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Abstract

We study random walks on metric spaces with contracting isometries. In this first
article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s
pivotal time construction. As an application, we establish the exponential bounds for
deviation from below, central limit theorem, law of the iterated logarithms, and the
geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
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1. Introduction

This is the first in the series of articles concerning random walks on metric spaces with contracting
elements. This series is a reformulation of the preprint [Cho22a] announced by the author, aiming
for a more concise and systematic exposition.

Let G be a countable group of isometries of a metric space (X, d) with basepoint o∈X.
We consider the random walk generated by a probability measure μ on G, which entails the
product Zn = g1 · · · gn of independent random isometries gi chosen with law μ. We are inter-
ested in the asymptotic behavior of a random path (Zn)n>0 seen by X, or in other words,
the behavior of a random orbit path (Zno)n>0 on X. For instance, we can ask the following
questions:

– Does the random variable (1/n)d(o, Zno) converge to a constant almost surely?
– Does the random variable (1/

√
n)d(o, Zno) converge in law to a Gaussian law?

– How fast does P(an� d(o, Zno)� bn) decay for 0� a� b?

These questions are associated with the so-called moment conditions. For each p > 0 we define
the pth moment of μ by

Eμ[d(o, go)
p] =

∫
G
d(o, go)p dμ,

and the exponential moment (with a parameter K > 0) of μ by

Eμ exp(Kd(o, go)) =

∫
G
eKd(o,go) dμ.

In the classical setting of X =R, the previous three questions are answered when μ has finite
first moment, finite second moment and finite exponential moment, respectively.

A particularly interesting examples come from isometric actions on non-positively curved
spaces. This setting includes Gromov hyperbolic groups [BQ16, BMSS22, Gou22]; relatively
hyperbolic groups [Sis17, QRT20]; groups with nontrivial Floyd boundary [GGPY21]; the map-
ping class group of a finite-type hyperbolic surface acting on Teichmüller space [KM96, Hor18,
DH18, BCK21] or the curve complex [Mah10a, Mah10b, Mah11]; the outer automorphism group
of a finite-rank free group acting on the Culler–Vogtmann outer space [Hor18, DH18] and the
free factor complex; groups acting on CAT(0) spaces [KM99, KL06, Fer18, LB22b, LB22a].

In this paper, we propose a unified theory for random walks on the aforementioned spaces.
We first study the case where X possesses strongly contracting isometries (see Convention 2.11),
and μ is non-elementary (see § 2.4). This condition is mild enough to cover all the aforementioned
spaces (except for outer space, which will be studied carefully in [Cho22b] due to the asymmetry
issue). At the same time, this is just the right amount of restriction that leads to limit laws
under optimal moment conditions.
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We also present a parallel theory for metric spaces with weakly contracting isometries (see
Convention 7.2). As a result, we obtain limit laws on hierarchically hyperbolic groups (HHGs)
with optimal moment conditions. We describe the case of mapping class group for concreteness.

Theorem 1.1. Let G be the mapping class group of a finite-type surface, let d be a word metric
on G, let (Zn)n≥0 be the random walk generated by a non-elementary probability measure μ on
G, and let

λ= λ(μ) := lim
n→∞

1

n
E[d(id, Zn)]

be the drift of μ on G. Then, for each 0<L<λ, the probability P(d(id, Zn)�Ln) decays
exponentially as n tends to infinity.

This is an analog of the result of Gouëzel [Gou22, Theorem 1.3], who established the expo-
nential bound for Gromov hyperbolic spaces. Note that, for every admissible probability measure
μ on the mapping class group G, the spectral radius of μ is strictly smaller than 1 due to the
non-amenability of G [Kes59]. Combining this with the exponential growth of G, one can obtain
L> 0 for which P(d(id, Zn)�Ln) decays exponentially. Hence, the nontrivial part of Theorem
1.1 is that L can be as close to λ as we want.

We also obtain the deviation inequalities with optimal moment conditions (see Proposition
4.13). Combining this with Mathieu–Sisto’s theory [MS20], we establish the central limit theorem
(CLT) and law of the iterated logarithms (LIL) on mapping class groups.

Theorem 1.2. Let G be the mapping class group of a finite-type hyperbolic surface, let d
be a word metric on G, and let (Zn)n�0 be the random walk generated by a non-elementary
probability measure μ on G with finite second moment. Then, there exists σ(μ)� 0 such that
(1/

√
n)(d(id, Zn)− nλ(μ)) converges in law to the Gaussian law N (0, σ(μ)) of variance σ(μ)2,

and moreover,

lim sup
n→∞

d(id, Zn)− nλ(μ)√
2n log log n

= σ(μ) almost surely.

In acylindrically hyperbolic groups, Mathieu and Sisto established CLT for random walks
with finite exponential moment [MS20, Theorem 13.4]. We strengthen their result by weakening
the moment condition.

Lastly, we address the geodesic tracking of random paths.

Theorem 1.3. Let G be the mapping class group of a finite-type surface, let d be a word metric
on G, and let (Zn)n�0 be the random walk generated by a non-elementary measure μ on G.

(i) Let p > 0 and suppose that μ has finite pth moment. Then for almost every sample path
(Zn)n�0, there exists a geodesic γ on G such that

lim
n→∞

1

n1/p
d(Zn, γ) = 0.

(ii) If μ has finite exponential moment, then there exists K <∞ such that the following holds.
For almost every sample path (Zn)n�0, there exists a geodesic γ on G such that

lim sup
n→∞

1

log n
d(Zn, γ)<K.

For finitely supported random walks, Sisto established the deviation rate d(Zn, γ) =
O(

√
n log n) [Sis17, Theorem 1.2]. Later, Qing, Rafi, and Tiozzo obtained the rate d(Zn, γ) =

1514
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O(log3g−3+b(t)), where g and b denote the genus and the number of punctures of the surface
[QRT20, Theorem C]. We refine these results by suggesting the deviation rate O(log(t)) for
random walks with finite exponential moment.

In full generality, the main results hold in the setting of Conventions 2.11 and 7.2. In particu-
lar, Theorems 1.1, 1.2 and 1.3 apply to random walks on rank-one CAT(0) spaces. This extends
the author’s previous work [Cho23] that deals with Gromov hyperbolic spaces and Teichmüller
space, and recovers several results by Le Bars [LB22b, LB22a].

To obtain the main theorems, we blend the pioneering theories due to Gouëzel [Gou22] and
due to Mathieu and Sisto [MS20]. Gouëzel’s method effectively captures the alignment of the
orbit path on X(see § 4.1), while Mathieu–Sisto’s technique provides the desired limit theorems
when appropriate deviation inequalities are given. Both of these theories rely on the Gromov
hyperbolicity of the ambient space. Our contribution is to replace the Gromov hyperbolicity
with weaker notion of hyperbolicity. In particular, we obtain large deviation principle, CLT and
geodesic tracking on (possibly non-proper) CAT(0) spaces. Moreover, we generalize Mathieu–
Sisto’s theory by lifting the moment condition, leading to the exponential bounds for the escape
to infinity and CLT for random walks without finite exponential moment.

1.1 Context

Random walks on groups have often been studied via their actions on Gromov hyperbolic spaces.
For instance, random walks on Teichmüller space and outer space have been understood by
coupling them with the curve complex and the free factor complex, respectively [Hor18, DH18].
A similar strategy was recently pursued for proper CAT(0) spaces by Le Bars [LB22b, LB22a],
building upon a new hyperbolic model for CAT(0) spaces [PSZ24].

These strategies eventually depend on the following ingredients:

– the non-atomness of the stationary measure on the Gromov boundary [MT18,
Proposition 5.1];

– CLT for martingales arising from Busemann cocycles [BQ16, Theorem 4.7];
– linear progress with exponential decay [Mah12, Theorem 1.2]; or
– linear progress using the acylindricity of the action [MS20, Theorem 9.1, Proposition 9.4].

The first two items require a nice (e.g., compact) boundary structure of X. These boundary
structures are also available in some class of non-Gromov-hyperbolic spaces (such as Teichmüller
space, outer space and finite-dimensional CAT(0) cube complices, see [Fer18, Fer18, FLM24]),
but are hard to come by in the general case.

To establish the third item, Maher considered a stopping time that arises when a random
path penetrates nested shadows, which relies on moment conditions: see [Mah12] and [Sun20].
For the last item, Mathieu and Sisto assumed finite exponential moment condition to couple the
random paths on G with the corresponding paths on G in probability.

It is not straightforward to apply the aforementioned strategies to, say, random walks on
(non-proper) CAT(0) spaces. Even in well-known settings such as Gromov hyperbolic groups,
moment conditions are often necessary. Our goal is to lift these restrictions: we want a structure
for random walks on a wide class of spaces X that:

– does not assume global Gromov hyperbolicity of X;
– does not rely on any boundary structure of X;
– does not assume any moment condition a priori ; and
– effectively captures the ‘alignment’ of a sample path on X.

1515
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The first goal was studied by Sisto in [Sis18]. Not assuming global Gromov hyperbolic-
ity of X, Sisto presented a random walk theory using strongly contracting isometries, which
are found in both Gromov hyperbolic spaces and CAT(0) spaces. Note that the existence
of strongly contracting isometries also has implications on the growth problem and counting
problem [ACT15, Yan14, Yan19, Yan20, Leg22, Cou22].

The second goal was pursued by Mathieu and Sisto for acylindrically hyperbolic groups in
[MS20], establishing deviation inequalities without referring to the boundary of X.

The first and the second goals were also pursued by Boulanger, Mathieu, Sert, and Sisto
in [BMSS22]. They discuss Corollary 6.5 for Gromov hyperbolic spaces and pointed out the
versatility of Schottky sets in other spaces. For more detail, see § 6.

All the goals except the first one were achieved in Gouëzel’s recent paper [Gou22]. In [Gou22],
Gouëzel establishes Theorem 1.1 for Gromov hyperbolic spaces by recording the Schottky direc-
tions aligned along a random path. Such a recording, called the set of pivotal times, grows
linearly with exponential decay. More importantly, this growth is uniform and is independent of
the intermediate non-Schottky steps.

Our theory achieves the four goals in the setting of Convention 2.11. For this purpose,
we combine Gouëzel’s pivotal time construction with Sisto’s theory of random walks involving
strongly contracting isometries. This was indirectly pursued for Teichmüller space in [Cho23].
Our usage of strongly contracting isometries is also hugely influenced by Yang’s series of papers
[Yan14, Yan19, Yan20] in the context of counting problems.

Although strongly contracting isometries are found in various groups, it is not known whether
the Cayley graph of a mapping class group possesses strongly contracting isometries. A related
issue arises when one considers a group G that is quasi-isometric to another group H. Having
a strongly contracting isometry is not passed through quasi-isometries: it is even not preserved
under the change of finite generating set of a group [ACGH19, Theorem 4.19].

This is why we provide a parallel theory in the language of weakly contracting isometries.
We note that having a weakly contracting infinite quasigeodesic is stable under quasi-isometry.
Strictly speaking, our setting is not stable under quasi-isometry: we consider two coarsely
equivariant G-actions, one involving weak contraction and the other one involving strong con-
traction. Nevertheless, the present theory is an attempt towards quasi-isometry (QI)-invariant
random walk theory. We record recent breakthrough in this direction by Goldborough and Sisto
[GS21], showing that certain QI-invariant group-theoretic property (that involves an action on
a hyperbolic space) guarantees a CLT for simple random walks.

1.2 Strategy

Morally, contracting directions constitute a tree-like structure. As a toy model, consider

G= F2 ∗Z2 = 〈a, b, c, d | cd= dc〉
acting on its Cayley graph X. A geodesic γ = abaaba in X is composed of edges e1 = [id, a],
e2 = [a, ab], e3 = [ab, aba], and so on. The geodesicity of γ forces the local alignment among ei: ei
projects onto ei+1 at the beginning point of ei+1 and ei+1 projects onto ei at the ending point of
ei. Conversely, this local alignment implies that γ is geodesic. (This is false when ei are directions
in a flat, e.g., e1 = [id, c], e2 = [c, cd], and e3 = [cd, cdc−1].) The same conclusion holds even if we
insert edges in the flats in between ei. For example, consider

e1 = [c, ca], e2 = [cacd, cacdb2], g= cacdb2cd.

Observe that (id, e1), (e1, e2), and (e2, g) satisfy the local alignment conditions. This forces that
e1 and e2 are subsegments of any geodesic between id and g even if such a geodesic is not unique
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due to flat parts. We will formulate this more precisely in the alignment lemma in § 3. We will
then construct many independent ‘tree-like’ directions. In our example, the set

SM,m = {(s1s2 · · · sM )m : si ∈ {a, b}}
consists of 2M directions in the free factor. We have the following properties.

(i) For any x∈X, d(id, [x, s±1])<M for all but at most 1 element s∈ SM,m.
(ii) For all s∈ SM,m, the geodesic [s−1, s] passes through id.

These properties will be captured by the notion of Schottky sets (Definition 3.15). Note that
one can increase the cardinality of SM,m by taking larger M .

Let us now consider the random walk Z generated by a probability measure μ with
μ(a), μ(b)> 0. Then, for any M,m> 0, each element of the Schottky set SM,m is admitted
by μ∗Mm. By decomposing μ∗Mm into a uniform measure on SM,m and the remainder, a ran-
dom path (Zn)n can be modelled by the concatenation of some non-Schottky isometries wi and
Schottky isometries si, where the timings for Schottky progresses are given by a renewal process.
That means, for a large K, a random word Zn = g1 · · · gn is of the form

Zn =w0s1w1 · · · sn/Kwn/K ,

where the si are drawn from SM,m. Now Gouëzel’s construction of pivotal times provides a large
K ′ such that the following holds: among {1, . . . , n/K}, we can pick indices i(1)< · · ·< i(n/KK ′)
at which the Schottky segment is aligned along the entire progress, i.e., w0s1 · · ·wi(k)[id, si(k)]
are subsegments of [id, Zn] (∗). Now pick x∈X. We have plenty of Schottky isometries avail-
able for the slot si(k). By choosing the right choice among them (i.e., by pivoting), we can also
assure that (x, w0s1 · · ·wi(k)[id, si(k)]) is aligned. Combined with (∗), this means that we have a
bound of d(id, [x, Zn]) in terms of an initial subsegment w0s1 · · ·wi(k) of the random path. All
these phenomena are exponentially generic (see Lemma 4.10). We subsequently obtain devia-
tion inequalities (Proposition 4.13), CLT, and geodesic tracking. A more involved combinatorial
model for random paths leads to the large deviation principle.

In this example, the contracting property of a tree-like edge e is as strong as possible: any
geodesic γ connecting the left and the right of e passes through e. We study two variants of such
a contracting property. If we require that γ passes through a bounded neighborhood of e, we say
that e is strongly contracting. If we require that γ passes through a log(diam(e))-neighborhood
of e, then we say that e is weakly contracting. The argument so far also works for strongly
contracting directions, up to a finite error. A more delicate argument is required for weakly
contracting isometries. We will deal with these notions in Part I and Part II, respectively.

2. Preliminaries

Before entering Part I, we review basic notions and lemmata. We fix a metric space (X, d) and a
basepoint o∈X. For x, y, z ∈X, we define the Gromov product of x and z with respect to y by

(x, z)y :=
1
2(d(x, y) + d(y, z)− d(x, z)).

2.1 Paths

Let A and B be subsets of X; A is K-coarsely contained in B if A is contained in the K-
neighborhood of B; A and B are K-coarsely equivalent if A is K-coarsely contained in B and vice
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=

=

=

x0
x1

x2
x3φ1

φ2

φ3

φ4φ1

φ2

φ3

φ4

x−4
x−3

x−2
x−1

x5
x6

x7
x8

φ1

φ2

φ3

φ4

o
φ1o

φ1φ2o

x4

=

Π(s)o

=

φ1φ2φ3φ4φ1φ2φ3φ4o= (Π(s))2o

Figure 1. Axes associated with a sequence of isometries s = (φ1, φ2, φ3, φ4). Points inside the
darker shadow constitute Γ+(s), and those inside the lighter shadow constitute Γ2(s). Points in
the dashed region constitute Γ−(s).

versa; A is K-coarsely connected if for every x, y ∈A there exists a chain x= a0, a1, . . . , an = y
of points in A such that d(ai, ai+1)�K for each i.

A path on X is a map γ : I →X from a 1-coarsely connected subset I of R, called a domain,
to X. A subdomain J of I is of the form I ∩ [a, b] for some a, b∈R. The restriction of γ on J is
called a subpath of γ. We denote this subpath by γ|[a,b].

For paths γ : I →X and γ′ : I ′ →X we say that γ′ is a reparameterization of γ when there
exists a non-decreasing map ρ : I ′ → I such that γ′ = γ ◦ ρ. We say that two paths κ : I →X
and η : J →X are K-fellow traveling if there exists a reparameterization κ′ : J →X of κ such
that d(κ′(t), η(t))�K for every t∈ J . In this case, note that the images of κ and η are within
Hausdorff distance K and the endpoints of κ and η are pairwise K-near. By abuse of notation,
for a κ : I →X path, κ will often refer to the set-theoretical image κ(I) of κ. For instance, when
we say that a path κ : I →X is K-close to a point x, it means d(κ(t), x)<K for some t∈ I.

We say that X is geodesic if for each pair of points x, y ∈X there exists a geodesic connecting
x to y. Given two points x, y ∈X, we denote by [x, y] an arbitrary geodesic connecting x to y.

Let [x, y] be a geodesic on X and A1, . . . , AN be subsets of [x, y]. We say that A1, . . . , AN

are in order from left to right if d(x, x1)� d(x, x2)� · · ·� d(x, xN ) for any choices of xi ∈Ai.
We will construct a path for a sequence of isometries as follows. Given a sequence α=

(φ1, · · · , φk) of isometries of X, we denote the product of its entries φ1 · · · φk by Π(α). Now let

xmk+i := Π(s)mφ1 · · · φio= (φ1 · · · φk)
mφ1 · · · φio

for each m∈Z and i= 0, . . . , k− 1; see Figure 1. We let Γm(α) := (x0, x1, . . . , xmk) when m� 0
and Γm(α) := (x0, x−1, . . . , xmk) when m< 0. For m=±1, we also use a simpler notation

Γ+(s) := (x0, x1, . . . , xk),

Γ−(s) := (x0, x−1, . . . , x−k).

In other words, we write

Γ+(φ1, . . . , φk) := (o, φ1o, φ1φ2o, . . . , φ1φ2 · · · φko),

Γ−(φ1, . . . , φk) := (o, φ−1
k o, φ−1

k φ−1
k−1o, . . . , φ

−1
k · · · φ−1

1 o).

Given a path γ = (y1, . . . , yN ), we denote by γ̄ its reversal, defined by

γ̄ := (yN , . . . , y1).

For example, the reversal of Γ−(α) is denoted by Γ̄−(α), which is

Γ̄−(φ1, . . . , φk) := (x−k, x−(k−1), . . . , x0)

= (φ−1
k · · · φ−1

1 o, . . . , φ−1
k φ−1

k−1o, φ
−1
k o, o).
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2.2 Strong contraction

Given a subset A of X, we define the closest point projection πA :X → 2A onto A by

πA(x) := {a∈A : d(x, a) = d(x, A)}.
Note that πA(x) is nonempty for each x∈X when A is a closed and locally compact set.

Definition 2.1. Let K > 0. A subset A of X is K-strongly contracting if the following holds
for the closest point projection πA:

diamX(πA(x)∪ πA(y))�K

for all x, y ∈X that satisfy dX(x, y)� dX(x, A).

A K-strongly contracting K-quasigeodesic is called a K-contracting axis. A lemma follows.

Lemma 2.2. Let A be a K-strongly contracting subset of X. Then the closest point projection
πA :X →A is (1, 4K)-coarsely Lipschitz, i.e., for each x, y ∈X we have

diam(πA(x)∪ πA(y))< d(x, y) + 4K.

This lemma is well known in various forms ([ACT15, Lemma 2.11], [Sis18, Lemma 2.4] and
[Yan19, Proposition 2.4(4)]). The explicit constant 4K is given as a consequence of Lemma 3.1.

Lemma 2.3 [Yan20, Proposition 2.2 (3)]. For each K > 1 there exists a constant K ′ =K ′(K)
such that any subpath of a K-contracting axis is a K ′-contracting axis.

Lemma 2.4 ([ACT15, Lemma 2.15] and [Yan20, Proposition 2.2(2)]). Let A and A′ be coarsely
equivalent subsets of X. Then A is strongly contracting if and only if A′ is strongly contracting.

Definition 2.5. An isometry g of X is strongly contracting if its orbit {gio}i∈Z is a strongly
contracting quasigeodesic.

Definition 2.6. We say that isometries g and h of X are independent if for any x∈X the map

(m, n) �→ d(gmo, hno)

is proper, i.e., {(m, n) : d(gmo, hno)<M} is bounded for each M > 0.

The following lemma will be proved in § 3.1.
Lemma 2.7. Two strongly contracting isometries g and h of X are independent if and only if
π{gio:i∈Z}({hio : i∈Z}) and π{hio:i∈Z}({gio : i∈Z}) have finite diameters.

2.3 Weak contraction

This subsection only matters in Part II; readers interested in Part I may skip this subsection.

Definition 2.8. Let K > 0 and A⊂X. A K-projection onto A is a K-coarsely Lipschitz map
π :X →A such that d(a, π(a))�K for each a∈A. Note that for each x∈X we have

d(x, π(x))� inf
a∈A

[d(x, a) + d(a, π(a)) + d(π(a), π(x))]

� inf
a∈A

[(K + 1)d(x, a) + 2K]� (K + 1)d(x, A) + 2K. (1)

A set A is K-weakly contracting if there exists a K-projection πA such that

diamX(πA(x)∪ πA(y))�K (2)

holds for all x, y ∈X that satisfy d(x, y)� d(x, A)/K.
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Lemma 2.9. For each K,M > 1 there exists K ′ >K such that the following holds.
Let x, y ∈X. Let A be a K-weakly contracting set such that d(x, A)�K ′ and such that

diam(πA(x)∪ πA(y))�K ′. Then there exists p∈ [x, y] such that diam(πA(x)∪ πA(p))� 2K ′ and
such that either

d(x, A)�Md(p, A) or Md(x, A)� d(p, A).

Proof. We set K ′ =K2(M(M + 7)(K + 1) + 1).
Let η : [0, L]→X be a geodesic connecting x to y. Note that for

τ := inf{0� t�L : diam(πA(x)∪ πA(η(t)))>K ′ +K}.
The K-coarse Lipschitzness of πA and inequality (2) imply

lim
ε→0+

diam(πA(η(τ))∪ πA(η(τ + ε)))�K,

diam(πA(x)∪ πA(η(τ)))� (K ′ +K)−K =K ′.

Hence, by replacing y with η(τ), we may assume diam(πA(x)∪ πA(η(t)))�K ′ +K for t∈ [0, L].
If d(η(t), A)< (1/M)d(x, A) for some t∈ [0, L], then we are done; suppose not. We inductively
take

t0 := 0, ti :=min
{
ti−1 +

1

MK
d(x, A), L

}
(i > 0).

The process halts at step N when tN reaches L. We then have

d(η(ti−1), η(ti)) = ti − ti−1 �
1

MK
d(x, A)� 1

K
d(η(ti−1), A)

for each i. Using inequality (2), we deduce

diam(πA(x)∪ πA(y))�
N∑
i=1

diam(πA(η(ti−1))∪ πA(η(ti)))�NK.

Since the left-hand side is at least K ′, we have N �K ′/K � 2KM(M + 7)(K + 1) + 1.
Meanwhile, ti − ti−1 = d(x, A)/MK holds for i�N − 1. This implies

d(x, y)� tN−1 − t0 � (N − 1)
1

MK
d(x, A)

and considering the assumption d(x, A)�K ′ �K we deduce

d(x, y)− diam(πA(x)∪ πA(y))� (N − 1)
1

MK
d(x, A)− (K ′ +K)

�MK(M + 7)(K + 1) · 1

MK
d(x, A)− 2K ′

= (M + 7)(K + 1)d(x, A)− 2K ′

� (M + 1)(K + 1)d(x, A) + 4K.

Now using inequality (1) twice, we get

d(y, A)� 1

K + 1
[d(y, πA(y))− 2K]

� 1

K + 1
[d(y, x)− d(x, πA(x))− diam(πA(x)∪ πA(y))− 2K]

� 1

K + 1
[d(x, y)− diam(πA(x)∪ πA(y))− (K + 1)d(x, A)− 4K]

�Md(x, A).
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Lemma 2.10. For each K > 1 there exists K ′ > 0 satisfying the following.
Let A be a K-weakly contracting set, let x, y ∈X, let p be a point on [x, y] and define

D1 := diam(πA(x)∪ πA(p)), D2 := diam(πA(y)∪ πA(p)).

