑝) contains a proper counter-
clockwise simple subcycle l, which is not a face-path by Lemma 3.15. By Proposition 3.16, l has a
crossing-creating left-chain. By Lemma 3.14, 𝑚𝛼𝑟−1...𝛼1 (𝑝) has a crossing-creating left-chain 𝑎′. Then
𝑎′𝛼𝑟−1 . . . 𝛼1 is a good crossing-creating chain of p. Then we may suppose that p has a good crossing-
creating chain a. Since 𝜔𝑎 (𝑝) is an elementary path with a lower c-value than p, by the induction
hypothesis there is a good cycle-removing chain 𝑎′′ from 𝜔𝑎 (𝑝) to a minimal path. Then 𝑎′′𝑎 is a good
cycle-removing chain from p to a minimal path. �

We are now ready to prove the main result of this section.

Lemma 3.18. Let (𝑝, 𝑞) be an irreducible pair of a path-consistent dimer model 𝑄. Let r be an
elementary path from 𝑡 (𝑝) to ℎ(𝑝) which does not enter the interior of 𝑞−1𝑝 and let 𝛼 be a morphable
arrow for r. Then 𝑚𝛼 (𝑟) does not enter the interior of 𝑞−1𝑝.

Proof. Suppose to the contrary that 𝑚𝛼 (𝑟) enters the interior of 𝑞−1𝑝. Since p is leftmost and q is
rightmost, it must be the case that 𝛼 is a right-morph at an arrow of p or a left-morph at an arrow of q.
Suppose the former is true; the latter case is symmetric. The segment 𝑟 ′ of r from 𝑡 (𝑝) to ℎ(𝛼) either
winds right or left around 𝑞−1𝑝. See Figure 6. In either case, as can be seen from Figure 6, the path
𝑅𝑐𝑙𝛼 𝑟

′ may not be completed to a path from 𝑡 (𝑝) to ℎ(𝑝) without entering the interior of 𝑞−1𝑝 or causing
a self-intersection. �

Theorem 3.19. A simply connected path-consistent dimer model, that is not on a sphere, has no
irreducible pairs.
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Proof. Let 𝑄 be path-consistent and simply connected dimer model that is not on a sphere. Take a pair
(𝑝, 𝑞) of paths such that 𝑞−1𝑝 is an elementary counter-clockwise cycle-walk. We show that p has a left-
morphable arrow or q has a right-morphable arrow. If p is a cycle and q is trivial, then Proposition 3.16
shows the desired result. If p is trivial and q is a cycle, the dual of Proposition 3.16 shows the desired
result. We may now assume that p and q are not cycles. Suppose for the sake of contradiction that (𝑝, 𝑞)
is an irreducible pair.

Choose a face F in the interior of 𝑞−1𝑝. By Proposition 3.17, there is a good cycle-removing
chain 𝑎 = 𝛼𝑟 . . . 𝛼1 from p to some minimal path 𝜔𝑎 (𝑝). By repeated application of Lemma 3.18,
no intermediate path of this chain enters the interior of 𝑞−1𝑝. In particular, no arrow 𝛼𝑖 is an arrow
of F. Then Lemma 2.20 tells us that Wind

(
𝑞−1𝑚𝛼𝑖 (𝜔𝛼𝑖−1...𝛼1 (𝑝)), 𝐹

)
= Wind

(
𝑞−1𝜔𝛼𝑖−1...𝛼1 (𝑝), 𝐹

)
for

each i. There may be some clockwise cycles removed from 𝑚𝛼𝑖 (𝜔𝛼𝑖−1...𝛼1 (𝑝)) to get 𝜔𝛼𝑖 ...𝛼1 (𝑝), but
since a is good, no counter-clockwise cycles are removed. Hence,

Wind
(
𝑞−1𝜔𝛼𝑖 ...𝛼1 (𝑝), 𝐹

)
≥ Wind

(
𝑞−1𝑚𝛼𝑖 (𝜔𝛼𝑖−1...𝛼1 (𝑝)), 𝐹

)
= Wind(𝜔𝛼𝑖−1...𝛼1 (𝑝), 𝐹).

By applying this result for each i, we see that

Wind(𝑞−1𝜔𝑎 (𝑝), 𝐹) ≥ Wind(𝑞−1𝑝, 𝐹) = 1.

Dually, there is a cycle-removing chain 𝑏 = 𝛽𝑠 . . . 𝛽1 of q removing only counter-clockwise cycles such
that 𝜔𝑏 (𝑞) is minimal and

Wind(𝑞−1𝜔𝑏 (𝑞), 𝐹) ≤ Wind(𝑞−1𝑞, 𝐹) = 0.

By path-consistency, 𝜔𝑎 (𝑝) and 𝜔𝑏 (𝑞) are equivalent. Then there is a chain 𝑐 = 𝛾𝑡 . . . 𝛾1 such that
𝑚𝑐 (𝜔𝑎 (𝑝)) = 𝜔𝑏 (𝑞). As above, Lemma 3.18 shows that no arrow 𝛾𝑖 of c is an arrow of F; hence,
repeated application of Lemma 2.20 gives that 1 ≤ Wind(𝑞−1𝜔𝑎 (𝑝), 𝐹) = Wind(𝑞−1𝜔𝑏 (𝑝), 𝐹) ≤ 0, a
contradiction. �

4. Strand diagrams and strand-consistency

In this section, we use zigzag paths to associate a dimer model to a strand diagram on its surface.
Our goal is to prove that, excluding the case of a sphere, a finite dimer model is path-consistent if and
only if there are no bad configurations in its strand diagram. This generalizes ideas of Bocklandt [6]
and Ishii and Ueda [34]. The theory of cycle-removing morphs developed in Section 3, in particular
Theorem 3.19, is necessary to prove this result.

4.1. Strand diagrams

We define strand diagrams and connect them to dimer models. The below definition is a reformulation
of [8, Definition 1.10].

Definition 4.1. Let Σ be an oriented surface with or without boundary with a discrete set of marked
points on its boundary. A (connected) strand diagram D in Σ consists of a collection of smooth directed
curves drawn on the surface Σ, called strands, each of which is either an interior cycle contained entirely
in the interior of D or starts and ends at marked boundary points, subject to the following conditions.

1. Each boundary marked point is the start point of exactly one strand, and the end point of exactly one
strand.

2. Any two strands intersect in finitely many points, and each intersection involves only two strands.
Each intersection not at a marked boundary point is transversal.
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Figure 7. One oriented (left) and two alternating (right) regions. The bold segment is boundary.

Figure 8. The three bad configurations. The shaded areas are contractible.

3. Moving along a strand, the signs of its crossings with other strands alternate. This includes intersec-
tions at a marked boundary point. See the figure below, where the bold segment is boundary.

4. Any connected component C of the complement of D in the interior of Σ is an open disk. The
boundary of C may contain either zero or one one-dimensional ‘boundary segment’ of the boundary
of Σ. In the former case, C is an internal region. In the latter, C is a boundary region. It follows from
(3) that C is either an oriented region (i.e., all strands on the boundary of the component are oriented
in the same direction) or an alternating region (i.e., the strands on the boundary of the component
alternate directions). See the left and right sides of Figure 7, respectively. Note that by (3), any
boundary region with multiple strands must be alternating. We consider a boundary region with a
single strand to be alternating.

5. The union of the strands is connected.

The diagram D is called a Postnikov diagram if, in addition, it satisfies the following conditions

1. No subpath of a strand is a null-homotopic interior cycle.
2. If two strand segments intersect twice and are oriented in the same direction between these intersection

points, then they must not be homotopic.

In other words, bad configurations shown in Figure 8 and described below must not appear in order for
D to be a Postnikov diagram:

1. A strand which intersects itself through a null-homotopic cycle as forbidden in (1), called a
null-homotopic self-intersecting strand.

2. A null-homotopic strand in the interior as forbidden in (1), called a null-homotopic interior cycle.
3. Two strand segments which intersect in the same order null-homotopically as forbidden in (2), called

a bad lens.

When 𝑄 = 𝑄 is simply connected, any cycle is null-homotopic and we often omit “null-homotopic”
from (1) and (2).
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Figure 9. The arrows between two alternating faces. The bold arrow is a boundary arrow.

Remark 4.2. In fact, if Σ is simply connected then conditions (5) and (3) of a strand diagram along
with the lack of bad lenses imply that if there are multiple strands, then there is no strand which starts
and ends at the same marked boundary point, and hence no strand contains a cycle. To see this, suppose
there is a strand z which starts and ends at the same marked boundary point. Consider the first time this
strand intersects with another strand w. Then by connectedness (3), w must enter the area defined by z
at this intersection. Then w must eventually leave the area bounded by z, creating a bad lens.

Definition 4.3. Let D be a strand diagram in a surface. We associate to D a dimer model𝑄𝐷 as follows.
The vertices of 𝑄𝐷 are the alternating regions of D. When the closures of two different alternating
regions 𝑣1 and 𝑣2 meet in a crossing point between strands of D, or at one of the marked boundary
points, we draw an arrow between 𝑣1 and 𝑣2, oriented in a way consistent with these strands, as shown in
Figure 9. The counter-clockwise (respectively clockwise) faces of 𝑄𝐷 are the arrows around a counter-
clockwise (respectively clockwise) region of D.

We may also go in the other direction.

Definition 4.4. Let Q be a dimer model. We associate a strand diagram 𝐷𝑄 to Q embedded in the
surface 𝑆(𝑄) as follows. To any arrow 𝛼 of Q, let 𝑣𝛼 be the point in the center of 𝛼 in the embedding
of Q into 𝑆(𝑄).

For any two arrows 𝛼 and 𝛽 of Q such that 𝛽𝛼 is a subpath of a face-path, we draw a path from 𝑣𝛼 to
𝑣𝛽 along the interior of the face containing 𝛽𝛼. The union of these strand segments forms a connected
strand diagram 𝐷𝑄 [8, §0.4 – 0.5]. See Figure 11 for an example on the disk and annulus.

The above constructions are mutual inverses, and hence establish a correspondence between strand
diagrams and dimer models. This is implicit in the work of Bocklandt [8].

Definition 4.5. A dimer model Q is strand-consistent if its strand diagram 𝐷𝑄 does not have any bad
configurations. In other words, Q is strand-consistent if 𝐷𝑄 is a Postnikov diagram.

Remark 4.6. A dimer model on a sphere is never strand-consistent since there must be a null-homotopic
interior cycle. However, a dimer model on a sphere can still satisfy the path-consistency condition of
Definition 2.8. Hence, in order to prove that the notions of path-consistency and strand-consistency are
equivalent (Theorem 4.13), it is necessary to throw out the case where 𝑆(𝑄) is a sphere.

Since a cycle on a surface Σ lifts to a cycle on the universal cover if and only if it is null-homotopic
in Σ, bad configurations in Q correspond precisely to bad configurations in 𝑄. The following result is a
consequence of this observation.

Proposition 4.7. Q is strand-consistent if and only if 𝑄 is strand-consistent.

Proposition 4.7 is useful because bad configurations are easier to work with on the simply connected
dimer model 𝑄. In particular, the null-homotopic conditions appearing in each of the three bad config-
urations may be ignored in the simply connected case. As such, we often pass to the universal cover
models when working with strand diagrams.
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4.2. Path-consistency implies strand-consistency

We now prove that path-consistency implies strand-consistency for finite dimer models. We must first
define zigzag paths and their return paths. The notion of a zigzag path is based on work by Kenyon
in [38] and Kenyon and Schlenker in [39].

Definition 4.8. Let Q be a dimer model. A zigzag path of Q is a maximal (possibly infinite) path
𝑧 = . . . 𝛾𝑖+1𝛾𝑖 . . . such that one of the following holds.

1. 𝛾𝑖+1𝛾𝑖 is part of a counter-clockwise face if i is odd and a clockwise face if i is even. In the former case,
𝛾𝑖+1𝛾𝑖 is called a zig and ℎ(𝛾𝑖) is a zig vertex. In the latter, 𝛾𝑖+1𝛾𝑖 is a zag and ℎ(𝛾𝑖) is a zag vertex.

2. 𝛾𝑖+1𝛾𝑖 is part of a clockwise face if i is odd and a counter-clockwise face if i is even. In the former case,
𝛾𝑖+1𝛾𝑖 is called a zag and ℎ(𝛾𝑖) is a zag vertex. In the latter, 𝛾𝑖+1𝛾𝑖 is a zig and ℎ(𝛾𝑖) is a zig vertex.

If z is a finite path, then we write 𝑧 = 𝛾𝑡 . . . 𝛾0, and we note that 𝛾0 and 𝛾𝑡 must be boundary arrows.
we similarly may have infinite zigzag paths 𝛾0𝛾−1 . . . or . . . 𝛾1𝛾0 ending or starting at boundary vertices,
respectively.

It is immediate by the constructions of Definitions 4.4 and 4.3 that zigzag paths of Q correspond to
strands of 𝐷𝑄. Intersections of strands in 𝐷𝑄 correspond to shared arrows of zigzag paths in the quiver.
We may thus view the bad configurations of Definition 4.1 as bad configurations of zigzag paths.

1. A zigzag path has a null-homotopic self-intersection if it passes through the same arrow twice, first
as the start of a zig and then as the start of a zag (or vice versa), and the segment between these
occurrences is null-homotopic.

