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Abstract
As avionics systems become increasingly complex, traditional fault prediction methods are no longer sufficient to
meet modern demands. This paper introduces four advanced fault prediction methods for avionics components, util-
ising a multi-step prediction strategy combined with a stacking regressor. By selecting various standard regression
models as base regressors, these base regressors are first trained on the original data, and their predictions are subse-
quently used as input features for training a meta-regressor. Additionally, the Tree-structured Parzen Estimator (TPE)
algorithm is employed for hyperparameter optimisation. The experimental results demonstrate that the proposed
stacking regression methods exhibit superior accuracy in fault prediction compared to traditional single-model
approaches.

Nomenclature
EI expected improvement
ESN echo state networks
FI fault indicator
GenAI generative artificial intelligence
GRU gate recurrent unit
IMU inertial measurement unit
MAE mean absolute error
MAPE mean absolute percentage error
MDBN multi-deep belief networks
PHM Prognostics and Health Management
TPE Tree-structured Parzen Estimator
RMSE root mean square error
RUL remaining useful life
SINS strapdown inertial navigation system
SVM support vector machines
SVR support vector regression

Symbols
b bias term
C regularization parameter
w weight vector
λ regularization parameter
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1.0 Introduction
Electronic equipment is a crucial component of aviation systems, with its performance directly
impacting the operational state of such equipment [1]. As modern electronic technology continues to
advance, the internal complexity of electronic devices has increased, necessitating enhanced main-
tenance and support. Prognostics and Health Management (PHM) technology has been thoroughly
researched and widely applied in both military and civilian sectors, particularly in supporting aviation
equipment [2].

PHM technology utilises various sensors to collect data and employs intelligent algorithms to diag-
nose and predict the health status of systems or components, thereby facilitating informed maintenance
and health management decisions. This ensures the stable and reliable operation of the systems or com-
ponents involved [3]. Fault prediction, a key component of PHM, primarily focuses on predicting the
potential failure times of systems or components [4]. Fault prediction techniques are broadly categorised
into two types: model-based and data-driven. Equipment failure is fundamentally influenced by various
physical stressors. Model-based approaches, which utilise physical models to describe these phenomena,
can provide more explainable and potentially more reliable predictions. These models can capture the
underlying physical processes leading to failure, offering insights that purely data-driven methods might
miss. Despite these advantages, model-based approaches also have limitations. They require detailed
knowledge of the system’s physical properties and failure mechanisms, which can be difficult to obtain
for complex systems. Additionally, these models may not generalise well to different operating condi-
tions or new types of failures. In contrast, data-driven methods, such as the stacking regression approach
proposed in this paper, can leverage large amounts of historical data to identify patterns and make pre-
dictions without needing detailed physical models. This makes them more flexible and easier to apply
to a wide range of systems and conditions. Model-based methods depend on the physical failure models
specific to each object, which follow distinct failure evolution laws. In contrast, data-driven fault pre-
diction methods rely solely on historical data analysis and the use of advanced intelligent algorithms
to develop prediction models, without the need for prior system knowledge [5]. While model-based
methods require extensive physical domain expertise and often suffer from limited generalisation capa-
bilities, their effectiveness diminishes with increasing system complexity. On the other hand, data-driven
methods, bolstered by advancements in state detection technology and an abundance of test data, have
demonstrated strong adaptability and are gaining prominence among researchers in the field of fault
prediction [6].

The primary focus of fault prediction research is often on time series data, which involves analysing
historical sequences to forecast future trends. The ability to effectively recall, extract and utilise histor-
ical data is crucial for the success of time series prediction. Machine learning methods, known for their
speed and independence from prior knowledge, have been extensively applied in avionics fault predic-
tion. Liang [7] introduced a fault prediction approach for avionics products using a fusion of multi-deep
belief networks (MDBN), which addresses prediction biases caused by distribution differences between
target and historical data through transfer training of multiple MDBN models, thereby enhancing pre-
diction accuracy. Experimental results validated the effectiveness of this method. Zhang [8] developed a
fault prediction method for the instrument landing system using the Gate Recurrent Unit (GRU), focusing
on the course beacon and employing monitoring parameters as fault indicators to calculate future fault
probabilities based on the membership function of these parameters. Mitici [9] applied various regres-
sion prediction methods to estimate the health status and remaining life of batteries in electric vertical
takeoff and landing aircraft, with experimental results supporting the feasibility of these methods. Gao
[10] proposed a long-term fault prediction method for avionics using echo state networks (ESN), and
tested its performance on various avionics datasets. While existing data-driven fault prediction methods
for avionics primarily rely on single models, stacking regression – an ensemble learning technique –
effectively combines multiple base regression models through a meta-regressor, often yielding superior
predictive performance compared to single models [11]. This approach has been successfully applied
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in various fields such as stock [12], weather [13] and photovoltaic power [14] prediction, yet its use in
avionics fault prediction remains limited.

To address the limitations of traditional single models and enhance prediction accuracy in avionics
fault prediction, this paper introduces four multi-step prediction methods based on stacking regression.
Each method employs one of four typical regression techniques – support vector regression (SVR), ridge
regression, lasso regression, and elastic_net regression – as the meta-regressor, with the remaining three
serving as base regressors. Initially, multiple base regression models independently predict data, which
are then fed into the meta-regressor in the second layer. This process synthesises the predictive strengths
of each base model. Hyperparameters are optimised using the TPE algorithm to further enhance pre-
diction accuracy and model generalisation. The effectiveness and advancement of these methods were
validated through experiments conducted on simulated circuit components and inertial measurement
unit components.

