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THE ADDITIVE GROUP OF AN f/-RING

PAUL CONRAD

The intent of this paper is to show that the additive l-group of an f-ring S
determines the ring structure. This is why there are so many papers that
simply extend known results for abelian /-groups to f-rings. Theorem 3.1
asserts that there is a one-to-one correspondence between the f-multiplications
on S and a set of homomorphisms from the positive cone of the I-group S into
the positive cone of the ring Z°(S) of polar preserving endomorphisms of the
l-group S. In fact, each f-multiplication of .S is determined by a homomorphism
of St into & (S)*+. If S is archimedean then the ring has an identity if and
only if the corresponding homomorphism is a bijection and in this case
S P (S) as an f-ring.

If S is an archimedean f-ring with identity and - is another f-multiplication
of S then a-b = abp for all a,b € S and some fixed 0 < p € S and con-
versely (Theorem 2.2). For 0 < p, ¢ € .S define the ring multiplications

a-b=abp and a#b = abg.

Then the resulting f-rings are /-isomorphic if and only if there exists a group
l-automorphism 7 of S such that pr = ¢ (Theorem 2.3). The proof of the last
result depends upon the fact that the group of all /-automorphisms of the
additive group (S, +) is a splitting extension of the polar preserving auto-
morphisms of (S, +) by the group of /-automorphisms of the ring .S (Theorem
2.1).

In section 1 we show that if G is an archimedean I-group and {g,|y € T} is
a maximal disjoint subset of G, then there exists a minimal f-ring M containing
(G, +) as a large l-subgroup and with identity Vg,. M is necessarily archi-
medean and if N is another such ring then there exists a unique ring I-iso-
morphism 7 of M onto N such that gr = g for all g € G. If G° is the essential
closure of G then G is large in G® and u = Vg, exists in G*. Moreover, there
is a unique multiplication on G° so that it is an f-ring with identity «. Thus M
is the l-subring of G° that is generated by G and u.

By definition G is large in M or M is an essential extension of G if for each
non-zero l-ideal L of M, LN G £ 0 or equivalently if 0 < & € M then
nh > g > 0 for some g € G and some positive integer #.

We shall make frequent use of the following representation theory of
Bernau [1]. Let G be an archimedean /-group and let $(G) be the set of polars
of G. Then p(G) is a complete Boolean algebra [10] and so the associated
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Stone space X is extremely disconnected, Hausdorff and compact. Let D (X)
be the collection of almost finite continuous functions from X to R \U {0}
(e, D(X) = {f: X > R\J {£w}| [ is continuous and {x € X | f(x) € R}
is dense}). Then D (X) is a complete vector lattice and an f-ring.

TuaroreM [1]. Let G be an archimedean l-group. Then there is an l-isomor-
phism o of G into D(X) which preserves all existing infima and suprema. G 1s
large in D(X). If {gy|y € T} is a maximal disjoint subset of G then o can be
chosen so that each gyo is a characteristic function of a subset X, of X, where the
family {X,|y € T} is a collection of compact open subsets of X whose union is
dense in X.

Another way of describing D (X) is that it is the essential closure G¢ of G.
That is, D(X) is an essential extension of G and D(X) admits no proper
essential extensions in the category of archimedean /-groups (see [6]).

THEOREM [1]. If o and B are l-isomorphisms of the l-group G onto large sub-
groups of D(X) then there exists a homeomorphism v of X and an element
0 < d € D(X) with support all of X such that for all g € G

(x)ga = (xr)gB - (x)d
for all x € X for which the multiplication on the right is defined.

Thus « = #7d, where 7 and d are the corresponding automorphisms of
D(X). That is, (x)g7 = (xr)g and (x)gd = (x)g- (x)d for all g € G and
x € X. In particular, 7 is a ring automorphism of D (X).

Bernau establishes this result under the additional assumption that « and $
preserve all joins and intersections that exist in G, but [7, Lemma 5.3] asserts
that all joins and intersections in a large /-subgroup C of an abelian /-group 4
agree with those in 4.

CoRroOLLARY 1. If G s a large I-subgroup of an archimedean l-group H and a
is an l-isomorphism of G onto a large subgroup of D(X) then a is induced by an
I-isomorphism of H into D (X).