2. A zigzag path is a null-homotopic interior cycle if it is cyclic, infinitely repeating and null-homotopic.
3. Two homotopic segments of (possibly the same) zigzag paths 𝑧′ and 𝑤′ form a bad lens if
𝑧′ = 𝛽𝑧𝑠 . . . 𝑧0𝛼 and 𝑤′ = 𝛽𝑤𝑡 . . . 𝑤0𝛼 and 𝑧𝑖 ≠ 𝑤 𝑗 for all i and j.

The following definition appears in the literature on dimer models in tori. See, for example, [6]
and [11].

Definition 4.9. Take a subpath 𝑧′ := 𝛾𝑡 . . . 𝛾1 of a zigzag path z such that 𝛾𝑖 ≠ 𝛾 𝑗 for 𝑖 ≠ 𝑗 . Suppose
that 𝑡 (𝑧′) and ℎ(𝑧′) are both zag vertices of z. For each zig 𝛾 𝑗+1𝛾 𝑗 (for 𝑗 < 𝑡 odd), let 𝑝 𝑗 be the subpath
of 𝐹𝑐𝑐𝛾 𝑗

from ℎ(𝛾 𝑗+1) to 𝑡 (𝛾 𝑗 ). Then 𝑝 𝑗 consists of all arrows in 𝐹𝑐𝑐𝛾 𝑗
except for 𝛾 𝑗+1 and 𝛾 𝑗 .

The right return path is the composition 𝑝 𝑗𝑡−1 . . . 𝑝 𝑗1 of all such 𝑝 𝑗 ’s. The elementary right return
path is the path obtained by removing all proper elementary subcycles of the right return path in order
of their appearance. If the result is a face-path, then the elementary right return path is constant. We
dually define (elementary) left return paths.

For examples, see Figure 10. In particular, the left of this figure gives an example where the right
return path and the elementary right return path differ. It is immediate that right return paths are leftmost
and left return paths are rightmost.

Theorem 4.10. A path-consistent dimer model not on a sphere is strand-consistent.

Proof. Given a path-consistent dimer model Q, Proposition 2.14 implies that 𝑄 is path-consistent. By
Proposition 4.7, it suffices to show that 𝑄 is strand-consistent. We will do this by showing that self-
intersecting strands, interior cycles and bad lenses in the strand diagram give rise to irreducible pairs,
which cannot occur in strand-consistent models by Theorem 3.19, since𝑄 is not a sphere. See Figure 10.

First, suppose there is some self-intersecting strand z of 𝐷𝑄. Recall from the discussion following
Definition 4.8 that intersections of the strand z correspond to multiple incidences of an arrow in its
associated zigzag path in𝑄. Then there is some segment𝐶 = 𝛾0𝛾𝑡 . . . 𝛾1𝛾0 of the zigzag path associated
to z such that 𝛾𝑖 ≠ 𝛾 𝑗 for 𝑖 ≠ 𝑗 . Suppose that the segment of the strand z corresponding to 𝛾𝑡 . . . 𝛾0 is
a clockwise cycle; the counter-clockwise case is symmetric. See the left of Figure 10. Let 𝑣1 := ℎ(𝛾0)
and 𝑣2 := 𝑡 (𝛾0). Since the cycle runs clockwise, 𝑣1 and 𝑣2 are both zag vertices of z. Let 𝑧′ := 𝛾𝑡 . . . 𝛾1
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Figure 10. An example of a self-intersection (left), interior cycle (middle), and bad lens (right). All of
these give rise to irreducible pairs.

and let p be the elementary right return path of 𝑧′. Then p is a leftmost path from 𝑣2 to 𝑣1, and 𝛾−1
0 𝑝 is

an elementary counter-clockwise cycle-path winding counter-clockwise around 𝑧′; hence, (𝑝, 𝛾0) is an
irreducible pair. This contradicts Theorem 3.19.

Now suppose there is a strand z of 𝐷𝑄 which is an interior cycle. By the above, we may suppose
that z contains no self-intersections. Then we may realize z as a path 𝑧′ := 𝛾𝑡 . . . 𝛾0 of 𝑄 such that
𝑡 (𝛾𝑡 ) = ℎ(𝛾0) is a zag vertex of z and 𝛾𝑖 ≠ 𝛾 𝑗 for 𝑖 ≠ 𝑗 . See the middle of Figure 10. As above, we
assume that 𝑧′ winds clockwise. Let p be the elementary right return path of 𝑧′. Then p winds counter-
clockwise around 𝑧′ and thus is a nontrivial counter-clockwise path which is leftmost, contradicting
Theorem 3.19.

Now, suppose there is a bad lens in 𝐷𝑄. Accordingly, we may take subpaths of zigzag paths
𝑧′ := 𝛽𝛾𝑡 . . . 𝛾1𝛼 and 𝑤′ := 𝛽𝛿𝑠 . . . 𝛿1𝛼 such that 𝛾𝑖 ≠ 𝛿 𝑗 for 𝑖 ≠ 𝑗 . By the above, the strands have no
self-intersections, and hence, 𝑧′ and 𝑤′ have no repeated arrows. Suppose without loss of generality that
𝑧′ is to the left of 𝑤′. Then 𝑡 (𝛼) and ℎ(𝛽) are zig vertices of w and zag vertices of z. See the right of
Figure 10. Let p be the right elementary return path of 𝑧′ and let q be the left elementary return path of𝑤′.

Let 𝑝0 := 𝑝 and 𝑞0 := 𝑞. Choose a face F in the interior of the bad lens. Then 𝑝0 is a leftmost
elementary path and 𝑞0 is a rightmost elementary path such that Wind(𝑞−1

0 𝑝0, 𝐹) = 1 > 0, since 𝑞−1𝑝

winds counter-clockwise around the lens. If 𝑞−1
0 𝑝0 is simple, then (𝑝0, 𝑞0) is an irreducible pair and

we are done. If not, then 𝑞−1
0 𝑝0 has some simple proper subcycle-walk l. The paths 𝑝0 and 𝑞0 are

elementary, so l must be of the form (𝑞′0)
−1𝑝′0, where 𝑝′0, 𝑞

′
0, 𝑝1, 𝑞1 are paths such that 𝑝0 = 𝑝′0𝑝1 and

𝑞0 = 𝑞1𝑞
′
0. If (𝑞′0)

−1𝑝′0 is counter-clockwise, then (𝑝′0, 𝑞
′
0) forms an irreducible pair, since any subpath

of p is leftmost and any subpath of q is rightmost. If not, then the removal of (𝑞′0)
−1𝑝′0 from 𝑞−1

0 𝑝0 may
only increase the winding number around F; hence, Wind(𝑞−1

1 𝑝1, 𝐹) ≥ Wind(𝑞−1
0 𝑝0, 𝐹) > 0. We now

start the process over with 𝑝1 and 𝑞1 in place of 𝑝0 and 𝑞0. This process must eventually terminate when
some (𝑝′𝑖 , 𝑞

′
𝑖) forms an irreducible pair, contradicting Theorem 3.19. �

4.3. Strand-consistency implies path-consistency

We now prove the converse of Theorem 4.10, completing the proof that the notions of path-consistency
and strand-consistency are equivalent for finite dimer models on surfaces which are not spheres. In the
case where Q is a dimer model on a disk, this is proven in [13, Proposition 2.15]. In the case where Q is
a dimer model on a compact surface without boundary, it appears in [6, Theorem 10.1, Theorem 10.2].
First, we need the following definition.

Definition 4.11. Let 𝑄 = (𝑄0, 𝑄1, 𝑄2) be a dimer model. Let F ⊆ 𝑄2 be a set of faces of 𝑄2 which
form a connected surface with boundary which is a subspace of the surface 𝑆(𝑄) of Q.

We define the dimer submodel𝑄F of Q induced by F as the dimer model𝑄F = (𝑄F
0 , 𝑄

F
1 ,F), where

𝑄F
0 and 𝑄F

1 are the sets of vertices and edges of Q appearing in some face of F .
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Figure 11. The disk model on the left is not weakly consistent, since it has a homologically trivial
interior cycle. When we delete the center face by taking the submodel induced by all other faces, this
cycle still exists but is no longer homologically trivial. The result is a weakly consistent dimer model on
an annulus.

Intuitively,𝑄F is obtained by deleting all faces of Q which are not inF . See Figure 11. It is immediate
that if G ⊆ F ⊆ 𝑄2 induce dimer submodels, then 𝑄G = (𝑄F )G . A disk submodel is a dimer submodel
which is a dimer model on a disk.

Proposition 4.12. A strand-consistent dimer model is path-consistent.

Proof. By Theorem 2.18, Q is path-consistent if and only if 𝐴𝑄 is cancellative. By Lemma 2.16, this
is true if and only if 𝐴𝑄 is cancellative. Hence, it suffices to show that 𝐴𝑄 is a cancellation algebra.
Accordingly, suppose 𝑝, 𝑞, 𝑎 are paths of 𝑄 such that ℎ(𝑎) = 𝑡 (𝑝) = 𝑡 (𝑞) and ℎ(𝑝) = ℎ(𝑞) and
[𝑝𝑎] = [𝑞𝑎]. Then there is a finite sequence of morphs taking 𝑝𝑎 to 𝑞𝑎 in𝑄. Let𝑄 ′ be a disk submodel
of 𝑄 containing every intermediate path in this sequence. Since 𝐷𝑄′ is a restriction of 𝐷𝑄, which has
no bad configurations, the former also has no bad configurations. By [13, Proposition 2.15], 𝑄 ′ is path-
consistent. By Theorem 2.18, 𝐴𝑄′ is cancellative; hence, [𝑝] = [𝑞] in 𝑄 ′. Then there is a sequence of
morphs taking p to q in 𝑄 ′; this is necessarily a sequence of morphs in 𝑄, so [𝑝] = [𝑞] in 𝑄.

It may similarly be shown that if 𝑝, 𝑞, 𝑏 are paths of𝑄 such that 𝑡 (𝑏) = ℎ(𝑝) = ℎ(𝑞) and 𝑡 (𝑝) = 𝑡 (𝑞),
then [𝑏𝑝] = [𝑏𝑞] implies [𝑝] = [𝑞]. This completes the proof that 𝐴𝑄 is cancellation, and thus that Q
is path-consistent. �

Theorem 4.13. Let Q be a dimer model not on a sphere. The following are equivalent:

1. Q is path-consistent,
2. Q is strand-consistent,
3. The dimer algebra 𝐴𝑄 is cancellative.

Proof. Path-consistency implies strand-consistency by Theorem 4.10. Strand-consistency implies path-
consistency by Proposition 4.12. Path-consistency is equivalent to cancellativity by Theorem 2.18. �

Theorem 4.13 is known for dimer models on tori; for example, see [6] and references therein. It was
shown for dimer models on the disk corresponding to (𝑘, 𝑛)-diagrams in [4]. The implication (2) =⇒ (1)
for general dimer models on disks appears in [48, Proposition 2.11]. The authors are not aware of a
proof in the other implication in the case of the disk; hence, we include this corollary.

Corollary 4.14. Let Q be a dimer model in a disk. Then Q is path-consistent if and only if Q is strand-
consistent.

In light of Theorem 4.13, we use the word weakly consistent to refer to both path-consistent and
strand-consistent dimer models that are not on a sphere. We will define strong consistency in Section 6.
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5. Dimer submodels

Recall the definition of a dimer submodel in Definition 4.11. We now show that the dimer submodel
of a weakly consistent model is weakly consistent, and moreover that the path equivalence classes of a
dimer submodel may be understood in terms of the original dimer model. This is a useful result that
will lead to some nice corollaries in Section 8.

Corollary 5.1. Let Q be a dimer model. Let F be a set of faces of Q forming a surface S such that the
restriction of the strand diagram 𝐷𝑄 to S has no bad configurations. Then 𝑄F is weakly consistent. In
particular, if Q is weakly consistent, then any dimer submodel of Q is weakly consistent.

Proof. Since weak consistency is characterized by the absence of bad configurations by Theorem 4.13,
the first statement is trivial. Passing from Q to a dimer submodel 𝑄F corresponds to restricting the
strand diagram of Q to the surface given by the union of the faces in F . This cannot create any bad
configurations, so the second statement follows. �

See Figure 11 for an example of how Corollary 5.1 may be used in practice to obtain weakly consistent
dimer models from existing (not necessarily weakly consistent) models.

Theorem 5.2. Let Q be a weakly consistent dimer model and let𝑄F be a (necessarily weakly consistent)
dimer submodel of Q. Then two paths in 𝑄F are equivalent in 𝑄F if and only if they are equivalent in
Q and homotopic in 𝑆(𝑄F ).

Proof. If [𝑝] = [𝑞] in 𝑄F , then certainly [𝑝] = [𝑞] in Q. Moreover, in this case, p is homotopic to
q in 𝑆(𝑄F ), and hence in Q. However, suppose that [𝑝] = [𝑞] in Q and that p is homotopic to q in
𝑆(𝑄F ). By path-consistency of 𝑄F , without loss of generality, we have [𝑝] = [𝑞 𝑓 𝑚] in 𝑄F for some
nonnegative integer m. Then we have [𝑝] = [𝑞 𝑓 𝑚] in Q. By path-consistency of Q, since [𝑝] = [𝑞] in
Q, we must have 𝑚 = 0, and hence, [𝑝] = [𝑞] in 𝑄F . �

Remark 5.3. Theorem 5.2 could be stated more generally without changing the proof. We do not need
Q to be weakly consistent; we merely need to be able to ‘cancel face-paths’ in Q. In other words, we
require that [𝑝 𝑓 𝑚] = [𝑝] cannot hold for positive m. This is a weaker condition than cancellativity (and
hence weak consistency) and is satisfied – for example, if Q has a perfect matching. See Section 6 and
Lemma 6.1.