Then we have

d(p, A)�K ′e−D1/K′
d(x, A) +K ′e−D2/K′

d(y, A) +K ′. (3)

Proof. Let M := 2K + 4, let K1 :=K ′(K,M) be as in Lemma 2.9, and let K ′ := 9MK1.
Suppose on the contrary that inequality (3) does not hold. Our goal is to find a triple x′, y′, z′

on [x, y], in order from left to right, such that

d(y′, A)>max(Md(x′, A), Md(z′, A), K ′),

4K1 � diam(πA{x′, y′, z′}).
If we find such triple, then we have

d(y′, A)>
K + 1

2K + 4
·M · d(x′, A) + K + 1

2K + 4
·M · d(z′, A) + 2

2K + 4
·K ′

� (K + 1)d(x′, A) + (K + 1)d(z′, A) + 18K1

> (K + 1)d(x′, A) + (K + 1)d(z′, A) + (2K1 + 4K).

This will then lead to the contradiction

d(x′, z′)� d(x′, πA(x
′)) + diam(πA(x

′)∪ πA(z
′)) + d(πA(z

′), z′)

� ((K + 1)d(x′, A) + 2K) + 4K1 + ((K + 1)d(z′, A) + 2K)

< 2d(y′, A)− (K + 1)d(x′, A)− (K + 1)d(z′, A)− 4K

�
[
d(y′, A)− d(x′, πA(x

′))
]
+
[
d(y′, A)− d(z′, πA(z

′))
]

� d(x′, y′) + d(y′, z′).

Let η : [0, L]→X be the geodesic connecting p to x and let t0 = 0. Given ti−1 ∈ [0, L), we pick
ti ∈ [ti−1, L] such that

diam(πA(η(ti−1))∪ πA(η(ti)))� 2K1, d(η(ti), A)�Md(η(ti−1), A). (4)

If such tN does not exist at step N , we let tN =L and stop.
Recall that we are assuming

d(η(t0), A)�K ′e−D1/K′
d(x, A) +K ′e−D2/K′

d(y, A) +K ′ �K ′.

Hence, d(η(ti), A)�M iK ′ �K ′ for i= 0, . . . , N − 1. (∗) Since η is bounded, the process must
stop at some N . We always have tN =L and η(tN ) = x. We discuss possible scenarios.

(i) d(πA(η(tN−1))∪ πA(η(tN )))> 2K1. Recall Lemma 2.9: there exists τ ∈ [tN−1, tN ] such that
diam(πA(η(tN−1)∪ η(τ))� 2K1 and either d(η(τ), A)�Md(η(tN−1), A) or d(η(τ), A)�
(1/M)d(η(tN−1), A). Since the first possibility is excluded, we conclude that d(η(τ), A)�
(1/M)d(η(tN−1), A). There are two subcases.

(a) N � 2: in this case, d(η(tN−1), A)�Md(η(tN−2), A) holds by our choice in display (4).
By (∗), we also know that d(η(tN−1), A)�K ′. Lastly, πA{η(tN−2), η(tN−1), η(τ)} has
diameter at most 4K1. Hence, we can take x′ = η(τ), y′ = η(tN−1) and z′ = η(tN−2).

(b) N = 1: in this case, we have d(η(τ), A)� (1/M)d(p, A). We first pick x′ = η(τ) and will
pick y′ and z′ later.
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(ii) diam(πA(η(tN−1)), πA(η(tN ))� 2K1. Then we have

D1 =diam(πA(η(0)), πA(η(tN ))�
N∑
i=1

diam(πA(η(ti−1)), πA(η(ti)))� 2K1N.

Since K ′ � 4K1, K
′ � e2 and e < 4< 2K + 4=M , we deduce

d(x, A)� 1

K ′ e
D1/K′

d(p, A)� 1

K ′ e
Nd(p, A)� (2K + 4)N−2d(η(t0), A)�

1

M
d(η(tN−1), A).

Given this, when N � 2, we can pick x′ = x= η(tN ), y′ = η(tN−1) and z′ = η(tN−2) and
deduce a similar contradiction. When N = 1, we set x′ = x.

So far, we have obtained either the desired triple (x′, y′, z′), or a point x′ ∈ [x, p] such that

diam(πA(x
′)∪ πA(p))� 2K ′, d(x′, A)� (1/M)d(p, A).

A similar discussion on [p, y] also gives either the desired triple, or a point z′ ∈ [p, y] such that
d(πA(z

′), πA(p))� 2K ′ and d(z′, A)� 1
M d(p, A). If we fall into the latter cases in both discussions,

we let y′ = p and deduce the contradiction.

2.4 Random walks

Let μ be a probability measure on a discrete group G acting on a metric space (X, d). We denote
by μ̌ the reflected version of μ, which by definition satisfies μ̌(g) := μ(g−1). The random walk
generated by μ is the Markov chain on G with the transition probability p(g, h) := μ(g−1h).

Consider the step space (GZ, μZ), the product space of G equipped with the product measure
of μ. Each element (gn)n∈Z of the step space is called a step path, and there is a corresponding
(bi-infinite) sample path (Zn)n∈Z under the correspondence

Zn =

⎧⎨
⎩

g1 · · · gn, n > 0,
id, n= 0,

g−1
0 · · · g−1

n+1, n < 0.

We also introduce the notation ǧn = g−1
−n+1 and Žn =Z−n. Note that we have an isomor-

phism (GZ, μZ)→ (GZ>0 , μZ>0)× (GZ>0 , μ̌Z>0) by (gn)n∈Z �→ ((gn)n>0, (ǧn)n>0). In view of this,
we sometimes write the bi-infinite sample path as ((Zn)n≥0, (Žn)n≥0), where the distributions
of (Zn)n and (Žn)n are independent.

In certain circumstances, it is beneficial to consider a probability space (Ω, P) where the step
distributions for the random walk are defined, together with some other random variables (RVs).
For this purpose, we say that (Ω, P) is a probability space for μ if there is a measure-preserving
map from (Ω, P) to (GZ>0 , μZ>0), or equivalently, if independent step RVs {gn(ω)}n>0 are defined
and distributed according to μ. We similarly define a probability space (Ω̌, P) for μ̌, together
with RVs {gn(ω̌)}n>0. Then the product space (Ω× Ω̌, P) models the (bi-infinite) random walk
generated by μ. We often omit ω while writing e.g., gn = gn(ω) and Zn =Zn(ω). To make a
distinction, we mark RVs on Ω̌ with the ‘check’ sign, e.g., ǧn := gn(ω̌), Žn :=Zn(ω̌).

We define the support of μ, denoted by suppμ, as the set of elements in G that are assigned
nonzero values of μ. We denote by μN the product measure of N copies of μ, and by μ∗N

the Nth convolution measure of μ. We say that μ is non-elementary if the subsemigroup gen-
erated by the support of μ contains two independent strongly contracting isometries g, h of
X. By taking suitable powers, we may assume that g and h belong to the same suppμ∗N for
some N > 0.
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When a constant M0 (to be fixed later) is understood, we use the notation

Yi(ω) := (Zi−M0
(ω)o, Zi−M0+1(ω)o, . . . , Zi(ω)o).

Similarly, we denote (Zi−M0
(ω̌)o, . . . , Zi(ω̌)o) by Yi(ω̌).

PART I. Random walks with strongly contracting isometries

In Part I, we develop a theory of random walks that involve strongly contracting isometries. The
following convention is employed throughout Part I.

Convention 2.11. We assume that:

– (X, d) is a geodesic metric space;
– G is a countable group of isometries of X; and
– G contains two independent strongly contracting isometries.

We also fix a basepoint o∈X.

We emphasize that no further requirements (properness, weak proper discontinuity, etc.) are
imposed on X or G. Convention 2.11 includes the following situations:

(i) (X, d) is a geodesic Gromov hyperbolic space and G contains independent loxodromics,
e.g.,

(a) (X, d) is the curve complex of a finite-type hyperbolic surface and G is the mapping
class group; or

(b) (X, d) is the complex of free factors of the free group of rank N � 3 and G is the outer
automorphism group Out(FN );

(ii) X is a Teichmüller space of finite type, G is the corresponding mapping class group, and
d is either the Teichmüller metric dT [Min96] or the Weil–Petersson metric dWP [BF02];

(iii) (X, d) is the Cayley graph of a braid group modulo its center Bn/Z(Bn) with respect to
its Garside generating set, and G is the braid group Bn [CW21];

(iv) (X, d) is the Cayley graph of a group G with nontrivial Floyd boundary [Kar03, GP13];
(v) (X, d) is the Cayley graph of a Gr′(1/6)-labeled graphical small cancelation group G

[ACGH19];
(vi) (X, d) is a (not necessarily proper nor finite-dimensional) CAT(0) space and G contains

independent rank-one isometries; e.g., G is an irreducible right-angled Artin group and
(X, d) is the universal cover of its Salvetti complex.

3. Alignment I: strongly contracting axes

In this section, we will formulate and prove the following claim. Let (κi)
n
i=1 be a sequence of

long enough contracting axes. Suppose that each pair of consecutive axes is aligned: κi (κi+1,
respectively) projects onto κi+1 (κi, respectively) near the beginning point of κi+1 (the ending
point of κi, respectively). Then the axes are globally aligned: κi projects onto κj near the
beginning point (ending point, respectively) of κj when i < j (i > j, respectively).
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3.1 Contracting geodesics

The goal of this subsection is to establish Corollary 3.5. We begin by recalling a lemma that
appeared as [ACT15, Lemma 2.14], [Sis18, Lemma 2.4] and [Yan19, Lemma 2.4(4)]. For a version
with an explicit constant, see the work by Chawla et al. [CCT25, Lemma 2.2].

Lemma 3.1. Let A be a K-strongly contracting set and let η : I →X be a geodesic such
that diam(πA(η))>K. Then there exist t < t′ in I such that πA(η) and η|[t,t′] are 4K-coarsely
equivalent, and moreover, such that

diam(πA(η|(−∞,t])∪ η(t))< 2K and diam(πA(η|[t′,+∞))∪ η(t′))< 2K.

Lemma 3.2. For each K > 1 there exists K ′ =K ′(K)>K that satisfies the following.
Let η : J →X be a K-quasigeodesic whose endpoints are x and y, let A be a subset of η such

that d(x, A)<K, d(y, A)<K, and let γ : J ′ →X be a geodesic that is K-coarsely equivalent to
A. Then, η and γ are alsoK ′-coarsely equivalent, and, moreover, there exists aK ′-quasi-isometry
ϕ : J → J ′ such that d(η(t), (γ ◦ϕ)(t))<K ′ for each t∈ J .

Proof. Without loss of generality, let J = [a, b], J ′ = [c, d] and η(a) = x, η(b) = y. For each s∈ J ′,
we can pick ts ∈ J such that d(γ(s), η(ts))<K as γ is coarsely contained in A. Note that

|ts1 − ts2 |�Kd(η(ts1), η(ts2)) +K2 �Kd(γ(s1), γ(s2)) + 3K2 =K|s1 − s2|+ 3K2.

Similarly, |ts1 − ts2 |� (1/K)|s1 − s2| − 1− 2K holds. Hence, s �→ ts is a 3K2-quasi-isometric
embedding.

It remains to show that {ts : s∈ J ′} is coarsely equivalent to J . Note that A is 3K-coarsely
connected, as it is K-coarsely contained in a 1-connected set γ. It follows that η−1(A) is
4K2-coarsely connected subset of [a, b]. Moreover, since x and y are K-close to A, we have
d(a, η−1(A)), d(b, η−1(A))< 2K2. Combined together, [a, b] is 4K2-coarsely contained in η−1(A).

Next, for each p∈A there exists s∈ J ′ such that d(γ(s), p)<K. This implies d(η(ts), p)< 2K
and diam(ts, η

−1(p))< 3K2. Hence, η−1(A) is 3K2-coarsely contained in {ts : s∈ J ′}.
The K-quasi-isometries between intervals are K ′-coarsely equivalent to a monotone map for

some K ′ =K ′(K) (for an explicit K ′, see the proof of [San06, Theorem 1.2]). Hence, we have:

Corollary 3.3. For each K > 1 there exists K ′ =K ′(K)>K that satisfies the following.
Let η : J →X be a K-quasigeodesic connecting x to y, let A be a subset of η such that

d(x, A)<K and d(y, A)<K, and let γ : J ′ →X be a geodesic that is K-coarsely equivalent to
A. Then η and γ are K ′-fellow traveling.

Combining Lemmas 3.1 and 3.2, we observe an instance of the Morseness of contracting axes
([ACGH17, Theorem 1.3], [Sis18, Lemma 2.8.(2)] and [Yan14, Lemma 2.2]).

Corollary 3.4. For each K > 1 there exists a constant K ′ >K that satisfies the following. Let
η : J →X be a K-contracting axis and γ : J ′ →X be a geodesic that share the endpoints. Then
η and γ are K ′-fellow traveling.

Corollary 3.5. For each K > 1 there exists a constant K ′ =K ′(K) that satisfies the following.
Let κ : I →X and η : J →X be K-contracting axes. Suppose that diam(πκ(η))>K ′. Then,

there exist t < t′ in I and s < s′ in J such that the following sets are all K ′-coarsely equivalent:

κ|[t,t′], η|[s,s′], πκ(η), πη(κ).

Moreover, we have

diam(πκ(η|(−∞,s])∪ η(s))<K ′, diam(πκ(η|[s′,+∞))∪ η(s′))<K ′.
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Proof. For simplicity, we focus on the case where κ, η have endpoints.
Let γ : J ′ →X be a geodesic that connects the endpoints of η. Then γ and η are coarsely

equivalent by Corollary 3.4. Lemma 2.2 tells us that πκ(γ) is coarsely equivalent to πκ(η) and
hence large. By Lemma 3.1, there exist u< u′ in J ′ such that πκ(γ) and γ|[u,u′] are coarsely
equivalent and such that γ|(−∞,u] and γ|[u′,+∞) project onto κ near γ(u) and γ(u′), respectively.

Note again that η and γ are fellow traveling by Corollary 3.4 and πκ is coarsely Lipschitz.
This enables us to replace γ with η: there exist s < s′ in J such that πκ(η) and η|[s,s′] are coarsely
equivalent and such that η|(−∞,s] and η|[s′,+∞) project onto κ near η(s) and η(s′), respectively.

Since πκ(η)⊆ κ and η|[s,s′] are nearby, each point η(t) in η|[s,s′] is near a point κ(st) of κ. This
κ(st) projects onto η near η(t). It follows that πη(κ) coarsely contains η|[s,s′] and hence πκ(η).

This implies that πη(κ) is also large, and we have another round: there exist t < t′ in I such
that πη(κ) and κ|[t,t′] are coarsely equivalent. Moreover, πκ(η) coarsely contains πη(κ). Hence,
the two projections are coarsely equivalent, and

πη(κ), κ|[t,t′], πκ(η), η|[s,s′]
are all coarsely equivalent.

We now digress to the proof of Lemma 2.7.

Proof of Lemma 2.7. Let η and κ denote the axes of g and h, i.e., η : i �→ gio and κ : j �→ hjo. Let
η and κ be K-contracting axes for some K > 0.

Suppose that πκ(η) has finite diameter, i.e., there exists M such that

πκ(η)⊆ {κ(−M), κ(−M + 1), . . . , κ(M − 1), κ(M)}.
Then, for each i∈Z and |j|>M + 2K2, the diameter of πκ(η(i))∪ κ(j) is greater than K and
[η(i), κ(j)] is 2K-close to πκ(η(i)). This forces that

d(η(i), κ(j))� inf
|t|�M

d(κ(j), κ(t))− 2K � 1

K
|j| − M

K
− 3K.

Similarly, if πη(κ) has finite diameter, then there exists M ′ such that d(η(i), κ(j))� (1/K)|i| −
M ′ holds for all j and |i|>M ′. Hence, d(gio, hjo) is a proper function, and g and h are
independent.

Now suppose that πκ(η) has infinite diameter. By Corollary 3.5, η and κ have subpaths η′

and κ′, respectively, that are coarsely equivalent to πκ(η), of infinite diameter. This means that
η and κ are not independent.

3.2 Alignment

Let us now define the notion of alignment. See Figure 2.

Definition 3.6. For i= 1, . . . , n, let κi be a path on X whose beginning and ending points are
xi and yi, respectively. We say that (κ1, . . . , κn) is C-aligned if

diamX(yi ∪ πκi
(κi+1))<C, diamX(xi+1 ∪ πκi+1

(κi))<C

hold for i= 1, . . . , n− 1.

Note that, if (κi, . . . , κj) and (κj , . . . , κk) are C-aligned, then (κi, . . . , κj , . . . , κk) is also
C-aligned. We allow degenerate paths, e.g., the case where κ1 or κn is a point.

Combining Lemma 3.1 and Corollary 3.3, we obtain the following consequence of alignment.
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x1 y1 x2 y2κ1 κ2

Figure 2. Schematics for an aligned sequence of paths.

Corollary 3.7. For each C,K > 1, there exists K ′ =K ′(K, C)>max(K, C) such that the
following holds.

Let x, y ∈X and let κ be a K-contracting axis such that diam(κ)>K + 2C and such that
(x, κ, y) is C-aligned. Then [x, y] contains a subsegment η that is 4K-coarsely contained in κ
and is K ′-fellow traveling with κ.

Our first lemma states that the alignment of two strongly contracting axes is governed by
the projections of their endpoints to the other axis.

Lemma 3.8. For each C,K > 1, there exists D=D(K, C)>max(K, C) such that the following
holds.

Let κ, η be K-contracting axes. If (κ, (beginning point of η)) and ((beginning point of κ), η)
are each C-aligned, then (κ, η) is D-aligned.

Proof. For simplicity, let us assume that the domains of κ and η are closed intervals, say, I =
[t0, t1] and J = [s0, s1], respectively.

It suffices to show that πκ(η) and πη(κ) are both small. Suppose not. Then Corollary 3.5
provides t < t′ in I and s < s′ in J such that

πκ(η), πη(κ), κ|[t,t′], η|[s.s′]
are all coarsely equivalent and large. Moreover, πη(κ(t0)) is near κ(t) and πη(κ(t1)) is near κ(t

′).
Similarly, πκ(η(s0)) is near η(s) and πκ(η(s1)) is near η(s

′).
Since πκ(η) and πη(κ) are large, both t′ − t and s′ − s are large. Since [κ(t), κ(t′)] and

[η(s), η(s′)] are coarsely equivalent, one of the following is true:

– κ(t) is near η(s) and κ(t′) is near η(s′); or
– κ(t) is near η(s′) and κ(t′) is near η(s).

This leads to the following contradictions.

– If κ(t) is near η(s), then η(s0) projects onto κ near κ(t). Since t1 − t� t′ − t is large, this
projection cannot be near κ(t1) = y.

– If κ(t) is near η(s′), then κ(t0) projects onto η near η(s′). Since s′ − s0 � s′ − s is large,
this projection cannot be near η(s0) = x′.

Hence, πκ(η) and πη(κ) cannot be large and the conclusion follows.

The following lemma was inspired by Behrstock’s inequality for subsurface projections and
curve complexes [Beh06, Theorem 4.3].
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Lemma 3.9 [Sis18, Lemma 2.5]. For each D,K > 1, there exists E =E(K,D)>max(K,D) that
satisfies the following.

Let κ, η be K-contracting axes in X. Suppose that (κ, η) is D-aligned. Then for any p∈X,
either (p, η) is E-aligned or (κ, p) is E-aligned.

We are now ready to prove the main result of this section.

Proposition 3.10. For each D,K > 1, there exist E =E(K,D)>max(K,D) and L=
L(K,D)>max(K,D) that satisfy the following.

Let x, y ∈X and let κ1, . . . , κn be K-contracting axes whose domains are longer than L.
Suppose that (x, κ1, . . . , κn, y) is D-aligned. Then (x, κi, y) is E-aligned for each i.

Proof. Let E =E(K,D) be as in Lemma 3.9 and let L= 3KE +K2. Our claim is that (x, κi)
and (κi, y) are E-aligned for each i. By symmetry, it suffices to prove the alignment of (x, κi).

Let κ be a K-contracting axis whose domain is longer than L. Then the endpoints of κ are
at least 3E-apart. Consequently, no point p in X satisfies the following at the same time:

(p, κ) is E-aligned, (κ, p) is E-aligned.

From this observation, we inductively deduce

(x, κi) is E-aligned⇒ (κi, x) is not E-aligned⇒ (x, κi+1) is E-aligned,

for i= 1, . . . , n, where the latter implication follows from Lemma 3.9.

The above proposition can be strengthened as follows. First, we record an immediate
consequence of the definition of fellow traveling.

Lemma 3.11. Let E > 0 and x, y ∈X. Let κ be a path that E-fellow travels with a subsegment
of [x, y]. Then (x, κ, y) is 4E-aligned.

Proposition 3.12. For each D,K > 1, there exist E =E(K,D)>max(K,D) and L=
L(K,D)>max(K,D) that satisfy the following.

Let x, y ∈X and let κ1, . . . , κn be K-contracting axes whose domains are longer than L and
such that (x, κ1, . . . , κn, y) is D-aligned. Then the geodesic [x, y] has subsegments η1, . . . , ηn,
in order from left to right, that are longer than 100E and such that ηi and κi are 0.1E-fellow
traveling for each i. In particular, (x, κi, y) are E-aligned for each i.

Proof. Let E1 =E(K,D) and L1 =L(K,D) be as in Proposition 3.10. Let K1 =E1 + 8K and let
E = 10K ′(K,K1), whereK

′(K,K1) is as in Corollary 3.7. Let also L=L1 + 101K(K +E) + 2K.
We will inductively prove a variant of the given statement, namely: First, we know that

(κ1, y) is E1-aligned by Proposition 3.10. Since (x, κ1, y) is K1-aligned and κ1 is long enough,
Corollary 3.7 provides a subsegment η1 = [x′1, y

′
1] of [x, y] that is 4K-coarsely contained in κ1

and is 0.1E-fellow traveling with κ1. We then have

d(x′1, y
′
1)� diam(κ1)− 0.2E � L

K
−K − 0.2E � 100E.

If n= 1, this finishes the proof. If not, note that y′1 is 4K-close to κ1. Lemma 2.2 implies that
(y′1, κ2) is (D+ 8K)-aligned, and hence K1-aligned. Now the induction hypothesis implies that
[y′1, y] has subsegments η2, . . . , ηn, in order from left to right, that are longer than 100E and such
that ηi and κi 0.1E-fellow travel for i� 2. Then η1, . . . , ηn become the desired subsegments.

Using Proposition 3.12, we can recover the following results by Yang.
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Lemma 3.13 [Yan14, Lemma 4.4, Yan19, Proposition 2.9]. For each D,M > 0 and K > 1, there
exist E =E(K,D,M)>D and L=L(K,D)>D that satisfy the following.

Let κ1, . . . , κn be K-contracting axes whose domains are longer than L. Suppose that
(κ1, . . . , κn) is D-aligned and d(κi, κi+1)<M for each i. Then the concatenation κ1 ∪ · · · ∪ κn
of κ1, . . . , κn is an E-contracting axis.

Lemma 3.14 [Yan14, Corollary 3.2]. For each D> 0 and K > 1, there exist E =E(K,D)>D
and L=L(K,D)>D that satisfies the following.

For each i∈Z, let κi be a K-contracting axis whose beginning and ending points are xi
and yi, respectively, and whose domain is longer than L. Suppose that (. . . , κi, κi+1, . . .) is
D-aligned. Then the concatenation of (. . . , [xi−1, yi−1], [yi−1, xi], [xi, yi], [yi, xi+1], . . .) is an E-
quasigeodesic.

3.3 Schottky sets

Using the previous concatenation lemmata, we will construct arbitrarily many independent
contracting isometries. Recall again the notation introduced in § 2.1.
Definition 3.15 (Cf. [Gou22, Definition 3.11]). Let K > 0 and let S ⊆Gn be a set of sequences
of isometries. We say that S is K-Schottky if:

(i) Γ+(s) and Γ−(s) are K-contracting axes for all s∈ S;
(ii) for each x∈X we have

#{s∈ S : (x, Γ+(s)) and (x, Γ−(s)) are K-aligned}�#S − 1;

(iii) for each s∈ S, (Γ̄−(s), Γ+(s)) is K-aligned.

Once a Schottky set S is understood, its element s is called a Schottky sequence and the translates
of Γ±(s) are called Schottky axes. We say that S is large enough if its cardinality is at least 400.

Let μ be a probability measure on G. If each element s of S is attained by the product
measure of μ, i.e., S ⊆ (suppμ)n, then we say that S is a Schottky set for μ.

An intuitive example was given in the introduction. Consider SM := {s1s2 · · · sM : si ∈ {a, b}}
in F2 = 〈a, b〉. For any infinite ray on F2, at most 1 element s∈ Sm heads into the direction

#{s∈ SM : (ξ, s)id �M or (ξ, s−1)id �M}� 1,

for each infinite ray ξ. Moreover, s and s−1 diverge early for any s∈ SM

(s−1, s)id < 1 for each s∈ S.

These properties are also satisfied by the set of Nth powers of elements of SM

SN,M := {sN : s∈ SM}.
Definition 3.16. Given a constant K0 > 0, we define:

– D0 =D(K0, K0) as in Lemma 3.8;
– E0 =E(K0, D0), L0 =L(K0, D0) as in Proposition 3.12.