Proof. Since D (X) is the essential closure of G there exists an l-isomorphism
B8 of H onto a large subgroup of D(X). Since GB is large in D(X) we have
a = B7d on G and so B7d is an extension of « to H.

CoROLLARY 1. An l-automorphism o of a large l-subgroup G of D(X) is
induced by an l-automorphism of D(X).

Proof. « = 7#d on G. Actually one can show that this is the unique extension
of o to D(X).

Finally, we wish to thank Simon Bernau for suggesting improvements of
several of the proofs in this paper.
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1. The f-ring hull of an archimedean I-group. This section is devoted
to establishing the following result.

THEOREM 1.1. If G is an archimedean l-group and {g,|y € T} is a maximal
disjoint subset of G then there exists a minmimal f-ring H containing (G, +) as
a large I-subgroup and with identity N g,. H is necessarily archimedean and if
K is another such ring then there exists a unique ring l-isomorphism r of K onto H
such that gr = g for all g € G.

Remark. G is large in its essential closure G¢ and u = Vg, exists in G-
Moreover, there is a unique multiplication in G* so that it is an f-ring with
identity «#. Thus H is the subring of G* that is generated by G and u.

LEmMMA 1.2. An f-ring H that satisfies Theorem 1.1 is archimedean.

Proof. Let T = {¢ € H|t is a sum of products of positive elements from G}
and for each ¢ € T let H(¢) be the convex [-subgroup of (H, +) that is gener-
ated by . If 5, ¢ € T then H(s) + H(t) S H(s + t) and so {H(t)|t € T} is
directed by inclusion and hence K = \U H(t) is an l-subring of H that con-
tains G.

Now suppose (by way of contradiction) that K is not archimedean. Then
a>b > 0forsomea,b € K.Sincea € H(s) forsomes € T"we have a < ns =
t for some n > 0, and since G is large in K we may assume that b € G. Thus
0< g ANb=ge€G for some N € A and we may assume that :>g > 0,
where ¢t € 7 and gn > g € G. Now g2 < ggx = V (ga&n) = ¢(Vg) = ¢ and
hence g* < g for all £ > 0.

t = a2 ... Ay + A21A922 « « « A2yy + .« o + A1Qs2 « o « Agpy

where the a;; € Gt. Let a be the least upper bound of all the a;; and let

#n = max {n, #s, ..., n,}. Pick m > 0so thatv = (mg — a)* > 0. Then the
polar ¢’ of all the elements in H that are disjoint from v is an ideal in the ring H
and so modulo v" we have ¢ < mg. Thus anaj ... a;; = (mg)" < m"g and

hence ¢ £ sm"g modulo v’. Therefore (1 + sm®)g £ ¢ in H, a contradiction.
Thus K = \U H(t) is an archimedean f-ring. Let HXK = \J H(t) is an
archimedean f-ring. Let H* be the lateral completion of H. Then H* is an
f-ring with identity Vg, and G € K € H C H*. Thus since G is large in
HE, G € K¥ C H:. But K% is an archimedean f-ring with identity Vg,
(see [7]). Therefore G € K%M H an f-ring with identity Vg, and so by the
minimality of H we have that H = K* M H is archimedean.

Proof of Theorem 1.1. We may assume that G is large in G* = D(X), each
g, is a characteristic function, and Vg, is the identity u for the ring D(X).
The intersection H of all l-subrings of G¢ that contain G and u satisfies the
theorem.

Now suppose that K satisfies the Theorem. Then by the theory in [1] there
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exists a ring l-isomorphism B of K onto a large /-subring of D(X). Thus
V(g,8) = (Vg,)8 = u. By Bernau’s Uniqueness Theorem,

(®)gy = (x7)gsB - (x)d

and it follows that d = # and that § = 87 is the identity on G. Thus
GC KsCD(X)andso Ké = H.

Thus if H; and H, satisfy the theorem then there exists an isomorphism o
of H; onto H, such that g = g for each g € G. If p is another such isomor-
phism then op~! is an J-automorphism of H; that induces the identity on G,
but G generates H; as an f-ring and hence op~! is the identity on H;. Therefore
o = p is unique.