It is worth noting that while generative artificial intelligence (GenAI) has gained attention for its
ability to generate new data points and simulate complex data distributions, the fault prediction method
proposed in this paper is based on stacking regression, a form of ensemble learning. Unlike GenAI,
which focuses on data generation, stacking regression aims to improve predictive accuracy by combin-
ing multiple regression models. This distinction is important as it highlights the specific approach and
advantages of using stacking regression for fault prediction in avionics components.

2.0 Typical regression prediction models
2.1 Support vector regression
SVR [15] is a significant subset of support vector machines (SVM). The fundamental concept of the
SVR algorithm involves identifying a regression plane that minimises the distance to all data points in
the dataset.

For linear kernel SVR, the model is represented as follows:

f (x) = wTx + b (1)

where w is the weight vector, x is the input feature vector, and b is the bias term.
The objective of SVR is to identify a function f (x) such that the discrepancy between the actual target

values y of most data points x and the predicted values f (x) remains within a predetermined threshold
ε, while simultaneously minimising the model’s complexity. This goal is accomplished by solving the
following optimisation problem:

min
w,b

{
1

2
‖ω‖2 + C

m∑
i=1

(ξi + ξ ∗
i )

}
(2)

C is the regularisation parameter, which balances the trade-off between the error term and model
complexity.

The minimisation function is subject to the following constraints:⎧⎪⎨
⎪⎩

yi − (wTxi + b) ≤ ε + ξi,

(wTxi + b) − yi ≤ ε + ξ ∗
i ,

ξi, ξ ∗
i ≥ 0

(3)

In the equation, ξi and ξ ∗
i represent slack variables. The SVR regression function is derived by solving

the optimisation problem:

f (x) =
m∑

i=1

(αi − α∗
i )xT

i x + b (4)

In the equation, αi and α∗
i act as Lagrange multipliers.
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2.2 Ridge regression
Ridge regression [16] is a linear regression technique designed to address multicollinearity in data
by incorporating an L2 regularisation term. This addition enhances both the stability and predic-
tive capability of the model. The objective of ridge regression is to minimise the following cost
function:

J(θ ) = 1

2m

m∑
i=1

(
hθ

(
x(i)
)− y(i)

)2 + λ

n∑
j=1

θ 2
j (5)

In this equation, hθ (x) represents the predicted value of the model. For a linear model, hθ (x) = θ Tx,
where x(i) is the feature vector of the i-th observation, and y(i) is the corresponding target variable. The
term θ denotes the model parameters, which include both the intercept and slope. λ is the regularisation
parameter that controls the strength of the regularisation. The number of samples is represented by m,
and n denotes the number of features. The first term of the equation is the mean squared error, while the
second term, the regularisation term, is the L2 norm.

2.3 Lasso regression
Lasso regression [17] is a variant of linear regression that combats overfitting and facilitates automatic
feature selection by incorporating an L1 regularisation term.

The cost function for lasso regression is as follows:

J(θ ) = 1

2m

m∑
i=1

(
hθ

(
x(i)
)− y(i)

)2 + λ

n∑
j=1

∣∣θj

∣∣ (6)

In this equation, hθ (x) represents the predicted value of the model. For a linear model, hθ (x) = θ Tx,
where x(i) is the feature vector of the i-th observation, and y(i) is the corresponding target variable. The
term θ denotes the model parameters, which include both the intercept and slope. λ is the regularisation
parameter that controls the strength of the regularisation. The number of samples is represented by m,
and n denotes the number of features. The first term of the equation is the mean squared error, while the
second term, the regularisation term, is the L1 norm.

2.4 Elastic_net regression
Elastic_net regression [18] is a linear regression model that merges the features of lasso regression and
ridge regression by simultaneously incorporating both L1 and L2 regularisation terms for parameter
estimation.

The cost function for elastic_net regression is as follows:

J(θ ) = 1

2m

m∑
i=1

(
hθ

(
x(i)
)− y(i)

)2 + λ

(
α

n∑
j=1

∣∣θj

∣∣+ 1 − α

2

n∑
j=1

θ 2
j

)
(7)

In this equation, hθ (x) represents the predicted value of the model. for a linear model, hθ (x) = θ Tx,
where x(i) denotes the feature vectors of the i-th observation, and y(i) is the corresponding target variable.
The term θ signifies the model parameters, including both the intercept and slope. λ is the regularisation
parameter that controls the overall strength of regularisation. α is a parameter ranging between 0 and 1,
used to balance the contributions of L1 and L2 regularisation. m represents the number of samples and
n is the number of features. The first term of the equation is half of the mean squared error, while the
second term, the regularisation term, encompasses both the L1 norm, which encourages sparsity, and
the L2 norm, which ensures smoothness of the parameter values.
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3.0 Stacking regression prediction models
3.1 Multi-step stacking prediction
Ensemble learning is a sophisticated machine learning technique that has garnered considerable atten-
tion and achieved notable success in both academic and industrial settings. This method involves training
multiple individual models and combining their outputs. Stacking ensemble, a key approach within
ensemble learning, primarily focuses on integrating the predictions from multiple base models by
constructing a meta-learner.