A K0-Schottky set S whose elements have domains longer than L0 is called a long enough
K0-Schottky set. In other words, when S ⊆Gn is K0-Schottky and n>L0, S is called a long
enough K0-Schottky set. In this case, note that the endpoints of Γ+(s) are 100E0-apart for each
s∈ S.
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This definition is motivated by the alignment lemmata. Note that the D0-alignment of a
sequence of Schottky axes (γ1, . . . , γN ) is a local condition, between consecutive pairs of axes.
Proposition 3.12 then promotes this into the global alignment, i.e., the E0-alignment of (γi, γj)
for any i < j, given that the involved Schottky set is long enough. The following definition is
designed to capture this local-to-global phenomenon.

Definition 3.17. Let S be a Schottky set, let x, y ∈X and let κ1, . . . , κN be Schottky axes. We
say that (x, κ1, . . . , κN , y) is C-semi-aligned if it is a subsequence of a C-aligned sequence of x,
y, and Schottky axes, i.e., if there exist Schottky axes η1, . . . , ηN ′ and 1� i(1)< · · ·< i(N)�N ′

such that:

(i) (x, η1, . . . , ηN ′ , y) is C-aligned;
(ii) κk = ηi(k) for k= 1, . . . , N .

Here, we also say that (x, κ1, . . . , κN ) and (κ1, . . . , κN , y) are C-semi-aligned.

Lemma 3.18. Let S be a long-enough K0-Schottky set. Let x, y ∈X, and for each i= 1, . . . , N ,
let κi be a Schottky axis whose beginning and ending points are xi and yi, respectively.

(i) If (x1, κ2) and (κ1, x2) are K0-aligned, then (κ1, κ2) is D0-aligned.
(ii) If (x, κ1, . . . , κN , y) is D0-semi-aligned, then (κi, κj) is E0-aligned for each i < j. Moreover,

κi is 0.1E0-coarsely contained in [x, y] and (x, κi, y) is E0-aligned for each i. We also have

d(x, x1) +

N∑
i=1

d(xi, yi) +

N−1∑
i=1

d(yi, xi+1) + d(yN , y)� d(x, y) +E0N,

d(x, x1) +

N−1∑
i=1

d(yi, xi+1) + d(yN , y)� d(x, y)− 50E0N.

Proof. (1) By Lemma 3.8.
(2) Proposition 3.12 explains the first two claims in item (ii). More explicitly, [x, y] contains

subsegments [x′1, y
′
1], . . . , [x

′
N , y′N ], in order from left to right, such that:

(a) [x′i, y
′
i] and κi are 0.1E0-coarsely equivalent;

(b) d(x′i, xi)< 0.1E0 and d(y′i, yi)< 0.1E0;
(c) d(x′i, y

′
i)> 100E0;

for each i. This implies that

d(x, y) = d(x, x′1) +
N∑
i=1

d(x′i, y
′
i) +

N−1∑
i=1

d(y′i, x
′
i+1) + d(y′N , y)

� d(x, x1) +

N∑
i=1

d(xi, yi) +

N−1∑
i=1

d(yi, xi+1) + d(yN , y)− 2

N∑
i=1

(d(xi, x
′
i) + d(yi, y

′
i))

� d(x, x1) +

N∑
i=1

d(xi, yi) +

N−1∑
i=1

d(yi, xi+1) + d(yN , y)−E0N

� d(x, x1) +

N−1∑
i=1

d(yi, xi+1) + d(yN , y) + 50E0N.

We now associate long enough and large Schottky sets with non-elementary measures.
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Proposition 3.19 (Cf. [Gou22, Proposition 3.12]). Let μ be a non-elementary probability mea-
sure on G. Then for each N > 0, there exists K =K(N)> 0 such that for each L> 0 there exists
a K-Schottky set of cardinality N in (suppμ)n for some n>L.

Proof. Since μ is non-elementary, the semigroup generated by suppμ contains independent
strongly contracting isometries a and b. By taking suitable powers, we may assume that a=Π(α)
and b=Π(β) for some α, β ∈ (suppμ)L0 for some L0 > 0. There exists K0 > 0 such that:

(i) Γ+(α), Γ−(β) are K0-contracting axes; and
(ii) diam(o∪ πγ(η))<K0 for distinct axes γ, η among

Γ+(α), Γ−(α), Γ+(β), Γ−(β).

The above statements still hold with the same K0 when α and β are replaced with their self-
concatenations, thanks to Lemmas 2.3 and 2.7. Let:

– K1 =E(K0, K0)>K0 be as in Lemma 3.9;
– K2 =E(K0, K1)>K1, L2 =L(K0, K1) be as in Proposition 3.12;
– K3 =E(K0, K2)>K2, L3 =L(K0, K2) be as in Proposition 3.12;
– L′

3 = 3K0K3;
– K4 =E(K0, K0, 0), L4 =L(K0, K0) be as in Lemma 3.13.

By self-concatenating α and β if necessary, we may assume that

L0 >L2 +L3 +L′
3 +L4.

Since Γ+(α) is a K0-quasigeodesic whose domain L0-long, the endpoints of Γ+(α) are at least
(L0/K1 −K1)-apart. Since L0 is greater than 3K0K3 � 2K0K1 +K2

0 , the endpoints of Γ
+(α) are

2K1-far. In particular, no set A⊆X can be simultaneously contained in the K1-neighborhoods
of the two endpoints of Γ+(α). Hence, the statements

(x, Γ±(α)) is K1-aligned, (Γ±(α), x) is K1-aligned

are mutually exclusive for any x∈X. Similarly, the statements

(x, Γ±(β)) is K1-aligned, (Γ±(β), x) is K1-aligned

are mutually exclusive.
Let S0 be the set of sequences of NL0 isometries that are concatenations of α and β, i.e.,

S0 :=
{
(φ1, . . . , φNL0

)∈GNL0 : (φL0(i−1)+1, . . . , φL0i)∈ {α, β} for i= 1, . . . , N
}
.

Note that #S0 = 2N is greater than N . We claim that for each m> 0, the set

S
(m)
0 :=

{
m-self-concatenations of s∈ S0

}
=
{
(s, . . . , s︸ ︷︷ ︸
m times

) : s∈ S0

}

is a ((K0L0 +K0)N +K2 +K4)-Schottky set.

Step 1: Investigating Γm(s). Pick s= (φ1, . . . , φNL0
) and s′ = (φ′

1, . . . , φ
′
NL0

) in S0. Recall the
notation

xnNL0+i(s) := (φ1 · · · φNL0
)nφ1 · · · φio,

for n∈Z and i= 0, . . . , NL0 − 1. We now define ‘sub-axes’

Γi(s) := (xL0(i−1)(s), . . . , xL0i(s)),

Γ−i(s) := (x−L0(i−1)(s), . . . , x−L0i(s)),
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for each i > 0. These are translates of Γ±(α) and Γ±(β). Our initial choices of K0 and L0

guarantee that:

– Γi(s) is a K0-contracting axis whose domain is longer than L2, L3, L
′
3 and L4 for each i∈Z;

– (Γi(s), Γi+1(s)) and (Γ−i(s
′), Γ−(i+1)(s

′)) are K0-aligned for each i > 0. Moreover,
(Γ̄−1(s

′), Γ1(s)) is K0-aligned.

Lemma 3.13 tells us that ∪i>0Γi(s) is a K4-contracting axis. In particular, Γm(s) is a K4-
contracting axis for each m> 0. Similarly, Γ−m(s′) is a K4-contracting axis for each m> 0.

Now note that the following sequence of sub-axes is K0-aligned:

(. . . , Γ̄−2(s
′), Γ̄−1(s

′), Γ1(s), Γ2(s), . . .).

Let i > 0 and let p∈ Γ−i(s
′). Then Proposition 3.12 tells us that d(p, Γ1(s))< d(p, Γj(s)) for

each j > 1 and that (p, Γ1(s)) is K2-aligned. It follows that (p,∪i>0Γi(s)) is K2-aligned. For this
reason (and its symmetric counterpart), (Γ̄−m(s′), Γm(s)) is K2-aligned for each m> 0.

Next, fix x∈X and consider the condition

(x, ΓN (s)) is K2-aligned. (5)

If Condition (5) holds, then for each i >N

(x, ΓN (s), ΓN+1(s) . . . , Γi(s))

is K2-aligned and d(x, ΓN (s))< d(x, Γi(s)) holds by Proposition 3.12. Hence, π∪i>0Γi(s)(x) is
contained in Γ1(s)∪ · · · ∪ ΓN (s). Meanwhile, recall that, for each i, Γi(s) is a K0-quasigeodesic
whose domain is L0-long. Hence, we have

diam(Γi(s))�K0 · (length of the domain of s) +K0 =K0L0 +K0.

Combining these ingredients, we observe that

diam(πΓm(s)(x)∪ o)� diam(Γ1(s)) + · · ·+diam(ΓN (s))� (K0L0 +K0)N

holds for every m> 0. For a similar reason, the condition

(x, Γ−N (s)) is K2-aligned (6)

implies diam(πΓm(s)(x)∪ o)� (K0L0 +K0)N for all m< 0. In summary,

Observation 3.20. If s∈ S
(m)
0 satisfies Condition (5) and (6), then (x, Γm(s)) is (K0L0 +K0)N -

aligned for all m∈Z.

Step 2: Comparing two distinct axes. We now pick m> 0 and consider an element of S
(m)
0 which

violates these conditions.

Observation 3.21. If s= (φ1, . . . , φmNL0
)∈ S

(m)
0 violates Condition (5), then all the other

elements s′ = (φ′
1, . . . , φ

′
mNL0

)∈ S
(m)
0 satisfy Condition (5) and (6).

To show this, let k ∈ {1, . . . , N} be the first index such that (φL0(k−1)+1, . . . , φL0k) and
(φ′

L0(k−1)+1, . . . , φ
′
L0k

) differ. Let us denote xi(s) by xi and xi(s
′) by x′i. Note that the path

(xNL0
, xNL0−1, . . . , x(k−1)L0

= x′(k−1)L0
, x′(k−1)L0+1, . . . , x

′
NL0

)

is the concatenation of K0-aligned K0-contracting axes

(ηi)
2(N−k+1)
i=1 := (Γ̄N (s), Γ̄N−1(s), . . . , Γ̄k(s), Γk(s

′), . . . , ΓN (s′)).
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Recall that s violates Condition (5): (Γ̄N (s), x) = (η1, x) is not K2-aligned. Since (η1, η2) is K0-
aligned, Lemma 3.9 tells us that (x, η2) is K1-aligned. Then (x, η2, . . . , η2(N−k+1)) is K1-aligned
and Proposition 3.12 tells us that (x, η2(N−k+1)) = (x, ΓN (s′)) is K2-aligned. Hence, s′ satisfies
Condition (5).

Similarly, by considering the K0-aligned sequence

(Γ̄N (s), Γ̄N−1(s), . . . , Γ̄1(s), Γ−1(s
′), Γ−2(s

′), . . . , Γ−N (s′)),

we can deduce that (x, Γ−N (s′)) is K2-aligned as desired.
A similar argument leads to the following.

Observation 3.22. If s∈ S
(m)
0 violates Condition (6), then all the other elements in S

(m)
0 satisfy

Conditions (5) and (6).

Step 3: Summary. We claim that S
(m)
0 is ((K0L0 +K0)N +K2 +K4)-Schottky. The first and

the third requirements for Schottky sets were already observed before, so it remains to discuss
the second requirement. Considering Observation 3.20, it suffices to show that Conditions (5)

and (6) are satisfied by all but at most 1 element of S
(m)
0 . Observations 3.21 and 3.22 imply that

this is the case.
Given these observations, we can finish the proof by taking K = (K0L+K0)N +K2 +K4,

m=L and by taking any subset S ⊆ S
(m)
0 such that #S =N .

4. Pivoting and limit laws

In this section, we establish the notion of pivotal times and pivoting. We will then deduce CLT,
LIL and geodesic tracking of random walks using probabilistic estimates about pivotal times.
The proof of a key probabilistic estimate will be postponed to § 5.

4.1 Pivotal times: statement

Let μ be a non-elementary probability measure on G and let S be a long enough and large
Schottky set for μ. Then for sufficiently small ε > 0, an n-step random path (g1, . . . , gn) in the
μ-random walk contains at least εn subsegments

(gj(i)−M0+1, . . . , gj(i))∈ S (i= 1, . . . , εn).

The appearance of Schottky sequences in a random path does not necessarily imply something
about Zn = g1 · · · gn. For example, every Schottky sequence might be canceled out with the next
step, resulting in Zn = id. We nonetheless claim that, for a high probability, a certain number
of Schottky axes survive. More explicitly, we seek indices j(1)< · · ·< j(M), called the pivotal
times, such that the Schottky axes arising at these indices are aligned along [o, Zno]:

(o,Yj(1), . . . ,Yj(M), Zno) is aligned, whereYj(k) = (Zj(k)−M0
o, . . . , Zj(k)o).

We will observe that, for a high probability, a random path has sufficiently many pivotal times.
Then, we will freeze the steps except at the pivotal slots and choose the Schottky sequences at
the pivotal times from S. More explicitly, we will realize a structure where Yj(k) are identical
and independent distributions (i.i.d.s) on the uniform measure on {Γ(s) : s∈ S}: once this is
guaranteed, we can control the direction [o, Zno] and establish the deviation inequality.

We now formulate the discussion above.
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Definition 4.1. Let μ be a non-elementary probability measure onG, let (Ω, P) be a probability
space for μ, let K0, M0 > 0 and let S be a long enough K0-Schottky set contained in (suppμ)M0 ,
i.e., M0 is as large as described in Definition 3.16.

A subset E of Ω, accompanied by the choice of a subset P(E) = {j(1)< j(2)< · · · } ⊆M0Z>0,
is called a pivotal equivalence class if:

(i) for each i /∈ {j(k)− l : k� 1, l= 0, . . . , M0 − 1}, gi(ω) is fixed on E ;
(ii) for each ω ∈ E and k� 1, the following is a Schottky sequence:

sk(ω) := (gj(k)−M0+1(ω), gj(k)−M0+2(ω), . . . , gj(k)(ω))∈ S;

(iii) for each ω ∈ E , (o,Yj(1)(ω),Yj(2)(ω), . . .) is D0-semi-aligned; and
(iv) on E , {s1(ω), s2(ω), . . .} are i.i.d.s distributed according to the uniform measure on S.

We say that P(E) is the set of pivotal times for E .
When a pivotal equivalence class E ⊆Ω is understood, with the set of pivotal times P(E), for

each element ω of E we call P(E) the set of pivotal times for ω and write it as P(ω).

When the probability space (Ω, P) for μ is partitioned into pivotal equivalence classes {Eα}α,
then belonging to the same Eα becomes an equivalence relation. Choosing a different element
from the same pivotal equivalence class is called pivoting. But note that the choice of pivotal
equivalence classes is not canonical: given an ω ∈Ω, there are several ways to define the pivotal
equivalence class for ω. Proposition 4.2 below describes a particular choice of pivotal equivalence
classes that will be useful.

Let k be a positive integer. We say that a pivotal equivalence class E avoids k if k is not in
{j − l : j ∈P(E), l= 0, . . . , M0 − 1}; in this case, gk is fixed on E .
Proposition 4.2. Let μ be a non-elementary probability measure on G and let S be a long
enough and large Schottky set for μ. Then there exist a probability space (Ω, P) for μ and a
constant K > 0 such that, for each n� 0, we have a measurable partition Pn = {Eα}α of Ω into
pivotal equivalence classes avoiding 1, . . . , �n/2�+ 1 and n+ 1 that satisfies

P(ω : #(P(ω)∩ {1, . . . , k})� k/K | g1, . . . , g	n/2
+1, gn+1)�Ke−k/K , (7)

for each choice of g1, . . . , g	n/2
+1, gn+1 ∈G and k� n.

We postpone the proof of Proposition 4.2 to the next section and first see its consequence.

4.2 Pivoting

Let K0, N0 > 0 and let S be a long enough K0-Schottky set with cardinality N0. Given isometries
ui, let us draw a choice s= (s1, s2, . . . , sn) from Sn with the uniform measure and define

Un = u0Π(s1)u1Π(s2)u2 · · ·Π(sn)un.
Let κi :=Ui−1Γ

+(si) = u0Π(s1) · · · ui−1Γ
+(si). We claim the following.

Lemma 4.3. We have

P((x, κi) is K0-aligned for some i� k)� 1− (1/N0)
k,

P((κn−i+1, Unx) is K0-aligned for some i� k)� 1− (1/N0)
k,

for each 1� k� n and x∈X.

Proof. We prove the first estimate only; the second one follows similarly. Consider the statement

(u−1
0 x, Γ+(s1)) is K0-aligned.
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Thanks to the Schottky property, at most one choice of s1 from S violates this statement. Fixing
that bad choice, consider the statement

((u0Π(s1)u1)
−1x, Γ+(s2)) is K0-aligned.

Again, at most one choice of s2 from S violates this. Keeping this manner, we conclude the
following: except at most one bad choice among Sk

((u0Π(s1) · · · ui−1)
−1x, Γ+(si)) is K0-aligned, i.e., (x, κi) is K0-aligned,

holds for at least one i� k. This happens for probability at least 1− (1/N0)
k.

Now fix another set of isometries ǔi and another K0-Schottky set Š with cardinality N0. We
draw š= (š1, š2, . . . , šn) from Šn with the uniform measure, independently from s, and define

Ǔn = ǔ0Π(š1)ǔ1 · · ·Π(šn)ǔn.
Let ηi := Ǔi−1Γ

+(ši). Recall that η̄i denotes the reversal of ηi.

Lemma 4.4. We have

P((η̄i, κi) is D0-aligned for some i� k)� 1− (2/N0)
k,

for each 1� k� n.

Proof. Consider the statements

(u−1
0 ǔ0 · o, Γ+(s1)) is K0-aligned,

(ǔ−1
0 u0Π(s1) · o, Γ+(š1)) is K0-aligned.

Thanks to the Schottky property, at most one choice of s1 from S violates the first statement.
Similarly, given s1, at most one choice of š1 from Š violates the second statement. In short, the
two statements hold for all but at most 2N0 choices of (s1, š1)∈ S × Š.

Fixing a bad choice (s1, š1), consider the statements

((u0Π(s1)u1)
−1ǔ0Π(š1)ǔ1 · o, Γ+(s2)) is K0-aligned,

((ǔ0Π(š1)ǔ1)
−1u0Π(s1)u1Π(s2) · o, Γ+(š2)) is K0-aligned.

Again, at most 2N0 choices of (s2, š2)∈ S × Š violate the statements. Keeping this manner, we
conclude the following: for probability at least 1− (2/N0)

k, there exists i� k such that

((u0Π(s1) · · · ui−1)
−1ǔ0Π(š1) · · · ǔi−1 · o, Γ+(si)) is K0-aligned,

((ǔ0Π(š1) · · · ǔi−1)
−1u0Π(s1) · · · ui−1Π(si) · o, Γ+(ši)) is K0-aligned.

In other words, (ending point of η̄i, κi) and (η̄i, ending point of κi) are K0-aligned. Lemma 3.8
then tells us that (η̄i, κi) is D0-aligned.

Applying Lemmas 4.3 and 4.4 to pivotal equivalence classes, we obtain the following
corollaries.

Corollary 4.5. Let μ be a non-elementary probability measure on G, let K0, N0 > 0, and
let S be a long enough K0-Schottky set for μ with cardinality N0. Let E be a pivotal equiv-
alence class for μ with P(E) = {j(1)< j(2)< · · · } and let x∈X. Then for each k� 1 we
have

P((x,Yj(k)(ω),Yj(k+1)(ω), . . .) is D0-semi-aligned | E)� 1− (1/N0)
k.

Moreover, for any m� 1, n� j(m) and k= 1, . . . , m, we have

P((Yj(1)(ω), . . . ,Yj(m−k+1)(ω), Zn(ω)o) is D0-semi-aligned | E)� 1− (1/N0)
k.
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Corollary 4.6. Let μ be a non-elementary probability measure on G and let μ̌ be its reflected
version, letK0, N0 > 0 and let S and Š be long enoughK0-Schottky sets for μ and μ̌, respectively,
with cardinality N0. Let E be a pivotal equivalence class for μ with P(E) = {j(1)< j(2)< · · · },
and let Ě be a pivotal equivalence class for μ̌ with P(Ě) = {ǰ(1)< ǰ(2)< · · · }. Then we have

P((Ȳj(k)(ω),Yǰ(k)(ω̌)) is D0-semi-aligned | E)� 1− (2/N0)
k (∀k > 0).

We now record a small consequence of pivoting.

Corollary 4.7. Let (Zn)n>0 be the random walk generated by a non-elementary probability
measure μ on G with finite first moment. Then there exists a strictly positive quantity λ(μ)∈
(0,+∞], called the drift of μ, such that

λ(μ) := lim
n→∞

1
nd(o, Zno) almost surely.

Remark 4.8. The statement in Corollary 4.7 holds true even without the moment condition.
This will be the consequence of Theorem 6.4 in § 6.
Proof. By Kingman’s subadditive ergodic theorem, λ(μ) = limn(1/n)d(o, Zno) exists and is
constant almost surely. It remains to show that λ(μ)> 0.

Since μ is non-elementary, Proposition 3.19 provides a long enough and large Schottky set
S for μ. Given this, Proposition 4.2 provides a constant K > 0 and a measurable partition
P = {Eα}α into pivotal equivalence classes such that

P(ω : #(P(ω)∩ {1, . . . , k})� k/K)�Ke−k/K ,

for each k. Now let n> 0 and let E be a pivotal equivalence class with P(E) = {j(1)< j(2)< · · · }
such that #(P(E)∩ {1, . . . , n})� n/K, i.e., j(�n/K�)� n. Corollary 4.5 tells us that

P((o,Yj(1)(ω), . . . ,Yj(	n/2K
)(ω), Zno) is D0-semi-aligned | E)� 1− (1/#S0)
−n/2K+1.

By Lemma 3.18, we then have

P(d(o, Zno)< 50E0n/2K | E)� (1/#S0)
−n/2K+1.

We sum up these conditional probabilities on {ω : #(P(E ∩ {1, . . . , n})� n/K} to conclude

P(d(o, Zno)< 50E0n/2K)� (1/#S0)
−n/2K+1 +Ke−n/K .

The Borel–Cantelli lemma then implies d(o, Zno)� 50E0n/2K eventually almost surely.

4.3 Deviation inequality

Let μ be a non-elementary probability measure on G and let S be a long enough and large
K0-Schottky set contained in (suppμ)M0 for some K0, M0 > 0. Consider a bi-infinite path
((Zn(ω))n>0, (Zn(ω̌))n>0) arising from the random walk generated by μ. Recall:

Yi(ω) := (Zi−M0
o, Zi−M0+1o, . . . , Zio),

Yi(ω̌) := (Ži−M0
o, Ži−M0+1o, . . . , Žio).

For each k�M0, we investigate whether there exists M0 � i� k such that:

(i) (gi−M0+1, . . . , gi) is a Schottky sequence;
(ii) (Žmo,Yi(ω), Zno) is D0-semi-aligned for all n� k and m� 0.

We define υ= υ(ω̌, ω) as the minimal index k with the auxiliary index i� k as described above.
See Figure 3.

A motivating observation for the definition of υ(ω̌, ω) is as follows.
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o
Zio

Zi+M0
o

ZiΓ
+(α)

Zςo

(Zno)n

(Žno)n

Figure 3. Persistent progress and υ. Here, all of the backward loci (Žno)n�0 are on the left of
the persistent progress ZiΓ

+(α), while the forward loci after Zςo are all on the right.

Lemma 4.9. Let Ω=GZ>0 ×GZ>0 be the space of (bi-directional) step paths in G, let K0 > 0
and let S be a long enough K0-Schottky set. Then for each (ω̌, ω)∈Ω, we have

(Žmo, Zno)o � d(o, Zko),

for all m� 0 and n, k� υ(ω̌, ω).

Proof. Let i� υ(ω̌, ω) be the index such that (Žm′o,Yi(ω), Zn′o) is D0-semi-aligned for all n′ �
υ(ω̌, ω) and m′ � 0. Lemma 3.18 tells us that

d(Žm′o, Zn′o)� d(Žm′o, Zi−M0
o) + d(Zi−M0

o, Zio) + d(Zio, Zn′o)−E0

d(Žm′o, Zn′o)� d(Žm′o, Zi−M0
o) + d(Zio, Zn′o) + 50E0.

(n′ � υ(ω̌, ω), m′ � 0)

Let us now pick n, k� υ(ω̌, ω) and m� 0. Then we have

d(Žmo, Zno)� d(Žmo, Zi−M0
o) + d(Zi−M0

o, Zio) + d(Zio, Zno)−E0

� d(Žmo, Zi−M0
o) + d(Zi−M0

o, Zno)−E0,

d(o, Zko)� d(o, Zi−M0
o) + d(Zio, Zko) + 50E0 � d(o, Zi−M0

o) + 50E0.

