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Abstract
Thwaites (Aeronaut. Q., vol. 1, 1949, pp. 245–280) developed an approximate method for determining the evolution
of laminar boundary layers. The approximation follows from an assumption that the growth of a laminar boundary
layer in the presence of pressure gradients could be parameterized solely as a function of the Holstein–Bohlen
flow parameter, thus reducing the von Kármán momentum integral to a first-order ordinary differential equation.
This method is useful for the analysis of laminar flows, and in computational potential flow solvers to account
for the viscous effects. In this work, an approximate method for determining the momentum thickness of a two-
dimensional, turbulent boundary layer is proposed following Thwaites’ work. It is shown that the method provides
good estimates of the momentum thickness for multiple boundary layers, including both favourable and adverse
pressure gradient effects, up to the point of separation. In the limit of high Reynolds numbers, it is possible to
derive a criterion for the onset of separation from the proposed model, which is shown to be in agreement with prior
empirical observations (Alber, 9th Aerospace Sciences Meeting, 1971). The sensitivity of the separation location
with respect to upstream perturbations is also analysed through this model for the NASA/Boeing speed bump and
the transonic Bachalo–Johnson bump.

Impact Statement
The Thwaites’ method (1949) for predicting the momentum thickness of non-equilibrium laminar boundary
layers is extended to the turbulent regime. Validation is performed with high-fidelity numerical simulations
and high Reynolds number experimental data. The proposed model agrees favourably with the reference
datasets and provides a separation criterion at high Reynolds numbers; these can be useful in initial design
processes and in determining the influence of flow history effects in canonical flow configurations.

1. Introduction

Often in the early stages of the engineering design processes, viscous effects are estimated using
boundary layer integral methods. Common elements in many such engineering flows are that bound-
ary layers are turbulent and subjected to strong pressure gradients – both favourable and adverse.
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Clauser (1954, 1956) studied turbulent boundary layers and defined a parameter, 𝛽 that quantifies the
relative strength of the pressure gradient in relation to the skin friction across the boundary layer,

𝛽 =
𝛿∗

𝜌u2
𝜏

dP
ds

, (1.1)

where 𝛿∗ is the displacement thickness, dP/ds is the pressure gradient and u𝜏 is the friction velocity.
This parameter has since been used in analysing equilibrium and non-equilibrium boundary layers.
In the presence of strong and/or prolonged favourable pressure gradients, the flow may relaminarize
(Sreenivasan 1982). On the other hand, in the presence of adverse pressure gradients, it is possible for
the flow to eventually separate (Simpson 1981, 1983), often associated with periods of rapid growth of
the boundary layer. An adverse pressure gradient significantly energizes the outer flow (Knopp et al.
(2021) showed that the viscously scaled turbulent stresses increase in the outer region of the boundary
layer), and increases the momentum deficit compared with a zero pressure gradient boundary layer.

In the limit of thin boundary layers, the growth rate of the momentum thickness is related to the
pressure gradient as follows (via the von Kármán momentum integral, see White (2008) for more details):

d𝜃
ds

=
Cf

2
+ (2 + H)

𝜃

𝜌U2
e

dPe

ds
, (1.2)

where 𝜃 is the momentum thickness, and Cf is the skin-friction along the streamwise coordinate. Here
H is the shape factor which is the ratio of the displacement and the momentum thickness lengths of
the boundary layer. However, this equation, in itself, is not particularly useful as a predictive tool and
requires the knowledge of the skin friction and shape function distributions, which may be unknown a
priori.

For laminar boundary layers, Thwaites (1949), and later Curle & Skan (1957), and Dey & Narasimha
(1990) fitted data for various flows, including those with pressure gradients and flows undergoing
separation, to derive an approximate expression for the growth of the momentum thickness for a given
inviscid (free stream) velocity distribution. This analysis, coupled with the Falkner & Skan (1931)
analysis in the viscous layer, provides a complete description of the mean velocity profile of the
corresponding laminar flow. However, a similar analysis for turbulent boundary layers is more complex.
Head (1958) proposed an integral momentum equation-based approach for turbulent boundary layers
using the Ludwieg & Tillmann (1950) correlations. Weber (1978) developed a similar method (Coles &
Hirst 1968; Kline et al. 1969). Das (1987), Das & White (1986) and Kalkhoran & Wilson (1986) devel-
oped integral approaches for measuring skin friction in turbulent boundary layers. A drawback of the
approaches of Das (1987) and Das & White (1986) includes the use of multiple empirical correlations
while also not accounting for history effects. Kalkhoran & Wilson (1986) made equilibrium assumptions
for the boundary layer wake profile and the pressure gradient even for non-equilibrium boundary layers.
A comprehensive review of these approaches can be found in Das et al. (2004).

It is apparent from the aforementioned efforts that further developments in the understanding of the
growth of turbulent boundary layers are needed to improve potential flow solvers to account for pressure
gradient effects. In this work, we have developed a model for predicting the momentum thickness of a
turbulent boundary layer by extending Thwaites’ method using a set of high-fidelity simulation data.
The rest of this article is organized as follows. Section 2 describes the original Thwaites method for
laminar flows. Section 3 summarizes some existing methods for predicting the momentum thickness
of turbulent boundary layers. Section 4 provides the proposed extension to turbulent flows. Section 5
describes the simulation database used in this study. Section 6 describes the model coefficients and their
validation in several flows. Section 7 discusses an application of the model in terms of the sensitivity of
the separation parameter to flow perturbations. Some limitations of the proposed model are discussed
in § 8. Concluding remarks are offered in § 9.
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2. Thwaites method for laminar boundary layers

In this section, a brief summary of the method of Thwaites (1949) for approximating the momentum
thickness of laminar boundary layers is provided. For thin boundary layers in an incompressible flow,
the von Kármán integral equation (White 2008) is written as

d𝜃
ds

+ (2 + H)
𝜃

Ue

dUe

ds
=

Cf

2
, (2.1)

where in the n–s coordinate system, s is the streamwise coordinate, and n is the wall-normal coordinate.
Here 𝛿∗ and 𝜃 are the boundary layer’s displacement and momentum thickness lengths, respectively,
and H = 𝛿∗/𝜃 is the shape factor. The following relations also hold under the thin boundary layer
approximation:

𝜈
𝜕2U
𝜕n2

����
n=0

=
1
𝜌

dPe

ds
= −Ue

dUe

ds
, (2.2)

where Pe and Ue are the values of the pressure and the streamwise velocity at the edge of the boundary
layer, and n = 0 refers to the wall. This relation invokes dP/dn → 0 within the boundary layer under
the thin boundary layer approximation. Thus, the dP/ds at the edge of the boundary layer (dPe/ds) is
considered to be approximately the same as that on the wall (n = 0). Using these relations, (2.1) is
rearranged as

2Re𝜃
d𝜃
ds

= 2((2 + H)m + 𝜒) = L, (2.3)

where m is the Holstein–Bohlen pressure gradient parameter, m = (𝜃2/Ue)(𝜕
2U/𝜕n2) |n=0 and 𝜒 =

(𝜃/Ue)(𝜕U/𝜕n) |n=0. It should be noted that in deriving (2.3), the assumption of a laminar flow has not
yet been invoked. For laminar boundary layers, however, Thwaites further postulated that L = L(m), or
that the effect of the pressure gradient primarily determines the growth rate of a laminar boundary layer.
Specifically, the linear fit proposed in Thwaites’ original work is

L ≈ L(m)Thwaites ≈ 0.45 + 6m. (2.4)

Rearranging the model fit, an approximate closed-form expression of the momentum thickness can
be written as

𝜃2(s) ≈ 0.45
𝜈

U6
e

∫ s

0
U5

e (r) dr. (2.5)

Further, Thwaites fitted experimental data to suggest that a laminar flow may separate when m ≈ 0.09.
Other similar empirical thresholds have been proposed by Stratford (1959) and by Curle & Skan (1957).
More details can be found in Horton (1968). Curle & Skan (1957), and later Dey & Narasimha (1990)
suggested slightly different model coefficients that resulted in a better agreement with the Blasius and
Falkner–Skan type solutions.

3. Methods for turbulent flows

In this section, two commonly known methods for predicting the momentum thickness of a turbulent
boundary layer in the presence of a pressure gradient are described.

3.1. Head’s integral momentum equation

Similar to Thwaites’ method for laminar boundary layers, Head (1958) and Head & Patel (1968)
proposed an integral momentum equation-based approach for predicting the growth of the momentum

https://doi.org/10.1017/flo.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.27


E25-4 R. Agrawal, S.T. Bose, K.P. Griffin and P. Moin

thickness and the location of a separation point for turbulent boundary layers. The original work (Head
1958) was developed as follows. Using the correlation for the skin-friction (from Ludwieg & Tillmann
(1950)) and an auxiliary relation between the shape factor (H) and the entrainment factor (H1), a system
of two differential equations governing the growth of the momentum thickness is given as

d𝜃
ds

+ (2 + H)
𝜃

Ue

dUe

ds
=

Cf

2
, (3.1)

Cf = 0.246(10−0.678H)Re−0.268
𝜃 , (3.2)

with the shape factor (H) and the entrainment factor (H1) related as

1
Ue

d
ds

(Ue𝜃H1) = 0.0299(H1 − 3.0)−0.6169, (3.3)

and H1 = 0.8234(H − 1.1)−1.287 for H ≤ 1.6, and H1 = 1.55(H − 0.6778)−3.064 + 3.3 otherwise. Head
(1958) and the further developments in Head & Patel (1968) showed that the method can reasonably
predict the growth of the momentum thickness for two-dimensional, non-equilibrium boundary layers.
It is remarked that compared with Thwaites’ method (which requires one empirical correlation), this
approach requires additional correlations ((3.2)–(3.3) and H1 = f (H)). For a comprehensive review, the
reader is referred to Cebeci & Bradshaw (1977).

3.2. Drela’s method

The method of Giles & Drela (1987), Drela & Giles (1987) and Drela (1989) has also been used to
account for the viscous effects over airfoil flows. This formulation combines a potential flow panel
method and an integral approach within the boundary layer. The viscous solution requires a correlation
for the skin friction in terms of the shape factor to close the exact integral momentum equations. For an
incompressible boundary layer, the invoked correlation from Swafford (1983) is given as

Cf = 0.3 e−1.33H [log10 (Re𝜃 )]
−1.74−0.31H + 0.00011

[
tanh

(
4 −

H
0.875

)
− 1

]
(3.4)

and a nonlinear system is solved to determine H as follows. When H < H0,

H = 1.505 +
4

Re𝜃
+

(
0.165 −

1.6
Re0.5

𝜃

)
(H0 − H)1.6

H
, (3.5)

otherwise

H = 1.505 +
4

Re𝜃
+ (H − H0)

2
[
0.04
H

+
0.007 log(Re𝜃 )

(H − H0 + 4/log(Re𝜃 ))2

]
, (3.6)

where H0 = 4 when Re𝜃 < 400 or else H0 = 3 + 400/Re𝜃 .
Both these approaches differ significantly from Thwaites’ method in that the terms of the integral

momentum boundary layer equation relating to the shape factor, H, and skin friction coefficient, Cf ,
are explicitly modelled. The present method described below attempts to make a direct extension of the
Thwaites’ transformation, without explicitly invoking a correlation for Cf , Reynolds number, Re𝜃 , and
the shape factor, H.

4. Extension of Thwaites method to turbulent flows

In this section, we develop the proposed extension of Thwaites method for high Reynolds number
turbulent boundary layers.
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Consider a zero pressure gradient turbulent boundary layer at a high Reynolds number. The growth
rate of the momentum thickness of a turbulent boundary layer is higher than that of an equivalent
Blasius laminar boundary layer (𝜃/s ∼ Re−1/2

s ). Reconciling this fact with the fact that (2.3) still holds
for turbulent flows, the approximation made by Thwaites in (2.4), L = L(m) must not hold for turbulent
boundary layers. Since a boundary layer at a higher Reynolds number is less sensitive to the effects of
pressure gradients (Vinuesa et al. 2018), the growth rate cannot depend only on the pressure gradient
(as it did in the laminar case). Therefore, it is proposed that the growth rate of the momentum thickness
may also depend directly on the Reynolds number. Equation (2.3) can be re-expressed as

2
d𝜃
ds

= 2
(2 + H)m

Re𝜃
+

2𝜒
Re𝜃

. (4.1)

