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Several criteria from the optimal design literature are examined for use with item selection in multi-
dimensional adaptive testing. In particular, it is examined what criteria are appropriate for adaptive testing
in which all abilities are intentional, some should be considered as a nuisance, or the interest is in the test-
ing of a composite of the abilities. Both the theoretical analyses and the studies of simulated data in this
paper suggest that the criteria of A-optimality and D-optimality lead to the most accurate estimates when
all abilities are intentional, with the former slightly outperforming the latter. The criterion of E-optimality
showed occasional erratic behavior for this case of adaptive testing, and its use is not recommended. If
some of the abilities are nuisances, application of the criterion of As -optimality (or Ds -optimality), which
focuses on the subset of intentional abilities is recommended. For the measurement of a linear combi-
nation of abilities, the criterion of c-optimality yielded the best results. The preferences of each of these
criteria for items with specific patterns of parameter values was also assessed. It was found that the crite-
ria differed mainly in their preferences of items with different patterns of values for their discrimination
parameters.
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1. Introduction

Unidimensional adaptive testing operates under a response model with a scalar ability para-
meter. Research on this type of adaptive testing has been ample. Among the topics that have been
examined are the statistical aspects of ability estimation and item selection, item selection with
large sets of content constraints on the test, randomized control of item exposure, removal of dif-
ferential speededness, and detection of aberrant response behavior. For reviews of this research,
see Chang (2004), van der Linden (2005, Chap. 9), van der Linden and Glas (2000, 2007), and
Wainer (2000). Due to this research, methods of unidimensional adaptive testing are well devel-
oped, and testing organizations are now fully able to control their implementation in their testing
programs.

Multidimensional item response theory (IRT) has developed gradually since its inception
(e.g., McDonald, 1967, 1997; Reckase, 1985, 1997; Samejima, 1974). Its statistical tractability
has been improved considerably lately, and it is now possible to use several of its models for
operational testing. Although multidimensional response models are traditionally considered as
a resort for applications in which unidimensional models do not show a satisfactory fit to the
response data, their use has been motivated more positively recently by a renewed interest in
performance-based testing and testing for diagnosis. Performance-based items typically require
a range of more practical abilities. In testing for diagnosis, the goal is to extract as much in-
formation on the multiple abilities required to solve the test items as possible (e.g., Boughton,
Yao, & Lewis, 2006; Yao & Boughton, 2007). Several admission and certification boards are in
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the process of enhancing their regular high-stakes tests with web-based diagnostic services that
allow candidates to log on and get more informative diagnostic profiles of their abilities. The
more informative adaptive testing format is particularly useful for this application because it is
low stakes and unlikely to suffer from the security threats typical of admission and certification
tests.

The first to address multidimensional adaptive testing (MAT) were Bloxom and Vale (1987),
who generalized Owen’s (1969, 1975) approximate procedure of Bayesian item selection to the
multidimensional case. Their research did not resonate immediately with others. The only later
research on multidimensional adaptive testing known to the authors is reported in Fan and Hsu
(1996), Luecht (1996), Segall (1996, 2000), van der Linden (1996, 1999, Chap. 9), and Veldkamp
and van der Linden (2002). Luecht and Segall based item selection for MAT on the determinant
of either the information matrix evaluated at the vector of current ability estimates or the pos-
terior covariance matrix of the abilities. In van der Linden (1999), the trace of the (asymptotic)
covariance matrix of the MLEs of the abilities was minimized and the option of weighing the
individual variances to control for the relative importance of the abilities was explored. The pos-
sibilities of imposing extensive sets of constraints on the item selection to deal with the content
specifications of the test were examined in van der Linden (2005, Chap. 9) and Veldkamp and
van der Linden (2002). The former used a criterion of minimum weighted variances for item
selection; the latter the posterior expectation of a multivariate version of the Kullback–Leibler
information.

Use of the determinant or trace of an information matrix or a covariance matrix as a crite-
rion of optimality in statistical inference are standard practices in the optimal design literature,
where they are known as the criteria of D-optimality and A-optimality, respectively (e.g., Silvey,
1980, p. 10). In this more general area of statistics, such criteria are used to evaluate inferences
with respect to the unknown parameters in a multiple-parameter problem on a single dimension.
Berger and Wong (2005) describe a variety of areas, such as medical research and educational
testing, in which optimal design studies have been proven to be useful. The Fisher information
matrix plays a central role in these applications because it measures the information about the
unknown variables in the observations. In educational testing, for instance, the information ma-
trix associated with a test can be optimized using the criterion of D-optimality to select a set of
items from a bank with the smallest generalized variance of the ability estimators for a population
of examinees. These items yield the smallest confidence region for the ability parameters. Us-
ing A-optimality instead of D-optimality yields a different selection of items because the former
focuses only the variances of the ability estimators.

The answer to the question of what choice of criterion would be best is directly related to
the goal of testing. As described more extensively later in this paper, different goals of MAT can
be distinguished. For example, a test may be designed to measure each of its abilities accurately.
But we may also be interested in a subset of the abilities and want to ignore the others. Exam-
ples of the second goal are analytic abilities in a test whose primary goal is to measure reading
comprehension, or a test of knowledge of physics that appears to be sensitive to mathematical
ability. In more statistical parlance, the pertinent distinction between the two cases is between
the estimation of intentional and nuisance parameters. A special case of MAT with intentional
ability parameters arises when the test scores have to be optimized with respect to a linear com-
bination of them. This may happen, for instance, when the practice of having single test scores
summarizing the performances on a familiar scale was established long before the use of an IRT
model was introduced in the testing program. If the item domain requires a multidimensional
model, it then makes sense to optimize the test scores for a linear combination of the abilities in
the model with a choice of weights based on an explicit policy rather than fit a unidimensional
model and accept less than satisfactory fit to the response data.

For each of these cases, a different optimal design criterion for item selection in MAT seems
more appropriate. For example, as shown later in this paper, when the goal is to estimate an
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intentional subset of the abilities, application of the criterion of Ds -optimality (Silvey, 1980,
p. 11) to the Fisher information matrix seems leads to the best item selection. The motivation of
this research was to find such matches between the different cases of MAT and the performance
of optimal design criteria. In addition, to the D- and A-optimality criteria, we included a few
other criteria from the optimal design literature in our research, which are less known but have
some intuitive attractiveness for application in adaptive testing.

Another goal of this research was to investigate the preferences of the optimality criteria for
items in the pool with specific patterns of parameter values. The results should help to answer
such questions as: Will the criterion for selection in a MAT program with nuisance abilities select
only items that are informative about the intentional abilities? Or are there any circumstances in
which they also select items that are mainly sensitive to a nuisance ability? Understanding the
preferences of item-selection criteria for different patterns of parameter values is important for
the assembly of optimal item pools for the different cases of MAT when there exists a choice of
items. In principle, such information could help us to prevent overexposure and underexposure of
the items in the pool and reduce the need of using more conventional measures of item-exposure
control (Sympson & Hetter, 1985; van der Linden & Veldkamp, 2007).

Finally, we report some features of the Fisher information matrix and its use in adaptive
testing that have been hardly noticed hitherto and also illustrate the use of the criteria empirically
using simulated response data.