(8)

Hence

2(Žmo, Zno)o = d(Žmo, o) + d(o, Zno)− d(Žmo, Zno)

� (d(Žmo, Zi−M0
o) + d(Zi−M0

o, o)) + (d(o, Zi−M0
o) + d(Zi−M0

o, Zno))

− (d(Žmo, Zi−M0
o) + d(Zi−M0

o, Zno)−E0)

� 2d(o, Zi−M0
o) +E0 � 2d(o, Zko).

We now provide a probabilistic estimate for υ(ω̌, ω).

Lemma 4.10. Let μ be a non-elementary probability measure on G, let K0 > 0 and let S be a
long enough and large K0-Schottky set for μ. Then there exists K ′ > 0 such that

P(υ(ω̌, ω)� k | gk+1, ǧ1, . . . , ǧk+1)�K ′e−k/K′
(9)

holds for all k� 0 and all choices of gk+1, ǧ1, . . . , ǧk+1 ∈G.
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Proof. Let S be a long enough and large K0-Schottky set in (suppμ)M0 for some M0 > 0. Let Š
be the reflected version of S, that means

Š := {(s−1
M0

, . . . , s−1
1 ) : (s1, . . . , sM0

)∈ S}.
Then Š is a long enough and large K0-Schottky set for μ̌. Let K > 0 be the constant determined
for S and Š in Proposition 4.2. We now fix k and gk+1, ǧ1, . . . , ǧk+1 ∈G.

Let Pk = {Eα}α be the partition of Ω into pivotal equivalence classes avoiding 1, . . . , �k/2�+
1 and k+ 1, given by Proposition 4.2. Let also P̌2k = {Ěα}α be the partition of Ω̌ into pivotal
equivalence classes avoiding 1, . . . , k+ 1 and 2k+ 1, given by Proposition 4.2. We have

P(A := {ω : #(P(ω)∩ {1, . . . , n})� n/K for all n� k})� 1− K

1− e−1/K
e−k/K ,

P(Ǎ := {ω̌ : #(P(ω̌)∩ {1, . . . , n})� n/K for all n� 2k})� 1− K

1− e−1/K
e−2k/K .

Let us enumerate P(ω) by {j(1)< j(2)< · · · }, and P(ω̌) by {ǰ(1)< ǰ(2)< · · · }. Let E ∈Pk and
Ě ∈ P̌2k be pivotal equivalence classes in A and Ǎ, respectively. In Ě × E , let B be the set of
(ω̌, ω) that satisfies the following:

(i) for x∈ {o, Ž1o, . . . , Ž2ko}, the following sequence is D0-semi-aligned:

(x,Yj(�k/3K�)(ω),Yj(�k/3K�+1)(ω), . . .);

(ii) for each n� k and m� 2k, the following are D0-semi-aligned:

(o,Yj(1)(ω),Yj(2)(ω), . . . ,Yj(�2n/3K�)(ω), Zno),

(o,Yǰ(1)(ω̌),Yǰ(2)(ω̌), . . . ,Yǰ(�2m/3K�)(ω̌), Žmo);

(iii) (Ȳǰ(i)(ω̌), Yj(i)(ω)) is D0-aligned for some i� k/3K.

The first item is handled by Lemma 4.3: it holds for probability at least 1− 2k · (1/400)k/3K .
Next, recall that, for each n� k, there are at least n/K pivotal times for E before n. Also, for

each m� 2k, there are at least m/K pivotal times for Ě before m. Hence, we can apply Lemma
4.3 and deduce that the following are D0-semi-aligned:

(Yj(1)(ω), . . . ,Yj(�2n/3K�)(ω), Zno), (Yǰ(1)(ω̌), . . . ,Yǰ(�2m/3K�)(ω̌), Žmo),

for probabilities at least 1− (1/400)n/3K−1 and 1− (1/400)m/3K−1, respectively. Taking inter-
section for n� k and m� 2k, we observe that item (ii) holds for probability at least 1− 3 ·
(1/400)k/3K−1.

Finally, item (iii) is handled by Lemma 4.4: it holds for probability at least 1− (1/200)k/3K−1.
Combining these, we deduce

P(B | Ě × E)� 1− (2k+ 4) · (1/200)k/3K−1 � 1− 200 · (2k+ 4) · 0.01k/3K .

It remains to prove that υ(ω̌, ω)� k for (ω̌, ω)∈B. First, by definition of A, j(�k/3K�) is
smaller than k and

s�k/3K� = (gj(�k/3K�)−M0+1, . . . , gj(�k/3K�))

is Schottky. Next, for each n� k, (o,Yj(1)(ω),Yj(2)(ω), . . . ,Yj(�2n/3K�)(ω), Zno) is D0-semi-
aligned. Hence, (o,Yj(�k/3K�)(ω), Zno) is also D0-semi-aligned.

We now investigate the alignment of (Žmo,Yj(�k/3K�)(ω)). For m� 2k, this is guaranteed by
item (1). When m� 2k, we appeal to items (2) and (3). Namely, the sequence

(Žmo, Ȳǰ(�2m3/�)(ω̌), . . . , Ȳǰ(i+1)(ω̌), Ȳǰ(i)(ω̌),Yj(i)(ω), . . . ,Yj(�k/3K�)(ω),Yj(�k/3K�+1), . . .)

is D0-semi-aligned. In particular, (Žmo, Ȳj(�k/3K�)(ω)) is D0-semi-aligned.
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Here is a corollary of Lemma 4.10 that we will use in § 6.
Corollary 4.11 [Gou22, Lemma 4.14]. Let μ be a non-elementary probability measure on G
and let (Zn)n be the random walk generated by μ. Then for each ε > 0, there exists C > 0 such
that

P(d(o, gZno)� d(o, go)−C for all n� 0)� 1− ε/2 (∀ g ∈G).

Proof. Let us pick K0 > 0 and a long enough and large K0-Schottky set S for μ. Let K ′ be the
constant as in Lemma 4.10. Given ε > 0, we take N > 1 large enough so that K ′e−N/K′ � ε/4.
Then, the definition of the RV υ(ω̌, ω) and Lemma 4.10 tell us that

P

(
there exists i <N such that Yi is a Schottky axis and

(g−1o,Yi, Zno) is D0-semi-aligned for each n�N

∣∣∣ ǧ1 = g−1

)
� 1− ε/4.

When (g−1o,Yi, Zno) is D0-semi-aligned, the second inequality in Lemma 3.18(ii) implies

d(g−1o, Zno)� d(g−1o, Zi−M0
o) + 50E0N � d(g−1o, o)− d(Zi−M0

o, o)� d(o, go)−
N∑
j=1

d(o, gjo).

This bound also holds for n�N

d(g−1o, Zno)� d(g−1o, o)− d(Zno, o)� d(o, go)−
N∑
j=1

d(o, gjo).

Given these, the proof ends by taking large enough C > 0 such that

P

( N∑
j=1

d(o, gjo)�C

)
� ε/4.

Corollary 4.12. Let μ be a non-elementary probability measure on G whose expectation
is infinite. Then μ∗m has infinite expectation for each m> 0. In particular, the drift λ(μ) :=
limm→∞(1/m)Eμ∗m [d(o, go)] is infinity.

Proof. Let ε= 0.2 and let C =C(μ, ε) be as in Corollary 4.11. Let (g1, . . . , gm) be distributed
according to μm. Then by Corollary 4.11, we have

E[d(o, g1g2 · · · gmo)|g1 = g]�E[(d(o, go)−C) · 1{d(o,gg2···gmo)�d(o,go)}|g1 = g]� 0.9 · (d(o, go)−C).

Now integrating over g1 ∈ suppμ with law μ, we get

E[d(o, g1g2 · · · gmo)]� 0.9Eμ[d(o, go)−C] =+∞.

Similarly, fixing the Schottky set S for μ, we similarly define υ̌= υ̌(ω̌, ω) as the minimal index
k that is associated with another index i� k such that:

(i) (ǧ−1
i , . . . , ǧ−1

i−M0+1) is a Schottky sequence;

(ii) (Žmo, Ȳi(ω̌), o) is D0-semi-aligned for all m� k; and
(iii) (Ȳi(ω̌), Zno) is D0-semi-aligned for all n� 0.

Then we similarly have

P(υ̌(ω̌, ω)� k | ǧk+1, g1, . . . , gk+1)�K ′e−k/K′
. (10)

Thanks to these exponential bounds, we can establish the deviation inequality.
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Proposition 4.13. Let p > 0 and let ((Žn)n, (Zn)n) be the (bi-directional) random walk gener-
ated by a non-elementary probability measure μ on G with finite pth moment. Then the random
variable supn,m�0(Žmo, Zno)o has finite 2pth moment.

Note the difference between this proposition and [Cho23, Propositions 5.6, 5.8]; we are taking
the global suprema, not the limit suprema.

Proof. Let K ′ be the constant for μ as in Lemma 4.10 and let

Dk :=

k∑
i=1

d(o, gio), Ďk :=

k∑
i=1

d(o, ǧio).

By triangle inequality, d(o, Zko)<Dl and d(o, Žko)� Ďl for all k� l. We begin by claiming

sup
n,m�0

(Žmo, Zno)
2p
o �

∞∑
i=0

|Ďp
i+1D

p
i+1 − Ďp

iD
p
i |(1Ďi�Di

1i<υ + 1Ďi�Di
1i<υ̌) almost surely. (11)

Since P(max{υ, υ̌}� k) is summable by inequality (9) and (10), the Borel–Cantelli lemma implies
that

l :=min{i : 1Ďi�Di
1i<υ + 1Ďi�Di

1i<υ̌ = 0}<+∞ almost surely.

Note that the right-hand side of inequality (11) is at least Ďp
l D

p
l .

Now at i= l, we have either Ďl �Dl or Ďl �Dl. In the first case l� υ must hold. Then for
m� 0 and n� l, we have

(Žmo, Zno)
2p
o � d(o, Zlo)

2p �D2p
l ≤ Ďp

l D
p
l ,

by Lemma 4.9. Moreover, for m� 0 and n� l, we have

(Žmo, Zno)
2p
o � d(o, Zno)

2p �D2p
n �D2p

l � Ďp
l D

p
l .

In the second case l� υ̌ must hold, and for a similar reason (Žmo, Zno)
2p
o is dominated by Ďp

l D
p
l .

Inequality (11) now follows.
We now need a small observation.

Fact 4.14. For s1, s2, t1, t2 � 0, the following holds:

|tp1tp2 − sp1s
p
2|= |tp1(tp2 − sp2) + (tp1 − sp1)s

p
2|

� 22p(|t1 − s1|p + s
p−np

1 |t1 − s1|np + sp1) · (|t2 − s2|p + s
p−np

2 |t2 − s2|np)

+ 2p(|t1 − s1|p + s
p−np

1 |t1 − s1|np)sp2 (np = p if 0� p� 1, np = 1 otherwise).

Proof of Fact 4.14. The fact follows from the following inequality in [BQ16, Section 5.4]:

|tp − sp|� 2p(|t− s|p + sp−np |t− s|np) (np = p if 0� p� 1, np = 1 otherwise).

We give its proof for completeness. Assume t� s without loss of generality. When p� 1, the
concavity of f(x) = xp implies the inequality. When p > 1, we divide the cases. If s < t/2, then

tp − sp < tp < (2(t− s))p � 2p|t− s|p.
If s� t/2, then we have

tp − sp =

∫ t

s
pxp−1 dx�

∫ t

s
p
( s

t− s
(x− s) + s

)p−1
dx

(
∵ s

t− s
� 1
)

= (t− s) · psp−1

∫ 2

1
up−1 du

(
u=

1

t− s
(x− s) + 1

)
= (t− s)sp−1(2p − 1)� 2psp−1(t− s).
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By Fact 4.14, the expectations of |Ďp
i+1D

p
i+1 − Ďp

iD
p
i |(1Ďi�Di

1i<υ + 1Ďi�Di
1i<υ̌) for i� 0 are

summable as soon as there exists K ′′ > 0 such that

E[d(o, ǧi+1)
n1d(o, gi+1)

n2Ďp−n1

i Dp−n2

i (1Ďi�Di
1i<υ + 1Ďi�Di

1i<υ̌)]<K ′′i2p+2e−i/K′′
, (12)

for each 0� n1, n2 � p with n1 + n2 �min(p, 1). We discuss the case n2 > 0; the other case n1 > 0
can be handled in the same way.

We will take advantage of the fact that E[Ďp
iD

p
i ] is bounded. Namely, the expectation of

Ďp−n1

i Dp−n2

i on the set {Di > c} is small for large c. Next, on the set {Di � c}, we will bound
the expectation of Ďp−n1

i Dp−n2

i 1Di<c1i<υ by using the exponential bound on P(i < υ) (that
suppresses Dp−n2

i < cp−n2) independent of the distribution of Ďi.
We first discuss the term E[d(o, ǧi+1)

n1d(o, gi+1)
n2Ďp−n1

i Dp−n2

i · 1Ďi�Di
1i<υ]. Let us fix ǧi+1

and gi+1 for the moment, and let c := ei/2pK
′
. We then have a decomposition

E[Ďp−n1

i Dp−n2

i 1Ďi�Di
1i<υ | ǧi+1, gi+1]

=E[Ďp−n1

i Dp−n2

i 1Di>c1Ďi�Di
1i<υ | ǧi+1, gi+1]+E[Ďp−n1

i Dp−n2

i 1Di�c1Ďi�Di
1i<υ | ǧi+1, gi+1].

(13)
The first term is controlled as follows:

E[Ďp−n1

i Dp−n2

i 1Di>c1Ďi�Di
1i<υ | ǧi+1, gi+1]

�E[Ďp−n1

i Dp−n2

i 1Di>c | ǧi+1, gi+1]

�E[Ďp−n1

i Dp
i · c−n2 ]�E[Ďp−n1

i ] ·E[Dp
i ] · c−n2 (∵D−n2

i � c−n2)

� ip−n1+1Eμ[d(o, go)
p−n1 ] · ip+1Eμ[d(o, go)

p] · c−n2 .

In the final step, we used the following fact for each r > 0 and i > 0:

E

[( i∑
j=1

d(o, gjo)

)r]
�E
[(

i · max
1�j�i

d(o, gjo)
)r]

�E

[
ir ·

i∑
j=1

d(o, gjo)
r

]
� ir+1Eμ[d(o, go)

r].

(14)
Next, we apply Lemma 4.10 to the second term of the right-hand side of Equation (13) and

observe

E[Ďp−n1

i Dp−n2

i 1Di�c1Ďi�Di
1i<υ | ǧi+1, gi+1]�E[Ďp−n1

i ·E[cp−n21i<υ | ǧ1, . . . , ǧi+1, gi+1]]

�E[Ďp−n1

i · cp−n2P[υ > i | ǧ1, . . . , ǧi+1, gi+1]]

� ip−n1+1Eμ[d(o, go)
p−n1 ] · cp−n2 ·K ′e−i/K′

.

Here, cp−n2 is dominated by cp = ei/2K
′
. Overall, we have

E[Ďp−n1

i Dp−n2

i 1Ďi�Di
1i<υ|ǧi+1, gi+1]

�K ′Eμ[d(o, go)
p−n1 ](1 +Eμ[d(o, go)

p]) · i2p max(e−i/2K′
, e−n2i/2pK′

).

We now multiply d(o, ǧi+1)
n1d(o, gi+1)

n2 and integrate. As a result, we observe

E[d(o, ǧi+1)
n1d(o, gi+1)

n2Ďp−n1

i Dp−n2

i · 1Ďi�Di
1i<υ]

=E[d(o, gi+1o)
n1d(o, ǧi+1o)

n2 ·E[Ďp−n1

i Dp−n2

i 1Ďi�Di
1i<υ | ǧi+1, gi+1]]

�E[d(o, gi+1o)
n1d(o, ǧi+1o)

n2 ·Eμ[d(o, go)
p−n1 ](1 +Eμ[d(o, go)

p]) · i2pK ′e−(n2/2(p+1)K′)i]

�C(μ) · i2pK ′e−(n2/2(p+1)K′)i,

for some constant C(μ)<+∞ determined by the distribution of μ, independent of i. Note that
μ has finite qth moment for every 0� q� p thanks to Jensen’s inequality.
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We similarly deal with the term E[d(o, ǧi+1)
n1d(o, gi+1)

n2Ďp−n1

i Dp−n2

i · 1Ďi�Di
1i<υ̌]. Fixing

gi+1 and ǧi+1 first, we split the expectation based on the dichotomy for Ďi:

E[Ďp−n1

i Dp−n2

i 1Ďi�Di
1i<υ̌ | ǧi+1, gi+1]

=E[Ďp−n1

i Dp−n2

i 1Ďi>c1Ďi�Di
1i<υ̌ | ǧi+1, gi+1]

+E[Ďp−n1

i Dp−n2

i 1Ďi�c1Ďi�Di
1i<υ̌ | ǧi+1, gi+1].

Here, a crucial observation is that Ďp−n1

i Dp−n2

i 1Ďi>c1Ďi�Di
1i<υ̌ is dominated by

Ďp−n1

i Dp−n2

i 1Di>c. The remaining step is analogous to the previous computations

E[Ďp−n1

i Dp−n2

i 1Ďi�Di
1i<υ̌ | ǧi+1, gi+1]

�E[Ďp−n1

i Dp−n2

i 1Di>c | ǧi+1, gi+1] +E[Ďp−n1

i Dp−n2

i 1Ďi�c1i<υ̌ | ǧi+1, gi+1]

�E[Ďp−n1

i Dp
i · c−n2 | ǧi+1, gi+1] +E[Dp−n2

i ·E[cp−n11i<υ̌ | ǧi+1, g1, . . . , gi+1]]

�E[Ďp−n1

i ] ·E[Dp
i ] · c−n2 +E[Dp−n2

i ] · cp−n1P[υ̌ > i | ǧi+1, g1 . . . , gi+1]

� ip−n1+1Eμ[d(o, go)
p−n1 ] · ip+1Eμ[d(o, go)

p] · c−n2 + ip−n2+1Eμ[d(o, go)
p−n2 ] · cp−n1 ·K ′e−i/K′

.

We then multiply d(o, ǧi+1)
n1d(o, gi+1)

n2 and integrate over ǧi+1 and gi+1 to obtain a summable
bound. This concludes the inequality (12).

The previous proof also yields the following corollary.

Corollary 4.15. Let p > 0 and let ((Žn)n>0, (Zn)n>0) be the (bi-directional) random walk
generated by a non-elementary probability measure μ on G with finite pth moment. Then there
exists K > 0 such that

E[min{d(o, Zυo), d(o, Žυ̌o)}2p]<K.

Proof. In view of the previous proof, it suffices to check

min{d(o, Zυo), d(o, Žυ̌o)}2p �
∞∑
i=0

|Ďp
i+1D

p
i+1 − Ďp

iD
p
i |(1Ďi�Di

1i<υ + 1Ďi�Di
1i<υ̌).

The right-hand side is at least Ďp
l D

p
l for l=min{i : 1Ďi�Di

1i<υ + 1Ďi�Di
1i<υ̌ = 0}. Note that

either Ďl �Dl or Ďl �Dl holds. In the first case, we are forced to have l� υ; then

min{d(o, Zυo), d(o, Žυ̌o)}2p � d(o, Zυo)
2p �D2p

υ �D2p
l � Ďp

l D
p
l .

In the second case, we are forced to have l� υ̌; then

min{d(o, Zυo), d(o, Žυ̌o)}2p � d(o, Žυ̌o)
2p � Ď2p

υ̌ � Ď2p
l � Ďp

l D
p
l .

We now discuss random walks with finite exponential moment.

Corollary 4.16. Let ((Žn)n>0, (Zn)n>0) be the (bi-directional) random walk generated by a
non-elementary probability measure μ on G with finite exponential moment. Then there exists
K > 0 such that

E[exp(d(o, Zυo)/K)]<K.

Proof. Let K ′ be as in Lemma 4.10 and Di =
∑i

k=1 d(o, gko). Then ed(o,Zυo)/K is dominated by∑
i�υ e

Di/K . Hence, we need to show that E[eDi/K1i<υ] is summable. Let K, c > 0 and observe
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E[eDi/K1i<υ]�E[eDi/K1Di<c1i<υ] +E[eDi/K1Di�c1i<υ]

�E[ec/K1i<υ] +E[e2Di/Ke−c/K ]

� ec/KK ′e−i/K′
+ e−c/K · (Eμ[exp(2d(o, go)/K)])i.

By takingK large enough, we can make Eμ[exp(2d(o, go)/K)]� e1/4K
′
. Then we take c= iK/2K ′

and conclude E[eDi/K1i<υ]< (K ′ + 1)e−i/4K′
.

4.4 Limit theorems

The second-moment deviation inequality implies the following CLT.

Theorem 4.17. Let (X,G, o) be as in Convention 2.11 and let (Zn)n>0 be the random walk
generated by a non-elementary probability measure μ on G with finite second moment. Then
the following limit (called the asymptotic variance of μ) exists:

σ2(μ) := lim
n→∞

1
nVar[d(o, Zno)],

and the random variable (1/
√
n)[d(o, Zno)− λ(μ)n] converges in law to the Gaussian law

N (0, σ(μ)) with zero mean and variance σ2(μ).

Proof. Since μ has finite second moment, Proposition 4.13 implies that supn,m�0(Žmo, Zno)o has
finite fourth moment, and hence finite second moment. Now Theorems 4.1 and 4.2 of [MS20]
lead to the conclusion.

Remark 4.18. In fact, the following non-degeneracy statement holds.

Fact 4.19. Let (X,G, o) be as in Convention 2.11 and let (Zn)n be the random walk gener-
ated by a non-elementary probability measure μ on G. Then the asymptotic variance σ2(μ) :=
limn

1
nVar[d(o, Zno)] is nonzero if and only if μ is non-arithmetic, i.e., there exists N > 0 and

two elements g, h∈ (suppμ∗N ) of suppμ∗N with distinct translation lengths.

The strict positivity of σ2(μ) for non-arithmetic random walks on Gromov hyperbolic spaces
and Teichmüller space was discussed in [Cho23]; see Theorem B and Claim 6.2 of [Cho23]. Since
the argument in [Cho23] also applies to the general case, we omit the proof here.

We next discuss the LIL.

Theorem 4.20. Let (X,G, o) be as in Convention 2.11 and let (Zn)n>0 be the random walk
generated by a non-elementary probability measure μ on G with finite second moment. Then
for almost every sample path (Zn)n we have

lim sup
n→∞

d(o, Zno)− λ(μ)n√
2n log log n

= σ(μ),

where λ(μ) is the drift of μ and σ2(μ) is the asymptotic variance of μ.

We proved the LIL based on the uniform fourth-order deviation inequality in [Cho23]. We
give another argument because we will only have second-order deviation inequality in Part II.

Proof. In the proof of the LIL in [Cho23] (see [Cho23, Claim 7.1]), the author proved the following
lemma.
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Lemma 4.21. Let K > 0 and let {Uk,i}i,k∈Z>0
be RVs such that, for each k, {Uk,i}i are i.i.d.s

with zero mean and variance at most K. Then for each ε > 0, there exists M > 0 such that

P

(
lim sup

n

1√
2n log log n

∣∣∣∣
	log2 n
∑
k=M

	n/2k+1
∑
i=1

Uk,i

∣∣∣∣> ε

)
� ε.

We now set

Yk,i := d(Z2k(i−1)o, Z2kio), bk,i := (Z2k(2i−2)o, Z2k·2io)Z2k(2i−1)o.

Equivalently, we have Yk+1,i = Yk,2i−1 + Yk,2i − 2bk,i. Note that {bk,i}k,i have uniformly bounded
variance by Lemma 4.10 and {bk,i −E[bk,i]}i are i.i.d.s with zero mean for each k. We
also set

bk;n =

{
(Z2k+1	n/2k+1
o, Zno)Z2k(2�n/2k+1�+1)o, if 2k(2�n/2k+1�+ 1)<n,

0, otherwise.

We then observe the decomposition

d(o, Zno) =

	n/2M
∑
i=1

YM,i + d(Z2M	n/2M
o, Zno)− 2

	log2 n
∑
k=M

(
bk;n +

	n/2k+1
∑
i=1

bk,i

)
(∀n,M > 0).

(15)
Indeed, the right-hand side is unchanged when M increases by one and is equal to d(o, Zno) at
M > �log2 n�.

Now, fixing an ε > 0, we take M > 0 for {bk,i −E[bk,i]}i,k using Lemma 4.21. We balance each
term in display (15) by subtracting its expectation, normalize with the denominator

√
2n log log n

and then examine the almost sure limit supremum. The classical LIL tells us that

lim sup
n→∞

1√
2n log log n

	n/2M
∑
i=1

(YM,i −E[YM,i]) =
1√
2M

√
Var(YM,1).

Regarding the second term, note that d(Z2M	n/2M
, Zno) is dominated by the sum of at most

2M independent steps distributed according to μ. This implies that

P(d(Z2M	n/2M
, Zno)> ε
√
n)� P

( 2M∑
i=1

d(o, gio)> ε
√
n

)
,

and the right-hand side is summable in n because μ has finite second moment. By the Borel–
Cantelli lemma,

1√
2n log log n

|d(Z2M	n/2M
o, Zno)|= 0 almost surely.