6. Perfect matchings

A perfect matching of a dimer model Q is a collection of arrows M of Q such that every face of Q
contains exactly one arrow in M. See Figure 12 for two examples.

Dimer models on the torus with perfect matchings have been studied in, for example, [34], [11],
[6] and are often called dimer configurations. The Gorenstein affine toric threefold obtained by putting
the perfect matching polygon at height one is the center of the dimer algebra, and the dimer algebra

Figure 12. On the left, a dimer model on a disk with its plabic graph overlayed is pictured. The two
pictures on the right show two different perfect matchings, both as collections of arrows of the quiver
and as collections of edges of the plabic graph.
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is viewed as a non-commutative crepant resolution of this variety; for example, see [8, 11, 35, 42].
Perfect matchings of dimer models on a more general surface, often called almost perfect matchings,
are a natural generalization. Perfect matching polygons may be extended to dimer models over arbitrary
compact surfaces with boundary, and capture the data of the master and mesonic moduli spaces [16].
Perfect matchings may be calculated by taking determinants of Kasteleyn matrices; see [31] and [16, §5].

In the present paper, we give some basic results, prove existence of perfect matchings in weakly
consistent simply connected dimer models, and give a counterexample to the existence of perfect
matchings in arbitrary weakly consistent dimer models.

We use combinatorial theory of matchings of (undirected) graphs in order to prove the main result of
this section. In order to do so, we associate to Q a bipartite plabic graph G = (G𝑏

0 ,G𝑤
0 ,G1) embedded

into 𝑆(𝑄) as follows. To each face F of Q, we associate an internal vertex 𝑣𝐹 embedded in the interior
of F. If F is a clockwise face, we say that 𝑣𝐹 is a black vertex and we write 𝑣𝐹 ∈ G𝑏

0 . If F is a counter-
clockwise face, we say that 𝑣𝐹 is a white vertex and we write 𝑣𝐹 ∈ G𝑤

0 . For any boundary arrow 𝛼 of Q,
we draw a boundary vertex 𝑣𝛼 embedded in the middle of 𝛼. We consider 𝑣𝛼 to be a white vertex if 𝛼
is part of a clockwise face, and a black vertex if 𝛼 is part of a counter-clockwise face. For each internal
arrow 𝛼 of Q, we draw an edge between 𝑣𝐹𝑐𝑙

𝛼
and 𝑣𝐹𝑐𝑐

𝛼
. For each boundary arrow 𝛼 of Q, we draw an

edge between 𝑣𝛼 and the vertex corresponding to the unique face incident to 𝛼. See Figure 12.
A perfect matching M of Q is dual to a collection of edges N of the plabic graph G of Q such that

every internal vertex of G is contained in exactly one edge of N . We refer to both M and N as perfect
matching of Q. If Q has no boundary, then a perfect matching is dual to a perfect matching of the dual
(plabic) graph of Q in the usual sense. See Figure 12.

If M is a perfect matching of Q, we say that the intersections of a path p with M are the arrows of p
which are in M. The intersection number M(𝑝) of p with M is the number of intersections of p with
M (counting ‘multiplicities’ if p has multiple instances of the same arrow).

Lemma 6.1. Suppose Q has a perfect matching M. If [𝑝] = [𝑞], then M(𝑝) = M(𝑞).

Proof. Since 𝑅𝑐𝑙𝛼 contains an arrow of M if and only if 𝑅𝑐𝑐𝛼 does, it follows that basic morphs preserve
intersection number. The result follows. �

Proposition 6.2. Suppose Q is weakly consistent and that Q has a perfect matching M. Let p and q
be paths of Q with the same start vertex, end vertex and homotopy class. Then [𝑝] = [𝑞] if and only if
M(𝑝) = M(𝑞).

Proof. Lemma 6.1 shows that if [𝑝] = [𝑞] then M(𝑝) = M(𝑞). However, if [𝑝] ≠ [𝑞], then without
loss of generality, [𝑝] = [𝑞 𝑓 𝑚] for some 𝑚 > 0. Since any face-path contains exactly one arrow of M,
we have M(𝑝) = 𝑚 +M(𝑞), ending the proof. �

Lemma 6.3. Suppose Q has a perfect matching M and let p be a path in Q. The set

{𝑚 | [𝑝] = [ 𝑓 𝑚𝑞] for some path 𝑞 : 𝑡 (𝑝) → ℎ(𝑝)}

is bounded above by M(𝑝). In particular, only a finite number of face-paths can be factored out of p.

Proof. Any face-path has an intersection number of one with any perfect matching. Hence, if
[𝑝] = [ 𝑓 𝑚𝑞], then by Lemma 6.1, M(𝑝) must be at least m. �

The condition that only a finite number of face-paths can be factored out of any path p is implied by
path-consistency. In fact, it is a strictly weaker property than weak consistency.

We show the stronger statement that the existence of a perfect matching does not imply weak
consistency. Indeed, Figure 13, which shows a dimer model which has a perfect matching but is not
weakly consistent. More generally, if Q is a weakly consistent dimer model, then let 𝑄 ′ be the dimer
model obtained by replacing some internal arrow 𝛼 of Q with two consecutive arrows 𝛾𝛽 such that
ℎ(𝛾) = ℎ(𝛼) and 𝑡 (𝛽) = 𝑡 (𝛼) and ℎ(𝛽) = 𝑡 (𝛾) is a new vertex of 𝑄 ′. Then the strand diagram of 𝑄 ′ has
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Figure 13. A dimer model on a disk which is not weakly consistent but has a perfect matching.

a bad digon, and hence is not weakly consistent. However, Q has a perfect matching by Theorem 6.7;
hence, 𝑄 ′ has a perfect matching.

6.1. Consistency and existence of perfect matchings

We have seen that the existence of a perfect matching does not guarantee weak consistency. We now
investigate whether weak consistency guarantees the existence of a perfect matching. We show in
Theorem 6.7 that perfect matchings exist in simply connected weakly consistent dimer models. However,
we see in Example 6.8 that perfect matchings need not exist in arbitrary weakly consistent dimer models.
Definition 6.4. Let (𝑉1, 𝑉2, 𝐸) be a possibly infinite bipartite graph. Let {𝑖, 𝑗} = {1, 2}. Let 𝑆 ⊆ 𝑉𝑖 .
A matching from S into 𝑉 𝑗 is a set N of disjoint edges in E such that every vertex of S is incident to
precisely one edge in N .

A perfect matching of a dimer model, then, is a matching onto some full subgraph of the plabic
graph G of Q induced by all of the internal vertices and some subset of the boundary vertices. We use
the following formulation of Hall’s marriage theorem for locally finite graphs.
Theorem 6.5 [14, Theorem 6]. Let (𝑉1, 𝑉2, 𝐸) be a bipartite graph in which every vertex has finite
degree. The following are equivalent.
1. There is a matching from 𝑉1 into 𝑉2.
2. Any m vertices of 𝑉1 have at least m distinct neighbors in 𝑉2.
Theorem 6.6 [1, Theorem 1.1]. Let (𝑉1, 𝑉2, 𝐸) be a bipartite graph. Let 𝐴 ⊆ 𝑉1 and 𝐵 ⊆ 𝑉2. If there
exists a matching from A into 𝑉2 and a matching from B into 𝑉1, then there exists a disjoint set of edges
N in E such that each vertex in 𝐴 ∪ 𝐵 is incident to precisely one edge in N .
Theorem 6.7. If a simply connected dimer model𝑄 is weakly consistent, then it has a perfect matching.
Proof. We will use the dual definition of a perfect matching. We must then show that there is a set N
of edges of the plabic graph G of 𝑄 such that every vertex of G is incident to exactly one edge of N .

We first claim that it suffices to show that any collection of m internal black vertices is connected to
at least m white vertices and that any collection of m internal white vertices is connected to at least m
black vertices. Suppose this is true. By applying Theorem 6.5 to the internal black vertices, we see that
there is a matching from the set of internal black vertices into the white vertices. Symmetrically, we get
a matching from the set of internal white vertices into the black vertices. Then Theorem 6.6 shows that
there exists a perfect matching. This ends the proof of the claim.

We show that any collection of m internal white vertices is connected to at least m black vertices.
The remaining case is symmetric. Take a set S of m internal white vertices of G𝑄. These correspond to
m internal faces of 𝑄. Let 𝑄 ′ be a disk submodel of 𝑄 containing all faces of S. Such a disk submodel
must exist since 𝑄 is simply connected. Since 𝐷𝑄 has no bad configurations and 𝐷𝑄′ is a restriction of
𝐷𝑄, the latter also has no bad configurations. By [13, Proposition 2.15], 𝑄 ′ is a path-consistent dimer
model. By [13, Corollary 4.6], G𝑄′ has a perfect matching. In particular, by Hall’s marriage theorem
(Theorem 6.5), the set S of white vertices considered as vertices of G𝑄′ has at least m neighbors in G𝑄′ ;
hence, S has at least m neighbors in G𝑄. This completes the proof. �

Example 6.8 shows that Theorem 6.7 does not work for dimer models which are not simply connected.
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Figure 14. A weakly consistent dimer model on a torus with a disk taken out which has no perfect
matching. Opposite dashed edges are identified.

Example 6.8. Consider the dimer model on a torus pictured in Figure 14. It is immediate that any
perfect matching of this dimer model must contain one of the arrows of its digon. A short check verifies
that a perfect matching must also contain the arrows {𝛼, 𝛽} or the arrows {𝛾, 𝛿}. However, this prevents
any arrow of the face appearing in a corner of the diagram from being in a perfect matching. Hence, this
dimer model has no perfect matching. We remark that this dimer model is obtained by taking a weakly
consistent dimer model on a torus, and replacing a counter-clockwise square with a variant of the dimer
model of Figure 21.

Example 6.8 raises a question: What sort of conditions may we impose on a weakly consistent dimer
model to necessitate the existence of some perfect matching? In particular, does any weakly consistent
dimer model with no digons have a perfect matching?

6.2. Nondegeneracy

In the disk and torus case, an important idea is nondegeneracy of dimer models. We will define
nondegeneracy and prove a simple result which will be used in Section 7.

Definition 6.9. A dimer model Q is nondegenerate if every arrow is contained in a perfect matching.
Otherwise, it is degenerate.

In the disk and torus case, nondegeneracy is implied by weak consistency [35, Proposition 6.2] [13].
In the general case, this is not true. For example, the weakly consistent dimer model in Figure 14
has no perfect matchings, and hence is certainly degenerate. The middle of Figure 15 shows a weakly
consistent dimer model which has a perfect matching but is still degenerate. Nondegeneracy will
feature prominently in Section 7 and Section 9. Figure 13 gives an example of a disk model which is
nondegenerate but not weakly consistent. See Example 7.16 for multiple examples of nondegenerate
weakly consistent dimer models on annuli. In the rest of this paper, we will see that nondegeneracy
is a useful condition that allows us to generalize results from the disk and torus case, motivating the
following definition.

Definition 6.10. A dimer model is strongly consistent if it is weakly consistent and nondegenerate.

The following lemma generalizes the well-known situation in the torus and disk literature. See, for
example, [11, §2.3] in the torus case and [48, Proposition 3.1] in the disk case.

Lemma 6.11. If Q is finite and strongly consistent, then 𝐴𝑄 (and hence 𝐴𝑄) admits a Z-grading such
that

1. Every nonconstant path has a positive degree, and
2. Every face-path has the same degree.
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Figure 15. On the left is a strongly consistent dimer model on an annulus which is Noetherian but not
boundary-finite. In the middle is a weakly consistent dimer model on an annulus which is boundary-
finite but not Noetherian. On the right is a strongly consistent dimer model on an annulus which is
boundary-finite but not Noetherian.

Proof. Let C be a collection of all perfect matchings on Q. Since Q is finite, C has finite cardinality.
Given a path p of Q, we give p the grading

𝐺 (𝑝) =
∑
M∈𝐶

M(𝑝),

where M(𝑝) is the number of arrows of p which are in M. Note that, for any perfect matching M,
the quantity M(𝑝) is unchanged by applying a basic morph to p. This means that the quantity 𝐺 (𝑝)
is a well-defined number of the equivalence class of p. It is clear that if p, q, and 𝑞𝑝 are paths, then
𝐺 (𝑝) + 𝐺 (𝑞) = 𝐺 (𝑞𝑝). It follows that G gives a positive Z-grading on A through which every arrow is
given a positive degree. The second statement follows because the degree of any face-path is equal to
the number of perfect matchings on Q. �

Lemma 6.12. Let Q be finite and strongly consistent. Then an arbitrary element x of the completed
dimer algebra 𝐴𝑄 may be represented as

𝑥 =
∑

𝑣,𝑤 ∈𝑄0

∑
𝐶:𝑣→𝑤

∑
𝑚≥0

𝑎𝐶,𝑚 [𝑟𝐶 𝑓
𝑚],

where the second sum iterates over all homotopy classes of paths from v to w, and 𝑎𝐶,𝑚 ∈ C. Moreover,
this element is zero if and only if all coefficients 𝑎𝐶,𝑚 are zero.