Stacking regression employs a two-layer structure where the first layer consists of multiple base
regressors that directly learn from the original training set. The second layer, or the meta-regressor, uses
the predictions from these base regressors as input features for training. This approach allows the meta-
regressor to amalgamate the predictive strengths of each base regressor, enhancing overall effectiveness
through several key aspects:

1. Model diversity: Stacking regression utilises a variety of base regression models, each differing
in their response to various data distributions and problem types. By integrating these diverse
models, stacking regression leverages the unique strengths of each, thereby mitigating the risks
associated with dependency on a single model.

2. Weight adjustment: The meta-regressor’s primary role is to determine the most effective way to
combine the base models’ predictions. It assigns greater weights to models that perform better
under specific conditions, optimising the final prediction outcome.

3. Reduction of overfitting: Single models may tend to overfit the training data. Stacking regression
addresses this by blending predictions from multiple models, which helps in reducing overfitting.
The meta-regressor plays a crucial role in identifying overfitting tendencies among the base
models and adjusts their influence accordingly, thus enhancing the robustness of predictions
on new, unseen data.

Using lasso regression and ridge regression with elastic_net regression as base regressors may intro-
duce correlated updates to the meta-regressor, which from an information theory perspective, could be
seen as suboptimal. However, our choice is driven by the complementary strengths of these models in
handling different aspects of the data. Lasso regression is effective for feature selection and sparsity,
ridge regression addresses multicollinearity, and elastic_net combines both L1 and L2 regularisation to
balance these effects. To mitigate potential correlation issues, we ensure that the meta-regressor is trained
on the residuals of the base regressors’ predictions, which helps in capturing the unique contributions
of each base model and reducing redundancy.

Stacking regression significantly improves prediction accuracy and model generalisation by harness-
ing the collective capabilities of multiple models and fine-tuning their integration through a sophisticated
meta-regressor. This paper employs computationally efficient typical regression models such as support
vector regression, ridge regression, lasso regression, and elastic_net regression as base predictors. One
of these models is designated as the meta-regressor, with the remaining serving as base regressors, lead-
ing to the proposal of four distinct stacking regression methods, as detailed in Table 1. Additionally, this
paper incorporates lag features in time series prediction, utilising historical data values as input features
to forecast future trends, with the number of lag features tailored to meet practical requirements.

Taking the proposed stacking-elastic_net regression prediction model as an example, as illustrated in
Fig. 1, the structure of stacking regression is depicted. The first layer comprises SVR, ridge regression
and lasso regression as base regressors. These base regressors independently process the training data
and forward their prediction results as input features to the second layer’s meta-regressor, elastic_net.
The meta-regressor, elastic_net, integrates the predictions from the first layer and employs multi-step
recursive prediction to generate final forecasts for the desired prediction time steps. This stacking regres-
sion method amalgamates the prediction results from multiple base regressors to bolster the overall
performance of the model. The final output, Pfinal, represents a comprehensive prediction of the test
dataset.
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Table 1. Overview of proposed stacking regression methods

Model name Base regressors Meta-regressor
Stacking-SVR Ridge, Lasso, Elastic_Net SVR
Stacking-ridge SVR, Lasso, Elastic_Net Ridge
Stacking-lasso SVR, Ridge, Elastic_Net Lasso
Stacking-elastic_net SVR, Ridge, Lasso Elastic_Net

Training

data

SVR

Ridge

Lasso

P1

P2

P3

Elastic_Net Pfinal

Base regressor Base prediction result

Meta regressor

Figure 1. Structure of the stacking-elastic_net regression model.

Algorithm 1: Stacking-Elastic_net
Input: Training data (X_train, y_train), Test data (X_test, y_test)
Output: Final prediction results for test data

1 Initialize base regressors: SVR, Ridge, Lasso
2 Initialize meta-regressor: Elastic_Net

// Train base regressors
3 For each base_regressor in [SVR, Ridge, Lasso]:
4 base_regressor.fit(X_train, y_train)
5 End for

// Generate meta-features for training meta-regressor
6 Create an empty matrix X_meta_train
7 For each base_regressor in [SVR, Ridge, Lasso]:
8 predictions = base_regressor.predict(X_train)
9 Append predictions as a new column to X_meta_train

10 End for
// Train meta-regressor

11 Elastic_Net.fit(X_meta_train, y_train)
// Generate meta-features for final prediction

12 Create an empty matrix X_meta_test
13 For each base_regressor in [SVR, Ridge, Lasso]:
14 predictions = base_regressor.predict(X_test)
15 Append predictions as a new column to X_meta_test
16 End for

// Make final predictions using meta-regressor
17 final_predictions = Elastic_Net.predict(X_meta_test)

// Return final prediction results
18 Return final_predictions

The pseudocode for the stacking-elastic_net regression model is outlined as Algorithm 1.

3.2 Hyperparameter optimisation with TPE
In 2011, James [19] from Harvard University proposed the TPE, which uses a tree structure to represent
the relationships between hyperparameters and can effectively solve multi-dimensional optimisation
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problems. Additionally, it requires fewer iterations to find satisfactory hyperparameters. Therefore, TPE
is an ideal method for hyperparameter tuning in stacking regression models. This method can adapt to
different objective functions and improve the quality of hyperparameter selection.