Next, Lemma 4.21 implies that the term

1√
2n log log n

	log2 n
∑
k=M

	n/2k+1
∑
i=1

(bk,i −E[bk,i])

eventually falls into the interval [−ε,+ε] outside a set of probability ε.

It remains to deal with (1/
√
2n log log n)

∑	log2 n

k=M (bk;n −E[bk;n]). Let

bj := sup
i,i′�0

(Zj−io, Zj+i′o)o.
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Then, for each k and n, 0� bk;n � b2k(2	n/2k+1
+1) holds. Moreover, bj values are identically
distributed with finite variance (and hence finite expectation). This implies that

0� 1√
2n log log n

	log2 n
∑
k=1

E[bk;n]�
log2 n√

2n log log n
E[b0]

tends to 0 as n goes to infinity.
We now estimate the summation

∞∑
k=0

∞∑
i=1

P(b22k(2i−1) � ε2
√
2
k
(2i− 2)).

To estimate this, for each y > 0 let us count the number of pairs (i, k)∈Z2
�0 such that ε2

√
2
k
(2i−

2)< y. For each k ∈Z�0, there exist at most y/(
√
2
k
ε2) candidates for i. Summing them up, there

are at most Cεy such pairs (i, k), where Cε > 0 is a constant. This implies that

∞∑
k=0

∞∑
i=1

P(b22k(2i−2) � ε2
√
2
k
(2i− 2))�

∑
k,i

∞∑
y=0

P(y− 1� b22k(2i−2) < y)1
y�ε2

√
2
k
(2i−2)

=
∑
k,i

∞∑
y=0

P(y− 1� b21 < y)1
y�ε2

√
2
k
(2i−2)

�
∞∑
y=0

P(y− 1� b21 < y) ·#{(i, k) : y� ε2
√
2
k
(2i− 2)}

�
∞∑
y=0

P(y− 1� b21 < y) ·Cεy�E[Cεb
2
1]<+∞.

By the Borell–Cantelli lemma, for almost every sample path b2k(2i−1) < ε · 2k/4√2i− 2 holds for
all but finitely many (i, k). In particular, for sufficiently large n, we have

bk;n � b2k(2	n/2k+1
+1) � ε · 2k/4
√

2n/2k+1 = ε
√
n/2k/4,

for each k= 1, . . . , �log2 n�. Hence, we have

1√
2n log log n

	log2 n
∑
k=M

bk;n � ε

∞∑
k=1

1/2k/4 � 10ε.

Combining these estimates with Equation (15), we observe that for probability at least 1− ε,

lim sup
n→∞

d(o, Zno)−E[d(o, Zno)]√
2n log log n

∈
[√

Var[d(o, Z2Mo)]

2M
− 20ε,

√
Var[d(o, Z2Mo)]

2M
+ 20ε

]
.

By decreasing ε while increasing M , we arrive at the desired conclusion.

We finally prove the geodesic tracking by random walks.

Theorem 4.22. Let (X,G, o) be as in Convention 2.11, let p > 0, and let (Zn)n be the ran-
dom walk generated by a non-elementary probability measure μ on G with finite pth moment.
Then there exists K > 0 such that, for almost every sample path (Zn)n�0, there exists a
K-quasigeodesic γ on X satisfying

lim
n→∞

1

n1/2p
d(Zno, γ) = 0.
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Proof. Recall Definition 3.16. Given K0 > 0, we have defined:

– D0 =D(K0, K0)>K0 as in Lemma 3.8;
– E0 =E(K0, D0)>D0, L0 =L(K0, D0) as in Proposition 3.12.

In addition to these, we define:

– E1 =E(K0, D0), L1 =L(K0, D0) as in Lemma 3.14;
– E2 =E(K0, E0 + 5K0), L2 =L(K0, E0 + 5K0) as in Proposition 3.12.

Since μ is non-elementary, Proposition 3.19 guarantees that there exist K0 > 0, M0 >L0 +L1 +
L2 and a large enough K0-Schottky set S ⊆ (suppμ)M0 . We fix this S from now on.

By Proposition 4.2, there exists a probability space (Ω, P) with RV P(ω) = {j(1)< j(2)<
· · · } ⊆M0Z>0, the set of pivotal times, such that (o,Yj(1)(ω),Yj(2)(ω), . . .) is D0-semi-aligned.

We now define Γ(ω) as the concatenation of [o, Zj(1)−M0
o], [Zj(1)−M0

o, Zj(1)o],
[Zj(1)o, Zj(2)−M0

o], [Zj(2)−M0
o, Zj(2)o], . . .. By Lemma 3.14, Γ(ω) is an E1-quasigeodesic for

almost every ω ∈Ω. It remains to prove limn d(Zn(ω)o, Γ(ω))/n
1/2p = 0 almost everywhere.

By Corollary 4.15, min[d(o, Zυo), d(o, Žυ̌o)]
2p is dominated by an integrable RV. This implies∑

k

P(min(d(o, Zυo), d(o, Žυ̌o))> g(k))<+∞, (16)

for some function g such that limk g(k)/k
1/2p = 0. Also, Lemma 4.10 tells us that∑

k

P(max(υ, υ̌)� k−M0)<+∞. (17)

Now, for each k ∈Z>0, we consider the following sets:

Ak :=

{
(ω̌, ω) :

there exists M0 � i� k−M0 such that d(o, Zio)� g(k) and

(Žko, (Zi−M0
o, . . . , Zio), Zno) is D0-semi-aligned for all n� k

}
,

Bk :=

{
(ω̌, ω) :

there exists M0 � i� k−M0 such that d(o, Žio)� g(k) and

(Žko, (Žio, . . . , Ži−M0
o), Zno) is D0-semi-aligned for all n� k

}
.

Then the definition of the RV υ(ω̌, ω) and υ̌(ω̌, w), together with inequality (8), tells us that

Ac
k ∩Bc

k ⊆ {(ω̌, ω) : min(d(o, Zυo), d(o, Žυ̌o))> g(k) or max(υ, υ̌)� k−M0}.
Thanks to display (16) and (17), we observe that P(Ac

k ∩Bc
k) is also summable.

Finally, consider

Ck :=

{
(ω̌, ω) :

there exists M0 � i� 2k−M0 such that d(Zk, Zio)� g(k) and
(o, (Zi−M0

o, . . . , Zio), Zno) is D0-semi-aligned for all n� 2k

}
.

Then Ck contains T k(Ak ∪Bk), where T is the Bernoulli shift operator on the bi-infinite sam-
ple paths, which is measure preserving. Hence, P(Cc

k)� P(Ac
k ∩Bc

k) is summable. The Borel–
lemma implies that, for almost every sample path, for each sufficiently large k there exists M0 �
j′(k)� 2k such that diam(Zko∪Yj′(k)o)� d(Zko, Zj′(k)o) + diam(Yj′(k)o)� g(k) +K0M0 +K0

and such that (o,Yj′(k), Zno) is D0-semi-aligned for n� 2k (∗),
Let us now pick a sample path satisfying (∗), pick a sufficiently large k, and let N be an index

such that j(N)� 2k. Recall that (o,Yj(1)(ω),Yj(2)(ω), . . .) is D0-semi-aligned. By Proposition
3.12, [o, Zj(N)o] have subsegments [x1, y1], . . . , [xN , yN ], in order from left to right, such that
[xi, yi] and Yj(i) are 0.1E0-fellow traveling for i= 1, . . . , N . Moreover, by Corollary 3.4, Yj(i)

and [Zj(i)−M0
o, Zj(i)o] are 0.1E0-fellow traveling for i= 1, . . . , N . Finally, since (o,Yj′(k), Zj(N)o)
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is D0-semi-aligned, Proposition 3.12 tells us that [o, Zj(N)o] also contains a subsegment [q1, q2]
that 0.1E0-fellow travels with Yj′(k). For convenience we let y0 = o and j(0) = 0.

If [q1, q2] overlaps with some [xi, yi], this implies d(Yj′(k), [Zj(i)−M0
o, Zj(i)o])�E0 and hence

d(Zko, Γ(ω))� g(k) +E0 +K0M0 +K0. If not, then [q1, q2] is a subsegment of [yi−1, xi] for some
i. Lemma 3.11 then tells us that (yi−1,Yj′(k), xi) is 0.4E0-aligned. Since d(yi−1, Zj(i−1)o)� 0.1E0

and d(xi, Zj(i)−M0
o)� 0.1E0, Lemma 2.2 implies that (Zj(i−1)o,Yj′(k), Zj(i)−M0

o) is (0.5E0 +
4K0)-aligned. By Proposition 3.12, [Zj(i−1)o, Zj(i)−M0

o] passes through the E2-neighborhood of
Yj′(k), and d(Zko, Γ(ω))� g(k) +E2.

In summary, almost every sample path (ω̌, ω) satisfies (∗), which leads to d(Zko, Γ(ω))�
g(k) +E0 +E2 +K0M0 +K0 = o(k1/2p) eventually. This ends the proof.

Recall Corollary 4.16. if μ has finite exponential moment, then E[exp(d(o, Zυo)/K)] is finite,
i.e., P(d(o, Zυo)>K log k) is summable for some K > 0. By replacing g(k) in the previous proof
with K log k, we obtain the following theorem.

Theorem 4.23. Let (X,G, o) be as in Convention 2.11 and let (Zn)n be the random walk
generated by a non-elementary probability measure μ on G with finite exponential moment.
Then there exists K > 0 such that, for almost every sample path (Zn)n�0, there exists a K-
quasigeodesic γ satisfying

lim sup
n→∞

1

log n
d(Zno, γ)�K.

5. Pivotal time construction

In this section we prove Proposition 4.2 by generalizing Gouëzel’s theory in [Gou22, Section 4A]
to the setting of Convention 2.11. We first construct and study pivotal times in a discrete model
and then realize them on random walks. This strategy is also employed for LDP in § 6.

5.1 Pivotal times: discrete model

Throughout the subsection, we fix a long enough K0-Schottky set S with cardinality N0. Given
sequences of isometries w= (wi)

∞
i=0 and v= (vi)

∞
i=1 in G, we draw a sequence of Schottky

sequences

s= (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn)∈ S4n,

with respect to the uniform measure on S4n. We define isometries

ai := Π(αi), bi := Π(βi), ci := Π(γi), di := Π(δi), (18)

and study the word

w0a1b1v1c1d1w1 · · · akbkvkckdkwk · · · .
With the base case w+

0,2 := id, we define its subwords for i > 0,

w−
i,2 :=w+

i−1,2wi−1, w−
i,1 :=w−

i,2ai, w−
i,0 :=w−

i,2aibi,

w+
i,0 :=w−

i,2aibivi, w+
i,1 :=w−

i,2aibivici, w+
i,2 :=w−

i,2aibivicidi.

Let us also employ the notations

Υ(αi) :=w−
i,2Γ

+(αi), Υ(βi) :=w−
i,1Γ

+(βi),

Υ(γi) :=w+
i,0Γ

+(γi), Υ(δi) :=w+
i,1Γ

+(δi).
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We define the set of pivotal times Pn = Pn(s;w, v) and an auxiliary moving point zn =
zn(s;w, v) inductively. Let P0 = ∅ and z0 = o as the base case. Given Pn−1 ⊆ {1, . . . , n− 1} and
zn−1 ∈X, the data Pn and zn at step n are determined by the following criteria.

(A) When (zn−1,Υ(αn)), (Υ(βn), w
+
n,1o), (w

−
n,0o,Υ(γn)) and (Υ(δn), w

−
n+1,2o) are K0-aligned,

we set Pn = Pn−1 ∪ {n} and zn =w+
n,1o (see Figure 4).

(B) Otherwise, we seek i∈ Pn−1 and an integer j ∈ {i+ 1, . . . , n− 1} such that (Υ(δi),Υ(βj))
is D0-semi-aligned and such that (Υ(βj), w

−
n+1,2o) is K0-aligned.

If such a pair (i, j) exists, we pick the lexicographically maximal one and let Pn := Pn−1 ∩
{1, . . . , i} and zn =w−

j,1o. If such a pair does not exist, then we let Pn := ∅ and zn := o.

We note that the set the set Pn depends solely on (wi)
n
i=0, (vi)

n
i=1 and (αi, βi, γi, δi)

n
i=1; it is

independent of {wi, vi, αi, βi, γi, δi : i > n}.
The Schottky axes aligned along [o, w−

n+1,2o] are recorded by Pn. More precisely, we have the
following.

Proposition 5.1. Let Pn = {i(1)< · · ·< i(m)}. Then
(o,Υ(αi(1)),Υ(βi(1)),Υ(γi(1)),Υ(δi(1)), . . . ,Υ(αi(m)),Υ(βi(m)),Υ(γi(m)),Υ(δi(m)), w

−
n+1,2o),

is D0-semi-aligned.

On Gromov hyperbolic spaces, this corresponds to [Gou22, Lemma 5.3]. Before proving the
entire statement, let us prove two small parts of it.

Lemma 5.2. For any s∈ S4n and 1� i� n, (Υ(αi),Υ(βi)) and (Υ(γi),Υ(δi)) are D0-aligned.

Proof. Let us prove that (Υ(αi),Υ(βi)) = (w−
i,1Γ̄

−(αi), w
−
i,1Γ

+(βi)) is D0-aligned, or equivalently,

that (Γ̄−(αi), Γ
+(βi)) is D0-aligned. When αi = βi, this is guaranteed by the definition of K0-

Schottky sets.
Now suppose αi �= βi. First, (Γ̄

−(αi), o) is 0-aligned. Second, (a
−1
i o, Γ−(αi)) is not K0-aligned

as d(o, a−1
i o)� 100E0 �K0. Then, by the Schottky property of S, (a−1

i o, Γ+(βi)) is K0-aligned.
Now Lemma 3.8 tells us that (Γ̄−(αi), Γ

+(βi)) is D0-aligned.
The alignment of (Υ(γi),Υ(δi)) holds for the same reason.

Lemma 5.3 [Cho24, Lemma 3.2]. Let k ∈Z>0. Let l <m be consecutive elements in Pk, i.e.,
m∈ Pk and l=max(Pk ∩ {1, . . . , m− 1}). Then (Υ(δl),Υ(αm)) is D0-semi-aligned.

Proof. Here l, m∈ Pk implies that l ∈ Pl and l, m∈ Pm. In particular, l andm are newly chosen at
step l and m, respectively, by fulfilling criterion (A). Hence, (Υ(δl), w

−
l+1,2o) and (zm−1,Υ(αm))

are K0-aligned (∗), and zl =w+
l,1o. Moreover, we have Pm = Pm−1 ∪ {m} and l=max Pm−1.

If l=m− 1 and m was newly chosen at step m= l+ 1, then zm−1 = zl =w+
l,1o holds. Lemma

3.8 and (∗) imply that (Υ(δl),Υ(αm)) is D0-aligned.
If l <m− 1, then l=max Pm−1 has survived at step m− 1 by fulfilling criterion (B);

there exist j > l such that (Υ(δl),Υ(βj)) is D0-semi-aligned and (Υ(βj), w
−
n+1,2o) is K0-aligned.

Furthermore, zm−1 equals w−
j,1o, the beginning point of Υ(βj).

Note that (zm−1,Υ(αm)) is K0-aligned by (∗). Lemma 3.8 then asserts that (Υ(βj),Υ(αm)) is
D0-aligned. Concatenating the two D0-semi-aligned sequences, we conclude that (Υ(δl),Υ(αm))
is D0-semi-aligned.

Proof of Proposition 5.1. Having established Lemma 5.3, it remains to prove that:
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zn−1

w−
n,2o w−

n,0o

w−
n,1o

γn δn

w+
n,1o

w+
n,2o

w−
n+1,2o

vn wn

αn βn

Figure 4. Schematics for criteria (19), (20), (21) and (22).

– (o,Υ(αi(1))) is K0-aligned;
– for 1� t�m, (Υ(αi(t)),Υ(βi(t)),Υ(γi(t)),Υ(δi(t))) is D0-aligned;

– (Υ(δi(m)), w
−
n+1,2o) is D0-semi-aligned.

Note that for each t= 1, . . . , m, i(t) is newly chosen as a pivotal time at step i(t) by fulfilling
criterion (A). In particular, we have that:

– (Υ(αi(t)),Υ(βi(t))) is D0-aligned (Lemma 5.2);

– (Υ(βi(t)),Υ(γi(t))) is D0-aligned since (Υ(βi(t)), w
+
n,1o) and (w−

i(t),0o,Υ(γi(t))) are K0-

aligned (Lemma 3.8); and
– (Υ(γi(t)),Υ(δi(t))) is D0-aligned (Lemma 5.2).

This guarantees the second item.
We also note that Pi(1)−1 = ∅. Indeed, any j in Pi(1)−1 is smaller than i(1) and would have

survived in Pi(1) (since what happened at step i(1) was adding an element, not deleting some).
Since i(1) was not deleted at any later step, such j would also not be deleted until the end and
should have appeared in Pn. Since i(1) is the earliest pivotal time in Pn, no such j exists. Hence,
zi(1)−1 = o and criterion (A) for i(1) leads to the first item.

We now observe how i(m) survived in Pn. If i(m) = n, then it was newly chosen at step n by
fulfilling criterion (A). In particular, (Υ(δn), w

−
n+1,2o) is K0-aligned as desired.

If i(m) �= n, then it has survived at step n as the last pivotal time by fulfilling criterion (B).
In particular, there exist j > i(m) such that (Υ(δi(m)),Υ(βj)) is D0-semi-aligned and such that

(Υ(βj), w
−
n+1,2o) is K0-aligned. In particular, (Υ(δi(m)),Υ(βj), w

−
n+1,2o) is D0-semi-aligned.

Next, we study when Pn = Pn−1 ∪ {n} happens, i.e., a new pivotal time is added to the set of
pivotal times. This will guide us how to pivot the direction at a pivotal time without affecting
the set of pivotal times. Recall that we draw αi, βi, γi, δi from S with the uniform measure.

Lemma 5.4. Let us fix w= (wi)i, v= (vi)i and s∈ S4(n−1). Then

P(#Pn(s, αn, βn, γn, δn) =#Pn−1(s) + 1)� 1− 4/N0.

Proof. Recall criterion (A) for #Pn =#Pn−1 + 1. We will investigate the four required conditions
one by one.

First, the condition

diam(πΥ(γn)(w
−
n,0o)∪w+

n,0o) = diam(πΓ+(γn)(v
−1
n o)∪ o)<K0 (19)

depends only on γn. This holds for at least (#S − 1) choices in S by the K0-Schottky-ness of S.
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Similarly, the condition

diam(πΥ(δn)(w
−
n+1,2o)∪w+

n,2o) = diam(πΓ−(δn)(wno)∪ o)<K0 (20)

depends only on δn, and holds for at least (#S − 1) choices in S.
Fixing the choice of γn, the condition

diam(πΥ(βn)(w
+
n,1o)∪w−

n,0o) = diam(πΓ−(βn)(vncno)∪ o)<K0 (21)

depends only on βn. This holds for at least (#S − 1) choices in S.
We now additionally fix the choice of s= (α1, β1, γ1, δ1, . . . , αn−1, βn−1, γn−1, δn−1); in

particular, w−
n,2 and zn−1 are now determined. Then the condition

diam(πΥ(αn)(zn−1)∪w−
n,2o) = diam(πΓ+(αn)((w

−
n,2)

−1zn−1)∪ o)<K0 (22)

depends on αn. This holds for at least (#S − 1) choices of αn.
In summary, the probability that criterion (A) holds is at least

#S − 1

#S
· #S − 1

#S
· #S − 1

#S
· #S − 1

#S
� 1− 4

N0
.

We now define the set S̃ of triples (β, γ, v)∈ S2 ×G that satisfy Conditions (19) and (21):

S̃ := {(β, γ, v)∈ S2 ×G : (Γ̄−(β), vΠ(γ)o), (v−1o, Γ+(γ)) are K0-aligned}.
We also define its section for each v ∈G

S̃(v) := {(β, γ)∈ S2 : (Γ̄−(β), vΠ(γ)o), (v−1o, Γ+(γ)) are K0-aligned}.
While checking displays (19) and (21), we observed that #S̃(v)�#S2 − 2#S for each v ∈G.
We now define pivoting.

Lemma 5.5. Let s= (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn) be a choice drawn from S4n and let w, v
be auxiliary sequences in G.

Let k ∈ Pn(s;w, v) and let (s̄; w, v̄) be obtained from (s;w, v) by replacing (βk, γk, vk) with
some (β̄k, γ̄k, v̄k) chosen from S̃.

Then, Pl(s;w, v) = Pl(s̄;w, v̄) for any 1� l� n.

On Gromov hyperbolic spaces, this corresponds to [Gou22, Lemma 5.7].

Proof. Since α1, β1, γ1, δ1, . . . , αk−1, βk−1, γk−1, δk−1 are intact, Pl(s) = Pl(s̄) and S̃l(s) = S̃l(s̄)
hold for l= 0, . . . , k− 1. At step k, αk and δk satisfy Condition (22) and Condition (20) since
k ∈ Pn(s). Furthermore, β̄k and γ̄k satisfy Conditions (19) and (21) for the new choice v̄k

diam(πΓ+(γ̄k)(v̄
−1
k o)∪ o)<K0 and diam(πΓ−(β̄k)(v̄k c̄ko)∪ o)<K0,

since (β̄k, γ̄k, v̄k)∈ S̃. Hence, k is newly added in Pk(s̄) and

Pk(s̄) = Pk−1(s̄)∪ {k}= Pk−1(s)∪ {k}= Pk(s).

Meanwhile, zk is modified into z̄k = w̄+
k,1o= gw+

k,1o= gzk, where g :=w−
k,2ak b̄kv̄kc̄k

× (w−
k,2akbkvkck)

−1. More generally, we have

w̄−
l,t = gw−

l,t (t∈ {0, 1, 2}, l > k),

w̄+
l,0 = gw+

l,0 (l > k),

w̄+
l,t = gw+

l,t (t∈ {1, 2}, l� k).

(23)

We now claim the following for k < l� n.
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(i) If s fulfills criterion (A) at step l, then so does s̄.
(ii) If not, and if (i, j) is the maximal pair of indices for s in criterion (B) at step l, then it is

also the maximal one for s̄ at step l.
(iii) In both cases, we have Pl(s) = Pl(s̄) and z̄l = gzl.

Assuming the third item for l− 1: Pl−1(s) = Pl−1(s̄) and z̄l−1 = gzl−1, Equality (23) implies the
first item. In this case we deduce Pl(s) = Pl−1(s)∪ {l}= Pl−1(s̄)∪ {l}= Pl(s̄) and z̄l = w̄+

l,1o=

gw+
l,1o= gzl, the third item for l.
Furthermore, Equality (23) implies that i in Pl−1(s)∩ {k, . . . , l− 1}= Pl−1(s̄)∩ {k, . . . , l−

1} and j > i work for s in criterion (B) if and only if they work for s̄. Such i can be found in
{k, . . . , l− 1}, because k survived in Pn(s) and should not have been erased at step l. Hence,
the maximal pair (i, j) for s is also maximal for s̄. We then deduce Pl(s) = Pl−1(s)∩ {1, . . . , i}=
Pl−1(s̄)∩ {1, . . . , i}= Pl(s̄) and z̄l = w̄−

j,1o= gw−
j,1o= gzl (using j > i), the third item for l.

For s, s′ ∈ S4n and sequences w, v, v̄ in G, we say that (s̄;w, v̄) is pivoted from (s;w, v) if:

– αi = ᾱi, δi = δ̄i for all i∈ {1, . . . , n};
– (β̄i, γ̄i, v̄i)∈ S̃ for each i∈ Pn(s;w, v); and
– (βi, γi, vi) = (β̄i, γ̄i, v̄i) for each i∈ {1, . . . , n} \ Pn(s;w, v).

By Lemma 5.5, being pivoted from each other is an equivalence relation.
Fixing w and v, for each s∈ S4n let En(s) be the equivalence class of s

En(s) := {s̄∈ S4n : (s̄;w, v) is pivoted from (s;w, v)}.
We endow En(s) with the conditional probability of the uniform measure on S4n. We now claim
that #Pn+1 −#Pn conditioned on an equivalence class En(s) until step n and the choice at step
n+ 1 has uniform exponential tail.

Proposition 5.6. Fix w= (wi)
∞
i=0 and v= (vi)

∞
i=1. For each j ≥ 0 and s∈ S4n,

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− j | s̃∈ En(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

is less than (4/N0)
j+1.

On Gromov hyperbolic spaces, this corresponds to [Gou22, Lemma 5.8].

Proof. An element s̃∈ En(s) is determined by its coordinates (β̃k, γ̃k)k∈Pn(s) subject to the condi-

tion (β̃k, γ̃k, vk)∈ S̃. We consider a finer equivalence class by additionally fixing the coordinates
γk: for s̃∈ En(s), let E ′

n(s̃) be the set of s̄∈ En(s) such that γ̄k = γ̃k for all k. Then En(s) is parti-
tioned into {E ′

n(s̃) : s̃∈ En(s)}, and it suffices to establish the estimates on each E ′
n(s̃). Henceforth,

we will prove that

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− j | s̃∈ E ′
n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

is less than (4/N0)
j+1 for each s= (α1, β1, γ1, δ1, . . . , αn, βn, γn, δn)∈ S4n and j � 0.