2. Response Model

The response model used in this paper is the multidimensional 3-parameter logistic (3PL)
model for dichotomously scored responses. The model gives the probability of a correct response
to item i by an examinee with p-dimensional ability vector θ = (θ1, . . . , θp) as

Pi(θ) ≡ P
(
Ui = 1|θ ,ai , bi, ci

)

≡ ci + 1 − ci

1 + exp(−ai · θ + bi)
, (1)

where ai is a vector with the item-discrimination parameters corresponding to the abilities in θ ,
bi is a scalar representing the difficulty of item i, and ci is known as the guessing parameter of
item i (i.e., the height of the lower asymptote of the response function). Note that bi is not a
difficulty parameter in the same sense as a unidimensional IRT model; in the current parameteri-
zation, it is a function of both the difficulties and the discriminating power of the item along each
of the ability dimensions. Further, note that due to rotational indeterminacy of the θ -space, the
components of θ do not automatically represent the desired psychological constructs. However,
such issues are dealt with when the item pool is calibrated, and we can assume that a meaningful
orientation of the ability space has been chosen. Finally, note that (1) is just a model for the
probability of a correct answer by a fixed test taker. Particularly, it is not used as part of a hierar-
chical model in which θ is a vector of random effects. Therefore, the model should not be taken
to imply anything with respect to a possible correlation structure between the abilities in some
population of test takers; for instance, it does not force us to decide between what are known as
orthogonal and oblique factor structures in factor analysis.

The vector of discrimination parameters, ai , can be interpreted as the relative importance of
each ability for answering the item correctly. As is often done, we assume that the item parame-
ters have been estimated with enough precision to treat them as known. The probability of an in-
correct response will be denoted as Qi(θ) = 1−Pi(θ). Because this model is not yet identifiable,
additional restrictions are necessary that fix the scale, origin, and orientation of θ . In practical
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applications of IRT models, testing organizations maintain a standard parameterization through
the use of parameter linking techniques that carry the restrictions from the calibration of one
generation of test items to the next. For more details about the model, see Reckase (1985, 1997)
and Samejima (1974). Other multidimensional response models are available in the literature,
but the model in (1) is a direct generalization of the most popular unidimensional logistic model
in the testing industry. In addition, its choice allows us to compare our results with those in a key
reference on item selection in MAT as Segall (1996).

The following additional notation will be used throughout this article:

N : size of the item pool;
n: length of the adaptive test;
l = 1, . . . , p: components of ability vector θ ;
i = 1, . . . ,N : items in the pool;
k = 1, . . . , n: items in the test;
ik : item in the pool administered as the kth item in the test;
Sk−1: set of first k − 1 administered items;
Rk : {1, . . . ,N}\Sk−1, i.e., set of remaining items in the pool.

For a vector uk−1 of responses on the first k − 1 items, the maximum likelihood estimate

(MLE) of the ability, denoted by θ̂
k−1

, is defined as

θ̂
k−1 ≡ arg max

θ
f (uk−1|θ), (2)

where

f (uk−1|θ) =
k−1∏

j=1

P
uij

ij
(θ)Q

1−uij

ij
(θ), (3)

is the likelihood function with the item responses modeled conditionally independent given θ .
The MLE can found by setting the derivative of the logarithm of (3) equal to zero and solve the
system for θ using a numerical method such as Newton–Raphson (e.g., Segall, 1996) or an EM
algorithm (Tanner, 1993, Chap. 4). The likelihood function may not have a maximum (e.g., when
only correct or incorrect item responses are observed), or a local instead of a global maximum
may be found. Such problems are rare for adaptive tests of typical length, though.

3. Fisher Information

The Fisher information matrix is a convenient measure of the information in the observable
response variables on the vector of ability parameters θ . For item i, the matrix is defined as

Ii (θ) ≡ −E

[
∂2

∂θ∂θT
logf (Ui |θ)

]

= Qi(θ)[Pi(θ) − ci]2

Pi(θ)(1 − ci)2
aiaT

i , (4)

with aT
i the transpose of the (column) vector of discrimination parameters. This expression re-

veals some interesting features of the item information matrix:

• The item information matrix depends on the ability parameters only through the response
function Pi(θ).
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• The matrix has rank one.
• Each element in the matrix has a common factor, which will be denoted as

g(θ;ai , bi, ci) = Qi(θ)[Pi(θ) − ci]2

Pi(θ)(1 − ci)2
. (5)

This function of θ will be discussed in the following section.
• The sum of the elements of the matrix is equal to

g(θ;ai , bi, ci)

(
p∑

l=1

ail

)2

.

This equality shows the important role played by the sum of the discrimination parameters
in the total amount of information in the response to an item.

The information matrix of a set of S items is equal to the sum of the item information
matrices, i.e.,

IS(θ) =
∑

i∈S

Ii (θ). (6)

The additivity follows from the conditional independence of the responses given θ already used
in (3). Although the item information matrix Ii (θ) of each item in S has rank 1, the rank of
IS(θ) is equal to p (unless the items in S have the same proportional relationship between the
discrimination parameters).

The use of the information matrix is mainly motivated by the large-sample behavior of the
MLE of θ , which is known to be distributed asymptotically as

θ̂ ∼ N
(
θ0, I−1

S (θ0)
)

(7)

with θ0 the true ability and I−1
S (θ0) the inverse of the information matrix evaluated at θ0. More

generally, it holds for the covariance matrix �(θ0) of any unbiased estimator θ̂ of θ0 that
�(θ0)− I−1

S (θ0) is positive semi-definite. The inverse information matrix can thus be considered
as the multivariate generalization of the Cramér–Rao lower bound on the variance of estimators
(Lehmann, 1999, Section 7.6).

In test theory, it is customary to consider IS(θ) and Ii (θ) as functions of θ and refer to them
as the test and item information matrix, respectively. By substituting θ̂ for θ in (6), an estimate
of these matrices is obtained. When evaluating the selection of the kth item in the adaptive test
using (6), the amount of information about θ can be expressed as the sum of the test information
matrix for the k − 1 items already administered and the matrix for candidate item ik ,

ISk−1

(
θ̂

k−1) + Iik

(
θ̂

k−1)
. (8)

Criteria of optimal item selection should thus be applied to (8). For example, Segall (1996)
proposed to select the item that maximizes the determinant of (8). This candidate gives the largest

decrement in volume of the confidence ellipsoid of the MLE θ̂
k−1

after k−1 observed responses.
As already noted, a maximum determinant of an information matrix is known as D-optimality in
the optimal design literature. Before dealing with such criteria in more detail, we take a closer
look at the item information matrix.
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FIGURE 1.
Surface of g(θ ,a, d, c) with a = (1,0.3), d = 0, and c = 0. (Note: g̃ is a cross-section of g perpendicular to
a1θ + a2θ = 0.)

3.1. Item Information Matrix in Multidimensional IRT

The item information matrix in (4) can be written as

Ii (θ) = g(θ;ai , bi, ci)

⎡

⎢⎢⎢
⎣

a2
i1 ai1ai2 . . . ai1aip

ai1ai2 a2
i2 . . . ai2aip

...
...

. . .
...

ai1aip ai2aip . . . a2
ip

⎤

⎥⎥⎥
⎦

, (9)

with function g given in (5). Thus, the information matrix consists of two factors: (i) function g

and (ii) matrix aiaT
i with elements based on the discrimination parameters.