Let 4 and B be archimedean I/-groups with maximal disjoint subsets
{a,]y € T} and {b,]y € T} and let A and B be the corresponding f-rings given
in Theorem 1.1.

COROLLARY. If a s an l-isomorphism of A onto B such that a,a = b, for all
v € T then there exists a unique extension of a to a ring l-isomorphism B of A
onto B.

Proof. Construct an f-ring K 2 B and an isomorphism @ of 4 onto K that
induces a. By the theorem there exists an isomorphism 8 of K onto B that
induces the identity on B. Thus a8 is a ring l-isomorphism of 4 onto B that
induces o on 4.

If » and » are two such isomorphisms of 4 onto B then wr~! is an l-auto-
morphism of A that induces the identity on 4 and so by the theorem must
be the identity on 4. Therefore u = ».

2. The multiplications of an archimedean f-ring S with identity 1.
Let

A(S) = group of all l-automorphisms of (S, +),
H(S) = group of all ring /-automorphisms of .S,
P(S) = group of all p-automorphisms of (S, +).

In [5] it is shown that each p-endomorphism of (S, +) is a multiplication by
a fixed positive element in.S. Hence P (S) is isomorphic with the multiplicative
group of positive units in the ring S.

THEOREM 2.1. A (S) is a splitting extension of P(S) by H(S).

Proof. P M H consists of the identity automorphism since the only multi-
plication of S that is a ring automorpbism is the multiplication by 1. If v € H
and B € P then there exists 0 < p € S such that s8 = ps forall s € S and so

(7)Byt = (p(sy))v = (pvV)s.
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Thus y8y~! is a multiplication by py~! and so belongs to P. Therefore
P [P \U H] and so it suffices to show that 4 C HP.

We may assume that .S'is a large /-subring of D (X) that contains the identity
u of D(X), where X is the associated Stone space of S. If @ € 4 then by
Corollary II of the uniqueness theorem a = 7d. In particular ua = uid =
ud = d and so d € S. Let ¢ = ua~! € S. Then « = ga = q(7d) = g7 - d and

¢ = ¢Gd) = (@7)*-d = 4 g7 - d)F = -

Thus d-! € Sandso d € P and # = ad~! on D. Thus 7 restricted to S belongs
to H.

COROLLARY. If @ € A(S) and la = 1, then a € H(S).
Proof. u = uo = uid = ud = d,soa = 7 € H(S).

THEOREM 2.2. Let (S, +, -, <) be an archimedean f-ring with identity 1.
If o is another multiplication of S so that it is an f-ring then there exists
0 < p € S such that

aob =abp foralla,b € S,
and conversely.

Proof. Pick 0 < @ € S. Then the map s —>soa for all s € S is a p-endo-
morphism of the l-group (S, +) and hence there exists 0 < @ € S such that

soa =sa foralls€S.
Thus, we have a map ¢ — @ of St into itself. Moreover

bd =boa=a0b =ab for a,b€ St

Let p=1. Then @ = 1@ =al =ap. If u,v €S then v = a — b where
a,b € St and hence

Il

uov=uo(@a—>b) =uoa—uob=ud — ub = uap — ubp
=u(a — b)p = uvp.

Remarks. (1) The multiplications agree if and only if p = 1.

(2) The ring (S, o) has an identity if and only if p=! € S and in this case
p~1is the identity.

(3) If (S, o) has an identity then

sSsp foralls €S

is a ring l-isomorphism of (S, o) onto (S, ) and, of course, both rings are
l-isomorphic to the ring £ (S) of all p-endomorphisms of (S, +).
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Proof. For a,b € S we have
(@aob)r = (a0 b)p = (abp)p = apbp = arbr,
(a +b)r = (a+b)p =ap + bp = ar + br, and
0=ar =ap—0=app~! = a.

(4) The given multiplication on S is the unique multiplication so that S
is an f-ring with identity if and only if 1 is the only positive element with a
multiplicative inverse.

(5) (S, o) has no non-zero nilpotents if and only if p is an order unit.