Proof. Since Q is strongly consistent, we may fix a positive Z-grading G of the completed dimer algebra
𝐴𝑄 as in Lemma 6.11. We first show that an arbitrary 𝑥 ∈ 𝐴𝑄 is of the desired form. By definition, an
element 𝑥 ∈ 𝐴𝑄 is of the form

𝑥 =
∑

𝑝 a path of 𝑄
𝑎𝑝 [𝑝], (3)

for some coefficients 𝑎𝑝 ∈ C. Define 𝐺min := min{𝐺 (𝛼) : 𝛼 ∈ 𝑄1}.
Let p be any path of Q. Let C be the homotopy class of p. By path-consistency, write [𝑝] = [𝑟𝐶 𝑓

𝑚]

for some value m and a minimal path 𝑟𝐶 in homotopy class C. Let 𝑀𝐶,𝑚 be an integer greater than
𝐺 (𝑝)
𝐺min

. Then any path of Q with at least 𝑀𝐶,𝑚 arrows must have a grading greater than 𝐺 (𝑝); hence,
every path equivalent to p must have less than 𝑀𝐶,𝑚 arrows. Such paths are finite in number, and hence,
the path equivalence class of p is finite. Then we may define 𝑎𝐶,𝑚 :=

∑
𝑞 equivalent to 𝑝 𝑎𝑞 . The desired
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𝑥 =
∑

𝑣,𝑤 ∈𝑄0

∑
𝐶:𝑣→𝑤

∑
𝑚≥0

𝑎𝐶,𝑚 [𝑟𝐶 𝑓
𝑚]

now follows from rearranging the terms of equation (3).
Now suppose that some 𝑎𝐶′,𝑚′ is nonzero. Define a real number 𝐺 ′ > 𝐺 (𝑟 ′𝐶 𝑓

𝑚′
). We show that the

graded part of x below 𝐺 ′ must be nonzero, and hence that x itself is nonzero. Define for any homotopy
class C and 𝑚 ≥ 0

𝑎′𝐶,𝑚 :=

{
𝑎𝐶,𝑚 𝐺 (𝑟𝐶 𝑓

𝑚) < 𝐺 ′

0 else.

Then the sum

𝑥𝐺′ :=
∑

𝑣,𝑤 ∈𝑄0

∑
𝐶:𝑣→𝑤

∑
𝑚≥0

𝑎′𝐶,𝑚 [𝑟𝐶 𝑓
𝑚] (4)

gives the graded part of x below 𝐺 ′.
Set 𝑀 ′ > 𝐺′

𝐺min
. Then any path of Q with grading less than𝐺 ′ has less than 𝑀 ′ arrows. So, the sum (4)

has a finite number of nonzero summands. Then the sum (4) is in the noncompleted path algebra of Q.
Since 𝑎𝐶′,𝑚′ is nonzero and in this sum, then 𝑥𝐺′ is not in the ideal 𝐼𝑄 of the noncompleted dimer
algebra. Moreover, since every path with at least 𝑀 ′ arrows has a grading greater than 𝐺 ′, the sum 𝑥𝐺′

cannot be in the completion of 𝐼𝑄 with respect to the arrow ideal. This shows that 𝑥𝐺′ is nonzero in the
completed dimer algebra; hence, x is nonzero in the completed dimer algebra. �

7. Bimodule internal 3-Calabi-Yau property

We show that finite strongly consistent (completed or noncompleted) dimer models are bimodule
internally 3-Calabi-Yau with respect to their boundary idempotent in the sense of [46]. As an applica-
tion, we use a result from [2] to show that the Gorenstein-projective module category over the com-
pleted boundary algebra of a finite strongly consistent dimer model Q satisfying some extra conditions
categorifies the cluster algebra given by the ice quiver of Q. We give new examples of suitable dimer
models.

The technical part of this section follows [48, §3] (in the disk case) and [11, §7] (in the torus case).
Note that the former writes A for the completed dimer algebra (or Jacobian algebra) 𝐴𝑄, and the latter
deals only with the noncompleted dimer algebra.

Throughout this section, let Q be a finite weakly consistent dimer model. We will eventually pass to
the case when Q is in addition nondegenerate. We write A to denote simultaneously the noncompleted
dimer algebra 𝐴𝑄 and the completed dimer algebra 𝐴𝑄, since the arguments are the same.

7.1. One-sided and two-sided complexes

We begin by defining some (A,A)-bimodules. If v is a vertex of Q, define 𝑇𝑣 (respectively 𝐻𝑣 ) to be
the set of all arrows with tail (respectively head) v. Define 𝑄𝑚

0 to be the set of internal vertices of Q.
Let 𝑄𝑚

1 be the set of internal arrows of Q. Define 𝑇𝑚𝑣 and 𝐻𝑚
𝑣 to be the internal arrows of 𝑇𝑣 and 𝐻𝑣 ,

respectively. We define vector spaces

𝑇3 := ⊕𝑣 ∈𝑄𝑚
0
C𝜔𝑣 , 𝑇2 := ⊕𝛼∈𝑄𝑚

1
C𝜌𝛼, 𝑇1 := ⊕𝛼∈𝑄1C𝛼, 𝑇0 := ⊕𝑣 ∈𝑄0C𝑒𝑣 .

The (A,A)-bimodule structures are given by

𝑒𝑣 · 𝜔𝑣 · 𝑒𝑣 = 𝜔𝑣 , 𝑒𝑡 (𝛼) · 𝜌𝛼 · 𝑒ℎ (𝛼) = 𝜌𝛼, 𝑒ℎ (𝛼) · 𝛼 · 𝑒𝑡 (𝛼) = 𝛼, 𝑒𝑣 · 𝑒𝑣 · 𝑒𝑣 = 𝑒𝑣 .
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All other products with the generators of𝑇𝑖 are zero. In this section, all tensor products are over𝑇0 unless
otherwise specified. We consider the following complex, which we will call the two-sided complex.

0 → A ⊗ 𝑇3 ⊗ A 𝜇3
−−→ A ⊗ 𝑇2 ⊗ A 𝜇2

−−→ A ⊗ 𝑇1 ⊗ A 𝜇1
−−→ A ⊗ 𝑇0 ⊗ A 𝜇0

−−→ A → 0. (5)

We consider A ⊗ 𝑇0 ⊗ A to be the degree-zero term of the complex, and we define the maps 𝜇𝑖 as
follows. First, define a function 𝜕 on the arrows of Q by

𝜕 (𝛼) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅𝑐𝑐𝛼 − 𝑅𝑐𝑙𝛼 𝛼 is an internal arrow
𝑅𝑐𝑐𝛼 𝛼 is a boundary arrow in a counter-clockwise face
−𝑅𝑐𝑙𝛼 𝛼 is a boundary arrow in a clockwise face.

For a path 𝑝 = 𝛼𝑚 . . . 𝛼1, we define

Δ𝛼 (𝑝) =
∑
𝛼𝑖=𝛼

𝛼𝑚 . . . 𝛼𝑖+1 ⊗ 𝛼 ⊗ 𝛼𝑖−1 . . . 𝛼1

and extend by linearity and continuity to obtain a map Δ𝛼 : C〈〈𝑄〉〉 → A ⊗ 𝑇1 ⊗ A. Then we define

𝜇3 (𝑥 ⊗ 𝜔𝑣 ⊗ 𝑦) =
∑
𝛼∈𝑇𝑚

𝑣

𝑥 ⊗ 𝜌𝛼 ⊗ 𝛼𝑦 −
∑

𝛽∈𝐻𝑚
𝑣

𝑥𝛽 ⊗ 𝜌𝛽 ⊗ 𝑦,

𝜇2 (𝑥 ⊗ 𝜌𝛼 ⊗ 𝑦) =
∑
𝛽∈𝑄1

𝑥Δ𝛽
(
𝜕 (𝛼)

)
𝑦, and

𝜇1 (𝑥 ⊗ 𝛼 ⊗ 𝑦) = 𝑥 ⊗ 𝑒ℎ (𝛼) ⊗ 𝛼𝑦 − 𝑥𝛼 ⊗ 𝑒𝑡 (𝛼) ⊗ 𝑦.

Since the tensor products are over 𝑇0, there is a natural isomorphism A ⊗ 𝑇0 ⊗ A � A ⊗ A. This may
be composed with the multiplication map to obtain 𝜇0.

The following was shown for Jacobian ice quivers, and completed dimer algebras are special case
of these. Nevertheless, the same proof applies in the noncompleted case, so we cite it here without this
limitation.

Theorem 7.1 [46, Theorem 5.6]. If the complex (5) is exact, then A is bimodule internally 3-Calabi-Yau
with respect to the idempotent given by the sum of all frozen vertex simples.

Our goal is to show that when Q is strongly consistent, the complex (5) is exact. To do this, we will
first define a version of (5) which is merely a complex of modules, rather than bimodules, and prove
that exactness of this one-sided complex is equivalent to exactness of the two-sided complex (5) in the
nondegenerate case. We will then show that the one-sided complex is exact to finish the proof.

Use the quotient mapA → A/radA � 𝑇0 to consider𝑇0 as an (A,A)-bimodule. Using this bimodule
structure, we consider the functor F = − ⊗A 𝑇0 from the category of (A,A)-bimodules to itself. We
apply this to the complex (5) and note that 𝑇𝑖 ⊗ A ⊗A 𝑇0 � 𝑇𝑖 and A ⊗𝑇0 𝑇0 � A to get the complex

0 → A ⊗ 𝑇3
F (𝜇3)
−−−−−→ A ⊗ 𝑇2

F (𝜇2)
−−−−−→ A ⊗ 𝑇1

F (𝜇1)
−−−−−→ A 𝜇0

−−→ 𝑇0 → 0. (6)

We forget the right A-module structure and treat this as a complex of left A-modules, which we refer to
as the one-sided complex.

Remark 7.2. The two-sided sequence (5) is indeed a complex of A-modules, which is exact in degrees
1, 0, -1. This can be seen as follows. In the noncompleted case A = A𝑄, this follows by the work of
Ginzburg [30, Proposition 5.1.9 and Theorem 5.3.1]; see also the exposition in [11, Section 7.1]. In the
completed caseA = Â𝑄, this statement appears in [46, Lemma 5.5]; however, as noted by Pressland [45],
there is a gap in the proof. Namely, the citation of the results by Butler and King for the exactness in
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degrees 1, 0, -1 applies only for the noncompleted algebra. Instead, following Pressland [45], we can
deduce exactness of the one-sided sequence (6) from [12, Proposition 3.3] in degrees 1, 0, -1. Then the
same holds for the two-sided complex by taking inverse limits as in the proof of [49, Lemma 4.7], which
works degree by degree.

We would like to show exactness of the one-sided complex in degrees −3 and −2, so we explicitly
write the maps F (𝜇3) and F (𝜇2).

F (𝜇3) : 𝑥 ⊗ 𝜔𝑣 ↦→ −
∑

𝛽∈𝐻𝑚
𝑣

𝑥𝛽 ⊗ 𝜌𝛽

F (𝜇2) : 𝑥 ⊗ 𝜌𝛼 ↦→
∑
𝛽∈𝑄1

𝑥Δ𝑟
𝛽 (𝜕 (𝛼)),

where, for 𝑝 = 𝛼𝑚 . . . 𝛼1,

Δ𝑟
𝛽 (𝑝) =

∑
𝛼𝑖=𝛽

𝛼𝑚 . . . 𝛼𝑖+1 ⊗ 𝛼𝑖 .

We now do some calculations for 𝜇3.

𝜇3 : 𝑥 ⊗ 𝜔𝑣 ⊗ 𝑦 ↦→
∑
𝛼∈𝑇𝑚

𝑣

𝑥 ⊗ 𝜌𝛼 ⊗ 𝛼𝑦 −
∑

𝛽∈𝐻𝑚
𝑣

𝑥𝛽 ⊗ 𝜌𝛽 ⊗ 𝑦

=
∑
𝛼∈𝑇𝑚

𝑣

𝑥 ⊗ 𝜌𝛼 ⊗ 𝛼𝑦 −
���

∑
𝛽∈𝐻𝑚

𝑣

𝑥𝛽 ⊗ 𝜌𝛽
��� ⊗ 𝑦

=
���

∑
𝛼∈𝑇𝑚

𝑣

𝑥 ⊗ 𝜌𝛼 ⊗ 𝛼
���𝑦 + (F (𝜇3) (𝑥 ⊗ 𝜔𝑣 )) ⊗ 𝑦

We perform a similar calculation for 𝜇2.