The focus of the next sections is on the comparison of different optimality criteria for item
selection in different cases of MAT. Each of these criteria maps the item information matrix
onto a one-dimensional scale. Because g(θ;ai , bi, ci) is a common factor in all elements of the
information matrix, the criteria basically differ in how they deal with the second factor aiaT

i .
On the other hand, g is function of θ , and it is instructive to analyze its shape, which is done in
this section. As an example, in Figure 1, g is plotted for an item with parameters ai = (1,0.3),
bi = 0, and ci = 0 over a two-dimensional ability space θ .

Observe that g depends on θ only through the response function Pi(θ) in (1). Because Pi(θ)

is constant when θ · ai is, the same applies to g. For example, for the item displayed in Figure 1,
the values of g do not depend on the abilities as long as θ1 + 0.3θ2 is constant. This feature can
be used to reparameterize g(θ;ai , bi , ci) into a one-dimensional function g̃(θ;ai , bi, ci) with a
new θ perpendicular to θ · ai = 0. As shown in Figure 1, g̃ is just a cross-section of g.

The new function g̃ is obtained by substituting

θ = (θ1, . . . , θp) =
(

ai1

‖ai‖θ, . . . ,
aip

‖ai‖θ

)
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into the response function in (1), which results in

P̃i(θ) = ci + 1 − ci

1 + exp(−‖ai‖θ + bi)
, (10)

where ‖ai‖ =
√

a2
i1 + · · · + a2

ip is the Euclidean norm of ai . Thus, the reparameterization leads to

a new unidimensional response model which differs from the regular unidimensional 3PL model
only in the replacement of its discrimination parameter by the Euclidean norm of the vector with
the discrimination parameters from the multidimensional model.

By definition, the maximizer of g̃, denoted here as θmax, is the ability value for which the
item provides most information. It can be determined by solving ∂

∂θ
g̃(θ;ai , bi , ci) = 0 for θ . The

result is

θmax =

⎧
⎪⎨

⎪⎩

bi−log
( −1+√

1+8ci
4ci

)

‖ai‖ for ci > 0,

bi‖ai‖ for ci = 0.

(11)

In addition,

g̃(θmax;ai , bi, ci) =
{

16ci (1−ci )(−1+√
1+8ci )

(3+√
1+8ci )(4ci−1+√

1+8ci )
2 for ci > 0,

0.25 for ci = 0.
(12)

These results enable us to use the intuitions developed for the unidimensional 3PL model for
the current multidimensional generalization of it. First, from (11), it follows that θmax increases
with the guessing parameter of the item. Hence, when an item has a higher chance of guessing the
correct answer, it should be used for more able test takers. Second, the difficulty parameter serves
as a location parameter for the item in the direction perpendicular to θ · ai = 0. The parameter
is scaled by the Euclidean norm of the discrimination parameters of the item. Third, (12) shows
that the maximum value of g̃(θ;ai , bi, ci), and hence also of g(θ;ai , bi, ci), only depends on the
guessing parameter. Fourth, g(θmax;ai , bi , ci) decreases with increasing ci . This can be shown
by calculating the derivative of g̃(θmax;ai , bi, ci) with respect to ci , which is omitted here. Con-
sequently, the maximum values of the elements in the item information matrix depend only on
the discrimination parameters through the matrix aiaT

i . This conclusion reconfirms the critical
role of this matrix as the second factor of (9).

4. Item Selection Criteria for MAT

When testing multiple abilities, different cases of multidimensional testing should be distin-
guished (van der Linden, 2005, 1999, Section 8.1). This article focuses on three cases; the others
can be considered as minor variations of them:

1. All abilities in the ability space are intentional. The goal of the test is to obtain the most
accurate estimates for all abilities.

2. Some abilities are intentional and the others are nuisances. This case arises, for instance, when
a test of knowledge of physics has items that also require language skills, but the goal of this
test is not to estimate any language skill.

3. All abilities measured by the test are intentional, but the interest is only in a specific linear
combination of them. As already explained, this case occurs in practice when the test is mul-
tidimensional, but for historic reasons, the examinees’ performances are to be reported in the
form of single scores.
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Different optimal design criteria based on the item information matrix rank the same set of
items differently for test takers of equal ability. The choice of criterion for item selection in adap-
tive testing should therefore be in agreement with the goal of the MAT program. However, it is not
immediately clear which criterion is best for each of the above cases of MAT. For the first case,
both D-optimality and A-optimality seem reasonable choices. The former seeks to minimize the
generalized variance, the latter the sum of the variances of the ability estimators. But it is unclear
how they will behave in the two other cases of MAT. Both criteria will be analyzed in more de-
tail below. In addition, the usefulness of the less-known criterion of E-optimality, Ds -optimality,
and c-optimality will be investigated. In order to obtain expressions that are relatively easy to
interpret, the criteria are derived for a three-dimensional ability space. The conclusions for abil-
ity spaces of higher dimensionality are similar. Wherever possible, for notational simplicity, the

argument θ̂
k−1

in the information matrices in (8) is omitted.

4.1. All Abilities Intentional

The goal is to obtain accurate estimates of the separate abilities in θ . For this case, the
following three optimality criteria are likely candidates.

4.1.1. D-Optimality This criterion maximizes the determinant of (8). Hence, it selects the
kth item to be

arg max
ik∈Rk

det(ISk−1 + Iik ). (13)

Using the factorization in (9), the criterion can be expressed as

arg max
ik∈Rk

g
(
θ̂

k−1;aik , bik , cik

)(
a2
ik1 det(ISk−1[1,1]) + a2

ik2 det(ISk−1[2,2]) + a2
ik3 det(ISk−1[3,3])

− 2aik1aik2 det(ISk−1[1,2]) − 2aik2aik3 det(ISk−1[2,3]) − 2aik1aik3 det(ISk−1[1,3])
)
, (14)

where ISk−1[l1,l2] is the submatrix of ISk−1 when omitting row l1 and column l2.
In matrix algebra, ISk−1[l1,l2] is referred to as a cofactor and its determinant is known as the

minor. Observe that the square of the discrimination parameter corresponding to θ1 is multiplied
by det(ISk−1[1,1]), which can be interpreted as the current amount of information about the two
other abilities, θ2 and θ3. Similar relationships hold for aik2 and aik3. Consequently, the criterion
tends to select items with a large discrimination parameter for the ability with a relatively large
(asymptotic) variance for its current estimator. The criterion thus has a built-in “minimax mecha-
nism”: it tends to pick the items that minimize the variance of the estimator lagging behind most.
The same behavior has been observed for D-optimal item calibration designs (Berger & Wong,
2005, p. 15). As a result, the difference between the sampling variances of the estimators for the
two abilities tend to be negligible toward the end of the test. This is precisely what we may want
when both abilities are intended to be measured.

From (14), it can also be concluded that items with large discrimination parameters for more
than one ability are generally not informative. Consequently, the criterion of D-optimality tends
to prefer items that are sensitive to a single ability over items sensitive to multiple abilities.

Segall (1996, 2000) proposed using a Bayesian version of D-optimality for MAT that eval-
uates the determinant of the posterior covariance matrix at the posterior modes of the abilities
(instead of the determinant of the information matrix at the MLEs). Assuming a multivariate
normal posterior, he showed the result to be

arg max
ik∈Rk

det
(
ISk−1

(̃
θ

k−1) + Iik

(̃
θ

k−1) + �−1
0

)
, (15)
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where �0 is the prior covariance matrix of θ and θ̃
k−1

is the posterior mode after k − 1 items
have been administered.