The right-hand side of (4.1) contains four non-dimensional groups, m/Re𝜃 , mH/Re𝜃 , 𝜒/Re𝜃 and
1/Re𝜃 . Similar to Thwaites (1949), where the sum of the terms is modelled purely as a function of m, we
model the aggregate sum in terms of m and Re𝜃 . An explicit dependence of Re𝜃 is introduced to account
for the scale separation between the inner and outer scales in a turbulent boundary layer. We admit a
Taylor series approximation at high Reynolds number in terms of m/Re𝜃 and 1/Re𝜃 for m/Re𝜃 � 1
and 1/Re𝜃 � 1 to approximate the right-hand side of (4.1):

2
d𝜃
ds

≈ CRe,∞ + Cm
m

Re𝜃
+ Cc

1
Re𝜃

+ Cm,2

(
m

Re𝜃

)2

+ Cc,2

(
1

Re𝜃

)2

+ Cm,c

(
1

Re𝜃

) (
m

Re𝜃

)
+ · · · , (4.2)

where C( ·) are the coefficients of the Taylor expansion. Implicitly, this approach assumes that
mH/Re𝜃 , 𝜒/Re𝜃 can be parameterized in terms of the remaining two groups (1/Re𝜃 and m/Re𝜃 ). This
modelling choice is made by observing that the shape factor H ∼ 1–2 maintains a relatively constant
order of magnitude in attached turbulent boundary layers. Secondly, the term, 𝜒/Re𝜃 = Cf /2 has been
subsumed into the other terms (formed from 1/Re𝜃 and m/Re𝜃 ) in the same spirit as the original work of
Thwaites (1949). Further, m/Re𝜃 = (𝜃/𝜌U2

e )(dPe/ds) is a ratio of the viscous deficit length scale within
the boundary layer to the momentum transport in the inviscid flow region; thus m/Re𝜃 may generally be
expected to be small, at least, for attached boundary layers. This expectation is validated with additional
data in the supplementary material available at https://doi.org/10.1017/flo.2024.27 accompanying this
article. In the limit of m/Re𝜃 , 1/Re𝜃 � 1, the linear truncation is given by

2
d𝜃
ds

≈ CRe,∞ + Cm
m

Re𝜃
+ Cc

1
Re𝜃

. (4.3)

The error in the truncation of this Taylor series can be estimated as follows. For ‘large’ values
of m/Re𝜃 , 1/Re𝜃 , still satisfying m/Re𝜃 , 1/Re𝜃 ≤ 1 (this is not unreasonable since m/Re𝜃 =
(𝜃/𝜌U2

e )(dPe/ds) ≥ 1 would imply that the viscous momentum deficit length scale within the boundary
layer is larger than the inviscid flow’s length scale; also, a boundary layer satisfying Re𝜃 ≤ 1 is likely
non-turbulent), the truncation error in this model is governed by the quadratic terms, (m/Re𝜃 )

2, 1/Re2
𝜃 ,

m/Re2
𝜃 . As will be shown in this article, the truncated model predicts 𝜃 with reasonable accuracy for

Re𝜃 as low as ≈150. Assuming Re𝜃 ∼ 150, and m/Re𝜃 ∼ 0.1 (this estimate is an order of magnitude
larger than the highest realized values of m/Re𝜃 in the database in this work, see the accompanying
supplementary material) are acceptable lower limits of the validity of the proposed truncation, then
the truncation error in the model is dominated by E(d𝜃/ds) ∼ (m/Re𝜃 )

2 ∼ 0.01 ∗ Ctrunc where Ctrunc
is some prefactor. This error may become comparable to the predicted value of d𝜃/ds, governed by
m/Re𝜃 ∼ 0.1. Thus, the proposed Taylor series truncation may be expected to perform poorly at low
Reynolds number boundary layers under strong pressure gradients (Re𝜃 ≤ O(100), m/Re𝜃 ≥ O(0.1)).

At higher Reynolds numbers, however, this model can be thought to be based on the assumptions
that the growth of the boundary layer and the effect of the pressure gradient decreases with the Reynolds
number. An interpretation of the linear model is that the effect of the pressure gradient and the Reynolds
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number are only weakly coupled. Rewriting (4.3) in terms of the definition of L in (2.3), the model form
for L can be written as

L = L(m,Re𝜃 ) ≈ Cc + Cmm + CRe,∞Re𝜃 . (4.4)

With this approximation, the growth rate of the momentum thickness is

d
ds

(UCm
e 𝜃2) ≈ 𝜈CcUCm−1

e + CRe,∞UCm
e 𝜃. (4.5)

This ordinary differential equation can be integrated numerically along the streamwise direction if
the inflow and the free stream conditions are known. The numerical values of Cc, Cm, CRe,∞ will be
determined in § 6.

5. Database of pressure gradient flows

It has been well established that in the presence of strong pressure gradients, the upstream flow history
affects the downstream development of the flow (Nickels 2004; Bobke et al. 2017; Vinuesa et al. 2017;
Devenport & Lowe 2022). A comprehensive database of turbulent boundary layers is used in this work
to account for many of these effects. Relevant details of the datasets are given below. Further, table 1
summarizes the range of the Reynolds number and the Clauser parameter for the boundary layers
considered.

(i) Zero Pressure Gradient: Eitel-Amor et al. (2014) performed wall-resolved large-eddy simula-
tions (LES) of a spatially developing zero pressure gradient boundary layer up to Re𝜃 = 8300.

(ii) Adverse Pressure Gradient: Bobke et al. (2017) performed wall-resolved LES of five different
boundary layers at varying Reynolds numbers and strength of pressure gradients. Two of these five
boundary layers were maintained at nearly constant Clauser parameters, 𝛽 = 1 and 2 while the
other three boundary layers followed a power law for the streamwise velocity at the edge of the
boundary layer, Ue ∼ (x − x0)

q with q = −0.13, −0.16 and −0.18.
(iii) Airfoils: Vinuesa et al. (2018) and Tanarro et al. (2020) simulated the flow over two different

NACA (National Advisory Committee for Aeronautics) airfoils, namely NACA 4412 and 0012,
respectively, at varying chord-length-based Reynolds number and angles of attack. We consider
three particular cases, NACA 0012 airfoil at Rec = 0.4 × 106, 𝛼 = 0.0◦, and NACA 4412 airfoil at
Rec = 0.1 × 106, 1 × 106, 𝛼 = 5.0◦.