Proof. Consider 0 < a € S. Thenaoa = a?p = 0if and only if a®> A p = 0.

(&) If p is an order unit then e 0 a # 0 for each 0 < a € S.

(=) If p is not an order unit then a A p = 0 for some 0 < a € S and
hence a? A p = 0. Thusaeoa = 0.

(6) If the principal polar "’ is a cardinal summand of .S,
S=p"|+[#

then (p’, 0) is a zero ring and (p”/, o) is an f-ring with no non zero nilpotents.
The elements 0 = p, ¢ € .S determine two f-ring multiplications for S,
namely

aob =abp and a#b = abg.

THEOREM 2.3. The following are equivalent.

(a) There exists a ring l-isomorphism & of (S, 0) onto (S, #).

(b) There exists a ring l-automorphism a of (S, ) and an element x € S+
such that x=' € ST and pa = gx.

(c) There exists a group l-isomorphism B of (S, +) such that pB8 = q.

Proof. (a) = (b): Clearly § is an l-automorphism of (S, +) and so by
Theorem 2.1 6 = ay, where a is a ring l-automorphism of (S,-) and v is a
multiplication by x € ST and x~! € S™.

(pa)y = play) = po = (1o1)6 = 164 15 = lay # lay

= ly#1ly = x#x = x%q.

(par)x

Thus pa = xgq.
(b) = (a): Define s6 = (sa)x for all s € S. Then for s, € S, (s + t)6 =
((s + Ha)x = (Sa + ta)x = (sa)x + (ta)x = s6 + 18.

(sot)s

Il

(stp)s = ((stp)a)x = (sa)(le) (pa)x = (sa) (ter)gx?
= (sa)x(ta)xq = (sa)x # (ta)x = s& # t8.
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(sx %7 1)6 = ((sx '@ Va)x = s.
$6 = t0= (sa)x = (la)x = sa =la=s = 1.

Therefore § satisfies (a).

(b) = (c): Let B = « followed by the multiplication by x~*.

(c¢) = (b): By Theorem 2.1, 8 = ay where a is a ring l-automorphism of
(S, -) and v is a multiplication by an element in S, say x~1. Thusq = p8 =
pax~! so pa = gx.

3. In this section we show that the multiplication on an f-ring S is essentially
determined by the additive structure. For each s € St define
x5 = sx forallx € S.
Then s — 5 is an additive homomorphism of S+ into Z?(S)* such that for
x € Sand a, s, t € ST,
1) x(s — t) = x5 — «i,
(2) sANt=0=a5 ANt =0,

(3) st = st.
Moreover, .S is commutative if and only if
(4) st = 15.

THEOREM 3.1. Suppose that (S, +, <) is an archimedean l-group and s — 5
is a homomorphism of St into P (S)*+ that satisfies (2) or (4). For x € S and
s, t € St define

x(s —t) = x5 — xi.

Then (S, +, -, <) is an f-ring. Thus there is a one-to-one correspondence between
the elements in Hom (S+, 22 (S)*) that satisfy (2) or (4) and the multiplications
on S so that il is an f-ring.

Remark. If we drop the hypothesis that S is archimedean then there is a
one-to-one correspondence between the elements of Hom (S+, £ (S)*+) that
satisfy (2) and (3) and the multiplications on S so that it is an f-ring.

Proof of theorem. If s — t = u — v, where s, ¢, u, v € St, then
stov=ut+t=235+9=a+I=x5+x0 = xit + xi=
x§ — xf = xid — x7

so our definition of multiplication is single valued.
For a, b, ¢ € S we have

alb+c¢c)=alt+ct— (b= +c¢c) =abt+ct —ab— 4+ ¢
= abt + act — ab— — ac™
=a(bt —b~) + alct — ¢c) = ab + ac;

(b+ca=0+c)at—a) = (b+c)at — (b+c)a
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= pat + cat — ba— — ca~
=blat —a~) + clat — a~) = ba + ca.
If s At =0anda > 0 then since @ € Z(S)+
0=sa@aNt=sa AL

Thus if (4) holds then 0 = s@ A ¢t = a5 At = as A t; otherwise by (2)
0 =as At =as At Thus we have an archimedean f-ring and so both the
commutative and associative laws for multiplication hold.