𝜇2 : 𝑥 ⊗ 𝜌𝛼 ⊗ 𝑦 ↦→
∑
𝛽∈𝑄1

𝑥Δ𝛽
(
𝜕 (𝛼)

)
𝑦

=
���

∑
𝛽∈𝑄1

𝑥Δ𝑟
𝛽 (𝑝)

��� ⊗ 𝑦
= (F (𝜇2) (𝑥 ⊗ 𝜌𝛼)) ⊗ 𝑦

We have shown that, for 𝑗 ∈ {2, 3}, we have

𝜇 𝑗 : 𝑢 ⊗ 𝑦 ↦→ ((F (𝜇 𝑗 ) (𝑢)) ⊗ 𝑦 +

(∑
𝑣,𝑦′

𝑣 ⊗ 𝑦′

)
𝑦, (7)

where
◦ u is in either A ⊗ 𝑇3 (if 𝑗 = 3) or A ⊗ 𝑇2 (if 𝑗 = 2),
◦ v ranges across some elements of A ⊗ 𝑇2 (if 𝑗 = 3) or A ⊗ 𝑇1 (if 𝑗 = 2), and
◦ 𝑦′ ranges across some arrows of A.

7.2. Proving 3-Calabi-Yau property for strongly consistent models

We now show that exactness of the bimodule complex (5) is equivalent to exactness of the one-sided
complex (6) when Q is strongly consistent. We will then show that the one-sided complex is exact, and
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hence that the completed dimer algebra is bimodule internally 3-Calabi-Yau with respect to its boundary
idempotent.

We consider the bimodules 𝑇𝑖 to be Z-graded as follows. All elements of 𝑇3 and 𝑇0 have degree 0.
An element 𝜌𝛼 in 𝑇2 corresponding to an arrow 𝛼 ∈ 𝑄 is given the negative of the grading of 𝛼 in Q.
An element 𝛼 in 𝑇1 corresponding to an arrow 𝛼 ∈ 𝑄 is given the grading of 𝛼 in Q.

We extend the grading on A given by Lemma 6.11 with the gradings on 𝑇𝑖 described above to a
Z-grading on the bimodule complex A ⊗ 𝑇∗ ⊗ A by adding the grading in each of the three positions.

We remark that the grading on A ⊗ 𝑇2 ⊗ A is not positive. The minimum possible degree of an
element of A ⊗ 𝑇2 ⊗ A is −𝑚, where m is the maximum possible degree of an arrow of A. Moreover,
every face-path has degree equal to the number of perfect matchings on Q.

Lemma 7.3. The maps 𝜇3 and 𝜇2 are maps of graded bimodules. In other words, they map homogeneous
elements to homogeneous elements.

Proof. First, we consider 𝜇3. Any summand of 𝜇3(𝑥 ⊗𝜔𝑣 ⊗ 𝑦) is of the form 𝑥 ⊗ 𝜌𝛼 ⊗𝛼𝑦 or 𝑥𝛼⊗ 𝜌𝛼 ⊗ 𝑦
for some arrow 𝛼. The 𝛼 on the left or right summands adds some number m to the degree, and the 𝜌𝛼
in the middle subtracts that same degree, so the degree of 𝜇3 (𝑥 ⊗ 𝜔𝑣 ⊗ 𝑦) is the same as the degree of
𝑥 ⊗ 𝜔𝑣 ⊗ 𝑦.

We now consider 𝜇2. Any summand of 𝜇2 (𝑥 ⊗ 𝜌𝛼 ⊗ 𝑦) is of the form 𝑥𝑅′′ ⊗ 𝛽⊗ 𝑅′𝑦 for some arrow 𝛽
and some paths 𝑅′ and 𝑅′′ such that 𝑅′′𝛽𝑅′ is some return path 𝑅𝛼 of 𝛼. Compared to 𝑥⊗ 𝜌𝛼 ⊗ 𝑦, we are
replacing the (negative) grading of middle term 𝜌𝛼 with the (positive) grading of the path 𝑅𝛼 = 𝑅′′𝛽𝑅′.
The result is that the grading has increased by the grading of 𝛼𝑅𝛼 in A. This is a face-path, and all face-
paths have the same grading. It follows that 𝜇2 has the effect of increasing the grading of a homogeneous
element by the grading of a face-path in A. �

Theorem 7.4 [49, Lemma 4.7]. If the one-sided complex (6) is exact for A = 𝐴𝑄, then the two-sided
complex (5) is exact for A = 𝐴𝑄.

To show a version of Theorem 7.4 when A is the noncompleted dimer algebra 𝐴𝑄, we assume in
addition nondegeneracy.

Proposition 7.5. Suppose Q is strongly consistent. If the one-sided complex (6) is exact, then the two-
sided complex (5) is exact.

Proof. We follow the proof of [11, Proposition 7.5]. Suppose the one-sided complex (6) is exact. We
know by Remark 7.2 that the bimodule complex (5) is exact in every degree except for, possibly,
−3 and −2. It remains to show that ker 𝜇2 ⊆ im𝜇3 and ker 𝜇3 ⊆ im𝜇4 = 0, where 𝑇4 := 0 and
𝜇4 : 𝑇4 → A ⊗ 𝑇3 ⊗ A is the zero map.

Let 𝑗 ∈ {3, 2}. Let 𝜙0 be a nonzero element of A⊗𝑇𝑗 ⊗A which is in the kernel of 𝜇 𝑗 . We show that
𝜙0 is in the image of 𝜇 𝑗+1. Since the grading is respected by the map 𝜇 𝑗 (Lemma 7.3), we may assume
that 𝜙0 is homogeneous of some grade d. We may organize the terms of 𝜙0 by the degree of the term in
third position.

𝜙0 =
∑
𝑦∈𝑌

𝑢𝑦 ⊗ 𝑦 + {terms with strictly higher degree in the third position},

where Y is a nonempty linearly independent set of monomials in the graded piece A(𝑑0) with least
possible degree, and 𝑢𝑦 ∈ (A ⊗ 𝑇𝑗 )

(𝑑−𝑑0) . Applying the map 𝜇 𝑗 and using (7) and Lemma 6.11, we see
that 𝜇 𝑗 (𝜙0) = 0 is equivalent to the condition

0 =
∑
𝑦∈𝑌

(F (𝜇 𝑗 ) (𝑢𝑦)) ⊗ 𝑦 + {terms with strictly higher degree in the third position}.
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Since the monomials 𝑦 ∈ 𝑌 are linearly independent, this implies that for all 𝑦 ∈ 𝑌 , we have
F (𝜇 𝑗 ) (𝑢𝑦) = 0. Using the exactness of the one-sided complex, we conclude that there exist elements
𝑣𝑦 ∈ (A ⊗ 𝑇𝑗+1)

(𝑑−𝑑0) such that F (𝜇 𝑗 ) (𝑣𝑦) = 𝑢𝑦 for each 𝑦 ∈ 𝑌 . We construct an element

𝜓1 =
∑
𝑦∈𝑌

𝑣𝑦 ⊗ 𝑦 ∈ (A ⊗ 𝑇𝑗1 ⊗ A) (𝑑)

and apply 𝜇 𝑗+1 to get

𝜇 𝑗+1 (𝜓1) =
∑
𝑦∈𝑌

𝑢𝑦 ⊗ 𝑦 + {terms with strictly higher degree in the third position}.

We observe that 𝜙1 := 𝜙0−𝜇 𝑗+1(𝜓1) is in the kernel of 𝜇 𝑗 and that its terms have strictly higher degree in
the third position than 𝜙0. We iterate the procedure, noting that the degree in the third position is strictly
increasing but is bounded above by the total degree d if 𝑗 = 3, and by d plus the maximum degree of an
arrow of A if 𝑗 = 2. Hence, after a finite number of iterations, we get 𝜙𝑟 = 𝜙0 −

∑𝑟
𝑖=1 𝜇 𝑗+1 (𝜓𝑖) = 0. We

conclude that 𝜙0 = 𝜇 𝑗+1 (
∑𝑟
𝑖=1 𝜓𝑖) and that the complex (5) is exact at A ⊗ 𝑇𝑗 ⊗ A. �

We now know that in order to show exactness of the bimodule complex (5), it suffices to show
exactness of the one-sided complex (6). We follow [48, §3] and consider exactness of (6) vertex by
vertex. If v is a vertex, let 𝑆𝑣 := 𝑒𝑣𝑇0𝑒𝑣 be the simple module at v.

We may consider the complex (6) as a complex of (A, 𝑇0)-bimodules, which we denote by P1. Since
𝑇0 = ⊕𝑣 ∈𝑄0𝑆𝑣 , we have

P1 = ⊕𝑣 ∈𝑄0 P1𝑒𝑣

as a complex of left A-modules. Hence, in order to show exactness of the complex of left A-modules
(6), it suffices to show that for any vertex v of Q, the complex of left A-modules P1𝑒𝑣 is exact. We
rewrite this complex P1𝑒𝑣 as

0 → 𝑋3
�̄�3
−−→ 𝑋2

�̄�2
−−→ 𝑋1

�̄�1
−−→ 𝐴 ⊗ 𝑇0 ⊗ 𝑆𝑣 → 𝑆𝑣 → 0, (8)

where the spaces 𝑋𝑖 are defined as

𝑋1 :=
⊕
𝛽∈𝑇𝑣

A𝑒ℎ (𝛽) ,

𝑋2 :=
⊕
𝛼∈𝐻𝑚

𝑣

A𝑒𝑡 (𝛼) ,

𝑋3 :=

{
A𝑒𝑣 𝑣 ∈ 𝑄𝑚

0
0 else

,

and the maps �̄� 𝑗 are induced by F (𝜇 𝑗 ) under the relevant isomorphisms. We will make explicit the
maps �̄�3 and �̄�2 after introducing some notation. We write a general element x of ⊕𝛼∈𝐻𝑚

𝑣
A𝑒𝑡 (𝛼) as

𝑥 =
∑

𝛼∈𝐻𝑚
𝑣
𝑥𝛼 ⊗ [𝛼], where for any 𝛼 ∈ 𝐻𝑚

𝑣 , the summand 𝑥𝛼 ⊗ [𝛼] refers to the element 𝑥𝛼 ∈ A𝑒𝑡 (𝛼)
in the summand of ⊕𝛼∈𝐻𝑚

𝑣
A𝑒𝑡 (𝛼) indexed by 𝛼. Similarly, a general element of ⊕𝛽∈𝑇𝑣A𝑒ℎ (𝛽) will be

written as 𝑦 =
∑
𝛽∈𝑇𝑣 𝑦𝛽 ⊗ [𝛽].

We define the right derivative 𝜕𝑟𝛽 with respect to 𝛽 on a path 𝛾𝑘 . . . 𝛾1 by

𝜕𝑟𝛽 (𝛾𝑘 . . . 𝛾1) =

{
𝛾𝑘 . . . 𝛾2 𝛾1 = 𝛽

0 𝛾1 ≠ 𝛽
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and extend linearly and continuously. Similarly, there is a left derivative, defined on paths by

𝜕𝑙𝛽 (𝛾𝑘 . . . 𝛾1) =

{
𝛾𝑘−1 . . . 𝛾1 𝛾𝑘 = 𝛽

0 𝛾𝑘 ≠ 𝛽.

Given two arrows 𝛼 and 𝛽 of Q, we observe that

𝜕𝑟𝛽 (𝜕 (𝛼)) = 𝜕
𝑙
𝛼 (𝜕 (𝛽)).

We now calculate:

�̄�2 (𝑥) =
∑
𝛽∈𝑇𝑣

���
∑

𝛼∈𝐻𝑚
𝑣

𝑥𝛼𝜕
𝑟
𝛽 (𝜕 (𝛼))

��� ⊗ [𝛽]

�̄�3 (𝑥) =
∑

𝛼∈𝐻𝑚
𝑣

𝑥𝛼 ⊗ [𝛼] .

We now finally prove the main result of this section after citing the disk version proven by Pressland.
Note that in [48], dimer models on a disk are required to have at least three boundary vertices to avoid
degenerate cases. This condition is not used in the cited result (see [48, Remark 2.2]), so we cite it
without this limitation. The results and proofs of [46, Theorem 5.6] and [48, Theorem 3.7] are stated
only for completed Jacobian algebras, but work also for their noncompleted variants. Hence, we cite
this result for the completed and noncompleted algebras simultaneously.

Theorem 7.6 [48, Theorem 3.7], [46, Theorem 5.6]. If Q is a path-consistent dimer model on a disk,
then the sequence (8) is exact for all v, and hence, A is bimodule internally 3-Calabi-Yau with respect
to its boundary idempotent.

In fact, Pressland’s proof of Theorem 7.6 works in the general setting, with the stipulation that all
computations must be performed as a sum over homotopy classes. We give a shorter proof here, which
uses Pressland’s result for disk models as well as the theory of dimer submodels developed in Section 5.

Theorem 7.7. Let Q be a strongly consistent finite dimer model. Then 𝐴𝑄 and 𝐴𝑄 are bimodule
internally 3-Calabi-Yau with respect to their boundary idempotents.

Proof. By Theorem 7.1, it suffices to prove exactness of the two-sided complex (5). By Proposition 7.5
or Theorem 7.4 (depending on whether A = 𝐴𝑄 or A = 𝐴𝑄), it suffices to prove exactness of the
one-sided complex (6). As argued in the text following Proposition 7.5, we may prove this by showing
that the complex (8) is exact for any choice of 𝑣 ∈ 𝑄0. We need only show that �̄�3 is injective and that
ker �̄�2 ⊆ im �̄�3.