Recall that we are fixing the sequences w and v throughout the proof. Let us define

S̃k := {β ∈ S : (Γ̄−(β), vkΠ(γk)o) is K0-aligned}.
Then E ′

n(s) is parameterized by
∏

i∈Pn(s)
S̃k with the uniform measure. Let

A := {(αn+1, βn+1, γn+1, δn+1)∈ S4 : #Pn+1(s, αn+1, βn+1, γn+1, δn+1) =#Pn(s) + 1}.

1550

https://doi.org/10.1112/S0010437X25007511 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007511


Random walks and contracting elements I

Lemma 5.4 implies that P(A)� 1− 4/N0 with respect to the uniform measure on S4. Note that
for each element (αn+1, βn+1, γn+1, δn+1) of A, we have

Pn(s)⊆ Pn(s)∪ {n+ 1}= Pn+1(s, αn+1, βn+1, γn+1, δn+1).

Hence, for each s̃∈ E ′
n(s), (s̃, αn+1, βn+1, γn+1, δn+1) (as a choice in S4(n+1)) is pivoted from

(s, αn+1, βn+1, γn+1, δn+1) and Pn+1(s̃) = Pn+1(s) = Pn(s)∪ {n+ 1}= Pn(s̃)∪ {n+ 1}. Thanks
to this, we have

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s̃) | s̃∈ E ′
n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

� 1− P(A)� 4/N0.

This settles the case j = 0.
Now let j = 1. The event under discussion becomes void when #Pn(s)< 2. Excluding such

cases, let l <m be the last two elements of Pn(s). We now freeze the coordinates βk except for k=
m. Namely, for s̃∈ E ′

n(s), let E
(m)(s̃) be the set of s̄∈ E ′

n(s) such that β̄k = β̃k for k ∈ Pn(s) \ {m}.
Then {E(m)(s̃) : s̃∈ E ′

n(s)} becomes a partition of E ′
n(s), and E(m)(s̃) is parameterized by β̄m ∈ S̃m

with the uniform measure. Note that S̃m has at least #S − 1 elements.
Fixing (αn+1, βn+1, γn+1, δn+1)∈ S4, and let F (m)(s̃) be the set of s̄∈E(m)(s̃) such that

(Υ(β̄m), w̄−
n+2,2o) K0-aligned, or more precisely,

diam(πΓ−1(β̄m)((w̃
−
m,0)

−1w̃−
n,2an+1bn+1vn+1cn+1dn+1wn+1o)∪ o)

= diam(o∪ πΓ−1(β̄m)(vmc̃md̃mwm · · · c̃nd̃nwn · an+1bn+1vn+1cn+1dn+1wn+1o))<K0.
(24)

This amounts to requiring a new Schottky condition to β̄m, in addition to the alignment of
(Γ̄−1(β̄m), vmΠ(γm)o); there are at least #S − 2 choices that additionally satisfy this.

We now claim #Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)�#Pn(s)− 1 for s̄∈ F (m)(s̃). First, since l <
m are consecutive elements in Pn(s) = Pn(s̄), Lemma 5.3 asserts that (Υ(δ̄l),Υ(ᾱm)) is D0-semi-
aligned. Moreover, Lemma 5.2 and Condition (24) imply that

(Υ(ᾱm),Υ(β̄m)), (Υ(β̄m), w̄−
n+2,2o),

are D0-aligned and K0-aligned, respectively. These together imply that

(Υ(δ̄l),Υ(β̄m)), (Υ(β̄m), w̄−
n+2,2o),

are D0-semi-aligned and K0-aligned, respectively: the pair (l, m) qualifies criterion (B) at step
n+ 1. Hence, Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)⊇ Pn(s̄)∩ {1, . . . , l}.

As a result, for each s̃∈ En(s) and (αn+1, . . . , δn+1)∈ S4 we have

P(#Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− 1 | s̄∈E(m)(s̃))

� #[E(m)(s̃) \ F (m)(s̃)]

#E(m)(s̃)
� 2

#S − 1
� 3

N0
.

Since {E(m)(s̃) : s̃∈ En(s)} partitions En(s), we deduce

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− 1
∣∣∣ s̃∈ En(s))� 3

N0
,

for each (αn+1, βn+1, γn+1, δn+1)∈ S4. Moreover, this probability vanishes when
(αn+1, . . . , δn+1)∈A. Since P((αn+1, . . . , δn+1)∈A | (αn+1, . . . , δn+1)∈ S4)� 1− 4/N0, we
deduce that

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− 1 | s̃∈ En(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

� 4

N0
· 4

N0
�
(

4

N0

)2
. (25)
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Now let j = 2. Excluding the void case, we assume that #Pn(s)� 3; let l′ < l <m be the last
three elements. To ease the notation, for β ∈ S we define

s′(β) := (α1, β1, γ1, δ1, . . . , αm, β, γm, δm, . . . , αn, βn, γn, δn).

In other words, s′(β) is obtained from s by replacing βm with β. Now let

A1 := {(β, αn+1, βn+1, γn+1, δn+1)∈ S̃m × S4 : #Pn+1(s
′(β), αn+1, . . . , δn+1)�#Pn(s)− 1}.

Equivalently, we are requiring

Pn(s)∩ {1, . . . , l} ⊆ Pn+1(s
′, αn+1, βn+1, γn+1, δn+1).

(This equivalence relies on the fact Pn(s
′) = Pn(s) due to Lemma 5.5.)

Observation 5.7. For each

s̃= (α̃k, β̃k, γ̃k, δ̃k)
n
i=1 ∈ E ′

n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4,

(β̃m, αn+1, βn+1, γn+1, δn+1)∈A1 if and only if #Pn+1(s̃, αn+1, . . . , δn+1)�#Pn(s)− 1.

To see this, suppose first that (β̃m, αn+1, βn+1, γn+1, δn+1)∈A1. Then
(s̃, αn+1, βn+1, γn+1, δn+1) is pivoted from (s′(β̃m), αn+1, βn+1, γn+1, δn+1), as they differ
only at entries βk for k ∈ Pn(s)∩ {1, . . . , l} ⊆ Pn+1(s

′, αn+1, βn+1, γn+1, δn+1). Lemma 5.5 then
implies that

Pn(s)∩ {1, . . . , l} ⊆ Pn+1(s
′, αn+1, βn+1, γn+1, δn+1) = Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)

and #Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)�#Pn(s)− 1.
Conversely, suppose #Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)�#Pn(s)− 1. (∗) Recall that Pn(s̃) =

Pn(s), and recall that Pn+1(s̃, αn+1, . . . , δn+1) is either an initial section of Pn(s̃) or contains
Pn(s̃). Considering these, the assumption (∗) implies

Pn(s)∩ {1, . . . , l} ⊆ Pn+1(s̃, αn+1, βn+1, γn+1, δn+1).

Then (s′(β̃m), αn+1, βn+1, γn+1, δn+1) is pivoted from (s̃, αn+1, βn+1, γn+1, δn+1), as the former
choice differs from the latter choice only at entries (α̃k, β̃k, γ̃k)’s for k ∈ Pn(s)∩ {1, . . . , l} ⊆
Pn+1(s̃, αn+1, βn+1, γn+1, δn+1). Lemma 5.5 then implies that

Pn(s)∩ {1, . . . , l} ⊆ Pn+1(s̃, αn+1, . . . , δn+1) = Pn+1(s
′, αn+1, . . . , δn+1)

and (β̃m, αn+1, βn+1, γn+1, δn+1)∈A1.
Combining Observation 5.7 and inequality (25), we deduce

P(A1 | S̃m × S4)

= P((β̃m, αn+1, βn+1, γn+1, δn+1)∈A1 | s̃∈ E ′
n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

= P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)�#Pn(s)− 1 | s̃∈ E ′
n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

� 1−
(

4

N0

)2
.

This time, we freeze the coordinates βk except for k= l: for s̃∈ E ′
n(s), let E

(l)(s̃) be the set
of s̄∈ E ′

n(s) such that β̄k = β̃k for k ∈ Pn(s) \ {l}. Then {E(l)(s̃) : s̃∈ E ′
n(s)} partitions E ′

n(s) and
E(l)(s̃) is parameterized by β̄l ∈ S̃l with the uniform measure; note that #S̃l �#S − 1.

Fixing s̃, now pick (αn+1, βn+1, γn+1, δn+1)∈ S4, and let F (l)(s̃) be the set of s̄∈E(m)(s̃) such
that (Υ(β̄l), w̄

−
n+2,2o) is K0-aligned, i.e.,

diam(πΓ−1(β̄l)((w̃
−
l,0)

−1w̃−
n,2an+1bn+1vn+1cn+1dn+1wn+1o)∪ o)<K0. (26)
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This amounts to requiring another Schottky condition to β̄l; there are at least #S − 2 choices
that additionally satisfy this.

We now claim that #Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)�#Pn(s)− 2 for s̄∈ F (l)(s̃). First, since
l′ < l are consecutive elements in Pn(s̄), Lemma 5.3 asserts that

(Υ(δ̄l′),Υ(ᾱl)),

is D0-semi-aligned. Moreover, Lemma 5.2 and Condition (26) imply that

(Υ(ᾱl),Υ(β̄l)), (Υ(β̄l), w̄
−
n+2,2o),

are D0-aligned and K0-aligned, respectively. Combining these, we observe that the pair (l′, l)
qualifies criterion (B) at step n+ 1. This implies Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)⊇ Pn(s̄)∩
{1, . . . , l′}, hence the claim.

As a result, for each s̃∈ En(s) and (αn+1, . . . , δn+1)∈ S4 we have

P(#Pn+1(s̄, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− 2 | s̄∈E(l)(s̃))

� #[E(l)(s̃) \ F (l)(s̃)]

#E(l)(s̃)
� 2

#S − 1
� 3

N0
.

Moreover, Observation 5.7 asserts that the above probability vanishes for those equivalence
classes E(l)(s̃) such that (β̃m, αn+1, . . . , δn+1)∈A1. Since P[A1|S̃m × S4]� (4/N0)

2, we conclude

P(#Pn+1(s̃, αn+1, βn+1, γn+1, δn+1)<#Pn(s)− 2 | s̃∈ E ′
n(s), (αn+1, βn+1, γn+1, δn+1)∈ S4)

�
(

4

N0

)2
× 4

N0
�
(

4

N0

)3
. (27)

We repeat this procedure for j <#Pn(s). The case j �#Pn(s) is void.

Corollary 5.8. Let us fix w and v. When s= (αi, βi, γi, δi)
n
i=1 is chosen from S4n with the

uniform measure, #Pn(s) is greater in distribution than the sum of n i.i.d. Xi, whose distribution
is given by

P(Xi = j) =

⎧⎨
⎩

(N0 − 4)/N0, if j = 1,

(N0 − 4)4−j/N−j+1
0 , if j < 0,

0, otherwise.

(28)

Moreover, we have P(#Pn(s)� (1− 10/N0)n)� e−n/K for some K > 0.

Proof. Let {Xi}i be the family of i.i.d. as in Equation (28) that is also assumed to be independent
of the choice s. Lemma 5.4 and Proposition 5.6 together imply the following for each 0� k < n:

P(#Pk+1(s)� i+ j |#Pk(s) = i)�
{

1− 4
N0

if j = 1,

1− ( 4
N0

)−j+1 if j < 0.
(i= 0, 1, 2, . . .) (29)

Hence, there exists a non-negative random variable Uk such that #Pk+1 −Uk and #Pk +Xk+1

have the same distribution.
For each 1� k� n, we claim that P(#Pk � i)� P(X1 + · · ·+Xk � i) for each i. For k= 1,

we have #Pk−1 = 0 and the claim follows from inequality (29). Given the claim for k, we have

P(#Pk+1 � i)� P(#Pk +Xk+1 � i) =
∑
j

P(#Pk � j)P(Xk+1 = i− j)

�
∑
j

P(X1 + · · ·+Xk � j)P(Xk+1 = i− j)

= P(X1 + · · ·+Xk +Xk+1 � i).

The second claim holds since Xi have finite exponential moment and E[Xi]� 1− 9/N0.
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We now describe a simpler situation when vi = id for all i, i.e., we study

w0a1b1c1d1w1 · · · anbncndnwn · · · .
Before defining the pivoting, note that the conditions

(Γ̄−(β),Π(γ)o), (o, Γ+(γ)) are K0-aligned

and are satisfied by every pair of Schottky sequences (β, γ)∈ S2, as we proved in Lemma 5.2.
Hence, criterion (A) while defining the set of pivotal times is simplified as follows.

(A′) When (zn−1,Υ(αn)) and (Υ(δn), w
−
n+1,2o) are K0-aligned, we set Pn = Pn−1 ∪ {n} and

zn =w+
n,1o (see Figure 4).

Moreover, S̃ contains all of {(β, γ, id) : β, γ ∈ S}. Hence, when w and v= (id)∞i=1 are fixed, the
previous definition reads as follows: given a choice s= (α1, β1, . . . , γn, δn) in S4n, we say that
s̄∈ S4n is pivoted from s if:

– αi = ᾱi, δi = δ̄i for all i∈ {1, . . . , n};
– (βi, γi) = (β̄i, γ̄i) for each i∈ {1, . . . , n} \ Pn(s).

Therefore, for s∈ S4n, s̄∈ En(s) is parameterized by the choices (β̄i, γ̄i)i∈Pn(s) distributed

according to the uniform measure on S2#Pn(s).

5.2 Pivotal times in random walks

In this subsection, we define pivotal times for random walks and prove Proposition 4.2. Let μ be
a non-elementary probability measure on G and S ⊆ (suppμ)M0 be a large enough K0-Schottky
set with cardinality N0 � 400. We also fix an integer n≥ 0.

Let μS be the uniform measure on S. By taking suitably small α, we can decompose μ4M0 as

μ4M0 = αμ4
S + (1− α)ν,

for some probability measure ν. We then consider Bernoulli RVs (ρi)i with P(ρi = 1) = α and
P(ρi = 0) = 1− α, (ηi)i with the law μ4

S and (νi)i with the law ν, all independent, and define

(g4M0k+1, . . . , g4M0k+4M0
) =

{
νk when ρk = 0,
ηk when ρk = 1.

Then (gi)
∞
i=1 has the law μ∞. Since we need to prove Proposition 4.2 by fixing the choice of

g1, . . . , g	n/2
+1 and gn+1, we slightly modify ρi, namely,

ρ
(n)
i :=

{
0, if i� n/8M0 or i= �n/4M0�,
ρi, otherwise.

Let Ω be the ambient probability space on which the above RVs are all measurable. We denote by

B(k) :=
∑k

i=0 ρ
(n)
i the number of the Schottky slots until k and by ϑ(i) :=min{j � 0 :B(j) = i}

the ith Schottky slot. We also set ϑ(0) =−1. Note that {j � 0 : ρ
(n)
j = 1}= {ϑ(1)<ϑ(2)< · · · }.

For each ω ∈Ω and i� 1 we define

wi−1 := g4M0[ϑ(i−1)+1]+1 · · · g4M0ϑ(i),

αi := (g4M0ϑ(i)+1, . . . , g4M0ϑ(i)+M0
),

βi := (g4M0ϑ(i)+M0+1, . . . , g4M0ϑ(i)+2M0
),
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γi := (g4M0ϑ(i)+2M0+1, . . . , g4M0ϑ(i)+3M0
),

δi := (g4M0ϑ(i)+3M0+1, . . . , g4M0ϑ(i)+4M0
).

In other words, ηϑ(i) becomes (αi, βi, γi, δi) (with M0 steps each) and wi is the product of
intermediate steps between ηϑ(i−1) and ηϑ(i). As in § 5.1, we write ai := Π(αi), bi := Π(βi) and so
on. We then have

ω4M0ϑ(l+1) =w0a1b1v1c1d1w1 · · · alblvlcldlwl, (30)

for each l > 0. Following the discussion in § 5.1, we define

P1(ω) = P1((a1, b1, c1, d1); (wi)
1
i=0, (id)

1
i=1),

P2(ω) = P2((ai, bi, ci, di)
2
i=1; (wi)

2
i=0, (id)

2
i=1),

...

(31)

and we finally define

P(ω) := {4M0ϑ(i) + 2M0 : i∈ lim inf
k

Pk(ω)}.
Recall that Pk is formed from Pk−1 by adjoining a new element k or taking an initial

section of Pk−1. Hence, any initial section {i(1)< · · ·< i(N)} of lim infk Pk(ω) is an initial
section of some Pm(ω) (in fact, for all sufficiently large m). Proposition 5.1 then tells us the
following.

Observation 5.9. Let P(ω) = {i(1)< i(2)< · · · }. Then
(o,Υ(αi(1)),Υ(βi(1)),Υ(γi(1)),Υ(δi(1)), . . . ,Υ(αi(k)),Υ(βi(k)),Υ(γi(k)),Υ(δi(k)), . . .)

is D0-semi-aligned.

Note that (wi)i and (αi, βi, γi, δi)i>0 are independent, the latter being i.i.d. with the uniform
distribution on S4. By Corollary 5.8, Pk linearly increases.

Observation 5.10. There exists K > 1 such that

P(#Pk(ω)� k/K |w0, w1, . . .)�Ke−k/K (32)

for every k > 0 and every choice of (wi)i.

Here, the growth rate is independent of the gi that are not involved in (αi, βi, γi, δi). In
particular, it is independent of g1, . . . , g	n/2
+1 and gn+1.

To couple the words w−
k,2 and the actual random walk Zn, we need to control ϑ(i). For each

k� �n/4M0� and L> 0, we have

P(B(k)�L) · e−L �E[e−B(k)] =

k∏
i=1

E[exp(−ρ
(n)
i )] (∵Markov’s inequality)

=
∏

n/8M0<i�k,i �=	n/4M0

E[exp(−ρ

(n)
i )]

= (1− α(1− e−α))k−�n/8M0�−1

� (1− α2/2)n/3M0−4 (∵ e−α � α/2 for 0� α� 1).

By plugging in L= ((log(1 + α2/2))/3M0)k, we obtain

P(B(k)� k/K ′)�K ′e−k/K′
(k� n/4M0), (33)

for some K ′ =K ′(α,M0)> 1 (independent of α).
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Let us now combine the ingredients and prove Proposition 4.2. Given the measure μ, integers
k� n, and the choices of g1, . . . , g	n/2
+1 and gn+1, we do the above construction. Then we have

P(Ak := {B(�k/4M0�)� �k/4K ′M0�})�K ′e−	k/4K′M0
.

Let us fix a combination of the values of {ρ(n)i : i > 0} in Ac
k, which determines ϑ(i). Furthermore,

we fix a combination of the values of {ηi : i > 0}. These choices determine

{gj : j /∈∪i>0{4M0ϑ(i) + 1, . . . , 4M0ϑ(i) + 4M0}}, (34)

and consequently wi. Note also that {(αi, βi, γi, δi) = ηϑ(i) : i > 0} are i.i.d.s distributed according

to μ4
S . Hence, conditioned on choices of {ρ(n)i : i > 0} ∈Ac

k and {ηi : i > 0}, we are now reduced
to the combinatorial model. From Observation 5.10, we deduce that

P(#Pl(ω)� �k/4KK ′M0� for all l� �k/4K ′M0� |w0, w1, . . .)

� 1−K
∑

l�	k/4K′M0

e−l/K � 1− K

1− e−1/K
e−	k/4KK′M0
.

In other words, except for probability (K/(1− e−1/K))e−	k/4KK′M0
 (under the conditioning),
the initial �k/4KK ′M0�-sections of P	k/4K′M0
(ω) remain the same in Pl(ω) for l� �k/4M0�.
Hence, it becomes an initial section of lim inf l Pl(ω). This means that

#(P(ω)∩ {4M0ϑ(i) + 2M0 : i∈ P	k/4K′M0
(ω)})� �k/4KK ′M0�. (35)

Meanwhile, since {ρ(n)i : i > 0} is determined in Ac
k, we have B(�k/4M0�)> �k/4K ′M0� and

P	k/4K′M0
(ω)⊆ {ϑ(1), . . . , ϑ(�k/4K ′M0�)} ⊆ {1, . . . , �k/4M0� − 1}.
This implies {4M0ϑ(i) + 2M0 : i∈ P	k/4K′M0
(ω)} ⊆ {1, . . . , k− 2M0}. Combined with display
(35), this implies

#(P(ω)∩ {1, . . . , k})� �k/4KK ′M0�. (36)

Summing up the conditional probabilities, we have

P(#(P(ω)∩ {1, . . . , k})� �k/4KK ′M0� |Ac
k)� 1− K

1− e−1/K
e−	k/4KK′M0
.

Since P(Ak) decays exponentially, we conclude inequality (7).
It remains to partition the probability space Ω into pivotal equivalence classes that satisfy

Definition 4.1, with P(ω) as the set of pivotal times. We say that ω̄ ∈Ω is pivoted from ω if
they only differ in the value of βi for i∈ lim inf l Pl(ω). Then, being pivoted from each other is an
equivalence relation. On an equivalence class E , all random paths have the same set of pivotal
times P(E) = {j(1)< j(2)< · · · } ⊆M0Z that avoids 1, . . . , �n/2� and n. Moreover, the steps gi
are uniform across E except for

sk := (gj(k)−M0+1, gj(k)−M0+2, . . . , gj(k)) (k= 1, 2, . . .),

which are i.i.d.s chosen from S according to μS . Lastly, observe that

Υ(βi(k)) = (Z(4M0+M ′)ϑ(i(k))+M0
o, . . . , Z(4M0+M ′)ϑ(i(k))+2M0

o)

= (Zj(k)−M0
o, . . . , Zj(k)o) =Yj(k).

By Observation 5.9, (o,Yj(1),Yj(2), . . .) is always D0-semi-aligned. Proposition 4.2 is now
proved.
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6. Large deviation principles

In this section, we consider a more delicate pivoting that leads to the large deviation principle.
Definition 6.1 and Proposition 6.2 rephrases Gouëzel’s result in [Gou22, Section 5A] in terms of
strongly contracting isometries.

Definition 6.1. Let μ and ν be non-elementary probability measures on G and (Ω, P) be a
probability space for μ. Let 0< ε< 1, let K0, N > 0 and let S ⊆ (suppμ)M0 be a long enough and
large K0-Schottky set for μ.

A subset E of Ω is called an (n, N, ε, ν)-pivotal equivalence class for μ, associated with the
set of pivotal times

P(n,N,ε,ν)(E) = {j(1)< j′(1)< · · ·< j(#P/2)< j′(#P/2)} ⊆M0Z>0,

if the following hold:

(i) for each ω ∈ E and k� 1,

sk(ω) := (gj(k)−M0+1(ω), gj(k)−M0+2(ω), . . . , gj(k)(ω)),

s′k(ω) := (gj′(k)−M0+1(ω), gj′(k)−M0+2(ω), . . . , gj′(k)(ω)),

are Schottky sequences;
(ii) for each ω ∈ E , (o,Yj(1),Yj′(1), . . . ,Yj(#P/2),Yj′(#P/2), Zno) is D0-semi-aligned;
(iii) for the RV defined as

rk := gj(k)+1gj(k)+2 · · · gj′(k)−M0
,

(sk, s
′
k, rk)k>0 on E are i.i.d.s and rk are distributed almost according to μ∗2M0N ∗

ν∗((j
′(k)−j(k))/2M0)−N−0.5 in the sense that the following holds for every g ∈G:

(1− ε)(μ∗2M0N ∗ ν∗((j′(k)−j(k))/2M0)−N−0.5)(g)

� P(rk = g)� (1 + ε)(μ∗2M0N ∗ ν∗((j′(k)−j(k))/2M0)−N−0.5)(g)

for each g ∈G.

Proposition 6.2. Let M0 > 0, μ be a non-elementary probability measure on G, let 0< ε< 1
and let S ⊆ (suppμ)M0 be a long enough and large Schottky set for μ with cardinality greater than
100/ε. Then there exists a non-elementary probability measure ν on G such that the following
holds.

For each sufficiently large integer N , there exists K > 0 such that for each n we have a
probability space (Ω, P) for μ and its measurable partition Pn,N,ε,ν = {Eα}α into (n, N, ε, ν)-
pivotal equivalence classes that satisfies

P

(
ω :

1

2
#P(n,N,ε,ν)(ω)� (1− ε)

n

2M0N

)
�Ke−n/K . (37)

We will in fact prove a statement that is more explicit than Proposition 6.2.

Proposition 6.3. Let 0< ε< 1, let K0, M0 > 0 and let S ⊆GM0 be a long enough and large K0-
Schottky set with #S � 100/ε. Let μ be a probability measure on G such that m :=min{μM0(s) :
s∈ S} is positive. Let N > 40/m2ε and let ν be the measure defined by

ν =
1

1− 0.5m2
(μ∗2M0 − 0.5m2 · (uniform measure on {Π(s)Π(s′) : s, s′ ∈ S})).