(iv) Smooth Body Separation: The problem of predicting smooth body separation in computational
fluid dynamics has remained a challenge. Uzun & Malik (2022) performed a quasi-DNS of the
flow over a smooth Gaussian bump as it experienced both a favourable pressure gradient, followed
by an adverse pressure gradient, and thereafter a turbulent separation. These results were in
agreement with the experiments of Williams et al. (2020).

(v) Shock Induced Separation: In external aerodynamic applications, weak compressibility effects
affect the flow pattern due to the shock-formation, and the consequent flow separation at high
Mach numbers. Uzun & Malik (2019) performed high-fidelity simulations of the experiments of
Bachalo & Johnson (1986) that studied the flow over a hump on a cylinder experiencing shock and
adverse pressure gradient induced flow separation.

The undetermined model coefficients, Cc, Cm and CRe,∞, are obtained from fitting the simulation data
from the zero pressure gradient and adverse pressure gradients of Eitel-Amor et al. (2014) and Bobke
et al. (2017), respectively. The remainder of the simulation database is used to assess the generality of the
proposed model and fits. Overall, this dataset covers a Re𝜃 range of two decades (150 ≤ Re𝜃 ≤ 16 000).
This range is comparable to the Reynolds numbers reported on the attached region of the flow over a
transonic common research model aircraft at cruise configuration in Goc et al. (2023) from the leading
edge up to 70% of the wing chord. It is worth mentioning that the Re𝜃 range from the chosen direct

https://doi.org/10.1017/flo.2024.27 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.27


Flow E25-7

Table 1. The variation in friction, momentum thickness-based Reynolds numbers and Clauser parame-
ters in the datasets considered in this work. For the flows that experience separation (FPG/APG SBSE
and FPG/APG BJ), only preseparation data is considered. Since both favourable and adverse pressure
gradient boundary layers are included, the Clauser parameter varies from a negative to a positive value.

Dataset Range of Re𝜏 Range of Re𝜃 Range of 𝛽

ZPG (Eitel-Amor, Örlü &
Schlatter 2014)

[180,2500] [350,7900] = 0

APG (Bobke et al. 2017) [200,1000] [500,4200] [1, 5]
Airfoils (Vinuesa et al. 2018;
Tanarro, Vinuesa & Schlatter 2020)

[100,700] [150,6900] [1, 85]

FPG/APG SBSE (Uzun &
Malik 2022)

[400,1200] [1000,4600] [-2, 15]

FPG/APG BJ (Uzun & Malik 2019) [1500,4000] [3000,16 000] [-6, 6]

numerical simulations (DNS) or wall-resolved LES in the present dataset is similar to that of mean two-
dimensional, boundary layer experiments considered in Cebeci, Mosinskis & Smith (1970) to determine
the efficacy of Head’s method (Head 1958) in § 3. The proposed model is validated for three additional
cases from experimental measurements at higher Reynolds numbers (Skare & Krogstad 1994; Nagib,
Christophorou & Monkewitz 2006; Vila et al. 2020) in Appendix A.

6. Model coefficients and validation

6.1. Fitting model coefficients

The model coefficients Cc, Cm and CRe,∞ are determined in two stages. Since m =
(𝜃2/Ue)(𝜕

2U/𝜕n2) |n=0 = 0 for a zero pressure gradient boundary layer, the coefficients Cc and CRe,∞
are determined from the data of Eitel-Amor et al. (2014) alone using a least-squares fit (with bisquare
weights). Here Cm is finally found using the wall-resolved LES data of boundary layers under slightly
dissimilar pressure gradients (Bobke et al. 2017). The numerical values of the coefficients obtained
are Cc = 1.45, CRe,∞ = 0.0024 and Cm = 7.23 with the corresponding 95 % confidence intervals
Cc ∈ [1.43, 1.47], CRe,∞ ∈ [0.0023, 0.0025] and Cm ∈ [7.20, 7.25], respectively.

Using (4.5), the variation in 𝜃 versus s is compared with the values obtained from mean velocity
profiles using the method of Griffin, Fu & Moin (2021) (in this article, the integral for 𝜃 was terminated
at the edge of the boundary layer, thus ignoring any inviscid flow contribution to the momentum
thickness). Figures 1 and 2 show the model fit for the zero-pressure gradient boundary layer and the
adverse pressure gradient boundary layers, respectively. The growth rate of 𝜃 is reasonably predicted
with minor discrepancies near the domain outlet. These discrepancies may be attributed to the presence
of a fringe region at the outflow in the reference simulations at x/𝛿∗0 ≈ 2500 (in this article, the symbol
𝛿∗0 refers to the displacement thickness at the flow inlet). The corresponding Re𝜃 are presented in the
right-hand abscissa of figure 1, and in figure 2(b). These highlight that the fitted data predominantly lies
within an Re𝜃 ∼ O(103) range. These fits will be validated in both lower and higher Re𝜃 regimes in the
subsequent sections.

Although not shown, the shape factor for these boundary layers was found to vary significantly
across the cases, and not follow a simple linear fit in (m,Re𝜃 ) space. Laminar potential flow solvers
iteratively solve for 𝜃 from Thwaites method and find 𝛿∗ from the H = H(m) relationship to deter-
mine the ‘effective body shape’ due to flow acceleration. For turbulent flows, since H = H(m) is
non-universal, this approach is not workable. The accompanying supplementary material provides an
alternate approach for finding the growth rate of the displacement thickness using boundary layer edge
variables.
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Figure 1. Fit of 𝜃 versus the streamwise distance x/𝛿∗0 for the zero pressure gradient boundary layer in
Eitel-Amor et al. (2014). The vertical axis on the right-hand side of the panel presents the true LES Re𝜃

as a function of the streamwise coordinate.

500

5

10

15
LES (β = 1)
LES (β = 2)
LES (q = –0.13)
LES (q = –0.16)
LES (q = –0.18)

LES (β = 1)

LES (β = 2)
LES (q = –0.13)
LES (q = –0.16)
LES (q = –0.18)

1000

3000

2000

4000

1000 1500 2000 500 1000 1500 2000

θ(
x)

/
δ 0
∗

Re
θ

(b)(a)

x/δ0
∗x/δ0

∗

Figure 2. (a) Fit of 𝜃 versus the streamwise distance x/𝛿∗0 for the adverse pressure gradient boundary
layers in Bobke et al. (2017). The solid lines denote the values obtained from the reference simulations,
and the dotted lines refer to the model fit. Panel (b) presents the true (LES) corresponding Re𝜃 at the
streamwise stations.