4.1.2. A-Optimality This criterion seeks to minimize the sum of the (asymptotic) sampling
variances of the MLEs of the abilities, which is equivalent to selecting the item that minimizes
the trace of the inverse of the information matrix:

arg min
ik∈Rk

trace
(
(ISk−1 + Iik )

−1) = arg max
ik∈Rk

det(ISk−1 + Iik )∑3
l=1 det([ISk−1 + Iik ][l,l])

. (16)

A-optimality results in an item-selection criterion that contains the determinant of the infor-
mation matrix as an important factor. Its behavior should thus be largely similar to that of
D-optimality.

Analogous to Segall’s (1996, 2000) proposal, a Bayesian version of A-optimality could be
formulated by adding the inverse of a prior covariance matrix to (16) and evaluating the result
at a Bayesian point estimate of θ instead of the MLE. But this option is not pursued here any
further.

4.1.3. E-Optimality The criterion of E-optimality maximizes the smallest eigenvalue of
the information matrix, or equivalently, the generalized variance of the ability estimators along
their largest dimension. The criterion has gained some popularity in the literature on optimal
regression design; for an application to optimal temperature input in microbiological studies,
where the criterion has shown to work efficiently, see Bernaerts, Servaes, Kooyman, Versyck, &
Van Impe (2002). A disadvantage of the criterion might be its lack of robustness in applications
with sparse data. Due to its complexity, the expression of the smallest eigenvalue of the matrix
ISk−1 + Iik is omitted here.

In spite of the popularity of the criterion in other applications, it may behave unfavorably
when used for item selection in MAT. As shown in Appendix A, the contribution of an item with
equal discrimination parameters to the test information vanishes when the sampling variances of
the ability estimators have become equal to each other. This fact contradicts the fundamental rule
that the average sampling variance of an MLE should always decrease after a new observation.
Using E-optimality for item selection in MAT may therefore result in occasionally bad item
selection, and its use is not recommended. The simulation studies later in this paper confirm this
conclusion.

4.1.4. Graphical Example In order to get a first impression of the behavior of the three
optimality criteria, their surfaces for two 2-dimensional items are plotted. As indicated earlier, the
discrimination parameters play a crucial role. We therefore ignore possible differences between
the difficulty and guessing parameters and consider the following two items:

Item 1: a1 = (0.5,1), b1 = 0, and c1 = 0, (17)
Item 2: a2 = (0.8,0), b2 = 0, and c2 = 0. (18)

Item 1 is sensitive to both abilities but for Item 2 the second ability does not play any role in
answering the item correctly. The current information matrix is fixed at

ISk−1 =
[

3 2
2 3

]
(19)

for all ability values. This choice enable us to clearly see the difference between the surfaces.
The surfaces for the three criteria are shown in the left-hand panels of Figure 2, whereas the

right-hand panels display some of their contours as a function of the discrimination parameters
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FIGURE 2.
Surfaces of the criteria of D-, A-, and E-optimality for Item 1 and Item 2 (left-hand panels) and contours of the same
criteria as a function of the discrimination parameters (a1, a2) for a person with average ability θ = 0 (right-hand panels).
(Note: b = 0 and c = 0.)
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for abilities fixed at θ = 0. (Note that for A-optimality, we plotted the argument of the right-hand
side of (16), so that a higher surface is equivalent to a more informative item.) The shapes of the
surfaces seem to be entirely determined by the common factor g(θ;ai , bi, ci) of the elements of
the item information matrix. The differences between the three criteria are caused only by the dif-
ferent ways in which they map aiaT

i onto a one-dimensional space. Each criterion finds Item 2,
which tests a single ability, most informative. But the preference for this item is strongest for
E-optimality and weakest for D-optimality. This conclusion follows comparing an item with dis-
crimination parameters (a1,0) with one that has (a, a) but the same item information score, for
instance, a = (0.5,0) and a = (0.64,0.64) (D-optimality) and a = (0.5,0) and a = (1.36,1.36)

(A-optimality).
For the more extreme values of θ = (2,−2) and (2,2), the contours in Figure 3 show some

surprising shapes. For instance, if a2 = 0, an increase of a1 does not always result in an increase
of the criterion. Thus, for items that do not show any discrimination with respect to one of
the abilities, the occurrence of extreme values of the MLEs of θ1 and θ2 in the beginning of
an adaptive test is likely to result in inappropriate item selection for the criteria of D- and A-
optimality. Obviously, such items should not be admitted to the pool. Also, the independence of
the criterion of E-optimality of the discrimination parameters when they are equal (a1 = a2) is
demonstrated by its contours. As already indicated, this behavior of the criterion of E-optimality
does not meet our intuitive idea of information in an item.

4.2. Nuisance Abilities

When the first s abilities of the ability vector θ are intentional and the last p − s abilities
are nuisances, Ds -optimality (Silvey, 1980, p. 11) seems to reflect the goal of this case of MAT.
In this case, our interest goes to the vector AT θ with AT = [Is 0], where Is is a s × s identity
matrix. Ds -optimality selects the item

arg max
ik∈Rk

det
(
AT (ISk−1 + Iik )

−1A
)−1

. (20)

Instead of maximizing the determinant of (AT (ISk−1 + Iik )
−1A)−1, the trace of its inverse

could be minimized. The criterion would then be called As -optimality. Below we consider two
instances of this case for a three-dimensional ability vector θ .

4.2.1. θ1 and θ2 Intentional and θ3 a Nuisance Ability Let θ1 and θ2 be intentional abilities
and θ3 a nuisance ability. Hence,

AT =
[

1 0 0
0 1 0

]
.

The criterion in (20) can then be expressed as

arg max
ik∈Rk

(
det

([(
ISk−1 + Iik

)−1]
[3,3]

))−1
. (21)

Note that θ3 is not ignored in (21) because the criterion is based on the inverse of the information
matrix ISk−1 + Iik instead of the matrix itself. As a result of taking the determinant, items that
mainly test a single ability are generally most informative.

However, the criterion does not always select items that only discriminate highly with re-
spect to one of the intentional abilities. This point is elaborated in Appendix B, where we show
that when the amount of information about the intentional abilities is high relative to the amount
of information about all abilities, i.e., det((ISk−1)[3,3]) > det(ISk−1), the criterion reveals a ten-
dency to select items that discriminate highly with respect to the nuisance ability. Under these
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FIGURE 3.
Contours of the criteria of D-, A-, and E-optimality as a function of the discrimination parameters of the item for
θ = (−2,2) (left-hand panels) and θ = (2,2) (right-hand panels). (Note: b = 0 and c = 0.)
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conditions, the sampling variance of the estimator of the nuisance abilities is relatively large, and
the selection of such items results in the largest decrease of the generalized variance of the inten-
tional abilities. This type of behavior was also observed in a study with simulated data reported
later in this paper. Similarly, it can be shown that the behavior of the criterion of As -optimality
is similar to that of Ds -optimality.

4.2.2. θ1 Intentional and θ2 and θ3 Nuisance Abilities Because θ1 is the only intentional
ability, AT = [1 0 0]. Consequently, (20) selects the item that minimizes the sampling variance
of θ1, that is,

arg min
ik∈Rk

[
(ISk−1 + Iik )

−1]
(1,1)

, (22)

where [ · ](1,1) denotes element (1,1) of the matrix. In Appendix B, we show that this criterion
generally selects items that highly discriminate with respect to the intentional ability, θ1, except
when the amount of information about the nuisance abilities is relatively low, i.e., det((ISk−1)[1,1])
is small. In this case, (22) prefers selecting an item that highly discriminates with respect to the
nuisance abilities. Similar behavior was observed for the case of two intentional and one nuisance
ability.