The TPE algorithm defines p(x|y) using two density functions as follows:

p(x|y) =
{

l(x) if y < y∗

g(x) if y � y∗ (8)

Here, x represents the observation point, which is the hyperparameter vector of the model to be
optimised; y is the observation value, the outcome of the objective function (loss or evaluation function)
for the given parameter x; and y∗ is a threshold, representing a specific quantile of the TPE algorithm
used to divide the observations into two density functions, l(x) and g(x), with the sum ranging from 0
to 1. The algorithm sets y∗ based on existing observations, segregating them into two distinct density
functions: l(x) is formed by those observations

{
x(i)

}
whose loss is f (x(i)) < y∗, and g(x) consists of the

remaining observations. TPE employs Bayesian optimisation principles to minimise ineffective search
space.

The expected improvement (EI) strategy employed by the TPE algorithm generates new observation
points aimed at maximising EI. The Bayesian approach optimises the EI acquisition function, letting
p(y)p(x |y ) be p(x, y), thus defining EI as follows:

EIy∗ (x) =
∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)

p(x)
dy (9)

Let γ = p(y < y∗), to simplify the above formula, construct the denominator as: p(x) = ∫
p(x|y)p(y)dy

= γ l(x) + (1 − γ )g(x).
Secondly, for the molecule, we can get the formula:∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy = l(x)

∫ y∗

−∞
(y∗ − y)p(y)dy = γ y∗l(x) − l(x)

∫ y∗

−∞
p(y)dy (10)

Consequently, EI can be simplified to:

EIy∗ (x) = γ y∗l(x) − l(x)
∫ y∗

−∞ p(y)dy

γ l(x) + (1 − γ )g(x)
∝
(

γ + g(x)

l(x)
(1 − γ )

)−1

(11)

From this formula, maximising EI involves ensuring the probability of l(x) is high and that of g(x) is
low. In each iteration, the algorithm returns the candidate hyperparameter x∗ with the highest EI value,
x∗ = arg max EIy∗ . During the maximisation process, the hyperparameter x that achieves the highest
l(x) and the lowest g(x) probabilities obtains the highest EI value. The TPE algorithm uses l(x) and
g(x) to generate a collection of hyperparameter samples and evaluates x by the ratio of l(x)/g(x). In the
hyperparameter optimization of the Stacking regression model, the new hyperparameter x is used to
adjust the parameters of the Stacking regression model, training is conducted to obtain the observed
value y, then the new sample point observations are compared with the original observations to update
the probability model, thereby selecting the optimal result corresponding to the hyperparameter x

To address concerns about diluting a good solution with a poor one and to provide a probabilistic
measure of confidence, we incorporate Bayesian optimisation principles within the TPE framework. This
allows us to quantify the uncertainty associated with each hyperparameter configuration. By evaluating
the posterior distribution of the hyperparameters, we can obtain a probabilistic measure of confidence
for each configuration, ensuring that the selected hyperparameters are not only optimal but also robust.

This paper employs time series five-fold cross-validation to optimise hyperparameters, as illustrated
in Fig. 2, where the time series is sequentially divided into six data blocks. In the first fold of validation,
after training on the first data block, the subsequent second data block is used for validation. In the
second fold, the combined first and second data blocks serve as the training set, with the third data
block used for validation. This sequence continues until the final, sixth data block is also utilised as a
validation set. Each fold of the time series cross-validation uses different combinations of training and
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Unused

Training

Validation

1

2

3

4

5

Figure 2. Time series five-fold cross-validation.

validation sets, maintaining the sequential integrity of the time series and ensuring data completeness.
This method is particularly well-suited for time series data as it allows the model to capture the temporal
dynamics without the risk of future information leakage.

3.3 Prediction evaluation metrics
The prediction accuracy metrics discussed in the text include root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE). The formulas for these metrics are
as follows:

RMSE =
√√√√1

n

n∑
i=1

|ŷ(i) − y(i)|2 (12)

MAE = 1

n

n∑
i=1

∣∣ŷ(i) − y(i)
∣∣ (13)

MAPE = 1

n

n∑
i=1

∣∣∣∣ ŷ(i) − y(i)

y(i)

∣∣∣∣ (14)

In these formulas, y(i) represents the actual value, ŷ(i) is the predicted value, and n is the number of
samples. To ensure consistency with the RMSE and MAE metrics, the MAPE metric is expressed in
decimal form.

The implementation framework for the stacking regression prediction model is depicted in Fig. 3.

4.0 Experimental analysis
In this paper, ridge, lasso, SVR, and elastic_net are utilised as base predictors, and four types of stacking
regression methods are proposed: stacking-ridge, stacking-lasso, stacking-svr, and stacking-elastic_net.
Each method employs one of the base predictors as the meta-regressor, with the remaining predic-
tors serving as the first-layer base regressors. The proposed stacking methods initially conduct fault
prediction experiments on key components of analog circuits, followed by experiments on inertial mea-
surement unit components. These methods are then experimentally compared with single base predictors
such as ridge, lasso, elastic_net, and SVR. Throughout the experiments, all methods utilise the TPE
optimisation algorithm to determine the optimal hyperparameters. To collect failure data for these rare
events, we utilised a combination of historical data from operational records, controlled experiments
designed to simulate real-world fault scenarios, and simulation techniques to generate synthetic data.
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Base predictor 1

TPE optimization

Test set

Anti-
normalization

Save model

Build training set and test setData acquisition

Is the optimization complete?

No

Yes

Predict

Training set

Output prediction 
result

Create lag feature

Min-Max 
normalization

Meta-learner 
training

Time series 
cross-validation

Meta features

Base predictor n

Time series 
cross-validation

...