COROLLARY 1. The element s — 5 in Hom (S+, 2 (S)*) satisfies (2) if and
only if it satisfies (4). If the map satisfies (2) then it also satisfies (3) and it is
an I-homomorphism of S+ into P (S)* and so determines a ring I-homomorphism

of (S, +, -, <) into P(S).

Proof. If x, s, t € St then [5, p. 229]
x5V =x5Valf =uxsV «xt
x(s Vi) =ux(sVi).

Now define s — ¢t = § — f; then this is a ring /-isomorphism of (S, +, -, <)
into Z(S). For,if s A\t=0then0=x0 =xs At =xGF AL =x5 A «f =
xs Axt=x(s ANt)=x0=0s05ANI=0.

An f-ring F has no non-zero nilpotents if and only if for each ¢ € F+

a*=0=a=0.

COROLLARY 2. For the ring S the following are equivalent:
(1) S has no non-zero nilpotent elements;

(2) aa = 0=a = 0 for all a € St;
B)a=0=a=0;

(4) The map s — 5 is one-to-one.

Proof. Since a* = ad, (1) and (2) are equivalent.

2= @B):a=0=ad=0=a=0.

B)= (2):ad =0=a>=ad =0=a = 0= a = 0. Here we use the fact
that 2 (S) has no non-zero nilpotents.

(4) = (3): This is trivial.

(3) = (4): We can extend s — 3 to an /-homomorphism of (S, +) into
(2(S), +), but by (3) the kernel is zero and so the map is one-to-one.

COROLLARY 3. The following are equivalent:

1) (S, +, -, £) has an identity;

(2) 5 is the identity automorphism for some s € S*;
(8) s — 5 is an tsomorphism of St onto P (S)*.

In this case S = 2P (S).

Proof. (3) = (2): This is clear.
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(2)= (1): x = x5 = xs all x € S so s is an identity for .S since S is com-
mutative.

(1) = (3): Each p-endomorphism « of S is a multiplication by a positive
element s € St. Therefore, xa = xs = x5 for all x € S and so the map is
epimorphic. If § = fthens = 1s = 15 = 1 = 1¢ = ¢, so the map is one-to-one.

COROLLARY 4. An archimedean I-group S admits a multiplication so that it is
an f-ring with identity if and only if St = PP (S)+, where the map satisfies (2).
If this is the case then the ring is l-isomorphic to P (S).

4. The relationship between G* and the various other hulls of G. Let
G be an archimedean I-group with order unit # and let G* be the minimal
f-ring with # as an identity in which G is large. Let (see [7])

G? = divisible closure of G,

G°® = Dedekind-MacNeille completion of G,
G*® = essential closure of G,

G® = vector lattice hull of G,

G? = projectable hull of G,
GS? = strongly projectable hull of G,
G = lateral completion of G, and

G° = orthocompletion of G.
Letw =d, ¢, e,v, P, SP, L, or O. Then G* is archimedean and G is large in
G®. In fact, if H is a w-group in which G is large, then G¥ is the intersection
of all l-subgroups of H that are w-groups. Here we use the fact that an essen-
tially closed group is by definition archimedean.

ProrposiTioN 4.1. (G®)* C (G*)* the unique minimal f-ring with identity u
that is a w-group and in which G is large. In particular (G¥®)* = (G*)* if and
only if (G®)* 1s a w-group.

Proof. Since G is large in (G*)”, G* € (G*)* and since (G*)” is an f-ring
with identity u, (G¥)* C (G*)™.

If K is a minimal f-ring with identity « that is a w-group and in which G
is large then

GCGECK=G0C GY)Y" T K= (GY)” =K.

Note, for example, that (G*)° is the minimal f-algebra with identity « in
which G is large.

ProrosiTiON 4.2. (G¥)* 1s a w-group for w = d, v, e or SP. The statement
does not hold for w = P or ¢ and is open for w = L or O.