Then ν is a non-elementary probability measure. Moreover, there exists K > 0 depending only on
S, m,N and ε (but not on μ) such that, for each n, we have a probability space (Ω, P) for μ and
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its measurable partition Pn,N,ε,ν = {Eα}α into (n, N, ε, ν)-pivotal equivalence classes, associated
with the set of pivotal times P(n,N,ε,ν), that satisfies

P

(
ω :

1

2
#P(n,N,ε,ν)(ω)� (1− ε)

n

2M0N

)
�Ke−n/K (∀n∈Z>0).

Gouëzel proved Proposition 6.2 for random walks on a Gromov hyperbolic space in [Gou22,
Section 5C]. We adapt his proof to our setting here.

Proof. Let us denote the uniform measure on S by μS . In this proof, when a probability measure
τ on Gk is given, we denote by τ∗ the pushforward measure by convolution

τ∗(g) :=
∑

(g1,...,gk)∈Gk, g1···gk=g

τ(g1, . . . , gk).

Let N0 =#S be the cardinality of S. Note that 10/N0 � ε/10. Consider the decomposition

μ2M0 = 0.5m2μ2
S + (1− 0.5m2)τ, (38)

where τ is a probability measure on G2M0 with τ∗ = ν. Recall that S is a long enough and
large K0-Schottky set, so there exists a, b∈ S such that Π(a) and Π(b) are independent strongly
contracting isometries. Since τ has the same support with μ2M0 , ν puts nonzero weights on a2

and b2. Hence, ν is non-elementary.
Given the decomposition as in Equation (38), we consider Bernoulli RVs (ρi)i≥0 with P(ρi =

1) = 0.5m2 and P(ρi = 0) = 1− 0.5m2, (ηi)i≥0 with the law of μ2
S , (τi)i with the law of τ , and

(ξi)i�0 with the law of μ2M0 , all independent. We define RVs {tj , t′j}∞j=1. First, t1 is the smallest
i > 0 with ρi = 1, and t′1 :=min{i > t1 +N : ρi = 1}. Inductively, we define

tk :=min{i > t′k−1 : ρi = 1}, t′k :=min{i > tk +N : ρi = 1}.
For convenience, we set t′0 := 0. We then define

(g2M0(k−1)+1, . . . , g2M0(k−1)+2M0
) :=

⎧⎨
⎩

ηk, when k ∈ {tj , t′j}∞j=1,

ξk, when tj + 1� k� tj +N for some j,
τk, otherwise.

Then (gi)
∞
i=1 is distributed according to the product measure μ∞ [Gou22, Claim 5.11]. We let

B(k) :=#{j � 1 : t′j < k}. Now define

wi−1 := g2M0t′i−1+1 · · · g2M0(ti−1),

αi := (g2M0ti−2M0+1, . . . , g2M0ti−M0
),

βi := (g2M0ti−M0+1, . . . , g2M0ti),

vi := g2M0ti+1 · · · g2M0t′i−2M0
,

γi := (g2M0t′i−2M0+1, . . . , g2M0t′i−M0
),

δi := (g2M0t′i−M0+1, . . . , g2M0t′i),

for i= 1, . . . ,B(�n/2M0�) and define wB(	n/2M0
) = g2M0t′B(�n/2M0�)+1· · ·gn. Using these data, we
define the set of pivotal times

PB(	n/2M0
)(ω) = PB(	n/2M0
)((αi, βi, γi, δi)
B(	n/2M0
)
i=1 ; (wi)

B(	n/2M0
)
i=0 , (vi)

B(	n/2M0
)
i=1 )

as in § 5.1.
We first determine the values of ρj . Observe that B(�n/2M0�) and {tj , t′j}j depend solely on

{ρj}j and counts the renewal times in [0, n/2M0] formed with a geometric distribution after a
delay N . More explicitly, if we ‘omit’ ρtk+i for k > 0 and i= 1, . . . , N and define

(ρ′1, ρ
′
2, ρ

′
3, . . .) := (ρ1, . . . , ρt1 , ρt1+N+1, ρt1+N+2, . . . , ρt2 , ρt2+N+1, . . .),

1558

https://doi.org/10.1112/S0010437X25007511 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007511


Random walks and contracting elements I

then {ρ′i}i are i.i.d. Bernoulli RVs and t′k = kN +min{j :∑j
i=1 ρ

′
i = 2k}. Hence, we have

P

(
B(�n/2M0�)< (1− ε/10)

n

2M0N

)
= P(t′�(1−ε/10)n/2M0N� > �n/2M0�)

= P

(⌈
(1− ε/10)

n

2M0

⌉
+min

{
j :

j∑
i=1

ρ′i =
⌈
(1− ε/10)

n

M0N

⌉}
≥
⌊ n

2M0

⌋)

� P

( �εn/20M0�+3∑
i=1

ρ′i < (1− ε/10)
n

M0N

)
,

which decays exponentially because E[ρ′i] = 0.5m2 > 20/εN . Hence, there exists K1 > 0 that
depends on m, ε and N such that

P

(
B(�n/2M0�)< (1− ε/10)

n

2M0N

)
�K1e

−n/K1 . (39)

Let us fix the choices of (ρi)i�0. This determines (ti, t
′
i)i>0 and B(�n/2M0�). We then fix the data

(τi, ξi)i>0 and {ηi : i > t′B(	n/2M0
)}. These in turn determine (wi)
B(	n/2M0
)
i=0 and (vi)

B(	n/2M0
)
i=1 .

Furthermore

(αi, βi)
B(	n/2M0
)
i=1 = (ηti)

B(	n/2M0
)
i=1 , (γi, δi)

B(	n/2M0
)
i=1 = (ηt′i)

B(	n/2M0
)
i=1

are all independent and identically distributed according to μ2
S . Hence, the situation is reduced

to the combinatorial model in § 4. Corollary 5.8 asserts the following for some K2 > 0:

P(#PB(	n/2M0
) � (1− 10/N0)B(�n/2M0�) | (ρi, τi, ξi)i�0)�K2e
−B(	n/2M0
)/2M0K2 . (40)

Combining inequalities (39) and (40), we can conclude that P(#PB(	n/2M0
) � (1− ε)n/2M0N)
decays exponentially.

Now, given ω ∈Ω with PB(	n/2M0
)(ω)(ω) = {i(1)< i(2)< · · · }, we define

P(n,N,ε,ν)(ω) = {j(1)< j′(1)< j(2)< j′(2)< · · · }
:= {2M0ti(1), 2M0t

′
i(1) −M0, 2M0ti(2), 2M0t

′
i(2) −M0, . . .}.

We just established the estimate is display (37) for this P(n,N,ε,ν). Furthermore, note that

Υ(βi(k)) = (Z2M0ti(k)−M0
o, . . . , Z2M0ti(k)

o) = (Zj(k)−M0
o, . . . , Zj(k)o) =Yj(k),

Υ(γi(k)) = (Z2M0t′i(k)−2M0
o, . . . , Z2M0t′i(k)−M0

o) = (Zj′(k)−M0
o, . . . , Zj′(k)o) =Yj′(k),

are Schottky axes, and that w−
B(	n/2M0
)+1,2 =Zn. Proposition 5.1 tells us that (o,Yj(1),Yj′(1),

Yj(2),Yj′(2), . . . , Zno) is always D0-semi-aligned. This settles items (i) and (ii) in Definition 6.1.
It remains to realize the partition as in Definition 6.1 and check item (iii) in Definition 6.1. We

declare the equivalence by pivoting. More precisely, given ω ∈Ω with PB(	n/2M0
(ω) = {i(1)<
i(2)< · · · }, we declare that another element ω′ ∈Ω is equivalent to ω if it has the same values of
(ρi)i�0 (hence the same values of (ti, t

′
i)i>0) as ω , and if it has the same values of (ηi, τi, ξi)i�0

as ω, possibly except for

{ηi : i∈∪k{ti(k), t′i(k)}}, {ξi : i∈∪k[ti(k) + 1, ti(k) +N ]}, {τi : i∈∪k[ti(k) +N, t′i(k+1) − 1]}.
Further, we require that (αi(k)(ω

′), δi(k)(ω
′)) = (αi(k)(ω), δi(k)(ω)) for each k and

(βi(l)(ω
′), γi(l)(ω

′), vi(l)(ω
′))∈ S̃ (l= 1, . . . ,#PB(	n/2M0
).

Note that, under this requirement, ω′ has the same values of (wi)
B(	n/2M0
)
i=0 and {vi : i �=

i(1), . . . , i(#PB(	n/2M0
))} as ω. By Lemma 5.5, we have PB(	n/2M0
)(ω) = PB(	n/2M0
)(ω
′), and

the above relation becomes an equivalence relation.
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Recall that, conditioned on the data (ρi)i≥0, (βj , γj , vj) is distributed according to μ2
S ×

(μ∗2M0 ∗ (τ∗)∗(t′j−tj−N−0.5)) = μ2
S × (μ∗2M0 ∗ ν∗(t′j−tj−N−0.5)). Now let E be a pivotal equivalence

class that has pivotal times PB(	n/2M0
) = {i(1)< · · ·< i(m)}. Then (βi(l), γi(l), vi(l)) are inde-

pendent and distributed according to the restriction of μ2
S × (μ∗2M0N ∗ ν∗(t′j−tj−N−1)) onto the

set of ‘legitimate choices’ S̃. To describe this, let us define a (not necessarily probability)
measure

μ(1)(s′, s′′, r) :=

{
μS(s

′)μS(s
′′)(μ∗2M0N ∗ ν∗(t′j−tj−N−1))(r), if (s′, s′′, r)∈ S̃,

0, otherwise.

Then (βi(l), γi(l), vi(l)) is distributed according to the normalized version μ(0) of μ(1), namely,

μ(0)(A) := (1/(μ(1)(S2 ×G)))μ(1)(A) for each A⊆ S2 ×G.
For each r ∈G, among N2

0 choices of s′ and s′′ in S at least N2
0 − 2N0 choices qualify the

criterion and make (s′, s′′, r)∈ S̃ by the Schottky property. (See the discussion in displays (20)
and (21).) This implies the bound for each r ∈G,(

1− 2

N0

)
(μ∗2M0N ∗ ν∗(t′j−tj−N−1))(r)� μ(1)(S2 × {r})� (μ∗2M0N ∗ ν∗(t′j−tj−N−1))(r).

Summing this up for all r ∈G, we obtain 1− 2/N0 � μ(1)(S2 ×G)� 1. Combining these two
estimates, we conclude the following for every g ∈G:(

1− 2

N0

)
(μ∗2M0N ∗ ν∗(t′j−tj−N−1))(r)� P(vi(l) = r) = μ(0)(S2 × {r})

�
(
1 +

3

N0

)
(μ∗2M0N ∗ ν∗(t′j−tj−N−1))(r).

This settles item (iii) in Definition 6.1, as desired.

We now establish the large deviation principle for random walks.

Theorem 6.4. Let (X,G, o) be as in Convention 2.11 and let (Zn)n be the random walk gener-
ated by a non-elementary probability measure μ on G. Let λ(μ) = limn(1/n)E[d(o, Zno)] be the
drift of μ. Then for each 0<L<λ(μ), the probability P(d(o, Zno)�Ln) decays exponentially
as n goes to infinity.

Recall that λ(μ) =+∞ when μ has infinite first moment, by Corollary 4.12.

Proof. Due to the subadditivity, we have Eμ∗N [d(o, go)]� λ(μ)N for each N > 0. Since L is
smaller than λ(μ), there exists ε > 0 such that

(1− ε)3λ(μ)>L+ ε.

For this ε > 0, let S be a long enough Schottky set for μ with cardinality greater than 100/ε. By
Proposition 6.2, there exists a non-elementary probability measure ν, and for each sufficiently
large N , a partition Pn,N,ε into (n, N, ε, ν)-pivotal equivalence classes for each n such that

P
(
ω :

1

2
#P(n,N,ε,ν)(ω)� (1− ε)

n

2M0N

)
decays exponentially in n. Let C > 0 be a constant for ν provided by Corollary 4.11: we have

Pν∗m(h : d(o, gho)� d(o, go)−C)� 1− ε/2,

for each g ∈G and each m> 0. We now fix an N such that N >C/2M0λ(μ)ε.
Let E be an equivalence class such that 1

2#P(n,N,ε,ν)(E)� (1− ε)(n/2M0N). Then for each
ω ∈ E , (o,Yj(1), . . . ,Yj′(#P/2), Zno) is D0-semi-aligned. The second inequality in item (ii) of
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Lemma 3.18 tells us that

d(o, Zno)�
#P/2∑
i=1

d(Zj(i)o, Zj′(i)−M0
o) =

#P/2∑
i=1

d(o, rio) (ri := gj(i)+1 · · · gj′(i)−M0
).

Since ri are non-negative i.i.d. with

E[d(o, rio)]� (1− ε)Eμ∗2M0N [d(o, go)−C]� (1− ε)2 · 2M0Nλ(μ),

we can apply the classical theory of large deviation. As a result, there exists K ′ > 0 such that

P(d(o, Zno)≤ (1− ε)3λ(μ)n | E)�K ′e−n/K′
(∀n> 0).

Summing up this conditional probability, we obtain the desired exponential bound.

We now connect Theorem 6.4 with the large deviation principle. In [BMSS22, Proposition 2.3,
Theorem 2.8], Boulanger, Mathieu, Sert, and Sisto presented a general theory of large deviation
principles on metric spaces with Schottky sets. Combining their result with Theorem 1.1, we
establish the large deviation principle for random walks on the mapping class group.

Corollary 6.5 (Large deviation principle). Let (X,G, o) be as in Convention 2.11 and let
(Zn)n≥0 be the random walk generated by a non-elementary probability measure μ on G. Then
there exists a proper convex function I :R→ [0,+∞], vanishing only at the drift λ(μ), such that

− inf
x∈int(E)

I(x)� lim inf
n→∞

1

n
log P
( 1
n
d(id, Zn)∈E

)
,

− inf
x∈Ē

I(x)≥ lim sup
n→∞

1

n
log P
( 1
n
d(id, Zn)∈E

)
,

holds for every measurable set E ⊆R.

We note the work of Corso [Cor21], who proved that the rate function exists and is proper for
random walks involving strongly contracting isometries. Our Corollary 6.5 strengthens Corso’s
result by showing that I(x) �= 0 for x∈ [0, λ(μ)), which is a consequence of Theorem 1.1.

PART II. Random walks with weakly contracting isometries

In this part, we deal with groups acting on a space X and another space X̃ equivariantly, where
the action on X involves strong contraction and the action on X̃ involves weak contraction; see
Convention 7.2. After studying alignment of weakly contracting directions in § 8, we establish
limit theorems for mapping class groups in § 9.

7. Mapping class groups and HHGs

Let Σ be a finite-type hyperbolic surface, let (X̃, d̃) be the Cayley graph of the mapping class
group G=Mod(Σ) of Σ, and let (X, d) be the curve complex of Σ or the Teichmüller space of
Σ. The action of G on (X, d) satisfies Convention 2.11: G contains independent pseudo-Anosov
mapping classes that have strongly contracting orbits on X ([Min96, Contraction Theorem],
[MM99, Proposition 4.6]).

Let Pr : X̃ →X be the orbit map: Pr(g) = go, where o∈X is the basepoint. Since G is finite
generated and acts on X by isometries, the map Pr is coarsely Lipschitz and is G-equivariant.
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We will denote by Ã the object ‘in the upper space’ corresponding to an object A ‘in the lower
space’. For example, we fix basepoints õ= id∈ X̃ and o∈X that satisfy Pr(õ) = o.

For each subset Ã⊆ X̃, we define the projection π̃Ã from X̃ onto Ã by referring to the closest

point projection at the lower space X. Namely, for x̃∈ X̃ and its projection x := Pr(x̃), we define
π̃Ã(x̃) := Pr−1 ◦ πA ◦Pr by ã∈ π̃Ã(x̃) ⇔ a∈ πA(x).

Lemma 7.1. For each C > 1 there exists D> 1 such that if a C-quasigeodesic γ̃ : I → X̃ on X̃
has projection γ onto X that is a C-contracting axis, then γ̃ is D-weakly contracting with respect
to the map π̃γ̃ :=Pr−1 ◦ πγ ◦Pr.
Proof. Let us first consider the case that X̃ is the Cayley graph of Mod(Σ) and (X, d) is
the curve complex C(Σ) of Σ. Recall that there are coarsely Lipschitz projections PrU : X̃ →
{uniformly bounded subsets of CU} from X̃ to the curve complex CU of subsurfaces U ⊆Σ, and
ρVU : CU →{uniformly bounded subsets of CV } for every pair of nested subsurfaces V ⊆U ⊆Σ.
Further, PrU and ρUΣ ◦Pr are uniformly coarsely equivalent.

Since γ̃ and γ =Pr ◦γ̃ are C-quasigeodesics, {PrU (γ̃) :U �Σ} have uniformly bounded diam-
eter (depending on C). This is due to the bounded geodesic image property. Namely, given a
proper subsurface U �Σ, there exists a uniformly bounded neighborhood N of ∂U ⊆C(Σ) such
that γ \N is uniformly close to a geodesic on C(Σ) that is disjoint from ∂U . By [MM00, Theorem
3.1], ρUΣ(γ \N) has bounded diameter. Since N is bounded, ρUΣ(γ ∩N) is also bounded.

Given the uniform boundedness of PrU (γ̃), i.e., the coboundedness of γ̃, the weakly contract-
ing property of γ̃ follows from [DR09, Theorem 4.2] (cf. [Beh06, Lemma 5.6]). More explicitly,
[DR09, Theorem 4.2] guarantees a constant E =E(C) such that, for each x̃∈ X̃, we have

diamX

(
πγ ◦Pr

({
p̃∈ X̃ : d(x̃, p̃)<

1

E
d̃(x̃, γ̃)

}))
<E.

Since the d-diameter along γ and d̃-diameter along γ̃ are coarsely equivalent (as γ is a
quasigeodesic), we conclude that γ̃ is weakly contracting with respect to π̃γ̃ .

When (X, d) is the Teichmüller space of Σ, the strongly contracting property of γ implies
that the Teichmüller geodesics [γ(t), γ(s)] for t < s are contained in a uniform neighborhood
of γ (Corollary 3.4) and are hence uniformly thick. This in turn implies that PrU (γ̃(t), γ̃(s))
for t < s and proper subsurfaces U �Σ are uniformly bounded ([Raf05, Theorem 1.1], [Raf14,
Theorem 5.5], [RS09, Theorem 4.1] and [DT15, Lemma 5.1]). Then we similarly deduce the
weakly contracting property of γ̃ by [DR09, Theorem 4.2].

In general, Lemma 7.1 can be generalized to the setting where G is a HHG, (X̃, d̃) is its
Cayley graph and (X, d) is the top curve graph for G. This follows from [ABD21, Corollary 6.2]
((3) ⇒ (2)) and [ABD21, Theorem 4.4]. Note that, even though Corollary 6.2 and Theorem 4.4
assume the unbounded products of the HHG structure for G, which is not granted in general,
the directions we need do not require such an assumption.

In particular, the pseudo-Anosov axes on X̃ are weakly contracting. Hence, our setting is as
follows.

Convention 7.2. We fix B > 0 and assume that:

(i) (X̃, d̃), (X, d) are geodesic metric spaces;
(ii) Pr : X̃ →X is a coarsely Lipschitz map, i.e., for all x̃, ỹ ∈ X̃

d(Pr(x̃),Pr(ỹ))�Bd̃(x̃, ỹ) +B;

(iii) G is a countable group of isometries acting on X̃ and X equivariantly;
(iv) õ∈ X̃ and o∈X are basepoints that satisfy Pr(õ) = o;
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(v) for each C > 1 there exists D> 1 such that a path γ̃ on X̃ is D-weakly contracting with
respect to π̃γ̃ whenever its projection Pr(γ̃) is a C-contracting axis;

(vi) G contains two independent strongly contracting isometries of X.

For each object Ã⊆ X̃, we denote by A its projection Pr(Ã)⊆X.

When item (iii) is replaced with the coarse equivariance condition, this setting also covers
HHGs acting on the top curve graph. For simplicity, we denote the word norm of g ∈G by |g|.
In the general case, one can replace |g| with d̃(õ, gõ).

8. Alignment II: weakly contracting axes

Throughout, we adopt Convention 7.2. We define the alignment among paths κ̃1, . . . , κ̃n on X̃
based on Definition 3.6 with respect to the projections π̃κ̃i

:=Pr−1 ◦ πκi
◦Pr.

Lemma 8.1. For each K > 1 there exists K ′ >K such that the following hold. Let x̃, ỹ ∈ X̃
and let κ be a path on X̃ whose projection κ on X is a K-contracting axis. Then κ̃ is a K ′-
quasigeodesic that is K ′-weakly contracting with respect to π̃κ̃. Moreover, for each C > 1 we
have the implication

(x̃, κ̃, ỹ) is C-aligned⇒ (x, κ, y) is K ′C-aligned,

(x, κ, y) is C-aligned⇒ (x̃, κ̃, ỹ) is K ′C-aligned.

Proof. Let κ̃ : I → X̃ and κ := Pr ◦ κ̃ : I →X. The weakly contracting property of κ̃ is given by
Lemma 7.1. If we denote by F the coarse inverse of κ, Pr and κ̃ ◦ F are maps between κ and κ̃,
and are coarse inverses of each other. This implies the coarse comparison

1

K ′′ d̃(p̃, q̃)−K ′′ � d(p, q)�K ′′d̃(p̃, q̃) +K ′′,

for all points p̃, q̃ on κ̃, for some K ′′ =K ′′(K). This implies the remaining items.

We now prove the main proposition of this section.

Proposition 8.2. For each K,D > 1, there exist E, L′ >K,D such that the following holds.
Let L�L′, let x̃, ỹ ∈ X̃ and let κ̃1, . . . , κ̃n be paths on X̃ whose domains are longer than

L and such that their projections are K-contracting axes. Suppose that (x, κ1, . . . , κn, y) is
D-aligned. Then there exist points p̃1, . . . , p̃n on [x̃, ỹ], in order from left to right, such that

d̃(p̃i, κ̃i)�
n+1∑
j=1

e−|j−i−0.5|L/E diamX̃(κ̃j−1 ∪ κ̃j) +E. (41)

Here, we plug in κ̃0 = x̃ and κ̃n+1 = ỹ.

Proof. Let B be the coarse Lipschitzness constant for Pr, and define the constants:

– let K2 =K ′(K) be as in Lemma 8.1, which is larger than K > 1;
– let K4 =K ′(K) be as in Lemma 2.10, which is larger than K > 1;
– let E1 =E(K,D) be as in Lemma 3.9, which is larger than K > 1;
– let E2 =E(K,D), L0 =L(K,D) be as in Proposition 3.10.

Now we define constants

E = 16KK2K4(1 + log 2K4) +E1 +E2 +B,

L′ =L0 + 4KK2(B + 5K +K2E).
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Then, the following hold for all L�L′:

L

K
−E −K �L/2K �E1 + 2E2 +B + 4K,

L� 4KK2

(
B + 5K

K2
+K2E

)
,

1

2
e−2L/E �K4e

−L/4KK2K4 .

Note the following.

Fact 8.3. Let C > 0, let x∈X and let κ be a K-contracting axis on X with L-long domain. If
(x, κ) is C-aligned, then (κ, x) is not ((L/K)−C −K)-aligned.

Let L�L′, let x̃, ỹ ∈ X̃ and let κ̃1, . . . , κ̃n be paths on X̃ whose domains are longer than L
and whose projections κi onto X are K-contracting axes. Recall our convention that, whenever
we define Ã⊆ X̃, we use the notation A := Pr(Ã).

Step 1. We prove the following for n� 2: We induct on the number n of the contracting axes.
First, Proposition 3.10 implies that (x, κi, y) is E2-aligned for each i. In view of Fact 8.3, (κ1, x)
is not (E1 +E2 +B + 4K)-aligned but (κ1, y) is E2-aligned. Now, note that:

– πκ1
is (1, 4K)-coarsely Lipschitz (Lemma 2.2);

– Pr is B-coarsely Lipschitz and hence πκ1
◦Pr is (B, B + 4K)-coarsely Lipschitz; and

– the geodesic [x̃, ỹ] is connected.

Pick the rightmost point z̃2 ∈ [x̃, ỹ] such that (κ1, z2) is not (E1 +E2)-aligned. Then (κ1, z2) is
(E1 +E2 +B + 4K)-aligned, and hence E-aligned, since πκ1

◦Pr is B-coarsely Lipschitz. Since
(κ1, κ2) is D-aligned and (κ1, z2) is not E1-aligned, Lemma 3.9 implies that (z2, κ1) is E1-aligned.

When n= 2, the proof ends here. Otherwise, note that (z2, κ2) is E-aligned and (κ2, . . . , κn, y)
is D-aligned. By the induction hypothesis, there exist z̃3, . . . , z̃n on [z̃2, ỹ], in order from left to
right, such that (κi−1, zi) and (zi, κi) are E-aligned for each i� 3. The claim now follows.

Step 2: Construction of p̃j . We now assume that (x, κ1, . . . , κn, y) is D-aligned. By Step 1, we
obtain points z̃2, . . . , z̃n on [x̃, ỹ], in order from left to right. We let z̃1 := x̃ and z̃n+1 := ỹ.