...

Comparative 
evaluation

Figure 3. Implementation framework of the stacking regression prediction model.

This comprehensive approach ensures that our dataset captures a wide range of potential failure modes,
providing a robust basis for developing and validating our fault prediction models.

The training dataset for our study is derived from simulated fault scenarios and historical data
collected from extensive testing and operational records of avionics components. This includes both
nominal and fault conditions, allowing us to create a robust dataset that captures a wide range of poten-
tial failure modes. While zero-shot or anomaly detection models are valuable for identifying rare events,
our focus on stacking regression is driven by the need for precise fault prediction and the ability to
leverage multiple regression models to improve predictive accuracy.

When the health of a component is calculated, the remaining useful life (RUL) or prognostics is then
the time it takes to go from the estimated health state to a predefined failure threshold. Accurate diag-
nostics are essential for effective prognostics, as they provide the necessary information to estimate the
current health state of the component. In our experiments, we focus on enhancing the accuracy of fault
prediction, which is a critical aspect of both diagnostics and prognostics. The TPE optimisation algo-
rithm, part of the Optuna [20] hyperparameter tuning framework, was introduced in 2019 by Takuya
Akiba and colleagues from PFN, Japan. To enhance computational efficiency, the range of hyperpa-
rameters explored by TPE is discretised, with the specific parameter value ranges detailed in Table 2.
Additionally, ridge, lasso, SVR, and elastic_net are all implemented using the scikit-learn library, with
the SVR method employing a linear kernel.
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Table 2. Hyperparameter selection range

Parameter Parameter meaning Parameter value range
ridge_alpha Ridge regression regularisation

strength
1×10-6, 1×10-5, 1×10-4, 1×10-3,

1×10-2, 1×10-1

lasso_alpha Lasso regression regularisation
strength

1×10-6, 1×10-5, 1×10-4, 1×10-3,
1×10-2, 1×10-1

svr_c SVR regularisation strength 1×10-4, 1×10-3, 1×10-2, 1×10-1,
1×100, 1×101

svc_epsilon SVR insensitivity loss 1×10-6, 1×10-5, 1×10-4, 1×10-3,
1×10-2, 1×10-1

elastic_net_alpha Elastic_net regression regularisation
strength

1×10-6, 1×10-5, 1×10-4, 1×10-3,
1×10-2, 1×10-1

elastic_net_l1_ratio Elastic_net regularisation L1 to L2
ratio

1×10-2, 5×10-2, 1×10-1, 3×10-1,
5×10-1, 7×10-1, 9×10-1

While our study primarily focuses on data-driven methods, it is important to acknowledge the poten-
tial benefits of model-based approaches. Model-based methods utilise physical models to describe the
underlying failure mechanisms of components, which can provide more explainable and potentially more
reliable predictions. These models can capture the physical processes leading to failure, offering insights
that purely data-driven methods might miss. However, model-based approaches require detailed knowl-
edge of the system’s physical properties and failure mechanisms, which can be difficult to obtain for
complex systems. Additionally, these models may not generalise well to different operating conditions
or new types of failures. In our simulations, we have the necessary data and conditions to implement
model-based approaches. However, we chose to focus on data-driven methods due to their flexibility
and ability to leverage large amounts of historical data without requiring detailed physical models. This
makes them more adaptable to a wide range of systems and conditions. To validate our data-driven meth-
ods, we conduct extensive simulations that mimic real-world fault scenarios, ensuring that our models
are robust and reliable.

In the analog circuit, both the anomaly threshold and the failure threshold are calculated. We first
estimate the distribution of the fault indicator (FI) and use the fitted probability distribution model to
determine the thresholds, ensuring statistical robustness. For the inertial measurement unit (IMU), the
thresholds are based on actual operational experience. For example, a gyroscope drift coefficient exceed-
ing 0.36◦/h is considered beyond performance criteria and is set as the fault threshold. This approach
combines statistical calculations and practical experience to ensure the reliability and applicability of
the threshold selection.

The experiments were conducted in the following environment: an Intel Core i9-13900HX processor
with a base frequency of 2.20GHz and a max turbo frequency of 5.60GHz, and 32GB of memory. The
software environment included a Windows 11 operating system and the PyCharm 2023.6 integrated
development environment, using Python version 3.8.5.

4.1 Fault prediction for key components in analog circuits
Analog circuits are extensively utilised in aviation equipment and play a crucial role in avionics. Failures
in these circuits often stem from key, sensitive components. This paper delves into the degradation of
circuit performance, particularly focusing on failures induced by the gradual deviation of key component
parameters from their normal values. Utilising the circuit fault analysis tool developed in Ref. (21), this
study conducted a simulation analysis on circuit performance degradation and gathered characteristic
data on component degradation. The research specifically examines a commonly used low-pass elliptical
filter circuit, employing stacked regression methods to predict component faults. The structure of the
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Figure 4. Schematic diagram of the low-pass elliptical filter circuit.

low-pass elliptical filter circuit is depicted in Fig. 4. During the experiments, steady-state voltage peaks
at 14 measurement points within the circuit were selected as monitoring features to facilitate online
monitoring of the circuit’s overall operational state.