Observe that the criterion of As -optimality selects the same items as (22).

4.3. Composite Ability

This case of MAT occurs when the items in the item pool measure multiple abilities but only
an estimate of a specific linear combination of the abilities,

θc = λ · θ =
p∑

l=1

λlθl, (23)

is required, with λ a vector of (nonnegative) weights for the importance of the separate abilities.
In order to maintain a standardized scale for θc, often

∑p

l=1 λl = 1 is used.
Because the response probability in (1) depends on the abilities only through the linear

combination ai · θ , an item is informative for a composite θc when ai = αiλ, for some large
constant αi > 0. This claim is immediately clear when comparing the multidimensional model
after substituting ai = αiλ in (1) with the unidimensional IRT model,

Pi(θ) ≡ ci + 1 − ci

1 + exp(−αiλ · θ + bi)

= ci + 1 − ci

1 + exp(−αiθc + bi)
,

where αi would the discrimination parameter of the unidimensional IRT model.
According to Silvey (1980, p. 11), c-optimality applies when we wish to obtain an accurate

estimate of a linear combination of unknown parameters. For the current application to MAT, the
criterion can be shown to be equal to

arg min
ik∈Rk

λT
(
ISk−1

(
θ̂

k−1) + Iik

(
θ̂

k−1))−1
λ = arg max

ik∈Rk

(
λT

(
ISk−1

(
θ̂

k−1) + Iik

(
θ̂

k−1))−1
λ
)−1

.

(24)

Indeed, this criterion prefers items with discrimination parameters that reflect the weights
of importance in the composite ability, i.e., ai ∝ λ. The preference is demonstrated for a two-
dimensional ability vector with equal weights λ1 = λ2 = 1 in Figure 4. (Note that we plotted
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FIGURE 4.
Surfaces of the criterion of c-optimality for Items 1 and 2 (left-hand panels) and contours of the criterion of c-optimality
for the same items for θ = 0 (right-hand panels). (Note: b = 0 and c = 0.)

the argument in the right-hand side of (24), so that a larger outcome can be interpreted as a
more informative item.) Item 1 is generally more informative because λ · a1 is larger than λ · a2.
Furthermore, unlike the criteria of D-, A-, and E-optimality, which yielded concave contours (see
Figure 2), the contours in Figure 4 are convex. Thus, for this criterion, an item that tests several
abilities simultaneously with ai ∝ λ is generally more informative than an item with a preference
for a single ability.

5. Simulation Study

In order to assess the influence of the item-selection criteria on the accuracy of the ability
estimates, we conducted a study with simulated data. Each of the three cases of MAT discussed in
the previous section were simulated to see whether the proposed selection criteria resulted in the
best results. Also, we were interested in seeing if the proposed selection rule for adaptive testing
with a nuisance ability would result in more accurate estimation of the intentional ability than
when all abilities are to be considered as intentional. Similar interest existed in the estimation of
a specific linear combination of the abilities using the criterion in (24).

The second goal of this study was to find out what combinations of discrimination parame-
ters for an item were generally most informative for each of the three cases of adaptive testing.
This was done by counting how often each item was administered for each selection criterion.
The information is helpful when designing an item pool for a given case of multidimensional
adaptive testing and item-selection criterion.

Finally, we were interested in seeing whether each of the optimality criterion resulted in
the best value of the specific quantity it optimizes, for instance, whether the determinant of the
covariance matrix (that is, the generalized variance) at the end of the test was actually smallest
for the criterion of D-optimality.

All simulations were done for the case of a two-dimensional vector θ . Analysis of the higher-
dimensional expressions for the optimality criteria in the previous sections shows that the dimen-
sionality of the ability space is reflected only in the order of the information matrices and not in
the structure of the expression. For instance, it is easy for the reader to verify that the argument
that revealed the peculiar behavior of the criterion of Ds -optimality in Appendix B for the case
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FIGURE 5.
Empirical frequencies of the discrimination parameters of the items selected for the different optimality criteria. (Note:
the size of the circles is proportional to the frequency of selection; × denotes items that were never selected.)

of a three-dimensional space with intentional and nuisance abilities, which forced us reject this
criterion, holds equally well for a two-dimensional space with one intentional and one nuisance
ability. We therefore assume the behavior of the item-selection criteria to be similar for multidi-
mensional adaptive testing with any number of dimensions.

5.1. Design of the Study

The behavior of these criteria is further illustrated by the empirical frequencies of item selec-
tion plotted against the item discrimination parameters of the items in Figure 5. In these graphs,
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TABLE 1.
First five items administered for the simulated adaptive tests.

Item 1 Item 2 Item 3 Item 4 Item 5

ai1 2 2 0 0 2
ai2 0 0 2 2 2
bi 5 −5 5 −5 0
ci 0 0 0 0 0

each symbol represents an item with its discrimination parameters as coordinates. The size of the
circle is proportional to the number of times the item was selected for administration. Items that
where never selected are symbolized as “×.” The preference of items with a high discrimination
parameter for a single ability is stronger for A- than for D-optimality. The difference might ex-
plain why the former slightly outperformed the latter in terms of accuracy of ability estimation
in this case. The frequencies of the difficulty and guessing parameters are omitted because they
were as expected for A-optimality and D-optimality: For both criteria, the distributions of the
difficulty parameters were close to uniform. Also, smaller guessing parameters were selected
much more frequently than larger parameters. We also prepared the same plots as in Figure 5 for
the conditional distributions of the frequencies of item selection given the abilities in this study.
But since they were generally similar to the marginal distributions, they are omitted here.

The item pool consisted of 200 items that were generated according to a1 ∼ N(1,0.3),
a2 ∼ N(1,0.3), b ∼ N(0,3), and 10c ∼ Bin(3,0.5). None of the items had negative discrimina-
tion parameters. The MLEs of the abilities were calculated using a Newton–Raphson algorithm.
To ensure the existence of the MLEs, each adaptive test began with the five fixed items displayed
in Table 1. When a MLE was obtained, 30 items were selected adaptively from the pool using the
item-selection rules described in this article. For each combination of θ1 = −1, 0, 1 and θ2 = −1,
0, 1, a total of 100 adaptive test administrations were simulated. Hence, a total of 900 tests were
administered for each selection rule. The final MLEs of the abilities of interest were compared
with the test takers’ true abilities by calculating their average bias

Bias
(
θ̂l

) = 1

100

100∑

j=1

(
θ̂j,l − θl

)

and mean squared error (MSE)

MSE
(
θ̂l

) = 1

100

100∑

j=1

(
θ̂j,l − θl

)2
,

where θ̂j,l is the final estimate of ability l = 1,2 of the j th simulated test taker and θl is this test
taker’s true value for ability l.

In order to have a baseline for our comparisons, we also simulated test administrations in
which the adaptive selection of the 30 items was replaced by random selection from the pool.
Table 2 shows the estimated bias and Table 3 shows the MSE for these administrations (columns
labeled “R”). The MSEs reveal close to uniform precision for the estimation of θ1 and θ2 across
their range of values, with (−1,−1) as an exception. This finding indicates that the range of
difficulty of the items in the pool was wide enough to cover the abilities in this study. As a
consequence of the specific combinations of the randomly generated item parameters, apparently
the items in the pool tended to be more effective for estimating θ2 than θ1.
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TABLE 2.
Bias of the estimates of θ1 and θ2 for different item selection rules: Random selection (Column R), D-optimality (Col-
umn D), A-optimality (Column A), E-optimality (Column E), and Ds -optimality (Column Ds ) with θ1 intentional and θ2
a nuisance ability.