First, we show injectivity of �̄�3. If v is boundary, then this is trivial, so suppose 𝑣 ∈ 𝑄𝑚
0 . Suppose

there is some nonzero 𝑥 ∈ A𝑒𝑣 with 0 = �̄�3 (𝑥) =
∑

𝛼∈𝐻𝑚
𝑣
𝑥𝛼 ⊗ [𝛼]. Write 𝑥 =

∑
𝐶 𝑥𝐶 , where the sum

is over homotopy classes of paths in Q starting at v and 𝑥𝐶 =
∑∞
𝑚=0 𝑎𝐶,𝑚𝑟𝐶 𝑓

𝑚, where 𝑟𝐶 is a minimal
path in the homotopy class C and 𝑎𝐶,𝑚 ∈ C.

If C and 𝐶 ′ are different homotopy classes, then 𝐶𝛼 and 𝐶 ′𝛼 are different homotopy classes for any
arrow 𝛼. In particular, the summands of �̄�3 (𝑥𝐶 ) and �̄�3 (𝑥𝐶′ ) corresponding to each arrow 𝛼 ∈ 𝐻𝑚

𝑣

are in different homotopy classes. Since �̄�3 (𝑥) = 0, this means that �̄�3 (𝑥𝐶 ) = 0 for all homotopy
classes C. Since 𝑥 ≠ 0, we may choose a homotopy class C and 𝑚 ≥ 0 such that 𝑎𝐶,𝑚 ≠ 0. Then
0 = �̄�3 (𝑥𝐶 ) =

∑
𝛼∈𝐻𝑚

𝑣
𝑥𝐶𝛼 ⊗ [𝛼]. Then 0 = 𝑥𝐶𝛼 =

∑∞
𝑚=0 𝑎𝐶,𝑚𝑟𝐶𝛼 𝑓

𝑚 for all 𝛼 ∈ 𝐻𝑚
𝑣 . Hence,

𝑎𝐶,𝑚 = 0 for all 𝑚 ≥ 0 (if A = 𝐴𝑄, this is immediate by cancellativity, and if A = 𝐴𝑄, this follows
from Lemma 6.12) and we have 𝑥𝐶 = 0. This contradicts our choice of C and completes the proof of
injectivity of �̄�3.

We now prove that the image of �̄�3 contains the kernel of �̄�2. Take a nonzero element 𝑥 =
∑
𝐶 𝑥𝐶 of

ker �̄�2, where the sum is over homotopy classes of paths in Q starting at the tail of some arrow 𝛼 ∈ 𝐻𝑚
𝑣
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and 𝑥𝐶 =
∑

𝛼∈𝐻𝑚
𝑣

(
𝑎𝐶,𝛼,𝑚𝑟𝐶 𝑓

𝑚 ⊗ [𝛼]
)
, where 𝑟𝐶 is a minimal path in Q homotopic to C and 𝑎𝐶,𝛼,𝑚

are some coefficients in C. We wish to find 𝑦 ∈ 𝑋3 such that �̄�3(𝑦) = 𝑥. It suffices to find 𝑦𝐶 for each
homotopy class C with �̄�3 (𝑦𝐶 ) = 𝑥𝐶 (note that paths in 𝑦𝐶 will not be in the homotopy class C), so fix
a homotopy class C. Pick a vertex �̃� of 𝑄 corresponding to v. For 𝛼 ∈ 𝐻𝑚

𝑣 , let �̃� be the corresponding
arrow of 𝑄 ending at �̃�. Choose a (finite) disk submodel 𝑄𝐶 of 𝑄 containing �̃� and a minimal path 𝑟𝐶𝛼

in Q homotopic to 𝐶𝛼 for each 𝛼 ∈ 𝐻𝑚
𝑣 . Lift each 𝑟𝐶𝛼 to a minimal path 𝑟𝐶𝛼 beginning at 𝑡 (�̃�).

Similarly, lift 𝑥𝐶 to 𝑥𝐶 :=
∑

𝛼∈𝐻𝑚
𝑣
(𝑎𝐶,𝛼,𝑚𝑟𝐶 𝑓

𝑚 ⊗ [𝛼]), where 𝑟𝐶 is the lift of 𝑟𝐶 to 𝑄 beginning
at �̃�. We claim that 𝑥𝐶 is in the kernel of the lift ˜̄𝜇2.

Choose coefficients 𝑏𝛽,𝐷,𝑚 such that �̄�2 (𝑥𝐶 ) =
∑
𝛽∈𝑇𝑣

∑
𝐷:ℎ (𝛽)→?

∑
𝑚≥0 𝑏𝛽,𝐷,𝑚 [𝑟𝐷 𝑓

𝑚] ⊗ [𝛽], where
the second sum iterates over homotopy classes of paths of Q starting at ℎ(𝛽). For 𝛽 ∈ 𝑇𝑣 , let 𝛽 ∈ 𝑇�̃� ⊆ 𝑄1
be the corresponding arrow of 𝑄1 starting at �̃�. Similarly, for any 𝑟𝐷 starting at some ℎ(𝛽), lift it to 𝑟𝐷
starting at ℎ(𝛽). It follows from the definition of �̄�2 and ˜̄𝜇2, then, that˜̄𝜇2 (𝑥𝐶 ) =

∑
𝛽∈𝑇�̃�

∑
𝐷:ℎ (𝛽)→?

∑
𝑚≥0

𝑏𝛽,𝐷,𝑚 [𝑟𝐷 𝑓
𝑚] ⊗ [𝛽] .

But �̄�2 (𝑥𝐶 ) = 0, so for each 𝛽 ∈ 𝑇𝑣 , we have
∑
𝐷:ℎ (𝛽)→?

∑
𝑚≥0 𝑏𝛽,𝐷,𝑚 [𝑟𝐷 𝑓

𝑚] = 0. Then each coefficient
𝑏𝛽,𝐷,𝑚 = 0 (again this is immediate if A = 𝐴𝑄 and follows from Lemma 6.12 if A = 𝐴𝑄). Then the
above formula shows that ˜̄𝜇2 (𝑥𝐶 ) = 0. Then 𝑥𝐶 is in the kernel of ˜̄𝜇2.

By Corollary 5.1, 𝑄𝐶 is weakly consistent. By Theorem 5.2, two paths of 𝑄𝐶 are equivalent in 𝑄𝐶

if and only if they are equivalent as paths of 𝑄. By Theorem 7.6, the exact sequence corresponding
to (8) of 𝑄𝐶 must be exact. In particular, we get some �̃�𝐶 in �̃�3 which maps to 𝑥𝐶 through ˜̄𝜇3. Then
�̃�𝐶 considered as a sum of paths in 𝑄 descends to some 𝑦𝐶 in 𝑋3 with �̄�3 (𝑦𝐶 ) = 𝑥𝐶 , and the proof is
complete. �

7.3. Categorification

In certain special cases, Theorem 7.7 provides examples of categorifications of cluster algebras. We
loosely model this section after [48, §4]. We avoid defining technical terms used in this subsection, and
instead refer to [48] for more information.

Theorem 7.8 [2, Theorem 4.1 and Theorem 4.10]. Let A be an algebra and 𝑒 ∈ 𝐴 an idempotent. If A
is Noetherian, 𝐴 = 𝐴/〈𝑒〉 is finite-dimensional, and A is bimodule 3-Calabi-Yau with respect to e, then

1. 𝐵 = 𝑒𝐴𝑒 is Iwanaga-Gorenstein with Gorenstein dimension at most 3,
2. 𝑒𝐴 is a cluster-tilting object in the Frobenius category of Gorenstein projective modules GP(𝐵),
3. The stable category GP(𝐵) is a 2-Calabi-Yau triangulated category, and
4. The natural maps 𝐴→ End𝐵 (𝑒𝐴)𝑜𝑝 and 𝐴→ End𝐵 (𝑒𝐴)

𝑜𝑝 are isomorphisms.

If Q is a strongly consistent dimer model and e is its boundary idempotent, then 𝐴𝑄 is bimodule
internally 3-Calabi-Yau with respect to e by Theorem 7.7. Hence, in order to apply Theorem 7.8, it
suffices to check that 𝐴𝑄 is Noetherian and that 𝐴/〈𝑒〉 is finite-dimensional as a vector space.

Corollary 7.9. Let Q be a finite strongly consistent dimer model with boundary idempotent e. Suppose
that 𝐴𝑄/〈𝑒〉 is finite-dimensional (hence that 𝐴𝑄/〈𝑒〉 � 𝐴𝑄/〈𝑒〉) and that 𝐴𝑄 is Noetherian. Write
𝐵𝑄 := 𝑒𝐴𝑄𝑒 for the completed boundary algebra of Q.

1. 𝐵𝑄 is Iwanaga-Gorenstein with Gorenstein dimension at most 3,
2. 𝑒𝐴𝑄 is a cluster-tilting object in the Frobenius category of Gorenstein projective modules GP(𝐵𝑄),
3. The stable category GP(𝐵𝑄) is a 2-Calabi-Yau triangulated category, and
4. The natural maps 𝐴𝑄 → End𝐵𝑄

(𝑒𝐴𝑄)
𝑜𝑝 and 𝐴𝑄/〈𝑒〉 → 𝐴𝑄/〈𝑒〉 � End𝐵𝑄

(𝑒𝐴𝑄)
𝑜𝑝 are

isomorphisms.
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If Q has no 1-cycles or 2-cycles, then it follows from Corollary 7.9 (4) that GP(𝐵𝑄) is a
categorification of the cluster algebra whose seed is given by the underlying ice quiver of Q. Section 9
gives us tools to reduce a dimer model by removing digons while preserving the dimer algebra.

Remark 7.10. In the setting of Theorem 7.8, if 𝑒′′ is an idempotent orthogonal to e, then 𝐴 is
3-Calabi-Yau with respect to 𝑒′ := 𝑒 + 𝑒′′ by [46, Remark 2.2]. This means that if Q is a strongly
consistent dimer model and 𝐴𝑄 is Noetherian, then even if 𝐴𝑄/〈𝑒〉 is not Noetherian, we may use
a larger idempotent 𝑒′, where some of the internal vertices are seen to be frozen, in order to apply
Theorem 7.8. In this way, we can get categorifications even from, for example, a consistent dimer model
on a torus. See [2, §6].

Definition 7.11. We say that a dimer model Q is boundary-finite if 𝐴𝑄/〈𝑒〉 is finite-dimensional. We
say that Q is Noetherian if 𝐴𝑄 is Noetherian.

Hence, if Q is a finite strongly consistent dimer model, then in order to apply Corollary 7.9, we must
only check Noetherianness and boundary-finiteness of Q. The authors are not aware of an example of a
(weakly or strongly) consistent Noetherian dimer model on a surface other than a disk, annulus or torus.
Dimer models on tori and disks have been studied extensively.

◦ Any consistent dimer model on a torus is Noetherian [5], but since the boundary idempotent is zero,
such a dimer model is never boundary-finite. However, as in Remark 7.10, we may use a larger
idempotent to apply Theorem 7.8.

◦ If Q is a consistent dimer model on a disk with no digons, Pressland showed in [48, Proposition 4.4]
that Q is Noetherian and boundary-finite. Hence, Corollary 7.9 can be applied to any consistent
dimer model on a disk. Moreover, in the same paper, it is shown that (GP(𝐵𝑄), 𝑒𝐴𝑄) is a Frobenius
2-Calabi-Yau realization of the cluster algebra 𝒜𝑄 given by the ice quiver Q.

However, dimer models on annuli have seen comparatively little attention. We give some examples
pertaining to Corollary 7.9 in the following subsection.

7.4. Examples on the annulus

We first prove a technical lemma which we will use to verify Noetherianness of some examples from
this section. Recall that 𝑟𝐶 denotes a minimal path in the homotopy class C of paths on the surface of Q.

Lemma 7.12. Let Q be a strongly consistent dimer model on an annulus. Pick a vertex v of the dimer
model and a generator of the homotopy group of cycles on the annulus at v. Let 𝐶𝑣 be the homotopy
class of this generator. For any vertex w of Q, pick a path 𝑝 : 𝑤 → 𝑣 and let 𝐶𝑤 be the homotopy class
of 𝑝−1𝐶𝑣 𝑝 (note this does not depend on the choice of p). Suppose there exists a perfect matching M of
Q such that, for any vertex w of Q, we have M(𝑟𝐶𝑣 ) = M(𝑟𝐶𝑤 ) and M(𝑟𝐶−1

𝑣
) = M(𝑟𝐶−1

𝑤
). Then 𝐴𝑄

and 𝐴𝑄 are Noetherian.

Proof. Define A to be either 𝐴𝑄 or 𝐴𝑄. We must show that A is Noetherian.
We first claim that for any vertex w and any 𝑚 ≥ 1, the path (𝑟𝐶𝑤 )

𝑚 is the minimal path in the
homotopy class 𝐶𝑚

𝑤 . We show this by induction on m. The base case is true by hypothesis. Now choose
minimal cycle p in some homotopy class 𝐶𝑚

𝑤 (for 𝑚 ∈ N>1) and suppose we have shown the claim for
smaller values of m. Since 𝑆(𝑄) is an annulus and 𝑚 > 1, we must be able to factor 𝑝 = 𝑝2𝑞𝑝1, where
q is a cycle and either 𝑝1 or 𝑝2 (or both) is nonconstant. Since p is minimal, the paths 𝑝1, 𝑞, 𝑝2 must
be minimal, so by the induction hypothesis, we know that [𝑞] = [𝑟𝑎𝐶𝑡 (𝑞)

] and [𝑝2𝑝1] = [𝑟𝑏𝐶𝑤
] for some

𝑎, 𝑏 ∈ N≥1 such that 𝑎 + 𝑏 = 𝑚. Then M(𝑝) = M(𝑝2𝑞𝑝1) = M(𝑟𝑎𝐶𝑡 (𝑞)
) +M(𝑟𝑏𝐶𝑤

) = M(𝑟𝑚𝐶𝑤
), and

hence, [𝑝] = [𝑝2𝑞𝑝1] = [𝑟𝑚𝐶𝑤
] by Proposition 6.2.