In real-world applications, the cost of analog interfaces required to measure 14 parameters might
exceed the cost of the circuit itself, as depicted in Fig. 4. This raises concerns about the return on
investment, especially if the measurements are not gross level data such as input voltage/current and
temperature. To address this, we propose a cost-effective approach by focusing on a subset of critical
parameters that can still provide sufficient information for accurate fault prediction. By employing fea-
ture selection techniques, we can identify the most informative parameters, thereby reducing the number
of required measurements and associated costs. This approach ensures a balance between measurement
precision and economic feasibility, making the fault prediction method more practical for real-world
applications.

A single monitoring feature often falls short in providing a comprehensive and accurate depiction
of component performance degradation. Employing multiple features requires complex data fusion
calculations. Consequently, this paper embraces the concept of the FI, as proposed in Ref. (22). FI
is a state variable formulated based on circuit monitoring features to reflect the overall performance
degradation of the circuit. Typically, when component parameters deviate, the FI value exhibits a mono-
tonic trend of change. The methodology for constructing the FI will be discussed in the following
section.

Let Vij represent the steady-state voltage peak at node j at the i-th sampling point, and Vnormal
j represent

the steady-state voltage peak of node j under normal conditions. When a parameter of a component in
the circuit changes, the deviation of node j’s monitoring feature from the normal state can be represented
as Dij =

∣∣Vij − Vnormal
j

∣∣. Given that the monitoring features (i.e. steady-state voltage peaks) of different
nodes vary in their degree of change during component performance degradation, node normalisation
is performed on Dij:

Dij = Dij − (D∗j)min

(D∗j)max − (D∗j)min

, i = 1, 2, · · · , n; j = 1, 2, · · · , M (15)

In the formula, (D∗j)max and (D∗j)min, respectively, represent the maximum and minimum values of
node j across all sampling points; n is the number of sampling points; M is the number of monitoring
nodes. According to the coarse feature extraction method described in Ref. (23), M monitoring features
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Figure 5. Trend of FI value changes under R2↓.

(nodes) are selected, and the FI is defined as:

FIi =
M∑

j=1

{[
dis(j)∑M
t=1 dis(t)

]
Dij

}
, i = 1, 2, · · · , n (16)

In the formula, dis(j) is defined in Ref. (23) as the feature discriminative power of each monitor-
ing feature j. Based on the definition of feature discriminative power, the discriminative power of each
monitoring feature is integrated as weight into the construction of the FI, allowing this fault indicator
to more accurately reflect the overall working state of the system. In this case, using the coarse feature
extraction method, 6 measurement points {4, 5, 6, 9, 10, 11} were selected as key monitoring points,
and the degradation process under the reduction of the R2 parameter in the low-pass elliptical filter
circuit (denoted as R2↓) was analysed. In the experiment, the degrading component parameter starts
from its nominal value 	, decaying exponentially over time, with the maximum change set to 0.5	,
and a sampling length of 200. The parameters of non-degrading components vary randomly accord-
ing to a normal distribution N(	, (t	/3)2) (where t is a 10% relative tolerance), and the circuit input
receives a 3V, 1kHz sine wave signal. Using the defined FI construction method, the changes in FI
corresponding to R2↓ can be obtained, as shown in Fig. 5. Due to the influence of the tolerance of
non-degrading components, the FI degradation curve is not smooth, which may adversely affect fault
prediction.

The distribution of the FI is crucial for setting appropriate thresholds for anomaly detection. From
a zero-shot or anomaly detection perspective, if the distribution of FI is known, the threshold can be
determined using the inverse cumulative distribution function for a given probability of false alarm.
This approach allows us to set a threshold that minimises the likelihood of false alarms while ensur-
ing that true anomalies are detected. In our experiments, we estimate the distribution of FI using
historical data and fit it to a suitable probability distribution model. The anomaly threshold is then
set as the value corresponding to the 1 - probability of false alarm quantile of this distribution. This
method provides a probabilistic measure of confidence in the threshold setting, ensuring robust anomaly
detection.

To determine the appropriate distribution model for FI, we perform goodness-of-fit tests, such as the
Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test, to compare the empirical distri-
bution of FI with various theoretical distributions, including Gaussian, Rayleigh, and others. Preliminary
analysis suggests that FI may exhibit a tailed distribution, such as Rayleigh, rather than a Gaussian distri-
bution. The anomaly threshold is then set as the value corresponding to the 1- probability of false alarm
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Table 3. Comparative performance metrics of different models

Model category Model RMSE MAE MAPE Parameter values
Single model Ridge 0.064 2 0.052 1 0.101 1 ridge_alpha:1×10-3

Lasso 0.088 3 0.070 0 0.131 4 lasso_alpha:1×10-5

SVR 0.046 1 0.038 6 0.078 5 svr_c:1×101,
svc_epsilon:1×10-2

Elastic_net 0.064 8 0.052 6 0.101 9 elastic_net_alpha:1×10-5,
elastic_net_l1_ratio: 5×10-2

Stacking model Stacking-ridge 0.021 0 0.015 3 0.032 8 lasso_alpha:1×10-4,
ridge_alpha:1×10-2,

elastic_net_alpha:1×10-4,
elastic_net_l1_ratio:5×10-2,

svr_c:1×101,
svc_epsilon:1×10-5

Stacking-lasso 0.032 8 0.022 1 0.040 8 lasso_alpha:1×10-4,
ridge_alpha:1×10-2,

elastic_net_alpha:1×10-3,
elastic_net_l1_ratio:5×10-1,

svr_c:1×101,
svc_epsilon:1×10-2

Stacking-SVR 0.025 4 0.022 7 0.053 7 lasso_alpha:1×10-4,
ridge_alpha:1×10-3,

elastic_net_alpha:1×10-4,
elastic_net_l1_ratio: 1×10-1,

svr_c:1×101,
svc_epsilon:1×10-2

Stacking-elastic_net 0.015 2 0.011 9 0.029 3 lasso_alpha:1×10-4,
ridge_alpha:1×10-3,

elastic_net_alpha:1×10-4,
elastic_net_l1_ratio:5×10-2,

svr_c:1×100,
svc_epsilon:1×10-3

quantile of the best-fitting distribution. This method provides a probabilistic measure of confidence in
the threshold setting, ensuring robust anomaly detection.