6.2. Testing on APG wing data

This section evaluates the model for two airfoil flows at low angles of attack published in Vinuesa et al.
(2018) and Tanarro et al. (2020). Two NACA airfoils at different chord-based Reynolds numbers (Rec)
and angles of attack (𝛼) are considered: a NACA 0012 airfoil at Rec = 0.4 × 106, 𝛼 = 0◦ and NACA
4412 airfoil at Rec = 0.1 × 106 and Rec = 1.0 × 106, 𝛼 = 5◦. Note that the dataset available for these
airfoils only provides detailed statistics beyond x/c = 15 % as the flow is tripped at x/c = 0.1.

For these cases, the pressure gradient distributions are quite different, as quantified by the Clauser
parameter in figure 3(a). Near the trailing edge, the pressure gradient for NACA 4412 airfoils varies quite
significantly, and its effect is much stronger than that of the wall shear stress (𝛽 eventually reaches up to
≈ 85 at x/c ≈ 0.99), suggesting a highly non-equilibrium, or a nearly separated flow. In figure 3(b), at
the trailing edge of the NACA 4412 airfoil case, the momentum thickness (𝜃/𝜃0, where 𝜃0 in this article
refers to an upstream momentum thickness; for the wing data, this reference point is at x/c = 0.15) is
underpredicted from the proposed fit suggesting a simple linear model is only partially capturing the
history effects from the pressure gradients when the Clauser parameter, 𝛽, grows quickly and approaches
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Figure 3. (a) The LES predicted momentum thickness based Reynolds number, Re𝜃 , and the Clauser
parameter, 𝛽, as a function of the streamwise distance, x/c. The starred lines correspond to the Re𝜃 ,
and the dashed lines with no symbols correspond to 𝛽. (b) The fit of 𝜃/𝜃0 versus x/c for a NACA 0012
airfoil at Rec = 0.4 × 106, angle of attack 𝛼 = 0◦ (LES of Tanarro et al. (2020)) and for a NACA 4412
airfoil at Rec = 0.1, 1 × 106, angle of attack 𝛼 = 5◦ (LES of Vinuesa et al. (2018)), respectively.

very large values, a marker of intermittently separating flows. The increased Reynolds number was found
to be responsible for the lowered 𝛽 between the two NACA 4412 airfoils (Vinuesa et al. 2017).

6.3. Testing on SBSE and BJ data

Smooth body separation refers to the flow condition where neither the separation nor reattachment points
of a separation bubble are geometrically imposed. As a result, the flow development history (i.e. the
influence of pressure gradients and/or compressibility) affects the tendency of the flow to separate.
Uzun & Malik (2022) recently performed a quasi-DNS of flow over a spanwise-periodic Gaussian
bump in which the flow separates on the leeward side of the bump due to the mild, adverse pressure
gradient. Similarly, the wall-resolved LES of Uzun & Malik (2019) is an example of shock-induced
separation in a transonic flow over a bump. Figure 4 shows a schematic of the bump geometries and the
case set-up for both flows. For both flows, an incoming zero-pressure gradient turbulent boundary layer
experiences a favourable pressure gradient, which accelerates the flow before eventually experiencing an
adverse pressure gradient that leads to flow separation. Although not shown, the variation in the Clauser
parameter, Reynolds numbers along the streamwise direction until the point of separation (x/L ∼ 0.1
for the SBSE and x/c ∼ 0.65 for the BJ) are significantly different.

As seen in figure 5, the proposed model predicts the momentum thickness for both these flows
reasonably up to the point of separation (for the transonic flow, Uzun & Malik (2019) performed their
simulations at Ma = 0.875 at which the location of the shock, and the separation nearly coincide
(Bachalo & Johnson 1986)). The Re𝜃 (right-hand abscissa in figure 5a,b) for both these flows does not
monotonically increase as the flow experiences a favourable pressure gradient (not seen in ‘training’
cases). Further, the Re𝜃 on the transonic bump reaches values Re𝜃 ∼ O(104), larger than those in the
training sets. We remark that inside the separation bubble, the thin boundary layer approximation utilized
breaks down, and as such, this model is not expected to perform well.

It is also highlighted that the proposed model was derived for incompressible flows and neglected
any variations in density in the flow across the boundary layer. The transonic flow in Uzun & Malik
(2019) was locally supersonic in the favourable pressure gradient region exhibiting a density gradient
across the boundary layer; the ratio of the mean density in the free stream and the wall ≈2, and a
normalized density gradient, ∇𝜌 � 1 (the reader is referred to figure 1 in Uzun & Malik (2019) for more
details). A more complete analysis of compressible turbulent boundary layers suggests that the ratio of
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Figure 4. A schematic of the surface geometry over which the turbulent flow separates in the (a) subsonic
Boeing speed bump case of Uzun & Malik (2022) and (b) transonic flow case of Uzun & Malik (2019).
Here L and c are the characteristic lengths for the two cases, respectively; Ue is the free stream flow
velocity, and the arrows next to it point along the positive streamwise direction.
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Figure 5. Fit of 𝜃 versus the streamwise distance x non-dimensionalized by the respective bump widths.
Panel (a) presents the model fit and the true Re𝜃 for the Boeing speed bump in Uzun & Malik (2022),
and (b) presents the model fit and the true Re𝜃 for the wall-resolved LES (WRLES) of the transonic
Bachalo–Johnson bump in Uzun & Malik (2019). The solid vertical lines denote the separation point
as obtained from the reference data. Note that x/L = 0 is the position of the apex of the Boeing speed
bump, whereas x/c = 0.5 is the position of the apex of the transonic bump.

the free stream to wall temperature (or equivalently densities) should appear as an additional factor
in the Taylor series expansion, which may account for some of the observed differences between the
reference data and the proposed model. A comparison between the proposed model and the existing
methods (in § 3) for flow over the Boeing speed bump geometry is presented in Appendix B.