Symmetrically, for any vertex w and 𝑚 ≥ 1, we have that (𝑟𝐶𝑤 )
−𝑚 is the minimal path in the

homotopy class 𝐶−𝑚
𝑤 .
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Define 𝑀 := M(𝑟𝐶𝑣 𝑟𝐶−1
𝑣
). Note that by assumption for any 𝑤 ∈ 𝑄0, we have

M(𝑟𝐶𝑤 𝑟𝐶−1
𝑤
) = M(𝑟𝐶𝑣 𝑟𝐶−1

𝑣
) = 𝑀 . Then for any 𝑤 ∈ 𝑄0, we have 𝑟𝐶𝑤 𝑟𝐶−1

𝑤
= 𝑓 𝑀𝑤 , and hence,(∑

𝑤 ∈𝑄0 𝑟𝐶𝑤

) (∑
𝑤 ∈𝑄0 𝑟𝐶−1

𝑤

)
= 𝑓 𝑀 .

Define the subalgebra Z of A as the set of (possibly infinite if A = 𝐴𝑄) linear combinations of
elements of the form

∑
𝑤 ∈𝑄0 𝑓

𝑎𝑟𝑏𝐶𝑤
or

∑
𝑤 ∈𝑄0 𝑓

𝑎𝑟𝑏
𝐶−1

𝑤
, for 𝑎, 𝑏 ∈ N≥0. Then Z is the polynomial ring

(if A = 𝐴𝑄) or ring of formal power series (if A = 𝐴𝑄) in three variables f and
∑

𝑤 ∈𝑄0 𝑟𝐶𝑤 and∑
𝑤 ∈𝑄0 𝑟𝐶−1

𝑤
, modulo the relation

(∑
𝑤 ∈𝑄0 𝑟𝐶𝑤

) (∑
𝑤 ∈𝑄0 𝑟𝐶−1

𝑤

)
= 𝑓 𝑀 . In either case, A is Noetherian by

standard results.
Let S be the set of paths of Q containing no cycles. Since Q is finite, S is also finite. We claim that A

is generated as a Z-algebra by S.
Indeed, take any path p of Q. We may write p in the form 𝑝𝑚𝑙𝑚 . . . 𝑙2𝑝2𝑙1𝑝1 for some 𝑚 ∈ N≥0 and

paths 𝑝𝑖 and 𝑙 𝑗 such that each 𝑙 𝑗 is a cycle and 𝑝𝑚 . . . 𝑝2𝑝1 is a path which contains no cycles. This
expression is not unique. By the claim, each 𝑙 𝑗 is equivalent to 𝑟𝑎 𝑗

𝐶
𝜀 𝑗
𝑡 (𝑙 𝑗 )

𝑓 𝑏 𝑗 for some 𝑎 𝑗 , 𝑏 𝑗 ∈ N≥0 and

𝜀 𝑗 ∈ {1,−1}. Then

[𝑝] = [𝑝𝑚𝑙𝑚 . . . 𝑙2𝑝2𝑙1𝑝1]

=

[
𝑝𝑚

(
𝑟𝑎𝑚
𝐶 𝜀𝑚

𝑡 (𝑙𝑚 )

𝑓 𝑏𝑚
)
. . . 𝑝2

(
𝑟𝑎1
𝐶

𝜀1
𝑡 (𝑙1 )

𝑓 𝑏1

)
𝑝1

]
=

⎡⎢⎢⎢⎢⎣���
∑

𝑗∈[𝑚]: 𝜀 𝑗=1
𝑟
𝑎 𝑗

𝐶ℎ (𝑝𝑚 )
𝑓 𝑏 𝑗 ������

∑
𝑗∈[𝑚]: 𝜀 𝑗=−1

𝑟
𝑎 𝑗

𝐶−1
ℎ (𝑝𝑚 )

𝑓 𝑏 𝑗 ���
⎤⎥⎥⎥⎥⎦ [𝑝𝑚 . . . 𝑝1] .

Note that 𝑝𝑚 . . . 𝑝1 ∈ 𝑆 and⎡⎢⎢⎢⎢⎣���
∑

𝑗∈[𝑚]: 𝜀 𝑗=1
𝑟
𝑎 𝑗

𝐶ℎ (𝑝𝑚 )
𝑓 𝑏 𝑗 ������

∑
𝑗∈[𝑚]: 𝜀 𝑗=−1

𝑟
𝑎 𝑗

𝐶−1
ℎ (𝑝𝑚 )

𝑓 𝑏 𝑗 ���
⎤⎥⎥⎥⎥⎦

is in Z . Since every path is of this form, it follows that A is generated by the finite set of paths S as a
Z-module. Since Z is Noetherian, the algebra A is also Noetherian, completing the proof. �

Before giving positive examples, we give three examples to which Corollary 7.9 may not be applied
in Figure 15, explained in the following two example environments. These examples show that neither
the assumption of Noetherianness nor boundary-finiteness is vacuous in Corollary 7.9.
Example 7.13. Consider the dimer model Q on the left of Figure 15. It may be checked using the strand
diagram that Q is weakly consistent, and it is not hard to see that Q is in addition nondegenerate. Let
M be the perfect matching consisting of the arrows drawn in red. For any vertex 𝑤 ∈ 𝑄0, let 𝐶𝑤 be
the homotopy class of cycles at w winding once counter-clockwise around the annulus as embedded
in Figure 15. Then it may be checked that, for any w, we have M(𝑟𝐶𝑤 ) = 0 and M(𝑟𝐶−1

𝑤
) = 4. Then

Lemma 7.12 shows that 𝐴𝑄 and 𝐴𝑄 are Noetherian. However, if w is an internal vertex, then any power
of 𝑟𝐶𝑤 is the only path in its equivalence class, showing that Q is not boundary-finite. Then Q satisfies
all requirements for Corollary 7.9 except for boundary-finiteness.
Example 7.14. Consider the dimer model Q in the middle of Figure 15. As in Lemma 7.12, let A be
𝐴𝑄 or 𝐴𝑄. It may be verified using the strand diagram that Q is weakly consistent, though Q is not
strongly consistent because no perfect matching contains any of its outer boundary arrows. Since every
path with at least two arrows passes through a boundary vertex, the model Q is boundary-finite.

Let M be the perfect matching consisting of the arrows drawn in red. We have M(𝑟𝐶𝑣1
) = 0 but

M(𝑟𝐶𝑣2
) = 1. Now for any 𝑗 ∈ N≥0, define 𝐼 𝑗 to be the left ideal of A generated by {𝛼𝑟 𝑖𝐶𝑣1

: 𝑖 ∈ [ 𝑗]},
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Figure 16. Two strongly consistent dimer models on annuli satisfying Noetherianness and boundary
finiteness.

where 𝛼 denotes the arrow 𝑣1 → 𝑣2. For any j, we have M(𝛼𝑟
𝑗
𝐶𝑣1

) = 0, and hence, 𝛼𝑟 𝑗𝐶𝑣1
is minimal.

Since this path has no morphable arrows, it is the only minimal path in its homotopy class. This shows
that [𝛼𝑟 𝑗𝐶𝑣1

] is nonzero in 𝐴𝑄 and that, moreover, if 𝑗 > 0, then 𝛼𝑟 𝑗𝐶𝑣1
is not in the left ideal 𝐼 𝑗−1. Then

𝐼0 � 𝐼1 � 𝐼2 � . . . is an infinite increasing chain of left ideals of A which never stabilizes; hence, A is
not Noetherian. This example is notable as it comes from a triangulated annulus as in [4, §13]. The fact
that such models are not nondegenerate or Noetherian indicates that they may not be the nicest dimer
models on annuli from our perspective.

Example 7.15. Consider the dimer model Q on the right of Figure 15. It may be verified using the
strand diagram that Q is weakly consistent, and it is not hard to see that Q is in addition nondegenerate.
Boundary-finiteness of Q is immediate since all vertices are boundary.

LetA be 𝐴𝑄 or 𝐴𝑄. For 𝑗 ∈ N≥0, let 𝐼 𝑗 be the left ideal ofA generated by {𝛼1(𝛾1𝛽1𝛾2𝛼3)
𝑖 : 𝑖 ∈ [ 𝑗]}.

As in Example 7.14, we may check that [𝛼1 (𝛾1𝛽1𝛾2𝛼3)
𝑗+1] ∉ 𝐼 𝑗 , hence 𝐼0 � 𝐼1 � . . . is an increasing

chain of left ideals of A which never stabilizes, and hence, A is not Noetherian. This dimer model then
satisfies all assumptions of Corollary 7.9 except for Noetherianness.

Example 7.13 shows that a strongly consistent and Noetherian dimer model may fail to be boundary
finite. Example 7.15 shows that a strongly consistent and boundary-finite dimer model may have a
non-Noetherian (completed and noncompleted) dimer algebra. So, no conditions of Corollary 7.9 are
vacuous. Further work is required to understand how the Noetherian condition interacts with weak and
strong consistency, as in [5] on the torus. It would be of interest to obtain a condition on the strand
diagram for a strongly consistent dimer model (on an annulus or in general) to be Noetherian. For now,
we give examples of annulus models satisfying the conditions of Corollary 7.9.

Example 7.16. Figure 16 shows two strongly consistent dimer models on annuli satisfying Noetheri-
anness and boundary finiteness. Consider the model Q on the right. Let M be the perfect matching
consisting of the six arrows drawn vertically in Figure 16. For any vertex 𝑤 ∈ 𝑄0, we let 𝐶𝑤 be the
homotopy class of paths winding once counter-clockwise around the model. It can then be checked that
M(𝑟𝐶𝑤 ) = 4 = M(𝑟𝐶−1

𝑤
) for any vertex 𝑤 ∈ 𝑄0. Then Lemma 7.12 shows that 𝐴𝑄 and 𝐴𝑄 are Noethe-

rian. The model Q is boundary-finite because any path p of length at least four is equivalent to a path
which factors through a boundary vertex. We have now seen that Q is strongly consistent, Noetherian,
and boundary-finite. The models of Figure 16 suggest a general construction. Note that the internal
subquiver of the model on the left is an alternating affine type 𝐴4 quiver, and on the right, the internal
subquiver is two layers of affine type 𝐴4 quivers which are connected to each other. One may obtain
similar models whose internal subquiver is any number of layers of an alternating affine type 𝐴2𝑛 quiver.
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Figure 17. A strongly consistent dimer model on an annulus satisfying Noetherianness and boundary
finiteness. The left and right sides should be identified. The strands going up are shown in red, while
the strands going down are left out for readability.

Example 7.17. Let Q be the dimer model of Figure 17. One may check similarly to Example 7.16
that Q is strongly consistent, Noetherian and boundary-finite. Similarly to the previous example, the
internal subquiver of this dimer model consists of two layers of some orientation of an affine type 𝐴11
quiver, stitched together with some vertical and diagonal arrows. Again, a more general construction is
indicated, and one may obtain a similar strongly consistent, Noetherian, and boundary-finite model for
any number of layers of any orientation of an affine type quiver.

Corollary 7.9 may be applied to the annulus models of Examples 7.16 and 7.17 to show that the
Gorenstein-projective module categories over their boundary algebras categorify the cluster algebra
given by their underlying quivers.

8. Extra results about equivalence classes

For this section, unless otherwise specified, we suppose that Q is a weakly consistent dimer model
and 𝑄 is a simply connected dimer model that is not on a sphere. We use Theorem 5.2 to get some
interesting results about the path equivalence classes in weakly consistent quivers. These results are not
used anywhere else in the paper.

Proposition 8.1. Let p and q be distinct elementary paths in a weakly consistent dimer model 𝑄 with
the same start and end vertices. If p is to the right of q, then either p has a left-morphable arrow or q
has a strictly higher c-value than p.

Proof. We may reduce to the case where p and q share no vertices except for the start and end vertices.
Then 𝑞−1𝑝 defines a disk submodel 𝑄 ′ of 𝑄 in which p consists only of boundary arrows in counter-
clockwise faces and q consists of boundary arrows in clockwise faces. If p has a strictly higher c-value
than q in 𝑄, then we are done. Suppose the c-value of p is less than or equal to that of q in 𝑄. Then
[𝑝] = [𝑞 𝑓 𝑚] for some m in 𝑄. By Theorem 5.2, the same is true in 𝑄 ′. It follows that p has a left-
morphable arrow in 𝑄 ′, and hence in 𝑄. This proves the desired result. �

Corollary 8.2. Let 𝑄 = 𝑄 be a simply connected dimer model. Let v and w be vertices of Q. Suppose
that there is a leftmost minimal path p from v to w. Then p is to the left of every minimal path and to the
right of every leftmost path.