θ1 θ2 Bias(θ̂1) Bias(θ̂2)

R D A E Ds R D A E Ds

1 1 0.108 −0.101 −0.005 0.169 −0.009 −0.074 0.056 0.016 0.148 0.025
1 0 −0.158 −0.048 −0.097 −0.052 −0.021 0.270 0.097 0.185 0.550 0.070
1 −1 −0.181 −0.199 −0.123 −0.755 −0.082 0.272 0.137 0.113 0.467 0.145
0 1 0.095 0.040 0.244 0.898 0.117 0.004 −0.045 −0.174 −0.180 −0.158
0 0 −0.153 0.054 0.108 −0.048 0.005 0.277 −0.050 −0.099 0.073 0.090
0 −1 −0.168 −0.012 −0.028 −0.919 −0.061 0.226 0.033 0.072 0.327 0.063

−1 1 0.416 0.138 0.189 0.989 0.006 −0.451 −0.202 −0.182 −0.484 −0.003
−1 0 0.264 0.073 −0.002 −0.007 0.102 −0.256 −0.030 −0.002 −0.190 −0.083
−1 −1 −0.138 0.180 0.052 −0.236 0.005 0.168 −0.113 0.018 0.010 0.130

Average 0.009 0.014 0.038 0.003 0.007 0.048 −0.013 −0.006 0.080 0.031

TABLE 3.
MSE of the estimates of θ1 and θ2 for different item selection rules: Random selection (Column R), D-optimality (Col-
umn D), A-optimality (Column A), E-optimality (Column E), and Ds -optimality (Column Ds ) with θ1 intentional and
θ2 a nuisance ability.

θ1 θ2 MSE(θ̂1) MSE(θ̂2)

R D A E Ds R D A E Ds

1 1 0.686 0.407 0.481 0.248 0.360 0.694 0.399 0.464 0.414 0.472
1 0 0.800 0.417 0.482 0.797 0.425 0.863 0.516 0.456 1.305 0.584
1 −1 0.926 0.509 0.399 2.337 0.348 0.972 0.482 0.351 1.263 0.429
0 1 0.909 0.380 0.503 1.549 0.451 0.819 0.417 0.462 0.777 0.557
0 0 1.107 0.502 0.504 1.625 0.419 0.969 0.454 0.543 0.924 0.617
0 −1 1.128 0.409 0.416 1.640 0.282 1.045 0.388 0.391 0.941 0.501

−1 1 1.006 0.447 0.417 2.582 0.350 0.997 0.535 0.395 1.063 0.526
−1 0 0.941 0.429 0.427 0.589 0.451 0.764 0.484 0.474 0.820 0.537
−1 −1 0.710 0.392 0.326 0.092 0.361 0.686 0.412 0.330 0.517 0.507

Average 0.911 0.432 0.439 1.273 0.383 0.868 0.454 0.429 0.892 0.525

5.2. θ1 and θ2 Intentional

Our analysis of the behavior of the selection criteria for this case of MAT suggested using
either D- or A-optimality. For completeness, we also included the less favorable E-optimality
criterion in the study. The results for these criteria are given in Tables 2 and 3 (columns la-
beled “D,” “A,” “E”). As Table 3 shows, the criteria of D- and A-optimality resulted in sub-
stantial improvement of ability estimation over random selection. Furthermore, using the crite-
rion of A-optimality resulted on average in slightly more accurate ability estimation than that
of D-optimality. As expected, the criterion of E-optimality performed badly (even worse than
the baseline). In fact, this finding definitively disqualifies E-optimality as a criterion for item
selection in adaptive testing.

The poor results for E-optimality as an item-selection criterion are explained by the inap-
propriate behavior of the criterion described in Appendix B. For examinees of extreme ability,
the criterion tended to select items of opposite difficulty; hence, its low efficiency.
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5.3. θ1 Intentional and θ2 a Nuisance

For this case, the criterion of Ds -optimality selects items minimizing the asymptotic variance
of the intentional ability θ1. Tables 2 and 3 (columns labeled “Ds”) display the results from our
study. The MSE for the estimator of θ1 was much more favorable than for the criteria of A- and
D-optimality in the preceding section (θ1 and θ2 both intentional). As expected, these results
were obtained at a much larger MSE for the estimator of θ2. This finding points at the fact that
the presence of a second intentional ability introduces a trade-off between their two estimators,
and consequently to less favorable behavior for either of them.

The preferences of the current criterion for the pairs of discrimination parameters for the
items was as expected (see Figure 5). The majority of the items selected mainly tested the inten-
tional ability; only few had a preference for the nuisance ability. Generally, the preferences for
the difficulty and guessing parameters by this criterion appeared to be very similar to those for
the earlier criteria of D-optimality and A-optimality.

5.4. Composite Ability

Two different composite ability combinations were addressed. For the first composite ability,
the criterion of c-optimality with weights ( 1

2 , 1
2 ) was used as selection rule, i.e., θc = 1

2θ1 + 1
2θ2.

The bias and MSE of the estimator of this composite ability are given in Table 4. For comparison,
we also calculated the bias and MSE of a plug-in estimator with substitution of the MLEs of θ1

and θ2 from the earlier simulations with D- and A-optimality into the linear composite, the reason
being a similar interpretation of these criteria in terms of weights of importance of θ1 and θ2. On
average, c-optimality with weights ( 1

2 , 1
2 ) yielded the highest accuracy for the estimates of θc.

Of course, all results for the estimators of the composite were obtained at the price of a larger
MSE for the estimators of the separate abilities. (The latter are not shown here; their averages
were 0.649 and 0.616 for the estimators of θ1 and θ2, respectively.)

Second, a composite ability with unequal weights was considered: θc = 3
4θ1 + 1

4θ2. In this
composite, the first ability is considered to be more importance than the second. Again, the
items were selected using c-optimality with weights ( 3

4 , 1
4 ) as criterion. The bias and MSE of the

estimator are given in Table 5, which also shows the results for the plug-in estimator with the
MLEs of θ1 and θ2 from the earlier simulations with Ds - and c-optimality with weights ( 1

2 , 1
2 ).

Note that Ds -optimality is equivalent to c-optimality with weights (1,0). Table 5 shows that

TABLE 4.
Bias and MSE of the estimate of θc = 1

2 θ1 + 1
2 θ2 for adaptive testing with D-, A-, and

c-optimality with weights ( 1
2 , 1

2 ) as item selection criterion.

θ1 θ2 Bias(θ̂c) MSE(θ̂c)

D A c( 1
2 , 1

2 ) D A c( 1
2 , 1

2 )

1 1 −0.022 0.006 0.024 0.034 0.037 0.038
1 0 0.025 0.044 0.024 0.030 0.057 0.032
1 −1 −0.031 −0.005 0.002 0.037 0.046 0.029
0 1 −0.002 0.035 −0.009 0.034 0.051 0.029
0 0 0.002 0.005 −0.014 0.034 0.062 0.029
0 −1 0.010 0.022 0.009 0.043 0.059 0.043

−1 1 −0.032 0.004 0.008 0.030 0.037 0.026
−1 0 0.022 −0.002 0.025 0.038 0.039 0.028
−1 −1 0.034 0.035 −0.023 0.042 0.046 0.043

Average 0.001 0.016 0.005 0.036 0.048 0.033
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c-optimality with the weights ( 3
4 , 1

4 ) resulted in the smallest average MSE for this composite
ability.