Proof. We may assume that
GCGrC (G")* S G =D(X)
where X is the associated Stone space of G and u is the identity for D. Thus
if w = e then (G°)* = D and so is essentially closed.
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Since Ru C G? it follows that (G”)* is a vector lattice and since Qu C G¢,
(G*)* is divisible.

In order to prove that (GS¥)* is an SP-group we need:

LemMa. If G=A|+|B and wu=a+ b with a € A and b € B then
G* = A°|+| B".

Proof. Clearly G* C A |+| B Now 4 C G*MN A® C A® and so by the
minimality of A% we have G*/MN A® = A° Thus G* D A*U B’ so
G* 2 A*|+| B".

Now suppose that G is a SP-group and M is a polar in G*. We shall denote

the polar operation in G and G* by " and *. Since G is large in G¥, M N\ G is a
polar in G so

G=(MNG)|+|B and u = u; + u,.
Thus by the Lemma
G* = (M N G)“r|+]| B

Since u; is an order unit in M NG, u," = M N G and u,** = (M N G)*.
Also

Zl.l** NG = ul" =MNG

and so (M N G)“t = u** = M. Therefore M is a cardinal summand of G*
and hence G* is an SP-group.
Examples 5.6 and 5.7 complete the proof of Proposition 4.2.

5. Examples and open questions.

Example 5.1. Let S be the cardinal sum R |4| R. Then £ (S) is the ring
R 4+ R. An additive l-isomorphism of (S, +) onto (Z?(S), +) need not
satisfy property (2) in section 3.

For (x,y) € St let (x, y) be the multiplication by (v, x). Then (1, 0) A (0,
1) = (0,0) and (1,1) > (0, 0) but

(1, 1)(1,0) A (0,1) = (0, 1),

so (2) is not satisfied and clearly (x, y) — (x, ) is an l-isomorphism of (S, +)

onto (Z(S), +).

Example 5.2. Let H be the ring R @ R and define (a, b) positive if a > 0 or
a =0 and b > 0. Let G be the subgroup of H generated by « = (1, 1) and
a = (v/2,1). Then G is archimedean and o-isomorphic to the subgroup of
R generated by 1 and /2, but the subring K of H generated by G is not
archimedean and of course G is not large in K.

Examples 5.3. Consider a = (1,2,3,...) € I17,, Z,. Thus [a] = Z but
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the l-subring of I1 Z, generated by « is not totally ordered and of course is
not an essential extension of [a] nor does it have an identity.

Example 5.4. Let G be the I-subgroup of II7, R, generated by
a=(1,1,1,...)and b = (1,1/2,1/3,...). Then
Ga % Gb
because the identity ¢ in G® is a strong order unit but the identity 5 in G°

is not.

Example 5.5. Let G = [1/8] T Q, u = 1/2 and v = 1/4. Then G* =~ G® =~
{m/2"|\m, n € Z} but there does not exist an /-automorphism of G that maps «
onto v. Thus the converse to the corollary of Theorem 1.1 does not hold.

Example 5.6. Let G be the cyclic subgroup of Q generated by 1/2 and let
u = 1. Then G* is the ring of all rationals with denominators a power of 2.
Thus G is complete but G* is not.

Example 5.7. A P-group G such that G* is not a P-group: Let

w=(1,1,1,...)
a=(1,1/2,1/3,...)
b= (1,1/5,1/9,1/17,1/25,1/37,1/49, . ..)

G=§ Q;-@[u]@[a]@[blglllei:H.

Then G is an [-subgroup of H and if ¢ € G has an infinite number of non-zero
components then all but a finite number of components of G are non-zero.
Thus clearly G is a P-group but not an SP-group.

Nowa? —b = (0,1/4 —1/5,0,1/16 — 1/17,01/36 — 1/37,...)
and (¢? — b)** is not a summand of G* since (0,1,0,1,0,1,...) ¢ G*

Questions. Let G be an archimedean [-group with order unit .

(1) If H is a minimal archimedean f-ring with identity # that contains G
then 1s H = G*?

(2) If wisan l-homomorphism of G onto an /-group K then can 7 be extended
to a ring /-homomorphism of G* onto K*r?

(3) If G is an L-group (O-group) then is G* an L-group (O-group)?
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