Assuming ε represents the component’s tolerance, a component’s parameters exceeding the ε range
typically indicates a circuit anomaly. At this point, the FI value is defined as the anomaly threshold for
that component. When parameters deviate by 3ε, it is considered that the circuit can no longer meet
operational requirements, and the component is deemed to have reached the end of its life. Here, the
FI value is set as the failure threshold for that component [23]. For the component R2↓, the calculated
anomaly threshold is 0.4072, and the failure threshold is 0.5731. These thresholds are indicated in Fig. 5.
Utilising historical FI data, the proposed algorithm predicts the future trend of FI and calculates the time
required for FI to reach both the anomaly and failure thresholds. These times are used as the prediction
intervals for fault warning and component failure, respectively.

Comparative experiments on model performance were conducted using lag features set at 10, with an
equal split between the training and test sets, i.e. after training on the training set, recursive prediction
was performed on the test set. The results of the fault prediction experiments for key components in the
analog circuit are presented in Table 3, and the corresponding graphical representation is depicted in
Fig. 6. It is evident that the predictive performance of the stacking models generally surpasses that of the
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Figure 6. Bar chart comparison of model performance.

Figure 7. Prediction curves with R2 decrease. (a) Using 110 training data point; (b) using 140 training
data points.

single models, with the stacking-elastic_net model achieving the best results across all three prediction
metrics, thereby highlighting the superiority of this method.

For the top-performing stacking-elastic_net model, its predictive performance was evaluated using
different training datasets. Specifically, for the component R2↓, the prediction curves for training
datasets of 110 and 140 are illustrated in Fig. 7, to consider the feature changes over a longer time
range, the lag features were set to 20 in both training data scenarios. It is observable that both training
scenarios align well with the actual values. However, the prediction curve with a training dataset of
140 demonstrates a notably closer fit to the actual values, indicating enhanced accuracy.

The specific fault prediction errors are detailed in Table 4. The results indicate that with a training
dataset of 110, the errors at the anomaly and failure points are 4 and 6, respectively. Conversely, with
a training dataset of 140, the errors reduce to 1 and 2 at the anomaly and failure points, respectively,
demonstrating a significantly improved prediction accuracy. This highlights the robust fault prediction
capabilities of the stacking regression model.

4.2 Inertial measurement unit component fault prediction
The strapdown inertial navigation system (SINS) is an autonomous navigation system that operates
independently of external information and is extensively utilised in aviation equipment. Its fundamental
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Table 4. Prediction errors under R2↓
Anomaly point Failure point

Training Predicted Actual Predicted Actual
data count anomaly point anomaly point Error failure point failure point Error
110 158 154 4 177 171 6
140 155 154 1 173 171 2
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calculation
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Figure 8. Basic principles of strapdown inertial navigation system.

working principle is depicted in Fig. 8. The inertial measurement unit (IMU) is an essential electronic
device within this system, tasked with measuring the angular velocity and linear acceleration of an
aircraft. Typically, an IMU comprises three gyroscopes and three accelerometers, each dedicated to
measuring the aircraft’s angular velocity and linear acceleration along three respective axes. Through
coordinate transformations and subsequent calculations, the position, velocity, and attitude angles of
the aircraft are determined, enabling autonomous navigation. The performance of an IMU is primarily
evaluated based on its measurement accuracy, which is significantly affected by the gyroscope drift
coefficient. Consequently, the gyroscope drift coefficient is a vital performance metric for determining
whether an IMU has deteriorated to the failure threshold.

The drift observed in our study is due to the gyroscope’s performance degradation rather than poor
updates of the Kalman filter. The IMU data used in our experiments were collected from controlled tests
designed to simulate real-world fault scenarios, including seeded faults to ensure the reliability of the
data. IMUs are known for their high reliability; however, for the purpose of this study, we introduced
controlled faults to capture the degradation process accurately. This approach allows us to validate the
fault prediction methods under realistic conditions.

This article utilises actual test data of the gyroscope from Ref. (24), selecting the first-order drift
coefficient along the sensitive axis of the gyroscope as the primary index for monitoring performance.
Through continuous operational tests, 96 data points of the first-order drift coefficient were collected
at uniform sampling intervals. The experimental data, displayed in Fig. 9, distinctly show a nonlinear
increasing trend.