Figure 5 also displays the empirical frequencies of the discrimination parameters selected in
these simulations with the composite abilities. (The distributions for the difficulty and guessing
parameters are omitted because they were similar to those for the previous cases.) The criterion
of c-optimality with the weights ( 1

2 , 1
2 ) had strong preference for items with a large value for

a1 + a2. This finding reflects the fact that we tested the simple sum θ1 + θ2. Consequently, when
the item was sensitive to θ1 or θ2 only, it tended to be ignored by the criterion. For the case
of c-optimality with the weights ( 3

4 , 1
4 ), the distribution of the discrimination parameters was

similar to that for Ds -optimality. This result makes sense because the weights were now closer
to the case of (1,0) implied by the use of Ds -optimality. It also explains the small difference
between the MSEs for Ds -optimality and c-optimality with the weights ( 3

4 , 1
4 ) in Table 5.

5.5. Average Values of Optimality Criteria

Table 6 shows the average determinant, trace, largest eigenvalue, first diagonal element, the
weighted sum with λ1 = ( 1

2 , 1
2 )T , and the weighted sum with λ2 = ( 3

4 , 1
4 )T of the final covariance

matrix I−1
Sn

(θ̂) at the end of the simulated adaptive tests for each of the selection criteria. Except
for E-optimality, each of the criteria produced the smallest average value for the specific quan-

TABLE 5.
Bias and MSE of the estimate of θc = 3

4 θ1 + 1
4 θ2 for adaptive testing with Ds -optimality,

c-optimality with weights ( 3
4 , 1

4 ), and c-optimality with weights ( 1
2 , 1

2 ) as item selection
criterion. Note that Ds -optimality is equivalent with c-optimality with weights (1,0).

θ1 θ2 Bias(θ̂c) MSE(θ̂c)

Ds c( 3
4 , 1

4 ) c( 1
2 , 1

2 ) Ds c( 3
4 , 1

4 ) c( 1
2 , 1

2 )

1 1 −0.001 −0.026 0.024 0.122 0.125 0.164
1 0 0.002 −0.058 0.024 0.125 0.133 0.207
1 −1 −0.025 −0.090 0.002 0.110 0.136 0.211
0 1 0.048 0.029 −0.009 0.127 0.114 0.207
0 0 0.026 −0.019 −0.014 0.126 0.142 0.193
0 −1 −0.030 0.000 0.009 0.081 0.104 0.171

−1 1 0.004 0.088 0.008 0.105 0.091 0.198
−1 0 0.056 0.052 0.025 0.147 0.103 0.210
−1 −1 0.037 −0.001 −0.023 0.118 0.108 0.161

Average 0.013 −0.003 0.005 0.118 0.117 0.191

TABLE 6.
Average value of the quantities optimized by each of the selection criteria at the end of the adaptive tests.

D-opt A-opt E-opt Ds -opt c(λ1)-opt c(λ2)-opt

det(I−1) 0.069* 0.081 2.46 0.089 0.110 0.112
trace(I−1) 1.007 0.944* 4.32 1.007 1.779 1.249
max{eigenvalues(I−1)} 0.933 0.849* 3.673 0.909 1.713 1.153
(I−1)(1,1) 0.499 0.469 2.76 0.439* 0.891 0.470
λT

1 I−1λ1 0.037 0.048 0.437 0.052 0.033* 0.060
λT

2 I−1λ2 0.152 0.152 1.168 0.133 0.248 0.124*

*Smallest element in a row; λ1 = ( 1
2 , 1

2 )T ; λ2 = ( 3
4 , 1

4 )T .
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tity optimized by it. For instance, the criterion of D-optimality resulted in the smallest average
determinant of the final covariance matrix (= smallest generalized variance) among all criteria.

6. Conclusions

Both our theoretical analyses and the results from the study with simulated data allow us to
draw the following conclusions:

1. When all abilities are intentional, the criterion of A-optimality tends to result in the most ac-
curate MLEs for the separate abilities. But the results for D-optimality were close. The most
informative items measure mainly one ability, i.e., have one large discrimination parame-
ter and small parameters for the other abilities. Furthermore, both criteria tend to “minimax”:
when the estimator of one of the abilities has a small sampling variance, they develop a prefer-
ence for items that are highly informative about the other abilities. Consequently, the accuracy
of the final estimates of a sufficiently long tests are approximately equal.

2. When one of the abilities is of interest and the others should be considered as a nuisance,
item selection based on Ds -optimality (or As -optimality) seems to result in the most accurate
estimates for the intentional ability. The accuracy of the estimator of the intentional ability
tends to be higher than when all abilities are considered as intentional. The advantage is
obtained at the price of less accurate estimation of the nuisance ability. (But, of course, this
is something we should be willing to pay.) Again, items that measure only the intentional
ability are generally most informative. But when the current inaccuracy of the estimator of a
nuisance ability becomes too large relative to that of the intentional abilities, the dependency
of the latter on the former becomes manifest and an occasional preference for an item mainly
sensitive to the nuisance ability emerges.

3. When the goal is to estimate a linear combination of the abilities, c-optimality with weights
λ proportional to the coefficients in the composite ability results in the most accurate MLE of
the combination. The criterion has a preference for items when the proportion of the discrim-
ination parameters reflects the weights in the combination.

All conclusions were based on analyses of criteria for a three-dimensional abilities. As al-
ready indicated, generalization to higher dimensionality does not involve any new obstacle. How-
ever, it should be observed that these conclusions only hold for an item pool that allows free
selection from all possible combinations of item parameters (as in our simulation study). For
instance, when a two-dimensional item pool would consists only of items with a small discrimi-
nation parameter for θ1 and a large parameter for θ2, but only the former is intentional, the MSE
of its estimator might be larger than that of the nuisance ability, even when our suggestions for
the choice of criterion are followed.

In fact, even when the item pool has no constraints, we often are forced to impose con-
straints on the item selection that may have the same effect. One obvious example is when we
need to constrain the item selection to guarantee that the content specifications for the test are
satisfied (van der Linden, 2005, Chap. 9) and the content attributes of the items correlate with
their statistical parameters. Another example is when item selection is constrained to deal with
potential overexposure of some of the items in the pool, for instance, when using the Sympson–
Hetter (1985) exposure control method or the selection is constrained more directly using item-
ineligibility constraints (van der Linden & Veldkamp, 2007). Because the item-exposure rates are
typically correlated with the discrimination parameters of the items, exposure control is expected
to have an even stronger impact on our conclusions.

As a next step, it would be interesting to investigate item selection more closely when using
other information measures than Fisher’s. The most likely candidate is Kullback–Leibler infor-
mation (Chang & Ying, 1996; Veldkamp & van der Linden, 2002). For example, it would be
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interesting to see if an application of the criterion of A-optimality would then also prefer items
that mainly test a single ability and c-optimality would prefer items with large sums of discrim-
ination parameters. A confirmation of the findings in this article for other information measures
would made them more robust. However, we do not expect the criterion of E-optimality criterion
to show improved behavior for other measures. Both theoretically and empirically, we found its
behavior to be too erratic to warrant application in real-world adaptive testing.