The proposed model can be used to help predict the conditions under which the separation of the
boundary layer is imminent. To date, there have been numerous attempts to characterize this point of
separation empirically. Alber (1971) proposed that separation is imminent when (𝜃/𝜌eU2

e )(dPe/ds) >
0.004. The exact value of the threshold was determined empirically for some weakly compressible flows
and is relatively robust in the presence of weak shocks (Alber et al. 1973; Adair 1987). As seen in
figure 6 the value of (𝜃/𝜌eU2

e )(dPe/ds) is approximately 0.004 at the location of separation for both the
flow over the Boeing speed bump and the flow in the Bachalo–Johnson experiments. For laminar flows,
Thwaites also proposed a fit between the shape factor, H, and the Holstein–Bohlen parameter, m, that
allowed computation of the skin friction using the local value of m. Using this analysis, the separation
boundary for a laminar flow was suggested to be m = 0.09. Although not shown, we have observed that
the two flows considered in this work exhibited separation for different values of m, and thus m alone
cannot be used to predict flow separation in turbulent flows.

Alternatively, it is possible to estimate the value of the Alber separation parameter by using the
proposed model. For a locally constant and finite pressure gradient, the proposed model suggests
that d𝜃/ds is a linear function of (𝜃/𝜌eU2

e )(dPe/ds) (the reader is referred to (4.3) and the fact that
m/Re𝜃 = (𝜃/𝜌eU2

e )(dPe/ds)). Using the von Kármán integral equation, this equation can be further
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Figure 6. The variation in the non-dimensional group (𝜃/𝜌eU2
e )(dP/ds) along the streamwise direction

for the (a) Boeing speed bump in Uzun & Malik (2022) and the (b) transonic Bachalo–Johnson bump
in Uzun & Malik (2019). The dashed vertical lines denote the separation point as obtained from the
reference data. Note that x/L = 0 is the position of the apex of the Boeing speed bump, whereas x/c = 0.5
is the position of the apex of the transonic bump.

simplified as

Cf

2
≈

Cc

2
𝜈

Ue𝜃
+

CRe,∞

2
+

(
Cm

2
− (2 + H)

)
𝜃

𝜌U2
e

dPe

ds
. (6.1)

In the limit of an asymptotically large Reynolds number (Re𝜃 → ∞) flow nearing separation, and
estimating H ≈ 2.0, yields that the separation is imminent when

𝜃

𝜌U2
e

dPe

ds
≈

−CRe,∞

2
(
Cm

2
− (2 + H)

) ≈ 0.003, (6.2)

which is similar to the empirical threshold proposed by Alber (1971). It is noted that although Re𝜃

does not strictly tend to an infinite value at the point of separation in most flows: for Re𝜃 � 600 at the
separation point, the first term on the right-hand side of (6.1) becomes much smaller than the second
term (CRe,∞/2), thus removing any explicit dependence of the value of Alber’s parameter on Re𝜃 . It is
highlighted that the estimate of H ≈ 2 is only made to compare the orders of magnitude of the threshold
value of 𝜃/(𝜌eU2

e ) dPe/ds for flow separation between the proposed model and that of Alber (1971). For
instance, if a value of H = 2.5 is used, the threshold value (based on the present values of Cm,CRe,∞) of
𝜃/(𝜌eU2

e ) dPe/ds for flow separation ≈0.0014. Using this threshold value, the error (relative to the true
value) in the predicted point of separation is Δx/L ≈ 0.06 (on the Boeing speed bump) and Δx/c ≈ 0.04
(on the Bachalo–Johnson bump), respectively. Similarly, the error incurred upon using a threshold value
of 0.003 (in (6.2)) is Δx/L ≈ 0.03 and Δx/c ≈ 0.03 for the two bump flows, respectively. In this respect,
the values of H ≈ 2 or H ≈ 2.5 are deemed to lead to the same order of error in determining the
separation point.

Equation (6.1) also describes a nonlinear separation and reattachment criterion (in a space spanned
by 1/Re𝜃 , H and (𝛿∗/U2

e )(dPe/𝜌 ds)) for turbulent flows over smooth surfaces for a range of Reynolds
numbers as

Cc

2
𝜈

Ue𝜃
+

(
Cm

2
− (2 + H)

)
𝜃

𝜌U2
e

dPe

ds
= −

CRe,∞

2
. (6.3)
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7. Sensitivity analysis of separation using Alber’s parameter

Accurate prediction of flows exhibiting separation from mild, adverse pressure gradients remains a
pacing item for the development of closure models for both Reynolds-averaged Navier–Stokes and LES.
In this section, we explore using the proposed model to quantify the impact of history effects in such
flows. The following assumes that the point of separation is determined by Alber’s parameter, as was
motivated in the preceding section.

In wall-modelled LES, it is difficult to isolate the regions of deficiency of the near-wall model (for
predicting the wall shear stress) in non-equilibrium flows, especially in flows undergoing smooth body
separation. This is in part because it remains difficult to quantify the importance of history effects in the
wall closure approximation. If we denote J(𝜃)sep = −(𝜃sep/Ue,sep)(dUe,sep/ds) as the value of the Alber
parameter at the point of separation, then the parameter (m/Jsep)(dJsep/dm) is a relative measure of the
sensitivity of flow separation parameter to upstream modelling deficiencies (quantified via m) since the
perturbations in m (Δm or dm in the limit of Δm → 0) can be thought of as arising due to the errors in
the prediction of the wall stress. This sensitivity parameter can be re-expressed as

m
Jsep

dJsep

dm
=

m
Jsep

dJsep

dJ(𝜃)
∗

dJ(𝜃)
dm

=
m

Jsep

dJsep

dJ(𝜃)
∗

1
2Re𝜃

=
1
2

𝜃

𝜃sep

d𝜃sep

d𝜃
=

1
2

𝜃

𝜃sep

1
d𝜃

d𝜃sep

. (7.1)

Equation (7.1) quantifies the expected response in the value of Jsep for a given perturbation in m.
Further, based on the last equality in (7.1), this sensitivity parameter can be completely determined by
numerically perturbing the momentum thickness at the true point of separation (𝜃sep) and integrating
(4.3) backward (upstream). This provides the change in 𝜃 at all upstream locations due to a known
perturbation in 𝜃 at the true separation point.