Pick j ∈ {1, . . . , n}. Then (zj , κj) is E-aligned, and hence L/2K-aligned. Meanwhile,
(κj , zj+1) is E-aligned, so (zj+1, κj) is not (L/K −E −K)-aligned, and hence not L/2K-aligned.
Now let p̃j to be the rightmost point on [z̃j , z̃j+1] such that (pj , κj) is not L/2K-aligned. Then
by the (B, B + 4K)-Lipschitzness of πκj

◦Pr, we have that

L/2K − (B + 4K)� diamX(beginning point of κj ∪ πκj
(pj))�L/2K + (B + 4K).

In particular, (pj , κj) is not (L/2K − (B + 4K))-aligned. Moreover, (κj , pj) is not (L/2K − (B +
5K))-aligned by Fact 8.3. Denoting the beginning point of κ̃j by qj , Lemma 8.1 implies

diamX̃(π̃κ̃j
(z̃j)∪ π̃κ̃j

(p̃j))� diamX̃(π̃κ̃j
(z̃j)∪ qj)− diamX̃(qj ∪ π̃κ̃j

(p̃j))

� 1

K2
(
L

2K
−B − 4K)−K2E � L

4KK2
.

For a similar reason, diamX̃(π̃κ̃j
(z̃j+1)∪ π̃κ̃j

(p̃j)) is at least (1/K2)((L/2K)−B − 5K)−K2E �
L/4KK2. Now Lemma 2.10 implies

d̃(p̃j , κ̃j)�K4e
−L/4KK2K4 d̃(z̃j , κ̃j) +K4e

−L/4KK2K4 d̃(z̃j+1, κ̃j) +K4

� 1
2e

−2L/E d̃(z̃j , κ̃j) +
1
2e

−2L/E d̃(z̃j+1, κ̃j) +K4. (42)
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Step 3: Estimating d̃(p̃j , κ̃j). Given inequality (42), it now suffices to prove

d̃(z̃i, κ̃i−1) + d̃(z̃i, κ̃i)�
n+1∑
j=1

2e−|j−i|L/E diamX̃(κ̃j−1 ∪ κ̃j) +E (43)

for i= 2, . . . , n. To prove this, we collect indices i that violate inequality (43). Let I = {m,m+
1, . . . , m′} be a maximal one-connected set of such indices. We aim to show that I is empty.

Suppose on the contrary that I is nonempty. Note first that z̃1 and z̃n+1 satisfy inequality
(43), i.e., 1, n+ 1 /∈ I; hence, m� 2 and m′ � n. We now compute d̃(z̃m−1, z̃m′+1) in two different
ways. First, using inequality (42) we deduce

d̃(z̃m−1, z̃m′+1) =

m′+1∑
j=m

d̃(z̃j−1, z̃j)�
m′+1∑
j=m

(d̃(z̃j−1, p̃j−1) + d̃(p̃j−1, z̃j))

�
m′+1∑
j=m

(d̃(z̃j−1, κ̃j−1) + d̃(κ̃j−1, z̃j)− 2d̃(p̃j−1, κ̃j−1))

�
m′+1∑
j=m

((1− e−2L/E)(d̃(z̃j−1, κ̃j−1) + d̃(κ̃j−1, z̃j))− 2K4).

Recall that d̃(κ̃j−1, z̃j) + d̃(z̃j , κ̃j)�
∑

k 2e
−|k−j|L/E diamX̃(κ̃k−1 ∪ κ̃k) +E holds for m� j �m′.

Moreover, E · (#I)� 2K4 · (#I + 1) + 0.5E because #I � 1 and E � 8K4. Hence, we obtain

d̃(z̃m−1, z̃m′+1)� (1− e−2L/E)(d̃(z̃m−1, κ̃m−1) + d̃(κ̃m′ , z̃m′+1))

+ (1− e−2L/E)

m′∑
j=m

N+1∑
k=1

2e−|k−j|L/E diamX̃(κ̃k−1 ∪ κ̃k) + (1− e−2L/E) · 0.5E.

If we rearrange the double summation with respect to k, the right-hand side is at least

(1− e−2L/E)(d̃(z̃m−1, κ̃m−1) + d̃(z̃m′+1, κ̃m′) + 0.5E) + 2(1− e−2L/E)

m′∑
j=m

diam(κ̃j−1 ∪ κ̃j)

+ 2(1− e−2L/E)

( ∑
1�k<m

e−(m−k)L/E diamX̃(κ̃k−1 ∪ κ̃k)

+
∑

m′<k�N+1

e−(k−m′)L/E diamX̃(κ̃k−1 ∪ κ̃k)

)
.

Next, we will obtain an upper bound of d̃(z̃m−1, z̃m′+1)

d̃(z̃m−1, z̃m′+1)� d̃(z̃m−1, κ̃m−1) +

m′∑
j=m

diam(κ̃j−1 ∪ κ̃j) + d̃(z̃m′+1, κ̃m′)

� (1− e−2L/E)(d̃(z̃m−1, κ̃m−1) + d̃(z̃m′+1, κ̃m′)) +

m′∑
j=m

diam(κ̃j−1 ∪ κ̃j)

+ 2e−2L/E ·E + e−2L/E(d̃(κ̃m−2, z̃m−1) + d̃(z̃m−1, κ̃m−1)−E)

+ e−2L/E(d̃(κ̃m′ , z̃m′+1) + d̃(z̃m′+1, κ̃m′+1)−E).
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We know that 6e−L/E � 1 because L> 8E. Having this in mind, we now make use of the fact
that m− 1 and m′ + 1 are not contained in I: d̃(z̃m−1, z̃m′+1) is bounded from above by

(1− e−2L/E)(d̃(z̃m−1, κ̃m−1) + d̃(z̃m′+1, κ̃m′) + 0.5E) +

m′∑
j=m

diamX̃(κ̃j−1 ∪ κ̃j)

+ e−2L/E

(
2

N+1∑
k=1

(e−|k−m+1|L/E + e−|k−m′−1|L/E) diamX̃(κ̃k−1 ∪ κ̃k)

)

� (1− e−2L/E)(d̃(z̃m−1, κ̃m−1) + d̃(z̃m′+1, κ̃m′) + 0.5E)

+

m′∑
j=m

(1 + 4e−2L/E) diamX̃(κ̃j−1 ∪ κ̃j) +
∑

1�k<m

4e−L/E · e−(m−k)L/E diamX̃(κ̃k−1 ∪ κ̃k)

+
∑

m′<k�N+1

4e−L/E · e−(k−m′)L/E diamX̃(κ̃k−1 ∪ κ̃k),

which is a contradiction. Hence, I = ∅ and inequality (43) is established.

9. Limit laws for mapping class groups

We continue to employ the notion of Schottky sets defined in Definition 3.15. Once a Schottky
set S and its element s is understood, the translates of Γ±(s) are now called Schottky axes on
X, whereas the translates of Γ̃±(s) are called Schottky axes on X̃.

Definition 9.1. Given a constant K0 > 0, we define:

– K1 =K ′(K0) as in Lemma 8.1;
– D0 =D(K0, K0) as in Lemma 3.8;
– E0 =E(K0, D0), L0 =L(K0, D0) as in Proposition 3.12;
– E1 =K ′(K0, E0), L1 =L′(K0, E0) as in Proposition 8.2.

Let 0< ε< 1. If a K0-Schottky set S ⊆GM0 consists of sequences of length

M0 >max(L0, L1, 2K1E1, (− log(ε2/4)) ·E1),

then we call S an ε-constricting K0-Schottky set.

Thanks to Proposition 3.19, for every non-elementary probability measure μ on G and N, ε >
0, there exists an ε-long enough Schottky set for μ with cardinality N . We are ready to state
the following proposition.

Proposition 9.2. Let μ be a non-elementary probability measure on the mapping class group
G and ((Žn)n, (Zn)n) be the (bi-directional) random walk generated by μ, with step sequences
((ǧn)n, (gn)n). Then there exists K ′ > 0 such that

P(d(id, [Žm, Zn])�K ′Dk for all n,m� 0 | ǧk+1, gk+1)�K ′e−k/K′
,

holds for all k, where

Dk :=

k∑
i=1

|gi|+
k∑

i=1

|ǧi|+
∞∑
i=1

e−i/K′ |gi|+
∞∑
i=1

e−i/K′ |ǧi|+ 1. (44)

Proof. Let S and Š be long enough, large, and (2/e)-constricting K0-Schottky sets for μ and μ̌,
respectively, for some K0 > 0. Proposition 4.2 determines a constant K > 0 (not depending on
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k but only on μ), a probability space (Ω, P) for μ and a partition of Ω into pivotal equivalence
classes that is independent of the backward steps (ǧn)n>0 and such that

P(#P(ω)∩ {1, . . . , n}� n/K | gk+1)� 1−Ke−k/K (n� k),

and also another partition into (backward) pivotal equivalence classes that is independent of the
forward steps (gn)n>0 and such that

P(#P(ω̌)∩ {1, . . . , n}� n/K | ǧk+1)� 1−Ke−k/K (n� k).

We enumerate P(ω) by {j(1)< j(2)< · · · } and P(ω̌) by {ǰ(1)< ǰ(2)< · · · }. Let us now define
the event Bk in Ω; (ω̌, ω)∈Bk if:

(i) #P(ω)∩ {1, . . . , n}� n/K for all n� k/3;
(ii) #P(ω̌)∩ {1, . . . , n}� n/K for all n� k/3;
(iii) for each n� k and m� k, the following are D0-semi-aligned:

(o,Yj(1)(ω),Yj(2)(ω), . . . ,Yj(	2n/3K
)(ω), Zno),

(o,Yǰ(1)(ω̌),Yǰ(2)(ω̌), . . . ,Yǰ(	2m/3K
)(ω̌), Žmo);

(iv) (Ȳǰ(i)(ω̌),Yj(i)(ω)) is D0-aligned for some i� k/3K.

In the proof of Lemma 4.10 we proved that P(Bk) decays exponentially in k. It remains to prove
that d(id, [Žm, Zn])�K ′Dk for any n,m> 0 and (ω̌, ω)∈Bk, where we set K ′ � 8 + 1.5K +E1.
From now on, we fix k. When n� k, we automatically have

d(id, [Žm, Zn])� d(id, Zn)�
k∑

i=0

|gi|�K ′Dk.

Similarly, the desired inequality holds when m� k. Now assume n,m� k. The sequence

(Žmo,Yǰ(	2m/3K
)(ω̌), . . . ,Yǰ(	k/3K
)(ω̌),Yj(	k/3K
)(ω), . . . ,Yj(	2n/3K
)(ω), Zno)

is D0-semi-aligned, and hence E0-aligned by Proposition 3.10. Here, recall that the involved
Schottky set is (2/e)-long enough and that − log(4/e2 · 1/4) = 2. Hence, M0/E1 � 2. By
Proposition 8.2, there exists p̃∈ [Žm, Zn] whose distance to Ỹj(	k/3K
)(ω) is at most

	2n/3K
∑
l=	k/3K
+1

e−l−	k/3K
 diam(Ỹj(l−1)(ω)∪ Ỹj(l)(ω))

+

	2m/3K
∑
l=	k/3K
+1

e−l−	k/3K
 diam(Ỹǰ(l−1)(ω̌)∪ Ỹǰ(l)(ω̌))

+ e−(	2n/3K
−	k/3K
) diam(Ỹj(	2n/3K
)(ω)∪Zn)

+ e−(	2m/3K
−	k/3K
) diam(Ỹj(	2m/3K
)(ω̌)∪ Žm)

+ e−1 diam(Ỹj(	k/3K
)(ω)∪ Ỹǰ(	k/3K
)(ω̌)) +E1.
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Here, note that

diam(Ỹj(k−1)(ω)∪ Ỹj(k))(ω))�
j(k)∑

i=j(k−1)−M0+1

|gi|,

diam(Ỹj(	2n/3K
)(ω)∪Zn)�
n∑

i=j(	2n/3K
)−M0+1

|gi|.

Note also that l− �k/3K�� 1
2 l for l > �2k/3K�. Using these, we deduce

d̃(p̃, Ỹj(	k/3K
)(ω))�
j(	2n/3K
)∑

i=j(	2k/3K
)+1

2e−
1

2
min{l>0:j(l)�i}|gi|+

ǰ(	2m/3K
)∑
i=ǰ(	2k/3K
)+1

2e−
1

2
min{l>0:ǰ(l)�i}|ǧi|

+

n∑
i=j(	2n/3K
)+1

2e−
1

2
	2n/3K
|gi|+

m∑
i=j(	2m/3K
)+1

2e−
1

2
	2m/3K
|ǧi|

+

j(	2k/3K
)∑
i=1

2|gi|+
ǰ(	2k/3K
)∑

i=1

2|ǧi|+E1.

Since we have j(�i/K�)� i for each i� k/3, this is bounded by

2

k∑
i=1

|gi|+ 2

k∑
i=1

|ǧi|+ 2

	2n/3
∑
i=k+1

e−i/2K |gi|+ 2e−	n/3K

n∑

i=	2n/3
+1

|gi|

+ 2

	2m/3
∑
i=k+1

e−i/2K |ǧi|+ 2e−	m/3K

m∑

i=	m/3
+1

|ǧi|+E1.

Moreover, since diam(id∪ Ỹj(	k/3K
)) is bounded by
∑j(	k/3K
)

i=1 |gi|�
∑k

i=1 |gi|, we conclude

d̃(id, p̃)� 4

k∑
i=1

(|gi|+ |ǧ|i) + 2

∞∑
i=1

e−
1

3K
i(|gi|+ |ǧ|i) +E1.

Proposition 9.3. Let p > 0 and let ((Žn)n, (Zn)n) be the (bi-directional) random walk gener-
ated by a non-elementary probability measure μ on G with finite pth moment. Then there exists
K > 0 such that

Eμ

[
sup
n,m

ď(id, [Žm, Zn])
p
]
<K.

In particular, for almost every sample path (ω̌, ω), every geodesic in {[Žm, Zn] :m, n> 0}
intersects the same bounded metric ball centered at id.

Proof. Let K ′ > 0 be as in Proposition 9.2. Let Dk be as defined by Equation (44) and let

Ak := {(ω̌, ω) : d(id, [Žn, Zm])�Dk for all n,m� 0}.
Then, we have

1

K ′ sup
n,m

ď(id, [Žm, Zn])�
min{m:(ω̌,ω)∈Am}∑

k=1

(|gk|+ |ǧk|) +
∞∑
k=1

e−k/K′ |gk|+
∞∑
k=1

e−k/K′ |ǧk|+ 1. (45)
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Noting that |x+ y|p � (2 max(|x|, |y|))p � |2x|p + |2y|p for x, y > 0, it suffices to bound E[Ipi ] for

I1 :=

min{m:(ω̌,ω)∈Am}∑
k=1

|gk|, I2 :=

min{m:(ω̌,ω)∈Am}∑
k=1

|ǧk|,

I3 :=

∞∑
k=1

e−k/K′ |gk|, I4 :=

∞∑
k=1

e−k/K′ |ǧk|.

Observe the following: when |gk|e−k/2K′
is bounded by M for all k, we have

I3 =

∞∑
k=1

e−k/K′ |gk|�M

∞∑
k=1

e−k/2K′ �MC,

for C = (1− e−1/2K′
)−1. This means

E[Ip3 ]�CpE
[
(max

k
e−k/2K′ |gk|)p

]
�CpE

[∑
k

(e−k/2K′ |gk|)p
]

=CpEμ|g|p ·
∑
k

e−kp/2K′
<+∞.

For I1, recall the inequality |tp − sp|� 2p(|t− s|p + sp−np |t− s|np) for each t, s� 0 and p > 0,
where np = p for 0� p� 1 and np = 1 otherwise. From this, we have

E[Ip1 ]� 2p
∞∑
k=0

E

[(
|gk+1|p +

( k∑
i=1

|gi|
)p−np

|gk+1|np

)
1Ac

k

]
.

Since P(Ac
k | gk+1)�K ′e−k/K′

by Proposition 9.2, E(|gk+1|p1Ac
k
)≤ (Eμ|g|p) ·K ′e−k/K′

is
summable. Moreover,

E

[( k∑
i=1

|gi|
)p−np

|gk+1|np1Ac
k

]
�E

[(( k∑
i=1

|gi|
)p

c−np + cp−np

)
|gk+1|np1Ac

k

]

� c−np · kp+1(Eμ|g|p)2 +K ′cp−npe−k/K′
Eμ|g|p

holds for c= e−k/2pK′
, which is summable for k. Hence, E[Ip1 ] is finite. The remaining terms E[Ip2 ]

and E[Ip4 ] can be handled in a similar way.

We obtain an analogous estimate for random walks with finite exponential moment. Because
it follows from the proof of Corollary 4.16 given inequality (45), we omit the proof.

Proposition 9.4. Let ((Žn)n>0, (Zn)n>0) be the (bi-directional) random walk generated by a
non-elementary probability measure μ on G with finite exponential moment. Then there exists
K > 0 such that

Eμ

[
exp

(
1

K
sup
n,m

ď(id, [Žm, Zn])

)]
<K.

Using Proposition 9.3, we obtain the uniform second-moment deviation inequality for non-
elementary probability measures on the mapping class group. Now employing Theorems 4.1 and
4.2 of [MS20] and the proof of Theorem 4.20, we establish Theorem 1.2.

To prove Theorem 1.3, for each k� 0 and (ω̌, ω)∈ Ω̌×Ω we define the infinite geodesic
Γk(ω̌, ω) to be a subsequential limit of {[Žn+k, Zn−k] : n= 1, 2, . . .} (which exists by the Arzelá–
Ascoli theorem and the second result in Proposition 9.3). Note that d̃(Zk, Γ0(ω̌, ω)) are identically
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distributed with d̃(id, Γk(ω̌, ω)), which are all dominated by d̃(id, supn,m[Žn, Zm]). It follows that

P(d̃(Zk, Γ0(ω̌, ω))� g(k)),

is summable for some o(k1/p)-function g(k) (K log k for some K > 0, respectively) when the
underlying measure has finite pth moment (finite exponential moment, respectively). By the
Borel–Cantelli lemma, we deduce

lim
n

1

n1/p
d̃(Zn, Γ0) = 0

(
lim sup

n

1

log n
d̃(Zn, Γ0)<K, respectively

)
.

We conclude this paper by establishing Theorem 1.1. Recall that Proposition 4.2 guaranteed
the alignment of Schottky axes along [o, Zno] on X, which led to the reverse triangle inequal-
ity for distances on X (Lemma 3.18). We now record the corresponding result for distances
on X̃.

Lemma 9.5. Let 0< ε< 1 and let S be a long enough, ε-constricting K0-Schottky set. Let
x̃, ỹ ∈ X̃ and let κ̃1, . . . , κ̃N be Schottky axes on X̃. If (x, κ1, . . . , κN , y) is D0-semi-aligned, then
we have

d̃(x̃, ỹ)� (1− ε)
(
diamX̃(x̃, κ̃1) +

n∑
i=2

diamX̃(κ̃i−1, κ̃i) + diamX̃(κ̃n, ỹ)
)
− 4

n∑
i=1

diamX̃(κ̃i).

Proof. Let M0 be such that S ⊆GM0 . Note that 4e−M0/2E0 � ε < 1, which implies

∑
j∈Z

e−|j−0.5|M0/E0 � ε

4
· 1

1− (ε/4)2
� ε

2
.

Now let κ̃ be an arbitrary Schottky axis on X̃. Because M0 > 2K1E1 for E1 as in Definition 9.1
and κ̃ is a K1-quasigeodesics by Lemma 8.1, we have diamX̃(κ̃)>E1.

Since (x, κ1, . . . , κN , y) are D0-semi-aligned, they are E0-aligned by Proposition 3.12.
Consequently, (x̃, κ̃1, . . . , κ̃N , ỹ) is K1E0-aligned by Lemma 8.1. Since the domains of κi are
longer than M0 ≥L1, we can obtain the points p̃i on [x̃, ỹ] as described in Proposition 8.2.

We now have

d̃(x̃, ỹ) = d̃(x̃, p̃1) +

n∑
i=2

d̃(p̃i−1, p̃i) + d̃(p̃n, ỹ)

� (diamX̃(x̃, κ̃1)− diamX̃(κ̃1)− d̃(κ̃1, p̃1)) + (diamX̃(ỹ, κ̃n)− diamX̃(κ̃n)− d̃(κ̃n, p̃n))

+

n∑
i=2

(diamX̃(κ̃i−1 ∪ κ̃i)− diamX̃(κ̃i−1)− diamX̃(κ̃i)− d̃(κ̃i−1, p̃i−1)− d̃(κ̃i, p̃i)).

Here, Proposition 8.2 tells us that

n∑
i=1

d̃(κ̃i, p̃i)�
(
diamX̃(x̃, κ̃1) +

n∑
i=2

diamX̃(κ̃i−1 ∪ κ̃i) + diamX̃(κ̃n, ỹ)
)
·
∑
j∈Z

e−|j−0.5|M0/E1 +E1n

� ε

2

(
diamX̃(x̃, κ̃1) +

n∑
i=2

diamX̃(κ̃i−1 ∪ κ̃i) + diamX̃(κ̃n, ỹ)
)
+

n∑
i=1

diamX̃(κ̃i).
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Using this, we conclude

d̃(x̃, ỹ)� (1− ε)
(
diamX̃(x̃, κ̃1) +

n∑
i=2

diamX̃(κ̃i−1 ∪ κ̃i) + diamX̃(κ̃n, ỹ)
)
− 4

n∑
i=1

diamX̃(κ̃i).

Corollary 9.6 [Gou22, Lemma 4.14]. Let ν be a non-elementary probability measure on G
and let (Zn)n be the random walk generated by ν. Then, for each ε > 0, there exists C > 0 such
that

P(|gZn|� (1− ε)|g| −C for all n� 0)� 1− ε/2 (∀g ∈G).

Proof. Let S be a large, long enough and ε-constricting K0-Schottky set for μ in GM0 , for some
suitable K0, M0 > 0. (This determines the constants K1, D0, . . . as in Definition 9.1.)

As in the proof of Corollary 4.11, there exists N > 0 independent of g such that

P

(
there exists i <N such that Yi is a Schottky axis and
(g−1o,Yi(ω), Zno) is D0-semi-aligned for each n�N

)
� 1− ε/4.

Also, when (g−1o,Yi, Zno) is D0-semi-aligned, Lemma 9.5 implies that

d̃(g−1, Zn)� (1− ε)(diamX̃(g−1 ∪ Ỹi) + diamX̃(Ỹi ∪Zn))− 4 diamX̃(Ỹi)

� (1− ε)d̃(g−1, Z̃i−M0
)− 4 · (K1M0 +K1)

� (1− ε)|g| − (1− ε)

i−M0∑
j=1

|gj | −C ′′ � (1− ε)|g| −
N∑
j=1

|gj | −C ′′,

where C ′′ = 4(K1M0 +K1). This bound also holds for n�N

d̃(g−1, Zn)� |g−1| − |Zn|� |g| −
N∑
j=1

|gj |.

Given these, the proof ends by taking large enough C ′ > 0 such that

P

( N∑
j=1

|gj |�C ′ −C ′′
)
� ε/4.

Proof of Theorem 1.1. As in the proof of Theorem 6.4, we first take ε > 0 such that

(1− ε)4λ(μ)>L+ ε.

Let S be a large, long enough and ε-constricting Schottky set for μ with cardinality greater than
10/ε, and let

C ′′ = 4max
s∈S

diamX̃ Γ̃+(s).

By Proposition 6.2, there exists a non-elementary probability measure ν, and for each sufficiently
large N , a partition Pn,N,ε into (n, N, ε, ν)-pivotal equivalence classes for each n such that

P

(
ω :

1

2
#P(n,N,ε)(ω)� (1− ε)

n

2M0N

)

decays exponentially in n. Let C > 0 be a constant for ν provided by Corollary 9.6: we have

Pν∗m(h : |gh|� (1− ε)|g| −C)� 1− ε/2

for each g ∈G and each m> 0. We now fix an N such that N >C +C ′′/M0λ(μ)ε.
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Let E be an equivalence class such that 1
2#P(n,N,ε)(E)� (1− ε)(n/2M0N). For each ω ∈ E

(o,Yj(1), . . . ,Yj′(#P/2), Zno) is D0-semi-aligned. Lemma 9.5 tells us that

|Zn|�
#P/2∑
i=1

((1− ε)d̃(Zj(i), Zj′(i)−M0
)−C ′′) =

#P/2∑
i=1

(|ri| −C ′′) (ri := gj(i)+1 · · · gj′(i)−M0
).

Since ri are i.i.d. with

E[|ri| −M ]� (1− ε)Eμ∗2M0N [(1− ε)|g| −C]−C ′′ � (1− ε)3 · 2M0Nλ(μ),

we can find K ′ > 0 not depending on n such that

P(|Zn| ≤ (1− ε)4λn | E)�K ′e−n/K′
(∀n> 0).

Summing up this conditional probability, we obtain the desired exponential bound.
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