Comparative experiments on model performance were conducted using a lag feature set at 10, with
an equal ratio of training set to test set (1:1). After training on the training set, recursive predictions
were performed on the test set. The results of the gyroscope prediction experiments are presented in
Table 5, and the corresponding graphical representations are shown in Fig. 10. It is evident that the
stacking regression model generally outperforms the single models, with the stacking-elastic_net model
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Table 5. Performance metrics comparison for gyroscope prediction models

Model category Model RMSE MAE MAPE Parameter values
Single models Ridge 0.018 0 0.015 7 0.046 4 ridge_alpha:1×10-2

Lasso 0.016 2 0.014 0 0.041 2 lasso_alpha:1×10-4

SVR 0.023 4 0.020 6 0.060 3 svr_c:1×100,
svc_epsilon:1×10-3

Elastic_net 0.010 7 0.009 1 0.027 0 elastic_net_alpha:1×10-3,
elastic_net_l1_ratio: 3×10-1

Stacking models Stacking-ridge 0.007 9 0.006 5 0.019 7 lasso_alpha:1×10-4,
ridge_alpha:1×10-2,

elastic_net_alpha:1×10-3,
elastic_net_l1_ratio:5×10-2,

svr_c:1×101,
svc_epsilon:1×10-3

Stacking-lasso 0.014 5 0.012 1 0.034 7 lasso_alpha:1×10-3,
ridge_alpha:1×10-4,

elastic_net_alpha:1×10-3,
elastic_net_l1_ratio: 5×10-1,

svr_c:1×10-1,
svc_epsilon:1×10-2

Stacking-SVR 0.011 7 0.009 1 0.027 8 lasso_alpha:1×10-4,
ridge_alpha:1×10-3,

elastic_net_alpha:1×10-2,
elastic_net_l1_ratio:1×10-1,

svr_c:1×101,
svc_epsilon:1×10-2

Stacking-elastic_net 0.007 4 0.006 0 0.018 2 lasso_alpha:1×10-4,
ridge_alpha:1×10-3,

elastic_net_alpha:1×10-3,
elastic_net_l1_ratio: 3×10-1,

svr_c:1×100,
svc_epsilon:1×10-3
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Figure 9. Observed trend of gyroscope’s first-order drift coefficient.
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Figure 10. Graphical representation of model performance comparison.

Figure 11. Gyroscope drift coefficient prediction curves. (a) Using 70 training data point; (b) using 80
training data points.

achieving the best results across all three prediction metrics. This underscores the superior efficacy of
the method.

For this type of gyroscope, a drift coefficient exceeding 0.36◦/h is considered beyond the performance
criteria, and thus, it is established as the fault threshold. The stacking-elastic_net model, noted for its
superior prediction performance, was evaluated using different training datasets. The datasets were set
to 70 and 80, respectively, with the remaining 26 and 16 data points serving as the test set to assess
the algorithm’s predictive capabilities. To consider the feature changes over a longer time range, the lag
features were set to 20 in both training data scenarios. For gyroscope fault prediction, the prediction
curves for the different training data volumes are illustrated in Fig. 11. It is observed that the prediction
curves under both training data volumes show no significant differences, each aligning closely with the
actual value curve.

The specific fault prediction errors are detailed in Table 6, showing that the prediction error time
points for training data volumes of 70 and 80 are both 2, indicating relatively good predictive per-
formance. From Fig. 11 and Table 6, it is clear that increasing the training data volume from 70 to
80 does not significantly improve the predictive performance. This lack of significant enhancement may
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Table 6. Prediction errors for gyroscope drift coefficient

Training data count Predicted anomaly point Actual anomaly point Error
70 86 88 2
80 86 88 2

Figure 12. Prediction curves for gyroscope drift coefficient by different methods. (a) Global prediction
curve; (b) local prediction curve.

be attributed to the strong irregularity present in the actual measured data of the gyroscope, which
complicates the algorithm’s ability to accurately predict its trend.

With the training sample size set at 70 and the lag feature at 20, Fig. 12 displays the prediction
curves and a detailed zoom-in on these curves for the gyroscope drift coefficient using all the methods
mentioned previously. The figure clearly shows that the prediction curves of the stacking models are
more closely aligned with the actual values compared to those of the single models. Among these, the
stacking-elasticnet method exhibits the best fit to the degradation trend of the component performance.
It is minimally affected by the accumulation of errors, thereby providing the most accurate fault
prediction. This further underscores the superior performance of the stacking regression models.

5.0 Conclusion
This paper tackles the challenge of fault prediction for avionics components by proposing four multi-step
prediction methods based on stacking regression. These methods integrate various standard regression
models such as SVR, ridge regression, lasso regression, and elastic_net regression into a multi-level
prediction framework. Within this framework, multiple base regression models in the first layer indepen-
dently predict data, which are then fed into a meta-regressor in the second layer to leverage the predictive
strengths of each base model. Additionally, the TPE algorithm was employed for hyperparameter opti-
misation, further enhancing the models’ performance. The results from fault prediction experiments
on critical components of analog circuits and inertial measurement units demonstrate that the stacking
regression models surpass traditional single models across several performance metrics. Notably, the
stacking-elastic_net method exhibited the best predictive performance, affirming the effectiveness and
practicality of the stacking regression approach in addressing complex fault prediction challenges in
avionics components.

The fault prediction method for avionics components introduced in this paper not only enhances the
accuracy of fault predictions but also offers an efficient technical solution for the health management of
avionics. Future work will focus on exploring additional combinations of base and meta-regressors to
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further enhance predictive accuracy. We also aim to test the proposed methods in real-world avionics
systems to validate their practical applicability. Additionally, integrating these models with Internet
of Things (IoT) devices for real-time monitoring and prediction could open new avenues for research.
Collaborations with industry partners will be sought to ensure the models are robust and scalable for
various operational environments.
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