Figure 7 suggests that two different mechanisms are important for the two separating flows considered
in this article. From figure 7(a), it is clear that for the Boeing speed bump, the sensitivity of Alber’s
parameter to a perturbation in m is non-local, or that a perturbation in m even far upstream, 30–40 𝛿sep,
will lead to a non-negligible change in Jsep. However, perturbations in the region after the apex (beyond
the vertical dashed line, in the adverse pressure gradient region) are most important in that the imminently
separating flow responds to those the most. The curve is increasing in the zero pressure gradient and
the favourable pressure gradient region, which implies that the closer the perturbations are made to the
separation point, the more responsive the tendency of the flow to separate. These results agree with
Devenport & Lowe (2022) who suggest that the ‘history effects’ of pressure gradients in a turbulent
boundary layer may extend up to 50𝛿 (where 𝛿 is the local boundary layer thickness). However, in
figure 7(b), for the transonic bump, the sensitivity is primarily localized in a smaller region after the
apex (less than 5𝛿sep), localized to the vicinity of the shock (marked by the dashed line). This suggests
that for the Bachalo–Johnson bump flow, the prediction of separation is primarily governed by the shock
and the adverse pressure gradient in its vicinity, or the upstream history or modelling errors are not that
significant. These contrasting mechanisms in the two separating flows considered in this article provide
evidence that flow separation can occur due to different flow development patterns.

8. Model limitations

Thus far, the proposed model has been shown to predict momentum thickness in several non-equilibrium
turbulent boundary layers reasonably. However, we also highlight some potential limitations of the
proposed model in specific flow regimes.

(i) Laminar or relaminarizing boundary layers. For laminar boundary layers, the original method of
Thwaites (1949) is expected to produce more favourable results than the proposed method. This
can be seen in that the proposed model’s coefficients are larger than the equivalent coefficients in
the original Thwaites’ method. Further, for highly accelerated boundary layers with significant
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Figure 7. The streamwise variation (non-dimensionalized by the boundary layer thickness at the point
of separation) of the relative sensitivity of Jsep = −(𝜃/Ue)(dUe/ds) evaluated at the point of separation
to the upstream perturbations in the Holstein–Bohlen parameter, m, for (a) the Boeing speed bump and
(b) the transonic Bachalo–Johnson bump. The dashed lines in panels (a) and (b) correspond to the
location of the bump apex and the shock, respectively. Here, 𝛿sep is the thickness of the boundary layer
at the true point of separation.

relaminarization (Sreenivasan 1982), the proposed model is not expected to capture the reduced
growth of the momentum thickness as the ‘training dataset’ only contains the purely turbulent
flow regimes. For instance, although not shown, it was observed that for the strongly accelerated,
relaminarizing boundary layer studied in Bourassa & Thomas (2009), the proposed model
underpredicts the momentum thickness by approximately 60 % in the regions where the
acceleration parameter, K = 𝜈/U2

e dUe/dx ≥ 2 × 106 (region of at least partial relaminarization).
(ii) Low Reynolds number turbulent boundary layers. As discussed in the model description, for

Re𝜃 ≤ 100, the truncation error in the proposed model may become comparable to the model
predictions. Thus, the model can be expected to fail for such low Reynolds numbers.

(iii) Large pressure gradients, and separated boundary layers. As also highlighted in § 4, for flows with
very large pressure gradients, such that m/Re𝜃 ≥ O(10−1), the proposed linear truncation (4.3) is
not expected to determine the growth of the momentum thickness reasonably. Further, beyond the
onset of a boundary layer separation, the proposed model has been shown to predict the
momentum thickness incorrectly (see § 6.3). Such a flow regime is marked by a strong increase in
the shape factor, with H, often reaching values higher than H � 2. These regimes also coincide
with sharp rises in the Clauser parameter (𝛽 � 1, such as in figure 3) as the shear stress drops to
zero near a separation point.

(iv) High free stream turbulence. High free stream turbulence values can reduce the wake region of
the boundary layer relative to a negligible free stream turbulence case (Thole & Bogard 1996),
and increase the skin-friction (Hancock & Bradshaw 1983), thus also equivalently increasing
d𝜃/dx. Thus, in the presence of significant free stream turbulence, the present model may
underpredict the growth of the momentum thickness. Future research may include the effects of
free stream turbulence through an additional eddy-viscosity term such as in Volino (1998).

(v) Wall roughness. In boundary layers with wall roughness, there is an additional drag due to the
pressure forces, which shift the mean velocity profile downward relative to a smooth wall (in
viscous units). Generally, this form drag is represented in the doubly averaged form of the
Navier–Stokes equations as a sink term (Talluru et al. 2016), which also modifies the von Kármán
integral equation relative to (1.2). However, the present model ignores this added drag term and is
thus expected to underpredict the growth of momentum thickness.

(vi) Compressible boundary layers. As observed on the fore side of the transonic Bachalo–Johnson
bump, for a locally supersonic flow, the proposed model overpredicts the momentum thickness as
the effect of the Mach number in the von Kármán integral equation has been ignored.
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(vii) Large Reynolds number limit. For Re𝜃 → ∞, in the absence of any pressure gradient,
d𝜃/ds = Cf /2 is smaller than the predicted d𝜃/ds = CRe,∞/2 as Cf decreases with Re𝜃 (albeit
weakly, see Nagib et al. (2006)). The fitted coefficient, CRe/∞ was based on a boundary layer at an
Re𝜃 ∼ O(104), and hence for a higher Reynolds number, for example, Re𝜃 ≥ O(105) flow, the
currently fitted model coefficients may be expected to overpredict the boundary layer growth.

(viii) Wall curvature. The effect of surface curvature on the accuracy of the proposed model has been
briefly tested using the two bump flows (e.g. on the Boeing speed bump, 𝛿/rw � 0.06). For large
curvatures, however, when 𝛿/rw ↑ (rw is the local radius of curvature of the wall) becomes larger,
additional curvature correction terms would need to be included in the proposed model.

Future work may include further improvements to the proposed model to alleviate these model
limitations.