Appendix A: E-optimality

The anomaly is illustrated for a test information matrix that after k − 1 items has become
equal to

ISk−1 =
⎡

⎣
d 0 0
0 d 0
0 0 d

⎤

⎦ .

This matrix occurs when each of the k−1 items tested a single ability and the sampling variances
of their estimators have become equal.

Now, consider a candidate item with equal discrimination parameters for each ability, that
is,

Iik = g
(
θ̂

k−1;a, b, c
)
⎡

⎣
a2 a2 a2

a2 a2 a2

a2 a2 a2

⎤

⎦ .

The eigenvalues of ISk−1 + Iik are then equal to

λ = (
d + 3g

(
θ̂

k−1;a, b, c
)
a2, d, d

) ⇒ min
l=1,2,3

{λl} = d.

So, the selection of the new item would not lead to any change of the current information
matrix ISk−1 (that is, ISk−1 = ISk−1 + Iik ). According to the criterion of E-optimality, the response
to the candidate item contains no information about the ability parameters, which contradicts with
the fundamental idea that the average (asymptotic) sampling variance of MLEs strictly decreases
with the size of the sample.

Appendix B: Nuisance Ability

We explore the behavior of the criterion in (20) for the case of both θ1 and θ2 intentional and
θ3 a nuisance ability as well as that of θ1 intentional and the other two a nuisance ability. The
versions of the criterion for these two cases are denoted by D

(12)
s and D

(1)
s , respectively.

B.1 θ1 and θ2 Intentional and θ3 a Nuisance Ability

Candidate item ik is selected to maximize

D(12)
s (aik , bik , cik ) = (

det
([

(ISk−1 + Iik )
−1]

[3,3]
))−1

. (B.1)

The behavior of D
(12)
s is compared for three types, namely, items with a1 = (a,0,0), a2 =

(0, a,0), and a3 = (0,0, a) for an arbitrary value of a. The first two types of items discrimi-
nate only with respect to one of the two intentional abilities while the third item discriminates
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only with respect to the nuisance ability. (The earlier derivation of the criterion of D-optimality
showed that items discriminating highly with respect to one ability are generally more informa-
tive than items discriminating with respect to multiple abilities. Hence, this choice.) Furthermore,
it is assumed that the difficulty and guessing parameters of the three items are fixed and that
θ̂ = 0. Therefore, g(θ ,a, b, c) is fixed for all a and, without loss of generality, its value can be
set equal to one.

The test information matrix for the choice of an item with a1 = (a,0,0) as candidate item is

ISk−1 + I1 =
⎡

⎣
C11 + a2 C12 C13

C12 C22 C23
C13 C23 C33

⎤

⎦ ,

where Cl1l2 denotes element (l1, l2) of ISk−1 . Note that the test information matrices for the
second and third types of items are similar to this matrix, except that a2 should be added to the
second and third instead of the first diagonal element.

For these three cases, D
(12)
s can be written as

D(12)
s (a1, b, c) = a2 det((ISk−1)[1,1]) + det(ISk−1)

C33
,

D(12)
s (a2, b, c) = a2 det((ISk−1)[2,2]) + det(ISk−1)

C33
,

D(12)
s (a3, b, c) = a2 det((ISk−1)[3,3]) + det(ISk−1)

C33 + a2
,

respectively, where ISk−1[l,l] is the cofactor, that is, the submatrix obtained when omitting the lth
row and lth column.

Observe that the criterion shows a linear increase with a2 for the first two types of items
while for the third type it increases asymptotically: det((ISk−1)[3,3]) as a2 → ∞. Hence, for a

sufficiently large, D
(12)
s always selects the item that discriminates with respect to one of the two

intentional abilities. However, the third type of item is most informative, that is,

max
a

D(12)
s (a, b, c) = D(12)

s (a3, b, c)

when

C33
(
det

(
(ISk−1)[3,3]

) − det
(
(ISk−1)[1,1]

))
> det(ISk−1) with 0 < a < a′ and

C33
(
det

(
(ISk−1)[3,3]

) − det
(
(ISk−1)[2,2]

))
> det(ISk−1) with 0 < a < a′′,

(B.2)

where

a′ =
√

C33 det((ISk−1)[3,3]) − det(ISk−1) − C33 det((ISk−1)[1,1])
det((ISk−1)[1,1])

,

a′′ =
√

C33 det((ISk−1)[3,3]) − det(ISk−1) − C33 det((ISk−1)[2,2])
det((ISk−1)[2,2])

.

From the conditions on ISk−1 in (B.1), it can be concluded that the third type of item is most
informative when the current information about the intentional abilities is large relatively to the
current information about all abilities, i.e., det((ISk−1)[3,3]) > det(ISk−1). The result is explained
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by the fact that although θ3 is a nuisance ability, it does have an impact on the probability of
answering the items correctly. Upon the selection of items that only test the intentional abilities,
the sampling variance of the estimator of the nuisance ability will becomes large relative to
those of the intentional abilities. At this point, an item that mainly tests the nuisance ability may
produce a larger decrease of the variance of the intentional ability estimators than items that test
these intentional abilities only.

A.1. θ1 Intentional and θ2 and θ3 Nuisance Abilities

In this case, candidate item ik is selected to maximize

D(1)
s (aik , bik , cik ) = ([

(ISk−1 + Iik )
−1]

(1,1)

)−1
, (B.3)

which is the inverse of the sampling variance of the estimator of the intentional ability. We make
the same assumptions as in the preceding case and are therefore able to set function g equal to
one. For items with a1 = (a,0,0), a2 = (0, a,0), and a3 = (0,0, a), D

(1)
s can be written as

D(1)
s (a1, b, c) = a2 det((ISk−1)[1,1]) + det(ISk−1)

det((ISk−1)[1,1])
,

D(1)
s (a2, b, c) = a2 det((ISk−1)[2,2]) + det(ISk−1)

det((ISk−1)[1,1]) + a2C33
,

D(1)
s (a3, b, c) = a2 det((ISk−1)[3,3]) + det(ISk−1)

det((ISk−1)[1,1]) + a2C22
,

respectively. The most informative item is

max
a

D(1)
s (a, b, c)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(1)
s (a2, b, c) if C−1

33 det((ISk−1)[1,1])(det((ISk−1)[2,2]) − det((ISk−1)[1,1])) > det(ISk−1)

with 0 < a < a′,

D
(1)
s (a3, b, c) if C−1

22 det((ISk−1)[1,1])(det((ISk−1)[3,3]) − det((ISk−1)[1,1])) > det(ISk−1)

with 0 < a < a′′,

D
(1)
s (a1, b, c) otherwise

where

a′ =
√

det((ISk−1)[1,1])det((ISk−1)[2,2]) − (det((ISk−1)[1,1]))2 − C33 det(ISk−1)

det((ISk−1)[1,1])C33
,

a′′ =
√

det((ISk−1)[1,1])det((ISk−1)[3,3]) − (det((ISk−1)[1,1]))2 − C22 det(ISk−1)

det((ISk−1)[1,1])C22
.

The interpretation of this result is similar to the preceding case with two intentional abilities:
when the sampling variance of the one of the estimator of one of the nuisance abilities becomes
too large, it becomes beneficial to select an item that decreases it.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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