Proof. If 𝑝′ is any other minimal path from v to w, Proposition 8.1 shows that p is to the left of 𝑝′. If q
is any other leftmost path from v to w, Proposition 8.1 shows that q is to the left of p. �

If Q is not simply connected, we may still pass to the universal cover and apply Corollary 8.2 to gain
insight into the equivalence classes of paths of Q.

Corollary 8.3. Suppose Q is a weakly consistent dimer model. If p and q are minimal homotopic leftmost
paths with the same start and end vertices, then 𝑝 = 𝑞.

https://doi.org/10.1017/fms.2025.18 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.18


40 J. Berggren and K. Serhiyenko

Proof. Suppose p and q are homotopic minimal leftmost paths with the same start and end vertices. Lift
them to minimal leftmost paths 𝑝 and 𝑞 of 𝑄. Since p and q are homotopic, these paths have the same
start and end vertices. It suffices to show that 𝑝 = 𝑞. Suppose this is not the case. By taking subpaths,
we may reduce to the case where 𝑝 and 𝑞 share only their start and end vertices. Say 𝑝 is to the right of
𝑞. Since both paths have the same c-value, Proposition 8.1 shows that 𝑝 has a left-morphable arrow, a
contradiction. �

Corollary 8.3 indicates that there is at most one minimal leftmost path between any two vertices
of Q. In general, leftmost paths need not exist. Figure 21 gives an example of a finite weakly consistent
dimer model on an annulus where a minimal path has an infinite equivalence class. Let 𝛼 be one of
the arrows of the digon of Q. Then an arbitrarily long series of left-morphs at the other arrow of the
digon may be applied to 𝛼. In other words, there is no leftmost path from the outer boundary ring to
the inner boundary ring. The dimer model in the middle of Figure 15 has no 2-cycles and displays the
same behavior: a minimal path from a vertex of the inner boundary to a vertex of the outer boundary
may be left-morphed or right-morphed indefinitely, depending on the path.

However, by assuming nondegeneracy, we guarantee the existence of leftmost and rightmost paths
between any given vertices.

Theorem 8.4. Let Q be a strongly consistent dimer model. Let v and w be distinct vertices of Q and let C
be a homotopy class of paths from v to w. Then there is a unique minimal leftmost path p from v to w in C.

Proof. We show the existence of a leftmost path from v to w. Uniqueness follows from Corollary 8.3.
Lift v and w to vertices �̃� and �̃� of the universal cover model 𝑄 such that a path from �̃� to �̃� descends
to a path of Q in homotopy class C. We consider paths on 𝑄 to have the grading of their corresponding
paths on Q. By path-consistency, all minimal paths from �̃� to �̃� are equivalent and hence have the same
grading k. Then if 𝑞 = 𝛼𝑚 . . . 𝛼1 is a minimal path from �̃� to �̃�, then since the degree of each arrow is
positive, we must have 𝑚 ≤ 𝑘 . This shows that the length of a minimal path from �̃� to �̃� is bounded
by k. This condition guarantees that there are a finite number of minimal paths from �̃� to �̃�.

Now consider again the minimal path 𝑞 from �̃� to �̃�. Let 𝑟 be any path from �̃� to �̃�. If 𝑞 is not leftmost,
then left-morph it at some arrow 𝛼1 to get some 𝑞1. Then Lemma 2.20 gives that Wind(𝑟𝑞1, 𝐹) <
Wind(𝑟𝑞, 𝐹) if F is one of the faces containing 𝛼1, and Wind(𝑟𝑞1, 𝐹) = Wind(𝑟𝑞, 𝐹) otherwise.
Continue to left-morph to get some sequence of paths 𝑞, 𝑞1, 𝑞2, . . . . By the above inequalities, for any j,
the inequality Wind(𝑟𝑞 𝑗+1, 𝐹) ≤ Wind(𝑟𝑞 𝑗 , 𝐹) holds for all faces F and is strict for some choice of F.
Repeating this argument shows that 𝑞𝑖 ≠ 𝑞 𝑗 for 𝑖 ≠ 𝑗 . Since there are a finite number of minimal paths
from �̃� to �̃� and the sequence never repeats itself, the sequence must terminate with some leftmost path
𝑝 := 𝑞𝑙 from �̃� to �̃�. This descends to a leftmost path p from v to w in homotopy class C. �

Theorem 8.4 and Corollary 8.2 are useful tools to understand equivalence classes of paths in non-
degenerate dimer models. In particular, if Q is a consistent (hence also nondegenerate) dimer model
in a disk and e is the boundary idempotent of Q, the boundary algebra 𝑒𝐴𝑄𝑒 may be used to obtain
an additive Frobenius categorification of the ice quiver of Q [48]. In a future paper, we will use these
results to study boundary algebras of consistent dimer models on disks.

9. Reduction of a dimer model

There has been some interest, particularly in the disk case, in reducing a dimer model by removing
digons. See [48] and [11, Remark 2.9]. In particular, if a weakly consistent, Noetherian, boundary-finite
dimer model Q has no 1-cycles or 2-cycles, our categorification result Corollary 7.9 shows that GP(𝑄)
categorifies the cluster algebra 𝒜𝑄 given by the underlying quiver of Q. However, if Q has 1-cycles or 2-
cycles, then it may not be immediately clear what cluster algebra is being categorified. Reducing a dimer
model helps to avoid this issue. In [48], Pressland works with consistent dimer models on a disk with
more than three boundary vertices. He observes that, in this case, the removal of digons corresponds
to untwisting moves in the strand diagram, and hence, their removal is straightforward. Moreover,
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Figure 18. Removing an internal digon.

the resulting reduced dimer models do not have any 2-cycles, and the disk version of Corollary 7.9
can be used to prove results about categorification. The situation for more general weakly consistent
dimer models is more complicated, as there may be copies similar to Figure 21 contained in the dimer
model whose digons may not be removed. However, such occurrences will force the dimer model to be
degenerate. Then in the nondegenerate case, we may freely remove internal digons from a dimer model
– that is, digons where both of its arrows are internal.

We now consider the reduction of a dimer model by removing digons. First, we consider weakly
consistent dimer models.

Proposition 9.1. Let Q be a weakly consistent dimer model with a finite number of digons. There exists
a reduced dimer model 𝑄𝑟𝑒𝑑 of Q satisfying the following:

1. 𝑆(𝑄𝑟𝑒𝑑) = 𝑆(𝑄),
2. 𝐴𝑄𝑟𝑒𝑑 � 𝐴𝑄,
3. 𝑄𝑟𝑒𝑑 is weakly consistent,
4. If Q is nondegenerate, then 𝑄𝑟𝑒𝑑 is nondegenerate, and
5. Either 𝑄𝑟𝑒𝑑 is a dimer model on a disk composed of a single digon, or every digon of 𝑄𝑟𝑒𝑑 is an

internal face incident to only one other face.

The condition (5) means that, as long as 𝑄𝑟𝑒𝑑 is not composed of a single digon, every digon of
𝑄𝑟𝑒𝑑 is in a configuration like that of Figure 21. See also Figure 14. In contrast, the configuration of
Figure 20 is not possible in a weakly consistent dimer model.

Proof. Note that (3) follows from (1). Suppose that Q is not merely a digon and let 𝛼𝛽 be a digon of
Q which is either a boundary face or is incident to two distinct faces. Then 𝛼 and 𝛽 may not both be
boundary arrows. Suppose 𝛼𝛽 is a clockwise face; the counter-clockwise case is symmetric.

If 𝛼 and 𝛽 are both internal arrows, then by assumption, the faces 𝐹𝑐𝑐𝛼 and 𝐹𝑐𝑐𝛽 are the distinct
neighbors of the digon 𝛼𝛽. Let 𝑄1 = (𝑄1

0, 𝑄
1
1, 𝑄

1
2) be the dimer model whose underlying quiver is Q

without 𝛼 and 𝛽 and whose set of faces is the same as 𝑄2, but with the faces {𝛼𝛽, 𝐹𝑐𝑐𝛼 , 𝐹
𝑐𝑐
𝛽 } replaced

with one face whose arrows are those of 𝑅𝑐𝑐𝛼 and 𝑅𝑐𝑐𝛽 . Since the dimer algebra relations of Q give
[𝛼] = [𝑅𝑐𝑐𝛽 ] and [𝛽] = [𝑅𝑐𝑐𝛼 ], the dimer algebra is not changed by this operation. The surface is also
unchanged by this operation. If M is a perfect matching of Q, then M contains either 𝛼 or 𝛽, and the
removal of this arrow from M gives a perfect matching of Q. Hence, if Q is nondegenerate, then 𝑄1 is
nondegenerate. See Figure 18.

However, suppose without loss of generality that 𝛼 is a boundary arrow and 𝛽 is internal. Then let
𝑄1 be the dimer model obtained by removing the arrow 𝛼 from 𝑄1 and the face 𝛼𝛽 from 𝑄2. As above,
[𝛼] = [𝑅𝑐𝑐𝛽 ] in 𝐴𝑄, and hence, the dimer model is unchanged by this operation. If M is a perfect
matching of Q, then M contains 𝛼 or 𝛽. If M contains 𝛼, then removing this arrow gives a perfect
matching of M. If M contains 𝛽, then M is also a perfect matching of Q. Then if Q is nondegenerate,
then 𝑄1 is nondegenerate. Furthermore, 𝑆(𝑄1) = 𝑆(𝑄). See Figure 19.

In either case, we have defined a quiver 𝑄1 such that 𝑆(𝑄1) = 𝑆(𝑄) and 𝐴𝑄1 � 𝐴𝑄. Furthermore,
𝑄1 has strictly less digons than Q. We may now apply this process repeatedly to remove all such digons
of Q. Note that a digon cannot be removed only if it is internal and incident to only one face or it is
incident to no other faces. In the latter case, such a digon constitutes the entire dimer model. Therefore,
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Figure 19. Removing a boundary digon.

Figure 20. One way that that a digon could be incident to only one other face. The strand diagram has
a bad lens; hence, this configuration is not possible in a weakly consistent dimer model.

Figure 21. A reduced dimer model on an annulus with a digon which may not be removed.

Figure 22. Shown is a dimer model on an infinite half-strip. If all digons were removed, then there
would only be one infinite face making up the entire non-compact surface, which is impossible.

since Q has a finite number of digons, this process must terminate with some 𝑄𝑟𝑒𝑑 such that 𝑄𝑟𝑒𝑑 is a
dimer model on a disk composed of a single digon, or every digon of 𝑄𝑟𝑒𝑑 is internal and incident to
only one other face. �

Figure 21 shows a weakly consistent model with an internal digon which may not be removed by the
process of the above theorem. Indeed, if the digon is removed, then the resulting ‘dimer model’ would
have a face which is not homeomorphic to an open disk. On the level of strand diagrams, removing
the digon corresponds to an untwisting move that disconnects the strand diagram. If Q has an infinite
number of digons, a new problem appears. See Figure 22, which shows an infinite model with an infinite
number of digons. While any finite number of digons may be removed, all of them may not be removed
at once. The universal cover of the dimer model of Figure 21 displays the same behavior.

Remark 9.2. In [47, §3], Pressland outlines a method of removing digons from general Jacobian ice
quivers without changing the completed algebra. If this process is applied to the dimer model of
Figure 21, the resulting ice quiver is not a dimer model.
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Figure 23. Shown on the left is a dimer model on a torus. Opposite dashed edges should be identified.
Shown on the right is a piece of its universal cover model.

Note that neither Figure 21 nor Figure 22 is nondegenerate. In fact, the following result shows that
any strongly consistent dimer model may be reduced to a dimer model with no digons.

Corollary 9.3. Let Q be a strongly consistent dimer model. There exists a reduced dimer model 𝑄𝑟𝑒𝑑

of Q satisfying the following:

1. 𝑆(𝑄𝑟𝑒𝑑) = 𝑆(𝑄),
2. 𝐴𝑄𝑟𝑒𝑑 � 𝐴𝑄,
3. 𝑄𝑟𝑒𝑑 is strongly consistent, and
4. Either 𝑄𝑟𝑒𝑑 is a dimer model on a disk composed of a single digon, or 𝑄𝑟𝑒𝑑 has no digons.

Proof. Apply Proposition 9.1. If 𝑄𝑟𝑒𝑑 is not a dimer model on a disk composed of a single digon, then
𝑄𝑟𝑒𝑑 has an internal digon 𝛼𝛽 which is incident to a single other face F. Let 𝛾 be an arrow of F which
is not 𝛼 or 𝛽. Any perfect matching M must contain 𝛼 or 𝛽, since 𝛼𝛽 is a face. Then M cannot contain
𝛾, since 𝛾 shares a face with these arrows. We have shown that no perfect matching contains 𝛾. Then
𝑄𝑟𝑒𝑑 , and by extension Q, is degenerate. �

We remark that 𝑄𝑟𝑒𝑑 may have 1-cycles and 2-cycles, even if it has no digons. Consider the dimer
model on a torus pictured on the left of Figure 23. While the quiver Q has 2-cycles, it has no null-
homotopic 2-cycles. As we see by looking at the universal cover model on the right, this means that
there are no digons in Q; hence, 𝑄 = 𝑄𝑟𝑒𝑑 is reduced.
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