9. Concluding remarks

This work presents an extension of the method of Thwaites for determining the momentum thickness for
a turbulent boundary layer under the action of pressure gradients. In the limit of large Reynolds numbers,
a linear model is hypothesized, such that the Reynolds number and pressure gradient dependence on
the growth rate of the momentum thickness can be superposed. A fit for the model coefficients is found
using recent high-fidelity simulation data for various boundary layers ranging from Reynolds number,
Re𝜏 ≈ [100, 4000] and Clauser parameter, 𝛽,≈ [−6, 10]. Generally, the model predicts the growth of
the momentum thickness well for both favourable and adverse pressure gradient flows. The model is
also used to derive a condition for imminent separation at high Reynolds numbers, which resulted in
similar threshold values as previously work of Alber (1971). An application of the proposed method is
demonstrated by estimating the importance of history effects on separation. Specifically, the importance
of upstream history effects for the Boeing speed-bump flow is quantified. For a transonic bump flow, it
is shown that only local perturbations just upstream of the shock location cause significant changes to
the separation location.
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Appendix A. Performance of proposed model in boundary layers at high Reynolds number

Skare & Krogstad (1994) performed experiments of boundary layers at the verge of separation up to
Re𝜃 = 5.4 × 104, by controlling the applied external pressure gradient. The shape factor, H, smoothly
varied between 1.8 ≤ H ≤ 2, and the Clauser parameter, 𝛽, varied between 12.2 ≤ 𝛽 ≤ 20.4. In the
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Figure 8. The fit of 𝜃/𝜃0 versus the streamwise distance x/𝜃0 for the experimental measurement stations
reported in Skare & Krogstad (1994) for a high Reynolds number, under-equilibrium boundary layer
on the verge of separation and in Nagib et al. (2006) for a canonical, weak adverse pressure gradient
boundary layer. The left-hand and right-hand abscissas on these plots denote the prediction of 𝜃 and
the true, experimental, value of Re𝜃 at the respective streamwise locations, respectively.

latter half of this boundary layer, the free stream velocity followed an approximate power law along
the streamwise distance, which is a condition for a boundary layer under finite pressure gradient to be
‘under-equilibrium’ (Castillo & George 2001; Castillo, Wang & George 2004). Similarly, Nagib et al.
(2006) performed experiments up to Re𝜃 ≈ 5.1 × 104 for a two-dimensional, canonical boundary layer
experiencing a weak adverse pressure gradient (𝛽 ≈ 0.3).

In figure 8(a,b), the momentum thickness at the reported stations in the experiments of Skare &
Krogstad (1994) and Nagib et al. (2006) is compared with the prediction of the proposed model. It is
noted that these experimental cases are, in fact, among the highest Reynolds number experiments for
a canonical, two-dimensional, adverse pressure gradient turbulent boundary layer (see table 1 in Vila
et al. (2020)). The provided power law distributions for the free stream velocity (Ue) in the experiments
were used to determine the pressure gradient in the flow. In both these flows, the maximum error in
the prediction of the momentum thickness is approximately 6 %. The power law distribution for the
free stream velocity along the streamwise direction, according to (4.3), suggests that when 1/Re𝜃 � 1,
the near linear growth of the momentum thickness is a valid solution to the differential equation, in
agreement with experiments (Skare & Krogstad 1994). Similarly, the data of Perry (1966) as presented
in Anderson (2011) shows a nearly linear growth of the boundary layer up to Re𝜃 ≈ 0.97 × 105.

A non-equilibrium adverse pressure gradient flow from the recent experiments of Vila et al. (2020)
is considered in figure 9. In contrast to the other two experiments, the free stream velocity does not
follow a power law distribution along the streamwise direction, suggesting that the flow may experience
history effects (Castillo & George 2001). Figure 9 suggests that the proposed model captures the growth
of momentum thickness for this flow well. Appendix B also compares the predictions from the proposed
model with the methods of Head and of Drela (see § 3) for this flow.

Appendix B. Performance of proposed model in comparison to Head’s and Drela’s integral
methods for predicting momentum thickness

In this appendix, we compare the present method for predicting the momentum thickness of a turbulent
boundary layer with the methods of Head (1958) and Drela & Giles (1987). A comparison between
these methods and the proposed model is made on the flow over the Boeing speed bump, where the flow
encounters both prolonged regions of favourable and adverse pressure gradients, and on the experimental
boundary layer of Vila et al. (2020).
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Figure 9. The fit of 𝜃/𝜃0 for the experimental measurement stations reported in Vila et al. (2020) for a
high Reynolds number (8520 ≤ Re𝜃 ≤ 23450), non-equilibrium boundary layer (0.38 ≤ 𝛽 ≤ 2.19). The
left-hand and right-hand abscissas on these plots denote the prediction of 𝜃 and the true, experimental,
value of Re𝜃 at the respective streamwise locations, respectively.
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Figure 10. A comparison between the proposed model, and existing methods of Head (1958) and Drela
& Giles (1987) for the fit of 𝜃/L versus the streamwise distance x/L for the flow over the Boeing speed
bump studied by Uzun & Malik (2022). The vertical axis on the right-hand side of the figure presents
the true, quasi-DNS Re𝜃 distribution as a function of x/L. The solid vertical line denotes the separation
point obtained from the reference data. The bump geometry is shown with a black dashed line.

For the Boeing speed bump flow in figure 10, all the methods perform reasonably in predicting the
growth of momentum thickness initially (x/L ≤ −0.5); followed by a slight under-prediction of 𝜃 from
the approach of Drela & Giles (1987) in the favourable pressure gradient region (coincident with the
decrease in Re𝜃 ). The present method and the method of Head (1958) produce similar 𝜃 (x) distributions.
For the higher Reynolds number boundary layer of Vila et al. (2020) in figure 11, all the methods perform
well initially, but then the fits from the approaches of Head (1958) and Drela & Giles (1987) under-
predict the momentum thickness, unlike the proposed method that still reasonably predicts 𝜃 as Re𝜃

reaches O(104). These observations provide additional confidence in the improved performance offered
by the proposed model over the existing methods of Head (1958) and Drela & Giles (1987).
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Figure 11. A comparison between the proposed and the existing methods of Head (1958) and Drela
& Giles (1987) for the fit of 𝜃/𝜃0 for the experimental measurement stations reported in Vila et al.
(2020) at a Reynolds number (8520 ≤ Re𝜃 ≤ 23 450), adverse pressure gradient boundary layer
(0.38 ≤ 𝛽 ≤ 2.19). The vertical axis on the right-hand side of the figure presents the true, experimental,
Re𝜃 distribution as a function of x/𝜃0.
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